Properties

Label 775.2.bl.a.276.1
Level $775$
Weight $2$
Character 775.276
Analytic conductor $6.188$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [775,2,Mod(51,775)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(775, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("775.51");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.bl (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 276.1
Root \(-2.52368i\) of defining polynomial
Character \(\chi\) \(=\) 775.276
Dual form 775.2.bl.a.351.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.284315 - 0.206567i) q^{2} +(-0.302431 + 2.87744i) q^{3} +(-0.579869 + 1.78465i) q^{4} +(0.508398 + 0.880572i) q^{6} +(-1.05848 + 0.224987i) q^{7} +(0.420982 + 1.29565i) q^{8} +(-5.25377 - 1.11672i) q^{9} +(-1.62690 - 1.80686i) q^{11} +(-4.95987 - 2.20827i) q^{12} +(-2.62521 + 1.16882i) q^{13} +(-0.254466 + 0.282614i) q^{14} +(-2.64890 - 1.92454i) q^{16} +(1.22101 - 1.35606i) q^{17} +(-1.72440 + 0.767753i) q^{18} +(1.93514 + 0.861580i) q^{19} +(-0.327269 - 3.11375i) q^{21} +(-0.835790 - 0.177653i) q^{22} +(0.136652 + 0.420572i) q^{23} +(-3.85547 + 0.819506i) q^{24} +(-0.504947 + 0.874594i) q^{26} +(2.11998 - 6.52462i) q^{27} +(0.212256 - 2.01948i) q^{28} +(2.55579 - 1.85689i) q^{29} +(1.15354 + 5.44696i) q^{31} -3.87532 q^{32} +(5.69116 - 4.13487i) q^{33} +(0.0670322 - 0.637769i) q^{34} +(5.03946 - 8.72860i) q^{36} +(1.57338 + 2.72517i) q^{37} +(0.728163 - 0.154776i) q^{38} +(-2.56926 - 7.90738i) q^{39} +(0.726079 + 6.90818i) q^{41} +(-0.736246 - 0.817684i) q^{42} +(7.68509 + 3.42162i) q^{43} +(4.16801 - 1.85572i) q^{44} +(0.125728 + 0.0913471i) q^{46} +(-6.44144 - 4.67998i) q^{47} +(6.33887 - 7.04003i) q^{48} +(-5.32506 + 2.37087i) q^{49} +(3.53273 + 3.92349i) q^{51} +(-0.563659 - 5.36285i) q^{52} +(-4.86824 - 1.03478i) q^{53} +(-0.745029 - 2.29296i) q^{54} +(-0.737104 - 1.27670i) q^{56} +(-3.06439 + 5.30768i) q^{57} +(0.343078 - 1.05588i) q^{58} +(1.25580 - 11.9481i) q^{59} -14.4351 q^{61} +(1.45313 + 1.31037i) q^{62} +5.81225 q^{63} +(4.19600 - 3.04857i) q^{64} +(0.763955 - 2.35121i) q^{66} +(-3.21879 + 5.57511i) q^{67} +(1.71208 + 2.96541i) q^{68} +(-1.25150 + 0.266015i) q^{69} +(-1.64121 - 0.348850i) q^{71} +(-0.764860 - 7.27716i) q^{72} +(-9.60883 - 10.6717i) q^{73} +(1.01026 + 0.449798i) q^{74} +(-2.65975 + 2.95395i) q^{76} +(2.12856 + 1.54649i) q^{77} +(-2.36388 - 1.71746i) q^{78} +(-2.30692 + 2.56210i) q^{79} +(3.41274 + 1.51945i) q^{81} +(1.63344 + 1.81412i) q^{82} +(1.34357 + 12.7832i) q^{83} +(5.74674 + 1.22151i) q^{84} +(2.89178 - 0.614667i) q^{86} +(4.57015 + 7.91573i) q^{87} +(1.65616 - 2.86855i) q^{88} +(0.698188 - 2.14880i) q^{89} +(2.51576 - 1.82781i) q^{91} -0.829816 q^{92} +(-16.0222 + 1.67190i) q^{93} -2.79812 q^{94} +(1.17202 - 11.1510i) q^{96} +(-1.05463 + 3.24582i) q^{97} +(-1.02425 + 1.77405i) q^{98} +(6.52961 + 11.3096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{2} + 12 q^{3} - 14 q^{4} + 11 q^{6} - 2 q^{7} - 17 q^{8} - 10 q^{9} - 7 q^{11} - 5 q^{12} + 7 q^{13} - 6 q^{14} - 2 q^{16} + 6 q^{17} + 3 q^{18} + 16 q^{19} + 9 q^{21} - 9 q^{22} - q^{23} - 20 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.284315 0.206567i 0.201041 0.146065i −0.482710 0.875780i \(-0.660347\pi\)
0.683751 + 0.729715i \(0.260347\pi\)
\(3\) −0.302431 + 2.87744i −0.174609 + 1.66129i 0.459597 + 0.888128i \(0.347994\pi\)
−0.634206 + 0.773164i \(0.718673\pi\)
\(4\) −0.579869 + 1.78465i −0.289934 + 0.892327i
\(5\) 0 0
\(6\) 0.508398 + 0.880572i 0.207553 + 0.359492i
\(7\) −1.05848 + 0.224987i −0.400067 + 0.0850369i −0.403551 0.914957i \(-0.632224\pi\)
0.00348400 + 0.999994i \(0.498891\pi\)
\(8\) 0.420982 + 1.29565i 0.148840 + 0.458081i
\(9\) −5.25377 1.11672i −1.75126 0.372241i
\(10\) 0 0
\(11\) −1.62690 1.80686i −0.490530 0.544789i 0.446158 0.894954i \(-0.352792\pi\)
−0.936688 + 0.350165i \(0.886125\pi\)
\(12\) −4.95987 2.20827i −1.43179 0.637474i
\(13\) −2.62521 + 1.16882i −0.728103 + 0.324172i −0.737097 0.675787i \(-0.763804\pi\)
0.00899389 + 0.999960i \(0.497137\pi\)
\(14\) −0.254466 + 0.282614i −0.0680090 + 0.0755317i
\(15\) 0 0
\(16\) −2.64890 1.92454i −0.662226 0.481135i
\(17\) 1.22101 1.35606i 0.296137 0.328894i −0.576653 0.816989i \(-0.695641\pi\)
0.872790 + 0.488095i \(0.162308\pi\)
\(18\) −1.72440 + 0.767753i −0.406445 + 0.180961i
\(19\) 1.93514 + 0.861580i 0.443951 + 0.197660i 0.616523 0.787337i \(-0.288541\pi\)
−0.172571 + 0.984997i \(0.555208\pi\)
\(20\) 0 0
\(21\) −0.327269 3.11375i −0.0714159 0.679477i
\(22\) −0.835790 0.177653i −0.178191 0.0378757i
\(23\) 0.136652 + 0.420572i 0.0284939 + 0.0876953i 0.964292 0.264841i \(-0.0853194\pi\)
−0.935798 + 0.352536i \(0.885319\pi\)
\(24\) −3.85547 + 0.819506i −0.786995 + 0.167281i
\(25\) 0 0
\(26\) −0.504947 + 0.874594i −0.0990283 + 0.171522i
\(27\) 2.11998 6.52462i 0.407990 1.25566i
\(28\) 0.212256 2.01948i 0.0401126 0.381646i
\(29\) 2.55579 1.85689i 0.474599 0.344816i −0.324632 0.945840i \(-0.605240\pi\)
0.799231 + 0.601024i \(0.205240\pi\)
\(30\) 0 0
\(31\) 1.15354 + 5.44696i 0.207181 + 0.978303i
\(32\) −3.87532 −0.685067
\(33\) 5.69116 4.13487i 0.990704 0.719789i
\(34\) 0.0670322 0.637769i 0.0114959 0.109376i
\(35\) 0 0
\(36\) 5.03946 8.72860i 0.839910 1.45477i
\(37\) 1.57338 + 2.72517i 0.258661 + 0.448015i 0.965884 0.258977i \(-0.0833853\pi\)
−0.707222 + 0.706991i \(0.750052\pi\)
\(38\) 0.728163 0.154776i 0.118124 0.0251079i
\(39\) −2.56926 7.90738i −0.411412 1.26619i
\(40\) 0 0
\(41\) 0.726079 + 6.90818i 0.113395 + 1.07888i 0.892209 + 0.451623i \(0.149155\pi\)
−0.778814 + 0.627254i \(0.784179\pi\)
\(42\) −0.736246 0.817684i −0.113605 0.126171i
\(43\) 7.68509 + 3.42162i 1.17197 + 0.521793i 0.898021 0.439953i \(-0.145005\pi\)
0.273944 + 0.961746i \(0.411672\pi\)
\(44\) 4.16801 1.85572i 0.628351 0.279760i
\(45\) 0 0
\(46\) 0.125728 + 0.0913471i 0.0185377 + 0.0134684i
\(47\) −6.44144 4.67998i −0.939580 0.682645i 0.00873953 0.999962i \(-0.497218\pi\)
−0.948320 + 0.317317i \(0.897218\pi\)
\(48\) 6.33887 7.04003i 0.914937 1.01614i
\(49\) −5.32506 + 2.37087i −0.760723 + 0.338696i
\(50\) 0 0
\(51\) 3.53273 + 3.92349i 0.494681 + 0.549399i
\(52\) −0.563659 5.36285i −0.0781654 0.743694i
\(53\) −4.86824 1.03478i −0.668704 0.142137i −0.138964 0.990297i \(-0.544377\pi\)
−0.529740 + 0.848160i \(0.677711\pi\)
\(54\) −0.745029 2.29296i −0.101386 0.312033i
\(55\) 0 0
\(56\) −0.737104 1.27670i −0.0984997 0.170606i
\(57\) −3.06439 + 5.30768i −0.405889 + 0.703020i
\(58\) 0.343078 1.05588i 0.0450483 0.138644i
\(59\) 1.25580 11.9481i 0.163491 1.55551i −0.538068 0.842902i \(-0.680846\pi\)
0.701559 0.712612i \(-0.252488\pi\)
\(60\) 0 0
\(61\) −14.4351 −1.84823 −0.924115 0.382115i \(-0.875196\pi\)
−0.924115 + 0.382115i \(0.875196\pi\)
\(62\) 1.45313 + 1.31037i 0.184548 + 0.166417i
\(63\) 5.81225 0.732274
\(64\) 4.19600 3.04857i 0.524499 0.381071i
\(65\) 0 0
\(66\) 0.763955 2.35121i 0.0940363 0.289414i
\(67\) −3.21879 + 5.57511i −0.393238 + 0.681108i −0.992875 0.119164i \(-0.961979\pi\)
0.599636 + 0.800273i \(0.295312\pi\)
\(68\) 1.71208 + 2.96541i 0.207620 + 0.359609i
\(69\) −1.25150 + 0.266015i −0.150663 + 0.0320244i
\(70\) 0 0
\(71\) −1.64121 0.348850i −0.194776 0.0414009i 0.109491 0.993988i \(-0.465078\pi\)
−0.304266 + 0.952587i \(0.598411\pi\)
\(72\) −0.764860 7.27716i −0.0901396 0.857621i
\(73\) −9.60883 10.6717i −1.12463 1.24903i −0.965114 0.261830i \(-0.915674\pi\)
−0.159514 0.987196i \(-0.550993\pi\)
\(74\) 1.01026 + 0.449798i 0.117441 + 0.0522880i
\(75\) 0 0
\(76\) −2.65975 + 2.95395i −0.305094 + 0.338841i
\(77\) 2.12856 + 1.54649i 0.242572 + 0.176239i
\(78\) −2.36388 1.71746i −0.267657 0.194464i
\(79\) −2.30692 + 2.56210i −0.259549 + 0.288259i −0.858809 0.512296i \(-0.828795\pi\)
0.599260 + 0.800555i \(0.295462\pi\)
\(80\) 0 0
\(81\) 3.41274 + 1.51945i 0.379194 + 0.168828i
\(82\) 1.63344 + 1.81412i 0.180383 + 0.200336i
\(83\) 1.34357 + 12.7832i 0.147476 + 1.40314i 0.778631 + 0.627482i \(0.215914\pi\)
−0.631155 + 0.775657i \(0.717419\pi\)
\(84\) 5.74674 + 1.22151i 0.627021 + 0.133277i
\(85\) 0 0
\(86\) 2.89178 0.614667i 0.311829 0.0662812i
\(87\) 4.57015 + 7.91573i 0.489972 + 0.848656i
\(88\) 1.65616 2.86855i 0.176547 0.305789i
\(89\) 0.698188 2.14880i 0.0740078 0.227773i −0.907209 0.420680i \(-0.861792\pi\)
0.981217 + 0.192907i \(0.0617916\pi\)
\(90\) 0 0
\(91\) 2.51576 1.82781i 0.263724 0.191606i
\(92\) −0.829816 −0.0865143
\(93\) −16.0222 + 1.67190i −1.66142 + 0.173368i
\(94\) −2.79812 −0.288604
\(95\) 0 0
\(96\) 1.17202 11.1510i 0.119619 1.13810i
\(97\) −1.05463 + 3.24582i −0.107082 + 0.329563i −0.990213 0.139562i \(-0.955431\pi\)
0.883132 + 0.469125i \(0.155431\pi\)
\(98\) −1.02425 + 1.77405i −0.103465 + 0.179207i
\(99\) 6.52961 + 11.3096i 0.656251 + 1.13666i
\(100\) 0 0
\(101\) 5.47495 + 16.8502i 0.544778 + 1.67665i 0.721518 + 0.692395i \(0.243445\pi\)
−0.176741 + 0.984257i \(0.556555\pi\)
\(102\) 1.81487 + 0.385763i 0.179699 + 0.0381962i
\(103\) 0.843947 + 8.02962i 0.0831566 + 0.791182i 0.954037 + 0.299688i \(0.0968824\pi\)
−0.870881 + 0.491494i \(0.836451\pi\)
\(104\) −2.61955 2.90930i −0.256868 0.285281i
\(105\) 0 0
\(106\) −1.59786 + 0.711414i −0.155198 + 0.0690987i
\(107\) 8.13074 9.03010i 0.786028 0.872972i −0.208438 0.978036i \(-0.566838\pi\)
0.994466 + 0.105063i \(0.0335045\pi\)
\(108\) 10.4149 + 7.56685i 1.00217 + 0.728121i
\(109\) 0.511381 + 0.371540i 0.0489815 + 0.0355871i 0.612007 0.790853i \(-0.290363\pi\)
−0.563025 + 0.826440i \(0.690363\pi\)
\(110\) 0 0
\(111\) −8.31735 + 3.70312i −0.789448 + 0.351485i
\(112\) 3.23680 + 1.44112i 0.305849 + 0.136173i
\(113\) 7.56140 + 8.39779i 0.711317 + 0.789998i 0.985135 0.171784i \(-0.0549531\pi\)
−0.273818 + 0.961782i \(0.588286\pi\)
\(114\) 0.225139 + 2.14205i 0.0210862 + 0.200622i
\(115\) 0 0
\(116\) 1.83188 + 5.63796i 0.170086 + 0.523472i
\(117\) 15.0975 3.20907i 1.39576 0.296679i
\(118\) −2.11104 3.65643i −0.194337 0.336602i
\(119\) −0.987313 + 1.71008i −0.0905068 + 0.156762i
\(120\) 0 0
\(121\) 0.531887 5.06056i 0.0483533 0.460051i
\(122\) −4.10412 + 2.98182i −0.371570 + 0.269961i
\(123\) −20.0975 −1.81213
\(124\) −10.3898 1.09986i −0.933034 0.0987702i
\(125\) 0 0
\(126\) 1.65251 1.20062i 0.147217 0.106960i
\(127\) 0.0123141 0.117161i 0.00109270 0.0103963i −0.993962 0.109725i \(-0.965003\pi\)
0.995055 + 0.0993289i \(0.0316696\pi\)
\(128\) 2.95833 9.10481i 0.261482 0.804759i
\(129\) −12.1697 + 21.0786i −1.07149 + 1.85587i
\(130\) 0 0
\(131\) −5.65756 + 1.20255i −0.494303 + 0.105067i −0.448317 0.893875i \(-0.647976\pi\)
−0.0459863 + 0.998942i \(0.514643\pi\)
\(132\) 4.07918 + 12.5544i 0.355047 + 1.09272i
\(133\) −2.24215 0.476583i −0.194419 0.0413250i
\(134\) 0.236483 + 2.24998i 0.0204290 + 0.194369i
\(135\) 0 0
\(136\) 2.27101 + 1.01112i 0.194737 + 0.0867026i
\(137\) −10.7848 + 4.80170i −0.921407 + 0.410237i −0.811931 0.583753i \(-0.801584\pi\)
−0.109475 + 0.993990i \(0.534917\pi\)
\(138\) −0.300870 + 0.334150i −0.0256118 + 0.0284448i
\(139\) 12.4767 + 9.06482i 1.05826 + 0.768868i 0.973765 0.227556i \(-0.0730734\pi\)
0.0844915 + 0.996424i \(0.473073\pi\)
\(140\) 0 0
\(141\) 15.4145 17.1195i 1.29813 1.44172i
\(142\) −0.538681 + 0.239836i −0.0452051 + 0.0201266i
\(143\) 6.38286 + 2.84183i 0.533762 + 0.237646i
\(144\) 11.7675 + 13.0692i 0.980628 + 1.08910i
\(145\) 0 0
\(146\) −4.93635 1.04925i −0.408535 0.0868368i
\(147\) −5.21157 16.0396i −0.429843 1.32292i
\(148\) −5.77583 + 1.22769i −0.474770 + 0.100916i
\(149\) 5.97511 + 10.3492i 0.489500 + 0.847840i 0.999927 0.0120817i \(-0.00384583\pi\)
−0.510427 + 0.859921i \(0.670512\pi\)
\(150\) 0 0
\(151\) −1.33561 + 4.11059i −0.108691 + 0.334515i −0.990579 0.136943i \(-0.956272\pi\)
0.881888 + 0.471458i \(0.156272\pi\)
\(152\) −0.301646 + 2.86997i −0.0244667 + 0.232785i
\(153\) −7.92923 + 5.76092i −0.641040 + 0.465743i
\(154\) 0.924636 0.0745093
\(155\) 0 0
\(156\) 15.6018 1.24914
\(157\) −7.04204 + 5.11634i −0.562016 + 0.408328i −0.832196 0.554481i \(-0.812917\pi\)
0.270180 + 0.962810i \(0.412917\pi\)
\(158\) −0.126648 + 1.20498i −0.0100756 + 0.0958628i
\(159\) 4.44982 13.6951i 0.352893 1.08609i
\(160\) 0 0
\(161\) −0.239267 0.414422i −0.0188568 0.0326610i
\(162\) 1.28416 0.272957i 0.100893 0.0214455i
\(163\) −0.966575 2.97481i −0.0757080 0.233005i 0.906040 0.423192i \(-0.139091\pi\)
−0.981748 + 0.190187i \(0.939091\pi\)
\(164\) −12.7497 2.71004i −0.995588 0.211619i
\(165\) 0 0
\(166\) 3.02258 + 3.35692i 0.234598 + 0.260547i
\(167\) 12.2003 + 5.43194i 0.944090 + 0.420336i 0.820275 0.571969i \(-0.193820\pi\)
0.123815 + 0.992305i \(0.460487\pi\)
\(168\) 3.89656 1.73486i 0.300626 0.133847i
\(169\) −3.17310 + 3.52408i −0.244085 + 0.271083i
\(170\) 0 0
\(171\) −9.20462 6.68755i −0.703895 0.511410i
\(172\) −10.5628 + 11.7311i −0.805402 + 0.894490i
\(173\) −17.3982 + 7.74619i −1.32276 + 0.588932i −0.941960 0.335724i \(-0.891019\pi\)
−0.380803 + 0.924656i \(0.624352\pi\)
\(174\) 2.93449 + 1.30652i 0.222463 + 0.0990469i
\(175\) 0 0
\(176\) 0.832136 + 7.91724i 0.0627246 + 0.596785i
\(177\) 34.0002 + 7.22697i 2.55561 + 0.543213i
\(178\) −0.245366 0.755159i −0.0183910 0.0566016i
\(179\) 0.0775964 0.0164936i 0.00579983 0.00123279i −0.205011 0.978760i \(-0.565723\pi\)
0.210811 + 0.977527i \(0.432390\pi\)
\(180\) 0 0
\(181\) −1.08143 + 1.87308i −0.0803817 + 0.139225i −0.903414 0.428769i \(-0.858947\pi\)
0.823032 + 0.567995i \(0.192281\pi\)
\(182\) 0.337704 1.03935i 0.0250323 0.0770415i
\(183\) 4.36564 41.5363i 0.322717 3.07045i
\(184\) −0.487386 + 0.354107i −0.0359306 + 0.0261051i
\(185\) 0 0
\(186\) −4.20998 + 3.78500i −0.308691 + 0.277529i
\(187\) −4.43668 −0.324442
\(188\) 12.0873 8.78195i 0.881559 0.640490i
\(189\) −0.776000 + 7.38314i −0.0564457 + 0.537045i
\(190\) 0 0
\(191\) 2.67085 4.62604i 0.193256 0.334729i −0.753072 0.657939i \(-0.771429\pi\)
0.946327 + 0.323210i \(0.104762\pi\)
\(192\) 7.50308 + 12.9957i 0.541488 + 0.937885i
\(193\) −2.08705 + 0.443616i −0.150229 + 0.0319322i −0.282412 0.959293i \(-0.591135\pi\)
0.132183 + 0.991225i \(0.457801\pi\)
\(194\) 0.370632 + 1.14069i 0.0266098 + 0.0818966i
\(195\) 0 0
\(196\) −1.14334 10.8782i −0.0816673 0.777013i
\(197\) 3.93163 + 4.36652i 0.280117 + 0.311102i 0.866742 0.498758i \(-0.166210\pi\)
−0.586624 + 0.809859i \(0.699544\pi\)
\(198\) 4.19266 + 1.86669i 0.297959 + 0.132660i
\(199\) 6.32901 2.81786i 0.448652 0.199753i −0.169958 0.985451i \(-0.554363\pi\)
0.618609 + 0.785699i \(0.287696\pi\)
\(200\) 0 0
\(201\) −15.0686 10.9480i −1.06286 0.772211i
\(202\) 5.03729 + 3.65981i 0.354423 + 0.257503i
\(203\) −2.28748 + 2.54050i −0.160549 + 0.178308i
\(204\) −9.05059 + 4.02958i −0.633668 + 0.282127i
\(205\) 0 0
\(206\) 1.89860 + 2.10861i 0.132282 + 0.146914i
\(207\) −0.248276 2.36219i −0.0172564 0.164184i
\(208\) 9.20337 + 1.95624i 0.638139 + 0.135641i
\(209\) −1.59153 4.89823i −0.110089 0.338818i
\(210\) 0 0
\(211\) −8.35437 14.4702i −0.575139 0.996170i −0.996027 0.0890568i \(-0.971615\pi\)
0.420888 0.907113i \(-0.361719\pi\)
\(212\) 4.66966 8.08808i 0.320713 0.555492i
\(213\) 1.50015 4.61698i 0.102788 0.316350i
\(214\) 0.446370 4.24693i 0.0305133 0.290314i
\(215\) 0 0
\(216\) 9.34610 0.635921
\(217\) −2.44649 5.50596i −0.166078 0.373769i
\(218\) 0.222141 0.0150453
\(219\) 33.6132 24.4214i 2.27137 1.65024i
\(220\) 0 0
\(221\) −1.62040 + 4.98709i −0.109000 + 0.335468i
\(222\) −1.59980 + 2.77094i −0.107372 + 0.185973i
\(223\) −3.13078 5.42267i −0.209653 0.363129i 0.741952 0.670453i \(-0.233900\pi\)
−0.951605 + 0.307323i \(0.900567\pi\)
\(224\) 4.10195 0.871895i 0.274073 0.0582560i
\(225\) 0 0
\(226\) 3.88452 + 0.825681i 0.258395 + 0.0549235i
\(227\) −0.820289 7.80452i −0.0544445 0.518004i −0.987426 0.158081i \(-0.949469\pi\)
0.932982 0.359924i \(-0.117197\pi\)
\(228\) −7.69543 8.54664i −0.509642 0.566015i
\(229\) 11.6687 + 5.19524i 0.771089 + 0.343311i 0.754285 0.656548i \(-0.227984\pi\)
0.0168049 + 0.999859i \(0.494651\pi\)
\(230\) 0 0
\(231\) −5.09368 + 5.65711i −0.335140 + 0.372210i
\(232\) 3.48183 + 2.52969i 0.228593 + 0.166083i
\(233\) 10.2887 + 7.47514i 0.674032 + 0.489713i 0.871373 0.490622i \(-0.163230\pi\)
−0.197340 + 0.980335i \(0.563230\pi\)
\(234\) 3.62955 4.03103i 0.237271 0.263517i
\(235\) 0 0
\(236\) 20.5951 + 9.16951i 1.34062 + 0.596884i
\(237\) −6.67460 7.41290i −0.433562 0.481520i
\(238\) 0.0725373 + 0.690146i 0.00470189 + 0.0447355i
\(239\) 24.8690 + 5.28607i 1.60864 + 0.341928i 0.922638 0.385668i \(-0.126029\pi\)
0.686006 + 0.727596i \(0.259362\pi\)
\(240\) 0 0
\(241\) −2.30939 + 0.490876i −0.148761 + 0.0316201i −0.281690 0.959505i \(-0.590895\pi\)
0.132929 + 0.991126i \(0.457562\pi\)
\(242\) −0.894121 1.54866i −0.0574763 0.0995519i
\(243\) 4.88634 8.46339i 0.313459 0.542927i
\(244\) 8.37048 25.7617i 0.535865 1.64922i
\(245\) 0 0
\(246\) −5.71401 + 4.15147i −0.364312 + 0.264688i
\(247\) −6.08718 −0.387318
\(248\) −6.57173 + 3.78765i −0.417305 + 0.240516i
\(249\) −37.1893 −2.35677
\(250\) 0 0
\(251\) −0.246336 + 2.34373i −0.0155486 + 0.147935i −0.999542 0.0302716i \(-0.990363\pi\)
0.983993 + 0.178206i \(0.0570294\pi\)
\(252\) −3.37034 + 10.3728i −0.212312 + 0.653428i
\(253\) 0.537595 0.931142i 0.0337983 0.0585404i
\(254\) −0.0207005 0.0358542i −0.00129886 0.00224970i
\(255\) 0 0
\(256\) 2.16580 + 6.66565i 0.135363 + 0.416603i
\(257\) −25.4455 5.40862i −1.58725 0.337380i −0.672089 0.740470i \(-0.734603\pi\)
−0.915160 + 0.403090i \(0.867936\pi\)
\(258\) 0.894103 + 8.50682i 0.0556644 + 0.529612i
\(259\) −2.27851 2.53054i −0.141580 0.157240i
\(260\) 0 0
\(261\) −15.5012 + 6.90157i −0.959499 + 0.427196i
\(262\) −1.36012 + 1.51057i −0.0840285 + 0.0933232i
\(263\) 18.5552 + 13.4812i 1.14417 + 0.831285i 0.987694 0.156398i \(-0.0499881\pi\)
0.156471 + 0.987683i \(0.449988\pi\)
\(264\) 7.75322 + 5.63304i 0.477178 + 0.346690i
\(265\) 0 0
\(266\) −0.735922 + 0.327654i −0.0451223 + 0.0200897i
\(267\) 5.97190 + 2.65886i 0.365474 + 0.162720i
\(268\) −8.08316 8.97726i −0.493758 0.548374i
\(269\) 1.78193 + 16.9539i 0.108646 + 1.03370i 0.903994 + 0.427546i \(0.140622\pi\)
−0.795347 + 0.606154i \(0.792712\pi\)
\(270\) 0 0
\(271\) 2.23929 + 6.89184i 0.136027 + 0.418649i 0.995748 0.0921146i \(-0.0293626\pi\)
−0.859721 + 0.510764i \(0.829363\pi\)
\(272\) −5.84413 + 1.24221i −0.354352 + 0.0753199i
\(273\) 4.49857 + 7.79175i 0.272266 + 0.471578i
\(274\) −2.07440 + 3.59297i −0.125319 + 0.217059i
\(275\) 0 0
\(276\) 0.250962 2.38775i 0.0151062 0.143725i
\(277\) 12.2188 8.87748i 0.734157 0.533396i −0.156719 0.987643i \(-0.550092\pi\)
0.890876 + 0.454247i \(0.150092\pi\)
\(278\) 5.41979 0.325058
\(279\) 0.0223278 29.9052i 0.00133673 1.79038i
\(280\) 0 0
\(281\) 2.01209 1.46187i 0.120031 0.0872078i −0.526150 0.850392i \(-0.676365\pi\)
0.646181 + 0.763184i \(0.276365\pi\)
\(282\) 0.846240 8.05144i 0.0503929 0.479456i
\(283\) 1.46052 4.49503i 0.0868192 0.267202i −0.898216 0.439554i \(-0.855137\pi\)
0.985035 + 0.172352i \(0.0551366\pi\)
\(284\) 1.57426 2.72670i 0.0934153 0.161800i
\(285\) 0 0
\(286\) 2.40177 0.510512i 0.142020 0.0301872i
\(287\) −2.32279 7.14881i −0.137110 0.421981i
\(288\) 20.3600 + 4.32766i 1.19973 + 0.255010i
\(289\) 1.42893 + 13.5953i 0.0840546 + 0.799726i
\(290\) 0 0
\(291\) −9.02071 4.01628i −0.528804 0.235439i
\(292\) 24.6171 10.9602i 1.44061 0.641400i
\(293\) 7.05858 7.83935i 0.412367 0.457980i −0.500802 0.865562i \(-0.666961\pi\)
0.913169 + 0.407582i \(0.133628\pi\)
\(294\) −4.79497 3.48375i −0.279648 0.203177i
\(295\) 0 0
\(296\) −2.86850 + 3.18579i −0.166728 + 0.185170i
\(297\) −15.2381 + 6.78443i −0.884203 + 0.393673i
\(298\) 3.83662 + 1.70817i 0.222249 + 0.0989517i
\(299\) −0.850314 0.944369i −0.0491749 0.0546143i
\(300\) 0 0
\(301\) −8.90432 1.89267i −0.513237 0.109092i
\(302\) 0.469377 + 1.44459i 0.0270096 + 0.0831271i
\(303\) −50.1411 + 10.6578i −2.88053 + 0.612276i
\(304\) −3.46785 6.00650i −0.198895 0.344496i
\(305\) 0 0
\(306\) −1.06438 + 3.27583i −0.0608467 + 0.187267i
\(307\) 0.276844 2.63399i 0.0158003 0.150330i −0.983777 0.179394i \(-0.942586\pi\)
0.999578 + 0.0290645i \(0.00925283\pi\)
\(308\) −3.99424 + 2.90198i −0.227593 + 0.165356i
\(309\) −23.3600 −1.32890
\(310\) 0 0
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) 9.16358 6.65773i 0.518786 0.376920i
\(313\) −2.78834 + 26.5293i −0.157607 + 1.49953i 0.574595 + 0.818438i \(0.305160\pi\)
−0.732201 + 0.681088i \(0.761507\pi\)
\(314\) −0.945290 + 2.90930i −0.0533458 + 0.164181i
\(315\) 0 0
\(316\) −3.23474 5.60274i −0.181969 0.315179i
\(317\) 10.5055 2.23302i 0.590050 0.125419i 0.0967957 0.995304i \(-0.469141\pi\)
0.493254 + 0.869885i \(0.335807\pi\)
\(318\) −1.56381 4.81291i −0.0876941 0.269895i
\(319\) −7.51318 1.59698i −0.420657 0.0894135i
\(320\) 0 0
\(321\) 23.5246 + 26.1267i 1.31301 + 1.45825i
\(322\) −0.153633 0.0684017i −0.00856162 0.00381188i
\(323\) 3.53117 1.57218i 0.196480 0.0874784i
\(324\) −4.69064 + 5.20948i −0.260591 + 0.289416i
\(325\) 0 0
\(326\) −0.889309 0.646121i −0.0492543 0.0357853i
\(327\) −1.22374 + 1.35911i −0.0676732 + 0.0751587i
\(328\) −8.64492 + 3.84897i −0.477336 + 0.212524i
\(329\) 7.87106 + 3.50442i 0.433945 + 0.193205i
\(330\) 0 0
\(331\) −2.05373 19.5400i −0.112883 1.07401i −0.893518 0.449027i \(-0.851771\pi\)
0.780635 0.624987i \(-0.214896\pi\)
\(332\) −23.5927 5.01478i −1.29482 0.275222i
\(333\) −5.22289 16.0744i −0.286213 0.880872i
\(334\) 4.59080 0.975804i 0.251197 0.0533936i
\(335\) 0 0
\(336\) −5.12565 + 8.87788i −0.279627 + 0.484328i
\(337\) −5.92655 + 18.2401i −0.322840 + 0.993599i 0.649566 + 0.760305i \(0.274950\pi\)
−0.972406 + 0.233294i \(0.925050\pi\)
\(338\) −0.174200 + 1.65741i −0.00947525 + 0.0901510i
\(339\) −26.4510 + 19.2178i −1.43662 + 1.04376i
\(340\) 0 0
\(341\) 7.96520 10.9460i 0.431340 0.592757i
\(342\) −3.99844 −0.216211
\(343\) 11.2313 8.15999i 0.606431 0.440598i
\(344\) −1.19794 + 11.3976i −0.0645885 + 0.614519i
\(345\) 0 0
\(346\) −3.34647 + 5.79626i −0.179907 + 0.311609i
\(347\) 5.32998 + 9.23180i 0.286128 + 0.495589i 0.972882 0.231301i \(-0.0742983\pi\)
−0.686754 + 0.726890i \(0.740965\pi\)
\(348\) −16.7769 + 3.56605i −0.899338 + 0.191160i
\(349\) −5.77910 17.7862i −0.309348 0.952075i −0.978019 0.208517i \(-0.933136\pi\)
0.668671 0.743559i \(-0.266864\pi\)
\(350\) 0 0
\(351\) 2.06072 + 19.6064i 0.109993 + 1.04651i
\(352\) 6.30478 + 7.00216i 0.336046 + 0.373217i
\(353\) 11.5675 + 5.15020i 0.615678 + 0.274117i 0.690787 0.723058i \(-0.257264\pi\)
−0.0751097 + 0.997175i \(0.523931\pi\)
\(354\) 11.1596 4.96859i 0.593127 0.264077i
\(355\) 0 0
\(356\) 3.43001 + 2.49205i 0.181790 + 0.132078i
\(357\) −4.62205 3.35812i −0.244625 0.177730i
\(358\) 0.0186548 0.0207182i 0.000985936 0.00109499i
\(359\) −20.7175 + 9.22402i −1.09343 + 0.486825i −0.872574 0.488482i \(-0.837551\pi\)
−0.220853 + 0.975307i \(0.570884\pi\)
\(360\) 0 0
\(361\) −9.71104 10.7852i −0.511107 0.567642i
\(362\) 0.0794517 + 0.755932i 0.00417589 + 0.0397309i
\(363\) 14.4006 + 3.06095i 0.755837 + 0.160658i
\(364\) 1.80319 + 5.54965i 0.0945129 + 0.290881i
\(365\) 0 0
\(366\) −7.33880 12.7112i −0.383605 0.664424i
\(367\) 4.35984 7.55147i 0.227582 0.394183i −0.729509 0.683971i \(-0.760251\pi\)
0.957091 + 0.289788i \(0.0935847\pi\)
\(368\) 0.447430 1.37705i 0.0233239 0.0717836i
\(369\) 3.89987 37.1048i 0.203019 1.93160i
\(370\) 0 0
\(371\) 5.38574 0.279614
\(372\) 6.30699 29.5635i 0.327002 1.53280i
\(373\) −25.4134 −1.31586 −0.657928 0.753081i \(-0.728567\pi\)
−0.657928 + 0.753081i \(0.728567\pi\)
\(374\) −1.26141 + 0.916471i −0.0652262 + 0.0473896i
\(375\) 0 0
\(376\) 3.35188 10.3160i 0.172860 0.532009i
\(377\) −4.53913 + 7.86200i −0.233777 + 0.404914i
\(378\) 1.30448 + 2.25943i 0.0670954 + 0.116213i
\(379\) −21.6150 + 4.59441i −1.11029 + 0.235999i −0.726326 0.687350i \(-0.758774\pi\)
−0.383961 + 0.923349i \(0.625440\pi\)
\(380\) 0 0
\(381\) 0.333399 + 0.0708662i 0.0170806 + 0.00363059i
\(382\) −0.196226 1.86696i −0.0100398 0.0955220i
\(383\) 17.8274 + 19.7993i 0.910938 + 1.01170i 0.999877 + 0.0156617i \(0.00498547\pi\)
−0.0889398 + 0.996037i \(0.528348\pi\)
\(384\) 25.3039 + 11.2660i 1.29128 + 0.574916i
\(385\) 0 0
\(386\) −0.501743 + 0.557242i −0.0255380 + 0.0283629i
\(387\) −36.5547 26.5585i −1.85818 1.35005i
\(388\) −5.18112 3.76430i −0.263032 0.191104i
\(389\) −8.66862 + 9.62748i −0.439517 + 0.488133i −0.921681 0.387948i \(-0.873184\pi\)
0.482165 + 0.876081i \(0.339851\pi\)
\(390\) 0 0
\(391\) 0.737176 + 0.328212i 0.0372806 + 0.0165984i
\(392\) −5.31357 5.90132i −0.268376 0.298062i
\(393\) −1.74925 16.6430i −0.0882379 0.839528i
\(394\) 2.01980 + 0.429321i 0.101756 + 0.0216289i
\(395\) 0 0
\(396\) −23.9701 + 5.09500i −1.20454 + 0.256033i
\(397\) −1.46363 2.53508i −0.0734574 0.127232i 0.826957 0.562265i \(-0.190070\pi\)
−0.900414 + 0.435033i \(0.856737\pi\)
\(398\) 1.21736 2.10852i 0.0610205 0.105691i
\(399\) 2.04944 6.30752i 0.102600 0.315771i
\(400\) 0 0
\(401\) 9.93025 7.21475i 0.495893 0.360287i −0.311553 0.950229i \(-0.600849\pi\)
0.807446 + 0.589942i \(0.200849\pi\)
\(402\) −6.54572 −0.326471
\(403\) −9.39479 12.9511i −0.467988 0.645142i
\(404\) −33.2464 −1.65407
\(405\) 0 0
\(406\) −0.125581 + 1.19482i −0.00623246 + 0.0592979i
\(407\) 2.36426 7.27645i 0.117192 0.360680i
\(408\) −3.59625 + 6.22889i −0.178041 + 0.308376i
\(409\) 8.59861 + 14.8932i 0.425174 + 0.736423i 0.996437 0.0843442i \(-0.0268795\pi\)
−0.571263 + 0.820767i \(0.693546\pi\)
\(410\) 0 0
\(411\) −10.5549 32.4848i −0.520637 1.60236i
\(412\) −14.8195 3.14997i −0.730102 0.155188i
\(413\) 1.35893 + 12.9294i 0.0668687 + 0.636213i
\(414\) −0.558539 0.620320i −0.0274507 0.0304871i
\(415\) 0 0
\(416\) 10.1735 4.52955i 0.498799 0.222080i
\(417\) −29.8568 + 33.1594i −1.46210 + 1.62382i
\(418\) −1.46431 1.06388i −0.0716217 0.0520362i
\(419\) −18.7251 13.6046i −0.914782 0.664628i 0.0274378 0.999624i \(-0.491265\pi\)
−0.942220 + 0.334996i \(0.891265\pi\)
\(420\) 0 0
\(421\) 26.6593 11.8695i 1.29929 0.578483i 0.363686 0.931522i \(-0.381518\pi\)
0.935609 + 0.353038i \(0.114851\pi\)
\(422\) −5.36434 2.38836i −0.261132 0.116263i
\(423\) 28.6156 + 31.7808i 1.39134 + 1.54524i
\(424\) −0.708734 6.74315i −0.0344192 0.327476i
\(425\) 0 0
\(426\) −0.527201 1.62256i −0.0255430 0.0786132i
\(427\) 15.2793 3.24771i 0.739416 0.157168i
\(428\) 11.4008 + 19.7468i 0.551080 + 0.954498i
\(429\) −10.1076 + 17.5069i −0.487999 + 0.845239i
\(430\) 0 0
\(431\) −3.17267 + 30.1859i −0.152822 + 1.45401i 0.602220 + 0.798330i \(0.294283\pi\)
−0.755042 + 0.655676i \(0.772384\pi\)
\(432\) −18.1725 + 13.2031i −0.874326 + 0.635235i
\(433\) 13.8400 0.665107 0.332553 0.943084i \(-0.392090\pi\)
0.332553 + 0.943084i \(0.392090\pi\)
\(434\) −1.83292 1.06006i −0.0879830 0.0508846i
\(435\) 0 0
\(436\) −0.959605 + 0.697194i −0.0459567 + 0.0333895i
\(437\) −0.0979154 + 0.931602i −0.00468393 + 0.0445646i
\(438\) 4.51207 13.8867i 0.215595 0.663534i
\(439\) −6.46006 + 11.1892i −0.308322 + 0.534029i −0.977995 0.208626i \(-0.933101\pi\)
0.669674 + 0.742656i \(0.266434\pi\)
\(440\) 0 0
\(441\) 30.6242 6.50938i 1.45830 0.309970i
\(442\) 0.569463 + 1.75263i 0.0270866 + 0.0833639i
\(443\) 23.2391 + 4.93962i 1.10412 + 0.234688i 0.723693 0.690122i \(-0.242443\pi\)
0.380429 + 0.924810i \(0.375776\pi\)
\(444\) −1.78582 16.9909i −0.0847511 0.806353i
\(445\) 0 0
\(446\) −2.01027 0.895031i −0.0951892 0.0423809i
\(447\) −31.5863 + 14.0631i −1.49398 + 0.665163i
\(448\) −3.75549 + 4.17089i −0.177430 + 0.197056i
\(449\) 15.7054 + 11.4106i 0.741181 + 0.538500i 0.893081 0.449896i \(-0.148539\pi\)
−0.151900 + 0.988396i \(0.548539\pi\)
\(450\) 0 0
\(451\) 11.3009 12.5509i 0.532137 0.590998i
\(452\) −19.3718 + 8.62487i −0.911171 + 0.405680i
\(453\) −11.4241 5.08632i −0.536749 0.238976i
\(454\) −1.84538 2.04950i −0.0866078 0.0961877i
\(455\) 0 0
\(456\) −8.16695 1.73594i −0.382452 0.0812928i
\(457\) −7.52208 23.1506i −0.351868 1.08294i −0.957803 0.287424i \(-0.907201\pi\)
0.605935 0.795514i \(-0.292799\pi\)
\(458\) 4.39075 0.933283i 0.205166 0.0436094i
\(459\) −6.25931 10.8414i −0.292159 0.506035i
\(460\) 0 0
\(461\) −11.8487 + 36.4665i −0.551848 + 1.69841i 0.152279 + 0.988338i \(0.451339\pi\)
−0.704126 + 0.710075i \(0.748661\pi\)
\(462\) −0.279639 + 2.66059i −0.0130100 + 0.123782i
\(463\) −5.33489 + 3.87603i −0.247934 + 0.180134i −0.704810 0.709396i \(-0.748968\pi\)
0.456877 + 0.889530i \(0.348968\pi\)
\(464\) −10.3437 −0.480195
\(465\) 0 0
\(466\) 4.46933 0.207038
\(467\) 31.0674 22.5718i 1.43763 1.04450i 0.449096 0.893484i \(-0.351746\pi\)
0.988532 0.151014i \(-0.0482539\pi\)
\(468\) −3.02749 + 28.8046i −0.139946 + 1.33149i
\(469\) 2.15270 6.62532i 0.0994024 0.305929i
\(470\) 0 0
\(471\) −12.5922 21.8104i −0.580220 1.00497i
\(472\) 16.0092 3.40287i 0.736885 0.156630i
\(473\) −6.32051 19.4525i −0.290617 0.894429i
\(474\) −3.42895 0.728845i −0.157497 0.0334770i
\(475\) 0 0
\(476\) −2.47938 2.75363i −0.113642 0.126212i
\(477\) 24.4210 + 10.8729i 1.11816 + 0.497838i
\(478\) 8.16256 3.63421i 0.373347 0.166225i
\(479\) 5.03531 5.59228i 0.230069 0.255518i −0.617046 0.786927i \(-0.711671\pi\)
0.847115 + 0.531409i \(0.178337\pi\)
\(480\) 0 0
\(481\) −7.31567 5.31515i −0.333566 0.242350i
\(482\) −0.555195 + 0.616606i −0.0252884 + 0.0280856i
\(483\) 1.26484 0.563141i 0.0575520 0.0256238i
\(484\) 8.72293 + 3.88370i 0.396497 + 0.176532i
\(485\) 0 0
\(486\) −0.358996 3.41562i −0.0162844 0.154936i
\(487\) 24.4852 + 5.20450i 1.10953 + 0.235838i 0.726004 0.687691i \(-0.241375\pi\)
0.383528 + 0.923529i \(0.374709\pi\)
\(488\) −6.07693 18.7029i −0.275090 0.846639i
\(489\) 8.85217 1.88159i 0.400309 0.0850883i
\(490\) 0 0
\(491\) 19.8550 34.3899i 0.896044 1.55199i 0.0635377 0.997979i \(-0.479762\pi\)
0.832507 0.554015i \(-0.186905\pi\)
\(492\) 11.6539 35.8670i 0.525399 1.61701i
\(493\) 0.602573 5.73310i 0.0271385 0.258206i
\(494\) −1.73068 + 1.25741i −0.0778668 + 0.0565735i
\(495\) 0 0
\(496\) 7.42729 16.6485i 0.333495 0.747539i
\(497\) 1.81567 0.0814440
\(498\) −10.5735 + 7.68207i −0.473808 + 0.344242i
\(499\) 2.47252 23.5245i 0.110685 1.05310i −0.788351 0.615226i \(-0.789065\pi\)
0.899036 0.437875i \(-0.144269\pi\)
\(500\) 0 0
\(501\) −19.3199 + 33.4630i −0.863148 + 1.49502i
\(502\) 0.414099 + 0.717241i 0.0184822 + 0.0320120i
\(503\) −19.7453 + 4.19699i −0.880400 + 0.187135i −0.625867 0.779930i \(-0.715255\pi\)
−0.254532 + 0.967064i \(0.581922\pi\)
\(504\) 2.44685 + 7.53063i 0.108991 + 0.335441i
\(505\) 0 0
\(506\) −0.0394968 0.375787i −0.00175585 0.0167058i
\(507\) −9.18070 10.1962i −0.407729 0.452829i
\(508\) 0.201951 + 0.0899143i 0.00896012 + 0.00398930i
\(509\) 10.8155 4.81536i 0.479387 0.213437i −0.152793 0.988258i \(-0.548827\pi\)
0.632180 + 0.774821i \(0.282160\pi\)
\(510\) 0 0
\(511\) 12.5717 + 9.13389i 0.556140 + 0.404060i
\(512\) 17.4827 + 12.7019i 0.772633 + 0.561351i
\(513\) 9.72394 10.7995i 0.429322 0.476811i
\(514\) −8.35179 + 3.71845i −0.368381 + 0.164014i
\(515\) 0 0
\(516\) −30.5611 33.9416i −1.34538 1.49419i
\(517\) 2.02354 + 19.2526i 0.0889950 + 0.846731i
\(518\) −1.17054 0.248806i −0.0514306 0.0109319i
\(519\) −17.0275 52.4051i −0.747422 2.30033i
\(520\) 0 0
\(521\) 16.3742 + 28.3610i 0.717368 + 1.24252i 0.962039 + 0.272911i \(0.0879865\pi\)
−0.244672 + 0.969606i \(0.578680\pi\)
\(522\) −2.98158 + 5.16425i −0.130500 + 0.226033i
\(523\) 9.11682 28.0587i 0.398651 1.22692i −0.527431 0.849598i \(-0.676845\pi\)
0.926082 0.377323i \(-0.123155\pi\)
\(524\) 1.13451 10.7941i 0.0495611 0.471543i
\(525\) 0 0
\(526\) 8.06030 0.351446
\(527\) 8.79490 + 5.08650i 0.383112 + 0.221571i
\(528\) −23.0331 −1.00239
\(529\) 18.4492 13.4041i 0.802138 0.582788i
\(530\) 0 0
\(531\) −19.9404 + 61.3703i −0.865340 + 2.66324i
\(532\) 2.15069 3.72510i 0.0932441 0.161504i
\(533\) −9.98053 17.2868i −0.432305 0.748774i
\(534\) 2.24713 0.477643i 0.0972430 0.0206696i
\(535\) 0 0
\(536\) −8.57845 1.82340i −0.370532 0.0787591i
\(537\) 0.0239919 + 0.228267i 0.00103533 + 0.00985047i
\(538\) 4.00875 + 4.45217i 0.172830 + 0.191947i
\(539\) 12.9472 + 5.76446i 0.557675 + 0.248293i
\(540\) 0 0
\(541\) 8.87657 9.85843i 0.381634 0.423847i −0.521470 0.853270i \(-0.674616\pi\)
0.903104 + 0.429423i \(0.141283\pi\)
\(542\) 2.06029 + 1.49689i 0.0884970 + 0.0642968i
\(543\) −5.06264 3.67822i −0.217258 0.157848i
\(544\) −4.73179 + 5.25519i −0.202874 + 0.225314i
\(545\) 0 0
\(546\) 2.88853 + 1.28605i 0.123618 + 0.0550381i
\(547\) −25.2689 28.0640i −1.08042 1.19993i −0.978738 0.205114i \(-0.934244\pi\)
−0.101684 0.994817i \(-0.532423\pi\)
\(548\) −2.31560 22.0315i −0.0989175 0.941137i
\(549\) 75.8388 + 16.1200i 3.23672 + 0.687986i
\(550\) 0 0
\(551\) 6.54568 1.39133i 0.278855 0.0592725i
\(552\) −0.871520 1.50952i −0.0370944 0.0642493i
\(553\) 1.86539 3.23095i 0.0793245 0.137394i
\(554\) 1.64019 5.04800i 0.0696852 0.214469i
\(555\) 0 0
\(556\) −23.4124 + 17.0101i −0.992907 + 0.721389i
\(557\) 11.3637 0.481496 0.240748 0.970588i \(-0.422607\pi\)
0.240748 + 0.970588i \(0.422607\pi\)
\(558\) −6.17108 8.50711i −0.261243 0.360135i
\(559\) −24.1743 −1.02246
\(560\) 0 0
\(561\) 1.34179 12.7663i 0.0566505 0.538993i
\(562\) 0.270094 0.831262i 0.0113932 0.0350647i
\(563\) −10.0933 + 17.4821i −0.425381 + 0.736781i −0.996456 0.0841167i \(-0.973193\pi\)
0.571075 + 0.820898i \(0.306526\pi\)
\(564\) 21.6140 + 37.4365i 0.910113 + 1.57636i
\(565\) 0 0
\(566\) −0.513276 1.57970i −0.0215746 0.0663998i
\(567\) −3.95417 0.840485i −0.166060 0.0352971i
\(568\) −0.238933 2.27329i −0.0100254 0.0953852i
\(569\) −20.7361 23.0298i −0.869304 0.965460i 0.130358 0.991467i \(-0.458387\pi\)
−0.999662 + 0.0260074i \(0.991721\pi\)
\(570\) 0 0
\(571\) −9.50060 + 4.22994i −0.397588 + 0.177017i −0.595784 0.803145i \(-0.703158\pi\)
0.198196 + 0.980162i \(0.436492\pi\)
\(572\) −8.77291 + 9.74330i −0.366814 + 0.407388i
\(573\) 12.5034 + 9.08427i 0.522338 + 0.379501i
\(574\) −2.13711 1.55270i −0.0892012 0.0648085i
\(575\) 0 0
\(576\) −25.4492 + 11.3307i −1.06038 + 0.472113i
\(577\) −4.94581 2.20201i −0.205897 0.0916711i 0.301197 0.953562i \(-0.402614\pi\)
−0.507094 + 0.861891i \(0.669280\pi\)
\(578\) 3.21461 + 3.57019i 0.133710 + 0.148500i
\(579\) −0.645291 6.13953i −0.0268174 0.255150i
\(580\) 0 0
\(581\) −4.29819 13.2285i −0.178319 0.548809i
\(582\) −3.39435 + 0.721492i −0.140700 + 0.0299068i
\(583\) 6.05046 + 10.4797i 0.250585 + 0.434025i
\(584\) 9.78162 16.9423i 0.404766 0.701076i
\(585\) 0 0
\(586\) 0.387510 3.68691i 0.0160079 0.152305i
\(587\) −10.1635 + 7.38424i −0.419494 + 0.304780i −0.777434 0.628964i \(-0.783479\pi\)
0.357940 + 0.933744i \(0.383479\pi\)
\(588\) 31.6471 1.30510
\(589\) −2.46073 + 11.5345i −0.101393 + 0.475270i
\(590\) 0 0
\(591\) −13.7535 + 9.99247i −0.565741 + 0.411035i
\(592\) 1.07697 10.2467i 0.0442634 0.421138i
\(593\) −8.36510 + 25.7451i −0.343513 + 1.05723i 0.618861 + 0.785500i \(0.287594\pi\)
−0.962375 + 0.271726i \(0.912406\pi\)
\(594\) −2.93098 + 5.07660i −0.120259 + 0.208295i
\(595\) 0 0
\(596\) −21.9345 + 4.66233i −0.898473 + 0.190976i
\(597\) 6.19413 + 19.0636i 0.253509 + 0.780220i
\(598\) −0.436832 0.0928516i −0.0178634 0.00379698i
\(599\) 1.50051 + 14.2764i 0.0613094 + 0.583320i 0.981448 + 0.191727i \(0.0614089\pi\)
−0.920139 + 0.391592i \(0.871924\pi\)
\(600\) 0 0
\(601\) 0.584684 + 0.260318i 0.0238498 + 0.0106186i 0.418627 0.908158i \(-0.362512\pi\)
−0.394777 + 0.918777i \(0.629178\pi\)
\(602\) −2.92260 + 1.30122i −0.119116 + 0.0530339i
\(603\) 23.1366 25.6958i 0.942197 1.04642i
\(604\) −6.56150 4.76721i −0.266984 0.193975i
\(605\) 0 0
\(606\) −12.0543 + 13.3877i −0.489673 + 0.543837i
\(607\) 5.95432 2.65104i 0.241679 0.107602i −0.282323 0.959319i \(-0.591105\pi\)
0.524002 + 0.851717i \(0.324438\pi\)
\(608\) −7.49929 3.33890i −0.304136 0.135410i
\(609\) −6.61834 7.35041i −0.268189 0.297854i
\(610\) 0 0
\(611\) 22.3802 + 4.75706i 0.905405 + 0.192450i
\(612\) −5.68333 17.4915i −0.229735 0.707052i
\(613\) 10.2171 2.17170i 0.412663 0.0877143i 0.00309833 0.999995i \(-0.499014\pi\)
0.409565 + 0.912281i \(0.365680\pi\)
\(614\) −0.465385 0.806070i −0.0187814 0.0325303i
\(615\) 0 0
\(616\) −1.10762 + 3.40892i −0.0446274 + 0.137349i
\(617\) 2.26862 21.5845i 0.0913311 0.868958i −0.848930 0.528505i \(-0.822753\pi\)
0.940262 0.340453i \(-0.110580\pi\)
\(618\) −6.64159 + 4.82540i −0.267164 + 0.194106i
\(619\) 28.5478 1.14743 0.573716 0.819054i \(-0.305501\pi\)
0.573716 + 0.819054i \(0.305501\pi\)
\(620\) 0 0
\(621\) 3.03377 0.121741
\(622\) 1.56738 1.13877i 0.0628462 0.0456604i
\(623\) −0.255566 + 2.43155i −0.0102390 + 0.0974178i
\(624\) −8.41235 + 25.8906i −0.336764 + 1.03645i
\(625\) 0 0
\(626\) 4.68731 + 8.11866i 0.187343 + 0.324487i
\(627\) 14.5757 3.09816i 0.582098 0.123729i
\(628\) −5.04743 15.5344i −0.201414 0.619890i
\(629\) 5.61660 + 1.19385i 0.223949 + 0.0476018i
\(630\) 0 0
\(631\) 18.2275 + 20.2436i 0.725624 + 0.805887i 0.987232 0.159287i \(-0.0509196\pi\)
−0.261609 + 0.965174i \(0.584253\pi\)
\(632\) −4.29075 1.91037i −0.170677 0.0759903i
\(633\) 44.1638 19.6630i 1.75535 0.781533i
\(634\) 2.52561 2.80498i 0.100305 0.111400i
\(635\) 0 0
\(636\) 21.8607 + 15.8828i 0.866835 + 0.629792i
\(637\) 11.2083 12.4481i 0.444089 0.493210i
\(638\) −2.46599 + 1.09793i −0.0976295 + 0.0434675i
\(639\) 8.23296 + 3.66555i 0.325691 + 0.145007i
\(640\) 0 0
\(641\) −4.30742 40.9824i −0.170133 1.61871i −0.663013 0.748608i \(-0.730722\pi\)
0.492880 0.870097i \(-0.335944\pi\)
\(642\) 12.0853 + 2.56881i 0.476969 + 0.101383i
\(643\) 9.52156 + 29.3044i 0.375494 + 1.15565i 0.943145 + 0.332382i \(0.107852\pi\)
−0.567651 + 0.823269i \(0.692148\pi\)
\(644\) 0.878342 0.186697i 0.0346115 0.00735691i
\(645\) 0 0
\(646\) 0.679205 1.17642i 0.0267230 0.0462855i
\(647\) −2.75525 + 8.47978i −0.108320 + 0.333375i −0.990495 0.137547i \(-0.956078\pi\)
0.882175 + 0.470921i \(0.156078\pi\)
\(648\) −0.531973 + 5.06138i −0.0208979 + 0.198830i
\(649\) −23.6317 + 17.1694i −0.927623 + 0.673958i
\(650\) 0 0
\(651\) 16.5830 5.37445i 0.649938 0.210641i
\(652\) 5.86949 0.229867
\(653\) 31.7469 23.0655i 1.24235 0.902623i 0.244601 0.969624i \(-0.421343\pi\)
0.997753 + 0.0670010i \(0.0213431\pi\)
\(654\) −0.0671825 + 0.639199i −0.00262704 + 0.0249946i
\(655\) 0 0
\(656\) 11.3718 19.6965i 0.443993 0.769018i
\(657\) 38.5652 + 66.7969i 1.50457 + 2.60600i
\(658\) 2.96175 0.629540i 0.115461 0.0245420i
\(659\) 10.1832 + 31.3407i 0.396681 + 1.22086i 0.927644 + 0.373465i \(0.121830\pi\)
−0.530963 + 0.847395i \(0.678170\pi\)
\(660\) 0 0
\(661\) 0.0177359 + 0.168746i 0.000689846 + 0.00656345i 0.994861 0.101246i \(-0.0322830\pi\)
−0.994172 + 0.107810i \(0.965616\pi\)
\(662\) −4.62022 5.13127i −0.179570 0.199433i
\(663\) −13.8600 6.17087i −0.538278 0.239657i
\(664\) −15.9969 + 7.12229i −0.620801 + 0.276398i
\(665\) 0 0
\(666\) −4.80539 3.49132i −0.186205 0.135286i
\(667\) 1.13021 + 0.821147i 0.0437620 + 0.0317950i
\(668\) −16.7687 + 18.6236i −0.648801 + 0.720567i
\(669\) 16.5503 7.36866i 0.639871 0.284889i
\(670\) 0 0
\(671\) 23.4846 + 26.0823i 0.906612 + 1.00689i
\(672\) 1.26827 + 12.0668i 0.0489246 + 0.465487i
\(673\) −14.2676 3.03267i −0.549976 0.116901i −0.0754613 0.997149i \(-0.524043\pi\)
−0.474514 + 0.880248i \(0.657376\pi\)
\(674\) 2.08278 + 6.41015i 0.0802258 + 0.246910i
\(675\) 0 0
\(676\) −4.44929 7.70639i −0.171126 0.296400i
\(677\) 7.88341 13.6545i 0.302984 0.524784i −0.673826 0.738890i \(-0.735350\pi\)
0.976810 + 0.214106i \(0.0686837\pi\)
\(678\) −3.55065 + 10.9278i −0.136362 + 0.419679i
\(679\) 0.386039 3.67291i 0.0148148 0.140953i
\(680\) 0 0
\(681\) 22.7051 0.870063
\(682\) 0.00355200 4.75744i 0.000136013 0.182172i
\(683\) −20.5935 −0.787988 −0.393994 0.919113i \(-0.628907\pi\)
−0.393994 + 0.919113i \(0.628907\pi\)
\(684\) 17.2724 12.5492i 0.660428 0.479829i
\(685\) 0 0
\(686\) 1.50763 4.64001i 0.0575616 0.177156i
\(687\) −18.4780 + 32.0048i −0.704979 + 1.22106i
\(688\) −13.7720 23.8538i −0.525053 0.909418i
\(689\) 13.9896 2.97359i 0.532962 0.113285i
\(690\) 0 0
\(691\) 5.82165 + 1.23743i 0.221466 + 0.0470741i 0.317308 0.948322i \(-0.397221\pi\)
−0.0958421 + 0.995397i \(0.530554\pi\)
\(692\) −3.73557 35.5416i −0.142005 1.35109i
\(693\) −9.45597 10.5019i −0.359203 0.398935i
\(694\) 3.42238 + 1.52374i 0.129912 + 0.0578404i
\(695\) 0 0
\(696\) −8.33206 + 9.25369i −0.315826 + 0.350760i
\(697\) 10.2545 + 7.45032i 0.388417 + 0.282201i
\(698\) −5.31713 3.86312i −0.201256 0.146221i
\(699\) −24.6209 + 27.3443i −0.931248 + 1.03426i
\(700\) 0 0
\(701\) −24.3281 10.8316i −0.918859 0.409103i −0.107871 0.994165i \(-0.534403\pi\)
−0.810988 + 0.585062i \(0.801070\pi\)
\(702\) 4.63592 + 5.14871i 0.174972 + 0.194326i
\(703\) 0.696753 + 6.62916i 0.0262785 + 0.250024i
\(704\) −12.3348 2.62185i −0.464886 0.0988146i
\(705\) 0 0
\(706\) 4.35268 0.925191i 0.163815 0.0348200i
\(707\) −9.58617 16.6037i −0.360525 0.624448i
\(708\) −32.6133 + 56.4879i −1.22568 + 2.12295i
\(709\) −0.816662 + 2.51343i −0.0306704 + 0.0943938i −0.965220 0.261439i \(-0.915803\pi\)
0.934550 + 0.355833i \(0.115803\pi\)
\(710\) 0 0
\(711\) 14.9812 10.8845i 0.561839 0.408200i
\(712\) 3.07802 0.115354
\(713\) −2.13321 + 1.22948i −0.0798892 + 0.0460445i
\(714\) −2.00779 −0.0751398
\(715\) 0 0
\(716\) −0.0155603 + 0.148047i −0.000581518 + 0.00553277i
\(717\) −22.7315 + 69.9605i −0.848925 + 2.61272i
\(718\) −3.98491 + 6.90207i −0.148716 + 0.257583i
\(719\) −2.59912 4.50181i −0.0969308 0.167889i 0.813482 0.581590i \(-0.197569\pi\)
−0.910413 + 0.413701i \(0.864236\pi\)
\(720\) 0 0
\(721\) −2.69986 8.30930i −0.100548 0.309455i
\(722\) −4.98886 1.06041i −0.185666 0.0394645i
\(723\) −0.714035 6.79359i −0.0265552 0.252656i
\(724\) −2.71572 3.01611i −0.100929 0.112093i
\(725\) 0 0
\(726\) 4.72660 2.10442i 0.175421 0.0781023i
\(727\) −16.1973 + 17.9889i −0.600723 + 0.667171i −0.964429 0.264343i \(-0.914845\pi\)
0.363705 + 0.931514i \(0.381512\pi\)
\(728\) 3.42729 + 2.49007i 0.127024 + 0.0922882i
\(729\) 31.9419 + 23.2071i 1.18303 + 0.859524i
\(730\) 0 0
\(731\) 14.0235 6.24366i 0.518677 0.230930i
\(732\) 71.5963 + 31.8767i 2.64628 + 1.17820i
\(733\) −27.0080 29.9954i −0.997562 1.10790i −0.994161 0.107910i \(-0.965584\pi\)
−0.00340093 0.999994i \(-0.501083\pi\)
\(734\) −0.320315 3.04759i −0.0118230 0.112489i
\(735\) 0 0
\(736\) −0.529571 1.62985i −0.0195202 0.0600771i
\(737\) 15.3101 3.25427i 0.563955 0.119872i
\(738\) −6.55583 11.3550i −0.241324 0.417985i
\(739\) −3.04893 + 5.28089i −0.112157 + 0.194261i −0.916640 0.399715i \(-0.869109\pi\)
0.804483 + 0.593976i \(0.202442\pi\)
\(740\) 0 0
\(741\) 1.84095 17.5155i 0.0676292 0.643449i
\(742\) 1.53125 1.11251i 0.0562138 0.0408417i
\(743\) −16.2263 −0.595284 −0.297642 0.954678i \(-0.596200\pi\)
−0.297642 + 0.954678i \(0.596200\pi\)
\(744\) −8.91125 20.0553i −0.326702 0.735262i
\(745\) 0 0
\(746\) −7.22540 + 5.24956i −0.264541 + 0.192200i
\(747\) 7.21649 68.6603i 0.264038 2.51215i
\(748\) 2.57269 7.91793i 0.0940670 0.289508i
\(749\) −6.57456 + 11.3875i −0.240229 + 0.416089i
\(750\) 0 0
\(751\) −35.6481 + 7.57723i −1.30082 + 0.276497i −0.805697 0.592328i \(-0.798209\pi\)
−0.495119 + 0.868825i \(0.664876\pi\)
\(752\) 8.05593 + 24.7936i 0.293770 + 0.904130i
\(753\) −6.66944 1.41763i −0.243048 0.0516614i
\(754\) 0.333487 + 3.17292i 0.0121449 + 0.115551i
\(755\) 0 0
\(756\) −12.7264 5.66615i −0.462854 0.206076i
\(757\) −39.7960 + 17.7183i −1.44641 + 0.643984i −0.971713 0.236164i \(-0.924110\pi\)
−0.474699 + 0.880148i \(0.657443\pi\)
\(758\) −5.19641 + 5.77120i −0.188742 + 0.209619i
\(759\) 2.51672 + 1.82851i 0.0913512 + 0.0663705i
\(760\) 0 0
\(761\) 2.20765 2.45184i 0.0800272 0.0888792i −0.701801 0.712373i \(-0.747621\pi\)
0.781828 + 0.623494i \(0.214287\pi\)
\(762\) 0.109429 0.0487209i 0.00396419 0.00176497i
\(763\) −0.624878 0.278214i −0.0226221 0.0100720i
\(764\) 6.70714 + 7.44903i 0.242656 + 0.269497i
\(765\) 0 0
\(766\) 9.15848 + 1.94669i 0.330909 + 0.0703369i
\(767\) 10.6685 + 32.8342i 0.385216 + 1.18557i
\(768\) −19.8350 + 4.21607i −0.715735 + 0.152134i
\(769\) 22.8568 + 39.5891i 0.824237 + 1.42762i 0.902501 + 0.430688i \(0.141729\pi\)
−0.0782634 + 0.996933i \(0.524938\pi\)
\(770\) 0 0
\(771\) 23.2585 71.5823i 0.837635 2.57798i
\(772\) 0.418515 3.98190i 0.0150627 0.143312i
\(773\) 24.2710 17.6339i 0.872969 0.634249i −0.0584131 0.998292i \(-0.518604\pi\)
0.931382 + 0.364044i \(0.118604\pi\)
\(774\) −15.8791 −0.570764
\(775\) 0 0
\(776\) −4.64943 −0.166905
\(777\) 7.97058 5.79097i 0.285943 0.207750i
\(778\) −0.475900 + 4.52789i −0.0170618 + 0.162333i
\(779\) −4.54689 + 13.9939i −0.162909 + 0.501383i
\(780\) 0 0
\(781\) 2.03977 + 3.53298i 0.0729886 + 0.126420i
\(782\) 0.277388 0.0589606i 0.00991937 0.00210843i
\(783\) −6.69730 20.6122i −0.239342 0.736619i
\(784\) 18.6684 + 3.96809i 0.666729 + 0.141718i
\(785\) 0 0
\(786\) −3.93523 4.37051i −0.140365 0.155891i
\(787\) 39.4944 + 17.5840i 1.40782 + 0.626803i 0.963168 0.268899i \(-0.0866599\pi\)
0.444654 + 0.895702i \(0.353327\pi\)
\(788\) −10.0725 + 4.48459i −0.358820 + 0.159757i
\(789\) −44.4030 + 49.3145i −1.58079 + 1.75564i
\(790\) 0 0
\(791\) −9.89298 7.18767i −0.351754 0.255564i
\(792\) −11.9045 + 13.2212i −0.423006 + 0.469796i
\(793\) 37.8953 16.8721i 1.34570 0.599145i
\(794\) −0.939794 0.418423i −0.0333520 0.0148493i
\(795\) 0 0
\(796\) 1.35890 + 12.9291i 0.0481649 + 0.458259i
\(797\) 22.3250 + 4.74532i 0.790792 + 0.168088i 0.585564 0.810626i \(-0.300873\pi\)
0.205228 + 0.978714i \(0.434206\pi\)
\(798\) −0.720239 2.21667i −0.0254962 0.0784691i
\(799\) −14.2114 + 3.02072i −0.502763 + 0.106865i
\(800\) 0 0
\(801\) −6.06773 + 10.5096i −0.214393 + 0.371339i
\(802\) 1.33299 4.10252i 0.0470695 0.144865i
\(803\) −3.64960 + 34.7236i −0.128792 + 1.22537i
\(804\) 28.2762 20.5438i 0.997223 0.724525i
\(805\) 0 0
\(806\) −5.34635 1.74155i −0.188317 0.0613435i
\(807\) −49.3229 −1.73625
\(808\) −19.5270 + 14.1872i −0.686959 + 0.499105i
\(809\) 2.22002 21.1221i 0.0780517 0.742613i −0.883582 0.468276i \(-0.844875\pi\)
0.961634 0.274336i \(-0.0884581\pi\)
\(810\) 0 0
\(811\) −1.06157 + 1.83869i −0.0372767 + 0.0645652i −0.884062 0.467370i \(-0.845202\pi\)
0.846785 + 0.531935i \(0.178535\pi\)
\(812\) −3.20748 5.55551i −0.112560 0.194960i
\(813\) −20.5081 + 4.35913i −0.719250 + 0.152881i
\(814\) −0.830879 2.55718i −0.0291223 0.0896292i
\(815\) 0 0
\(816\) −1.80693 17.1918i −0.0632553 0.601834i
\(817\) 11.9237 + 13.2426i 0.417158 + 0.463301i
\(818\) 5.52116 + 2.45818i 0.193043 + 0.0859482i
\(819\) −15.2584 + 6.79347i −0.533171 + 0.237383i
\(820\) 0 0
\(821\) −33.8104 24.5647i −1.17999 0.857313i −0.187819 0.982204i \(-0.560142\pi\)
−0.992171 + 0.124891i \(0.960142\pi\)
\(822\) −9.71121 7.05561i −0.338717 0.246093i
\(823\) −10.9058 + 12.1121i −0.380153 + 0.422203i −0.902608 0.430464i \(-0.858350\pi\)
0.522454 + 0.852667i \(0.325016\pi\)
\(824\) −10.0483 + 4.47378i −0.350049 + 0.155852i
\(825\) 0 0
\(826\) 3.05714 + 3.39530i 0.106372 + 0.118138i
\(827\) −3.24974 30.9192i −0.113005 1.07517i −0.893209 0.449642i \(-0.851552\pi\)
0.780205 0.625524i \(-0.215115\pi\)
\(828\) 4.35966 + 0.926674i 0.151509 + 0.0322041i
\(829\) −8.66756 26.6760i −0.301037 0.926496i −0.981126 0.193367i \(-0.938059\pi\)
0.680090 0.733129i \(-0.261941\pi\)
\(830\) 0 0
\(831\) 21.8491 + 37.8437i 0.757936 + 1.31278i
\(832\) −7.45215 + 12.9075i −0.258357 + 0.447487i
\(833\) −3.28688 + 10.1160i −0.113884 + 0.350498i
\(834\) −1.63912 + 15.5951i −0.0567579 + 0.540015i
\(835\) 0 0
\(836\) 9.66453 0.334255
\(837\) 37.9848 + 4.02104i 1.31295 + 0.138988i
\(838\) −8.13409 −0.280987
\(839\) 18.6621 13.5588i 0.644287 0.468102i −0.217034 0.976164i \(-0.569638\pi\)
0.861320 + 0.508062i \(0.169638\pi\)
\(840\) 0 0
\(841\) −5.87746 + 18.0890i −0.202671 + 0.623757i
\(842\) 5.12779 8.88160i 0.176715 0.306080i
\(843\) 3.59793 + 6.23179i 0.123919 + 0.214634i
\(844\) 30.6687 6.51884i 1.05566 0.224388i
\(845\) 0 0
\(846\) 14.7007 + 3.12473i 0.505420 + 0.107430i
\(847\) 0.575568 + 5.47617i 0.0197768 + 0.188163i
\(848\) 10.9040 + 12.1101i 0.374446 + 0.415864i
\(849\) 12.4925 + 5.56202i 0.428741 + 0.190888i
\(850\) 0 0
\(851\) −0.931124 + 1.03412i −0.0319185 + 0.0354491i
\(852\) 7.36982 + 5.35449i 0.252486 + 0.183442i
\(853\) 24.2874 + 17.6458i 0.831585 + 0.604182i 0.920007 0.391901i \(-0.128182\pi\)
−0.0884221 + 0.996083i \(0.528182\pi\)
\(854\) 3.67326 4.07957i 0.125696 0.139600i
\(855\) 0 0
\(856\) 15.1227 + 6.73307i 0.516884 + 0.230132i
\(857\) 36.5261 + 40.5663i 1.24771 + 1.38572i 0.892572 + 0.450904i \(0.148898\pi\)
0.355135 + 0.934815i \(0.384435\pi\)
\(858\) 0.742598 + 7.06535i 0.0253519 + 0.241207i
\(859\) −9.13238 1.94115i −0.311593 0.0662311i 0.0494610 0.998776i \(-0.484250\pi\)
−0.361054 + 0.932545i \(0.617583\pi\)
\(860\) 0 0
\(861\) 21.2728 4.52167i 0.724974 0.154098i
\(862\) 5.33338 + 9.23768i 0.181656 + 0.314637i
\(863\) 6.65836 11.5326i 0.226653 0.392575i −0.730161 0.683275i \(-0.760555\pi\)
0.956814 + 0.290700i \(0.0938882\pi\)
\(864\) −8.21560 + 25.2850i −0.279500 + 0.860214i
\(865\) 0 0
\(866\) 3.93491 2.85888i 0.133714 0.0971487i
\(867\) −39.5520 −1.34326
\(868\) 11.2449 1.17340i 0.381676 0.0398276i
\(869\) 8.38250 0.284357
\(870\) 0 0
\(871\) 1.93371 18.3980i 0.0655213 0.623394i
\(872\) −0.266104 + 0.818983i −0.00901141 + 0.0277343i
\(873\) 9.16547 15.8751i 0.310204 0.537290i
\(874\) 0.164599 + 0.285094i 0.00556766 + 0.00964346i
\(875\) 0 0
\(876\) 24.0925 + 74.1490i 0.814010 + 2.50526i
\(877\) −41.6359 8.84998i −1.40594 0.298843i −0.558402 0.829571i \(-0.688585\pi\)
−0.847542 + 0.530728i \(0.821919\pi\)
\(878\) 0.474617 + 4.51568i 0.0160175 + 0.152397i
\(879\) 20.4225 + 22.6815i 0.688835 + 0.765029i
\(880\) 0 0
\(881\) −5.27402 + 2.34814i −0.177686 + 0.0791110i −0.493652 0.869660i \(-0.664338\pi\)
0.315966 + 0.948771i \(0.397672\pi\)
\(882\) 7.36230 8.17666i 0.247902 0.275323i
\(883\) 22.0029 + 15.9860i 0.740457 + 0.537973i 0.892854 0.450346i \(-0.148699\pi\)
−0.152397 + 0.988319i \(0.548699\pi\)
\(884\) −7.96061 5.78372i −0.267744 0.194528i
\(885\) 0 0
\(886\) 7.62758 3.39602i 0.256254 0.114091i
\(887\) 6.73437 + 2.99834i 0.226118 + 0.100674i 0.516669 0.856185i \(-0.327172\pi\)
−0.290551 + 0.956860i \(0.593839\pi\)
\(888\) −8.29940 9.21742i −0.278510 0.309316i
\(889\) 0.0133254 + 0.126783i 0.000446920 + 0.00425216i
\(890\) 0 0
\(891\) −2.80677 8.63835i −0.0940304 0.289396i
\(892\) 11.4930 2.44292i 0.384815 0.0817950i
\(893\) −8.43290 14.6062i −0.282196 0.488778i
\(894\) −6.07548 + 10.5230i −0.203194 + 0.351943i
\(895\) 0 0
\(896\) −1.08287 + 10.3028i −0.0361762 + 0.344193i
\(897\) 2.97453 2.16112i 0.0993166 0.0721578i
\(898\) 6.82232 0.227664
\(899\) 13.0626 + 11.7793i 0.435663 + 0.392862i
\(900\) 0 0
\(901\) −7.34737 + 5.33818i −0.244776 + 0.177841i
\(902\) 0.620408 5.90278i 0.0206573 0.196541i
\(903\) 8.13900 25.0493i 0.270849 0.833588i
\(904\) −7.69738 + 13.3322i −0.256011 + 0.443424i
\(905\) 0 0
\(906\) −4.29869 + 0.913715i −0.142814 + 0.0303562i
\(907\) −5.09354 15.6763i −0.169128 0.520523i 0.830189 0.557482i \(-0.188233\pi\)
−0.999317 + 0.0369599i \(0.988233\pi\)
\(908\) 14.4040 + 3.06167i 0.478014 + 0.101605i
\(909\) −9.94714 94.6408i −0.329926 3.13904i
\(910\) 0 0
\(911\) 40.9333 + 18.2247i 1.35618 + 0.603810i 0.950648 0.310271i \(-0.100420\pi\)
0.405531 + 0.914081i \(0.367087\pi\)
\(912\) 18.3321 8.16199i 0.607038 0.270271i
\(913\) 20.9116 23.2247i 0.692073 0.768625i
\(914\) −6.92078 5.02824i −0.228919 0.166319i
\(915\) 0 0
\(916\) −16.0380 + 17.8120i −0.529911 + 0.588526i
\(917\) 5.71785 2.54575i 0.188820 0.0840681i
\(918\) −4.01909 1.78942i −0.132650 0.0590595i
\(919\) −6.93006 7.69662i −0.228602 0.253888i 0.617921 0.786240i \(-0.287975\pi\)
−0.846523 + 0.532352i \(0.821308\pi\)
\(920\) 0 0
\(921\) 7.49544 + 1.59320i 0.246983 + 0.0524979i
\(922\) 4.16401 + 12.8155i 0.137134 + 0.422056i
\(923\) 4.71626 1.00247i 0.155238 0.0329968i
\(924\) −7.14231 12.3708i −0.234965 0.406971i
\(925\) 0 0
\(926\) −0.716131 + 2.20402i −0.0235335 + 0.0724287i
\(927\) 4.53296 43.1282i 0.148882 1.41652i
\(928\) −9.90452 + 7.19606i −0.325132 + 0.236222i
\(929\) 44.0624 1.44564 0.722820 0.691037i \(-0.242846\pi\)
0.722820 + 0.691037i \(0.242846\pi\)
\(930\) 0 0
\(931\) −12.3474 −0.404671
\(932\) −19.3066 + 14.0271i −0.632409 + 0.459472i
\(933\) −1.66725 + 15.8629i −0.0545834 + 0.519327i
\(934\) 4.17034 12.8350i 0.136458 0.419974i
\(935\) 0 0
\(936\) 10.5136 + 18.2101i 0.343648 + 0.595216i
\(937\) −33.8116 + 7.18687i −1.10458 + 0.234785i −0.723887 0.689918i \(-0.757646\pi\)
−0.380689 + 0.924703i \(0.624313\pi\)
\(938\) −0.756528 2.32835i −0.0247015 0.0760235i
\(939\) −75.4933 16.0466i −2.46363 0.523661i
\(940\) 0 0
\(941\) −14.8206 16.4600i −0.483138 0.536580i 0.451457 0.892293i \(-0.350905\pi\)
−0.934595 + 0.355713i \(0.884238\pi\)
\(942\) −8.08546 3.59988i −0.263439 0.117290i
\(943\) −2.80617 + 1.24939i −0.0913814 + 0.0406856i
\(944\) −26.3211 + 29.2326i −0.856680 + 0.951440i
\(945\) 0 0
\(946\) −5.81526 4.22504i −0.189071 0.137368i
\(947\) 18.7909 20.8694i 0.610622 0.678165i −0.355966 0.934499i \(-0.615848\pi\)
0.966588 + 0.256334i \(0.0825148\pi\)
\(948\) 17.0998 7.61334i 0.555377 0.247270i
\(949\) 37.6985 + 16.7844i 1.22374 + 0.544846i
\(950\) 0 0
\(951\) 3.24818 + 30.9044i 0.105330 + 1.00214i
\(952\) −2.63130 0.559300i −0.0852809 0.0181270i
\(953\) −2.36916 7.29152i −0.0767446 0.236196i 0.905323 0.424723i \(-0.139629\pi\)
−0.982068 + 0.188527i \(0.939629\pi\)
\(954\) 9.18925 1.95324i 0.297513 0.0632383i
\(955\) 0 0
\(956\) −23.8546 + 41.3173i −0.771512 + 1.33630i
\(957\) 6.86743 21.1358i 0.221992 0.683222i
\(958\) 0.276434 2.63009i 0.00893118 0.0849745i
\(959\) 10.3352 7.50893i 0.333740 0.242476i
\(960\) 0 0
\(961\) −28.3387 + 12.5665i −0.914152 + 0.405372i
\(962\) −3.17789 −0.102459
\(963\) −52.8011 + 38.3622i −1.70149 + 1.23621i
\(964\) 0.463100 4.40610i 0.0149154 0.141911i
\(965\) 0 0
\(966\) 0.243285 0.421383i 0.00782758 0.0135578i
\(967\) −0.925182 1.60246i −0.0297518 0.0515317i 0.850766 0.525545i \(-0.176138\pi\)
−0.880518 + 0.474013i \(0.842805\pi\)
\(968\) 6.78063 1.44127i 0.217938 0.0463241i
\(969\) 3.45592 + 10.6362i 0.111020 + 0.341685i
\(970\) 0 0
\(971\) −5.16072 49.1010i −0.165615 1.57573i −0.689723 0.724074i \(-0.742268\pi\)
0.524107 0.851652i \(-0.324399\pi\)
\(972\) 12.2708 + 13.6281i 0.393585 + 0.437121i
\(973\) −15.2457 6.78784i −0.488756 0.217608i
\(974\) 8.03659 3.57812i 0.257509 0.114650i
\(975\) 0 0
\(976\) 38.2373 + 27.7810i 1.22395 + 0.889248i
\(977\) −28.8192 20.9383i −0.922007 0.669877i 0.0220160 0.999758i \(-0.492992\pi\)
−0.944023 + 0.329881i \(0.892992\pi\)
\(978\) 2.12813 2.36353i 0.0680501 0.0755773i
\(979\) −5.01847 + 2.23437i −0.160391 + 0.0714107i
\(980\) 0 0
\(981\) −2.27177 2.52306i −0.0725321 0.0805550i
\(982\) −1.45874 13.8789i −0.0465501 0.442895i
\(983\) −6.24409 1.32722i −0.199156 0.0423318i 0.107254 0.994232i \(-0.465794\pi\)
−0.306409 + 0.951900i \(0.599128\pi\)
\(984\) −8.46068 26.0393i −0.269717 0.830103i
\(985\) 0 0
\(986\) −1.01295 1.75448i −0.0322588 0.0558739i
\(987\) −12.4642 + 21.5887i −0.396740 + 0.687175i
\(988\) 3.52977 10.8635i 0.112297 0.345614i
\(989\) −0.388855 + 3.69971i −0.0123649 + 0.117644i
\(990\) 0 0
\(991\) −44.2919 −1.40698 −0.703489 0.710706i \(-0.748376\pi\)
−0.703489 + 0.710706i \(0.748376\pi\)
\(992\) −4.47033 21.1087i −0.141933 0.670202i
\(993\) 56.8463 1.80396
\(994\) 0.516222 0.375058i 0.0163736 0.0118961i
\(995\) 0 0
\(996\) 21.5649 66.3699i 0.683310 2.10301i
\(997\) 2.66158 4.60999i 0.0842931 0.146000i −0.820797 0.571220i \(-0.806470\pi\)
0.905090 + 0.425221i \(0.139803\pi\)
\(998\) −4.15641 7.19911i −0.131569 0.227884i
\(999\) 21.1162 4.48839i 0.668087 0.142006i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.bl.a.276.1 16
5.2 odd 4 775.2.ck.a.524.3 32
5.3 odd 4 775.2.ck.a.524.2 32
5.4 even 2 31.2.g.a.28.2 yes 16
15.14 odd 2 279.2.y.c.28.1 16
20.19 odd 2 496.2.bg.c.369.1 16
31.10 even 15 inner 775.2.bl.a.351.1 16
155.4 even 10 961.2.g.s.448.1 16
155.9 even 30 961.2.c.j.439.4 16
155.14 even 30 961.2.a.i.1.4 8
155.19 even 30 961.2.d.o.374.3 16
155.24 odd 30 961.2.d.q.628.2 16
155.29 odd 10 961.2.g.j.732.2 16
155.34 odd 30 961.2.d.q.531.2 16
155.39 even 10 961.2.c.j.521.4 16
155.44 odd 30 961.2.g.m.547.1 16
155.49 even 30 961.2.g.s.547.1 16
155.54 odd 10 961.2.c.i.521.4 16
155.59 even 30 961.2.d.p.531.2 16
155.64 even 10 961.2.g.k.732.2 16
155.69 even 30 961.2.d.p.628.2 16
155.72 odd 60 775.2.ck.a.599.2 32
155.74 odd 30 961.2.d.n.374.3 16
155.79 odd 30 961.2.a.j.1.4 8
155.84 odd 30 961.2.c.i.439.4 16
155.89 odd 10 961.2.g.m.448.1 16
155.99 odd 6 961.2.d.n.388.3 16
155.103 odd 60 775.2.ck.a.599.3 32
155.104 odd 30 961.2.g.n.846.1 16
155.109 even 10 961.2.g.t.844.1 16
155.114 odd 30 961.2.g.l.816.2 16
155.119 odd 6 961.2.g.j.235.2 16
155.129 even 6 961.2.g.k.235.2 16
155.134 even 30 31.2.g.a.10.2 16
155.139 odd 10 961.2.g.n.844.1 16
155.144 even 30 961.2.g.t.846.1 16
155.149 even 6 961.2.d.o.388.3 16
155.154 odd 2 961.2.g.l.338.2 16
465.14 odd 30 8649.2.a.bf.1.5 8
465.134 odd 30 279.2.y.c.10.1 16
465.389 even 30 8649.2.a.be.1.5 8
620.599 odd 30 496.2.bg.c.289.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.2 16 155.134 even 30
31.2.g.a.28.2 yes 16 5.4 even 2
279.2.y.c.10.1 16 465.134 odd 30
279.2.y.c.28.1 16 15.14 odd 2
496.2.bg.c.289.1 16 620.599 odd 30
496.2.bg.c.369.1 16 20.19 odd 2
775.2.bl.a.276.1 16 1.1 even 1 trivial
775.2.bl.a.351.1 16 31.10 even 15 inner
775.2.ck.a.524.2 32 5.3 odd 4
775.2.ck.a.524.3 32 5.2 odd 4
775.2.ck.a.599.2 32 155.72 odd 60
775.2.ck.a.599.3 32 155.103 odd 60
961.2.a.i.1.4 8 155.14 even 30
961.2.a.j.1.4 8 155.79 odd 30
961.2.c.i.439.4 16 155.84 odd 30
961.2.c.i.521.4 16 155.54 odd 10
961.2.c.j.439.4 16 155.9 even 30
961.2.c.j.521.4 16 155.39 even 10
961.2.d.n.374.3 16 155.74 odd 30
961.2.d.n.388.3 16 155.99 odd 6
961.2.d.o.374.3 16 155.19 even 30
961.2.d.o.388.3 16 155.149 even 6
961.2.d.p.531.2 16 155.59 even 30
961.2.d.p.628.2 16 155.69 even 30
961.2.d.q.531.2 16 155.34 odd 30
961.2.d.q.628.2 16 155.24 odd 30
961.2.g.j.235.2 16 155.119 odd 6
961.2.g.j.732.2 16 155.29 odd 10
961.2.g.k.235.2 16 155.129 even 6
961.2.g.k.732.2 16 155.64 even 10
961.2.g.l.338.2 16 155.154 odd 2
961.2.g.l.816.2 16 155.114 odd 30
961.2.g.m.448.1 16 155.89 odd 10
961.2.g.m.547.1 16 155.44 odd 30
961.2.g.n.844.1 16 155.139 odd 10
961.2.g.n.846.1 16 155.104 odd 30
961.2.g.s.448.1 16 155.4 even 10
961.2.g.s.547.1 16 155.49 even 30
961.2.g.t.844.1 16 155.109 even 10
961.2.g.t.846.1 16 155.144 even 30
8649.2.a.be.1.5 8 465.389 even 30
8649.2.a.bf.1.5 8 465.14 odd 30