Properties

Label 775.2.ck.a.524.2
Level $775$
Weight $2$
Character 775.524
Analytic conductor $6.188$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [775,2,Mod(49,775)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(775, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([15, 26]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("775.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 524.2
Character \(\chi\) \(=\) 775.524
Dual form 775.2.ck.a.599.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.206567 - 0.284315i) q^{2} +(-2.87744 - 0.302431i) q^{3} +(0.579869 - 1.78465i) q^{4} +(0.508398 + 0.880572i) q^{6} +(0.224987 + 1.05848i) q^{7} +(-1.29565 + 0.420982i) q^{8} +(5.25377 + 1.11672i) q^{9} +(-1.62690 - 1.80686i) q^{11} +(-2.20827 + 4.95987i) q^{12} +(-1.16882 - 2.62521i) q^{13} +(0.254466 - 0.282614i) q^{14} +(-2.64890 - 1.92454i) q^{16} +(-1.35606 - 1.22101i) q^{17} +(-0.767753 - 1.72440i) q^{18} +(-1.93514 - 0.861580i) q^{19} +(-0.327269 - 3.11375i) q^{21} +(-0.177653 + 0.835790i) q^{22} +(-0.420572 + 0.136652i) q^{23} +(3.85547 - 0.819506i) q^{24} +(-0.504947 + 0.874594i) q^{26} +(-6.52462 - 2.11998i) q^{27} +(2.01948 + 0.212256i) q^{28} +(-2.55579 + 1.85689i) q^{29} +(1.15354 + 5.44696i) q^{31} +3.87532i q^{32} +(4.13487 + 5.69116i) q^{33} +(-0.0670322 + 0.637769i) q^{34} +(5.03946 - 8.72860i) q^{36} +(2.72517 - 1.57338i) q^{37} +(0.154776 + 0.728163i) q^{38} +(2.56926 + 7.90738i) q^{39} +(0.726079 + 6.90818i) q^{41} +(-0.817684 + 0.736246i) q^{42} +(-3.42162 + 7.68509i) q^{43} +(-4.16801 + 1.85572i) q^{44} +(0.125728 + 0.0913471i) q^{46} +(-4.67998 + 6.44144i) q^{47} +(7.04003 + 6.33887i) q^{48} +(5.32506 - 2.37087i) q^{49} +(3.53273 + 3.92349i) q^{51} +(-5.36285 + 0.563659i) q^{52} +(1.03478 - 4.86824i) q^{53} +(0.745029 + 2.29296i) q^{54} +(-0.737104 - 1.27670i) q^{56} +(5.30768 + 3.06439i) q^{57} +(1.05588 + 0.343078i) q^{58} +(-1.25580 + 11.9481i) q^{59} -14.4351 q^{61} +(1.31037 - 1.45313i) q^{62} +5.81225i q^{63} +(-4.19600 + 3.04857i) q^{64} +(0.763955 - 2.35121i) q^{66} +(5.57511 + 3.21879i) q^{67} +(-2.96541 + 1.71208i) q^{68} +(1.25150 - 0.266015i) q^{69} +(-1.64121 - 0.348850i) q^{71} +(-7.27716 + 0.764860i) q^{72} +(10.6717 - 9.60883i) q^{73} +(-1.01026 - 0.449798i) q^{74} +(-2.65975 + 2.95395i) q^{76} +(1.54649 - 2.12856i) q^{77} +(1.71746 - 2.36388i) q^{78} +(2.30692 - 2.56210i) q^{79} +(3.41274 + 1.51945i) q^{81} +(1.81412 - 1.63344i) q^{82} +(-12.7832 + 1.34357i) q^{83} +(-5.74674 - 1.22151i) q^{84} +(2.89178 - 0.614667i) q^{86} +(7.91573 - 4.57015i) q^{87} +(2.86855 + 1.65616i) q^{88} +(-0.698188 + 2.14880i) q^{89} +(2.51576 - 1.82781i) q^{91} +0.829816i q^{92} +(-1.67190 - 16.0222i) q^{93} +2.79812 q^{94} +(1.17202 - 11.1510i) q^{96} +(3.24582 + 1.05463i) q^{97} +(-1.77405 - 1.02425i) q^{98} +(-6.52961 - 11.3096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 28 q^{4} + 22 q^{6} + 20 q^{9} - 14 q^{11} + 12 q^{14} - 4 q^{16} - 32 q^{19} + 18 q^{21} + 40 q^{24} + 18 q^{26} + 28 q^{29} + 30 q^{31} + 64 q^{34} + 2 q^{36} + 6 q^{39} - 16 q^{41} - 78 q^{44}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.206567 0.284315i −0.146065 0.201041i 0.729715 0.683751i \(-0.239653\pi\)
−0.875780 + 0.482710i \(0.839653\pi\)
\(3\) −2.87744 0.302431i −1.66129 0.174609i −0.773164 0.634206i \(-0.781327\pi\)
−0.888128 + 0.459597i \(0.847994\pi\)
\(4\) 0.579869 1.78465i 0.289934 0.892327i
\(5\) 0 0
\(6\) 0.508398 + 0.880572i 0.207553 + 0.359492i
\(7\) 0.224987 + 1.05848i 0.0850369 + 0.400067i 0.999994 0.00348400i \(-0.00110899\pi\)
−0.914957 + 0.403551i \(0.867776\pi\)
\(8\) −1.29565 + 0.420982i −0.458081 + 0.148840i
\(9\) 5.25377 + 1.11672i 1.75126 + 0.372241i
\(10\) 0 0
\(11\) −1.62690 1.80686i −0.490530 0.544789i 0.446158 0.894954i \(-0.352792\pi\)
−0.936688 + 0.350165i \(0.886125\pi\)
\(12\) −2.20827 + 4.95987i −0.637474 + 1.43179i
\(13\) −1.16882 2.62521i −0.324172 0.728103i 0.675787 0.737097i \(-0.263804\pi\)
−0.999960 + 0.00899389i \(0.997137\pi\)
\(14\) 0.254466 0.282614i 0.0680090 0.0755317i
\(15\) 0 0
\(16\) −2.64890 1.92454i −0.662226 0.481135i
\(17\) −1.35606 1.22101i −0.328894 0.296137i 0.488095 0.872790i \(-0.337692\pi\)
−0.816989 + 0.576653i \(0.804359\pi\)
\(18\) −0.767753 1.72440i −0.180961 0.406445i
\(19\) −1.93514 0.861580i −0.443951 0.197660i 0.172571 0.984997i \(-0.444792\pi\)
−0.616523 + 0.787337i \(0.711459\pi\)
\(20\) 0 0
\(21\) −0.327269 3.11375i −0.0714159 0.679477i
\(22\) −0.177653 + 0.835790i −0.0378757 + 0.178191i
\(23\) −0.420572 + 0.136652i −0.0876953 + 0.0284939i −0.352536 0.935798i \(-0.614681\pi\)
0.264841 + 0.964292i \(0.414681\pi\)
\(24\) 3.85547 0.819506i 0.786995 0.167281i
\(25\) 0 0
\(26\) −0.504947 + 0.874594i −0.0990283 + 0.171522i
\(27\) −6.52462 2.11998i −1.25566 0.407990i
\(28\) 2.01948 + 0.212256i 0.381646 + 0.0401126i
\(29\) −2.55579 + 1.85689i −0.474599 + 0.344816i −0.799231 0.601024i \(-0.794760\pi\)
0.324632 + 0.945840i \(0.394760\pi\)
\(30\) 0 0
\(31\) 1.15354 + 5.44696i 0.207181 + 0.978303i
\(32\) 3.87532i 0.685067i
\(33\) 4.13487 + 5.69116i 0.719789 + 0.990704i
\(34\) −0.0670322 + 0.637769i −0.0114959 + 0.109376i
\(35\) 0 0
\(36\) 5.03946 8.72860i 0.839910 1.45477i
\(37\) 2.72517 1.57338i 0.448015 0.258661i −0.258977 0.965884i \(-0.583385\pi\)
0.706991 + 0.707222i \(0.250052\pi\)
\(38\) 0.154776 + 0.728163i 0.0251079 + 0.118124i
\(39\) 2.56926 + 7.90738i 0.411412 + 1.26619i
\(40\) 0 0
\(41\) 0.726079 + 6.90818i 0.113395 + 1.07888i 0.892209 + 0.451623i \(0.149155\pi\)
−0.778814 + 0.627254i \(0.784179\pi\)
\(42\) −0.817684 + 0.736246i −0.126171 + 0.113605i
\(43\) −3.42162 + 7.68509i −0.521793 + 1.17197i 0.439953 + 0.898021i \(0.354995\pi\)
−0.961746 + 0.273944i \(0.911672\pi\)
\(44\) −4.16801 + 1.85572i −0.628351 + 0.279760i
\(45\) 0 0
\(46\) 0.125728 + 0.0913471i 0.0185377 + 0.0134684i
\(47\) −4.67998 + 6.44144i −0.682645 + 0.939580i −0.999962 0.00873953i \(-0.997218\pi\)
0.317317 + 0.948320i \(0.397218\pi\)
\(48\) 7.04003 + 6.33887i 1.01614 + 0.914937i
\(49\) 5.32506 2.37087i 0.760723 0.338696i
\(50\) 0 0
\(51\) 3.53273 + 3.92349i 0.494681 + 0.549399i
\(52\) −5.36285 + 0.563659i −0.743694 + 0.0781654i
\(53\) 1.03478 4.86824i 0.142137 0.668704i −0.848160 0.529740i \(-0.822289\pi\)
0.990297 0.138964i \(-0.0443772\pi\)
\(54\) 0.745029 + 2.29296i 0.101386 + 0.312033i
\(55\) 0 0
\(56\) −0.737104 1.27670i −0.0984997 0.170606i
\(57\) 5.30768 + 3.06439i 0.703020 + 0.405889i
\(58\) 1.05588 + 0.343078i 0.138644 + 0.0450483i
\(59\) −1.25580 + 11.9481i −0.163491 + 1.55551i 0.538068 + 0.842902i \(0.319154\pi\)
−0.701559 + 0.712612i \(0.747512\pi\)
\(60\) 0 0
\(61\) −14.4351 −1.84823 −0.924115 0.382115i \(-0.875196\pi\)
−0.924115 + 0.382115i \(0.875196\pi\)
\(62\) 1.31037 1.45313i 0.166417 0.184548i
\(63\) 5.81225i 0.732274i
\(64\) −4.19600 + 3.04857i −0.524499 + 0.381071i
\(65\) 0 0
\(66\) 0.763955 2.35121i 0.0940363 0.289414i
\(67\) 5.57511 + 3.21879i 0.681108 + 0.393238i 0.800273 0.599636i \(-0.204688\pi\)
−0.119164 + 0.992875i \(0.538021\pi\)
\(68\) −2.96541 + 1.71208i −0.359609 + 0.207620i
\(69\) 1.25150 0.266015i 0.150663 0.0320244i
\(70\) 0 0
\(71\) −1.64121 0.348850i −0.194776 0.0414009i 0.109491 0.993988i \(-0.465078\pi\)
−0.304266 + 0.952587i \(0.598411\pi\)
\(72\) −7.27716 + 0.764860i −0.857621 + 0.0901396i
\(73\) 10.6717 9.60883i 1.24903 1.12463i 0.261830 0.965114i \(-0.415674\pi\)
0.987196 0.159514i \(-0.0509928\pi\)
\(74\) −1.01026 0.449798i −0.117441 0.0522880i
\(75\) 0 0
\(76\) −2.65975 + 2.95395i −0.305094 + 0.338841i
\(77\) 1.54649 2.12856i 0.176239 0.242572i
\(78\) 1.71746 2.36388i 0.194464 0.267657i
\(79\) 2.30692 2.56210i 0.259549 0.288259i −0.599260 0.800555i \(-0.704538\pi\)
0.858809 + 0.512296i \(0.171205\pi\)
\(80\) 0 0
\(81\) 3.41274 + 1.51945i 0.379194 + 0.168828i
\(82\) 1.81412 1.63344i 0.200336 0.180383i
\(83\) −12.7832 + 1.34357i −1.40314 + 0.147476i −0.775657 0.631155i \(-0.782581\pi\)
−0.627482 + 0.778631i \(0.715914\pi\)
\(84\) −5.74674 1.22151i −0.627021 0.133277i
\(85\) 0 0
\(86\) 2.89178 0.614667i 0.311829 0.0662812i
\(87\) 7.91573 4.57015i 0.848656 0.489972i
\(88\) 2.86855 + 1.65616i 0.305789 + 0.176547i
\(89\) −0.698188 + 2.14880i −0.0740078 + 0.227773i −0.981217 0.192907i \(-0.938208\pi\)
0.907209 + 0.420680i \(0.138208\pi\)
\(90\) 0 0
\(91\) 2.51576 1.82781i 0.263724 0.191606i
\(92\) 0.829816i 0.0865143i
\(93\) −1.67190 16.0222i −0.173368 1.66142i
\(94\) 2.79812 0.288604
\(95\) 0 0
\(96\) 1.17202 11.1510i 0.119619 1.13810i
\(97\) 3.24582 + 1.05463i 0.329563 + 0.107082i 0.469125 0.883132i \(-0.344569\pi\)
−0.139562 + 0.990213i \(0.544569\pi\)
\(98\) −1.77405 1.02425i −0.179207 0.103465i
\(99\) −6.52961 11.3096i −0.656251 1.13666i
\(100\) 0 0
\(101\) 5.47495 + 16.8502i 0.544778 + 1.67665i 0.721518 + 0.692395i \(0.243445\pi\)
−0.176741 + 0.984257i \(0.556555\pi\)
\(102\) 0.385763 1.81487i 0.0381962 0.179699i
\(103\) −8.02962 + 0.843947i −0.791182 + 0.0831566i −0.491494 0.870881i \(-0.663549\pi\)
−0.299688 + 0.954037i \(0.596882\pi\)
\(104\) 2.61955 + 2.90930i 0.256868 + 0.285281i
\(105\) 0 0
\(106\) −1.59786 + 0.711414i −0.155198 + 0.0690987i
\(107\) −9.03010 8.13074i −0.872972 0.786028i 0.105063 0.994466i \(-0.466495\pi\)
−0.978036 + 0.208438i \(0.933162\pi\)
\(108\) −7.56685 + 10.4149i −0.728121 + 1.00217i
\(109\) −0.511381 0.371540i −0.0489815 0.0355871i 0.563025 0.826440i \(-0.309637\pi\)
−0.612007 + 0.790853i \(0.709637\pi\)
\(110\) 0 0
\(111\) −8.31735 + 3.70312i −0.789448 + 0.351485i
\(112\) 1.44112 3.23680i 0.136173 0.305849i
\(113\) −8.39779 + 7.56140i −0.789998 + 0.711317i −0.961782 0.273818i \(-0.911714\pi\)
0.171784 + 0.985135i \(0.445047\pi\)
\(114\) −0.225139 2.14205i −0.0210862 0.200622i
\(115\) 0 0
\(116\) 1.83188 + 5.63796i 0.170086 + 0.523472i
\(117\) −3.20907 15.0975i −0.296679 1.39576i
\(118\) 3.65643 2.11104i 0.336602 0.194337i
\(119\) 0.987313 1.71008i 0.0905068 0.156762i
\(120\) 0 0
\(121\) 0.531887 5.06056i 0.0483533 0.460051i
\(122\) 2.98182 + 4.10412i 0.269961 + 0.371570i
\(123\) 20.0975i 1.81213i
\(124\) 10.3898 + 1.09986i 0.933034 + 0.0987702i
\(125\) 0 0
\(126\) 1.65251 1.20062i 0.147217 0.106960i
\(127\) −0.117161 0.0123141i −0.0103963 0.00109270i 0.0993289 0.995055i \(-0.468330\pi\)
−0.109725 + 0.993962i \(0.534997\pi\)
\(128\) 9.10481 + 2.95833i 0.804759 + 0.261482i
\(129\) 12.1697 21.0786i 1.07149 1.85587i
\(130\) 0 0
\(131\) −5.65756 + 1.20255i −0.494303 + 0.105067i −0.448317 0.893875i \(-0.647976\pi\)
−0.0459863 + 0.998942i \(0.514643\pi\)
\(132\) 12.5544 4.07918i 1.09272 0.355047i
\(133\) 0.476583 2.24215i 0.0413250 0.194419i
\(134\) −0.236483 2.24998i −0.0204290 0.194369i
\(135\) 0 0
\(136\) 2.27101 + 1.01112i 0.194737 + 0.0867026i
\(137\) 4.80170 + 10.7848i 0.410237 + 0.921407i 0.993990 + 0.109475i \(0.0349171\pi\)
−0.583753 + 0.811931i \(0.698416\pi\)
\(138\) −0.334150 0.300870i −0.0284448 0.0256118i
\(139\) −12.4767 9.06482i −1.05826 0.768868i −0.0844915 0.996424i \(-0.526927\pi\)
−0.973765 + 0.227556i \(0.926927\pi\)
\(140\) 0 0
\(141\) 15.4145 17.1195i 1.29813 1.44172i
\(142\) 0.239836 + 0.538681i 0.0201266 + 0.0452051i
\(143\) −2.84183 + 6.38286i −0.237646 + 0.533762i
\(144\) −11.7675 13.0692i −0.980628 1.08910i
\(145\) 0 0
\(146\) −4.93635 1.04925i −0.408535 0.0868368i
\(147\) −16.0396 + 5.21157i −1.32292 + 0.429843i
\(148\) −1.22769 5.77583i −0.100916 0.474770i
\(149\) −5.97511 10.3492i −0.489500 0.847840i 0.510427 0.859921i \(-0.329488\pi\)
−0.999927 + 0.0120817i \(0.996154\pi\)
\(150\) 0 0
\(151\) −1.33561 + 4.11059i −0.108691 + 0.334515i −0.990579 0.136943i \(-0.956272\pi\)
0.881888 + 0.471458i \(0.156272\pi\)
\(152\) 2.86997 + 0.301646i 0.232785 + 0.0244667i
\(153\) −5.76092 7.92923i −0.465743 0.641040i
\(154\) −0.924636 −0.0745093
\(155\) 0 0
\(156\) 15.6018 1.24914
\(157\) 5.11634 + 7.04204i 0.408328 + 0.562016i 0.962810 0.270180i \(-0.0870833\pi\)
−0.554481 + 0.832196i \(0.687083\pi\)
\(158\) −1.20498 0.126648i −0.0958628 0.0100756i
\(159\) −4.44982 + 13.6951i −0.352893 + 1.08609i
\(160\) 0 0
\(161\) −0.239267 0.414422i −0.0188568 0.0326610i
\(162\) −0.272957 1.28416i −0.0214455 0.100893i
\(163\) 2.97481 0.966575i 0.233005 0.0757080i −0.190187 0.981748i \(-0.560909\pi\)
0.423192 + 0.906040i \(0.360909\pi\)
\(164\) 12.7497 + 2.71004i 0.995588 + 0.211619i
\(165\) 0 0
\(166\) 3.02258 + 3.35692i 0.234598 + 0.260547i
\(167\) 5.43194 12.2003i 0.420336 0.944090i −0.571969 0.820275i \(-0.693820\pi\)
0.992305 0.123815i \(-0.0395130\pi\)
\(168\) 1.73486 + 3.89656i 0.133847 + 0.300626i
\(169\) 3.17310 3.52408i 0.244085 0.271083i
\(170\) 0 0
\(171\) −9.20462 6.68755i −0.703895 0.511410i
\(172\) 11.7311 + 10.5628i 0.894490 + 0.805402i
\(173\) −7.74619 17.3982i −0.588932 1.32276i −0.924656 0.380803i \(-0.875648\pi\)
0.335724 0.941960i \(-0.391019\pi\)
\(174\) −2.93449 1.30652i −0.222463 0.0990469i
\(175\) 0 0
\(176\) 0.832136 + 7.91724i 0.0627246 + 0.596785i
\(177\) 7.22697 34.0002i 0.543213 2.55561i
\(178\) 0.755159 0.245366i 0.0566016 0.0183910i
\(179\) −0.0775964 + 0.0164936i −0.00579983 + 0.00123279i −0.210811 0.977527i \(-0.567610\pi\)
0.205011 + 0.978760i \(0.434277\pi\)
\(180\) 0 0
\(181\) −1.08143 + 1.87308i −0.0803817 + 0.139225i −0.903414 0.428769i \(-0.858947\pi\)
0.823032 + 0.567995i \(0.192281\pi\)
\(182\) −1.03935 0.337704i −0.0770415 0.0250323i
\(183\) 41.5363 + 4.36564i 3.07045 + 0.322717i
\(184\) 0.487386 0.354107i 0.0359306 0.0261051i
\(185\) 0 0
\(186\) −4.20998 + 3.78500i −0.308691 + 0.277529i
\(187\) 4.43668i 0.324442i
\(188\) 8.78195 + 12.0873i 0.640490 + 0.881559i
\(189\) 0.776000 7.38314i 0.0564457 0.537045i
\(190\) 0 0
\(191\) 2.67085 4.62604i 0.193256 0.334729i −0.753072 0.657939i \(-0.771429\pi\)
0.946327 + 0.323210i \(0.104762\pi\)
\(192\) 12.9957 7.50308i 0.937885 0.541488i
\(193\) −0.443616 2.08705i −0.0319322 0.150229i 0.959293 0.282412i \(-0.0911346\pi\)
−0.991225 + 0.132183i \(0.957801\pi\)
\(194\) −0.370632 1.14069i −0.0266098 0.0818966i
\(195\) 0 0
\(196\) −1.14334 10.8782i −0.0816673 0.777013i
\(197\) 4.36652 3.93163i 0.311102 0.280117i −0.498758 0.866742i \(-0.666210\pi\)
0.809859 + 0.586624i \(0.199544\pi\)
\(198\) −1.86669 + 4.19266i −0.132660 + 0.297959i
\(199\) −6.32901 + 2.81786i −0.448652 + 0.199753i −0.618609 0.785699i \(-0.712304\pi\)
0.169958 + 0.985451i \(0.445637\pi\)
\(200\) 0 0
\(201\) −15.0686 10.9480i −1.06286 0.772211i
\(202\) 3.65981 5.03729i 0.257503 0.354423i
\(203\) −2.54050 2.28748i −0.178308 0.160549i
\(204\) 9.05059 4.02958i 0.633668 0.282127i
\(205\) 0 0
\(206\) 1.89860 + 2.10861i 0.132282 + 0.146914i
\(207\) −2.36219 + 0.248276i −0.164184 + 0.0172564i
\(208\) −1.95624 + 9.20337i −0.135641 + 0.638139i
\(209\) 1.59153 + 4.89823i 0.110089 + 0.338818i
\(210\) 0 0
\(211\) −8.35437 14.4702i −0.575139 0.996170i −0.996027 0.0890568i \(-0.971615\pi\)
0.420888 0.907113i \(-0.361719\pi\)
\(212\) −8.08808 4.66966i −0.555492 0.320713i
\(213\) 4.61698 + 1.50015i 0.316350 + 0.102788i
\(214\) −0.446370 + 4.24693i −0.0305133 + 0.290314i
\(215\) 0 0
\(216\) 9.34610 0.635921
\(217\) −5.50596 + 2.44649i −0.373769 + 0.166078i
\(218\) 0.222141i 0.0150453i
\(219\) −33.6132 + 24.4214i −2.27137 + 1.65024i
\(220\) 0 0
\(221\) −1.62040 + 4.98709i −0.109000 + 0.335468i
\(222\) 2.77094 + 1.59980i 0.185973 + 0.107372i
\(223\) 5.42267 3.13078i 0.363129 0.209653i −0.307323 0.951605i \(-0.599433\pi\)
0.670453 + 0.741952i \(0.266100\pi\)
\(224\) −4.10195 + 0.871895i −0.274073 + 0.0582560i
\(225\) 0 0
\(226\) 3.88452 + 0.825681i 0.258395 + 0.0549235i
\(227\) −7.80452 + 0.820289i −0.518004 + 0.0544445i −0.359924 0.932982i \(-0.617197\pi\)
−0.158081 + 0.987426i \(0.550531\pi\)
\(228\) 8.54664 7.69543i 0.566015 0.509642i
\(229\) −11.6687 5.19524i −0.771089 0.343311i −0.0168049 0.999859i \(-0.505349\pi\)
−0.754285 + 0.656548i \(0.772016\pi\)
\(230\) 0 0
\(231\) −5.09368 + 5.65711i −0.335140 + 0.372210i
\(232\) 2.52969 3.48183i 0.166083 0.228593i
\(233\) −7.47514 + 10.2887i −0.489713 + 0.674032i −0.980335 0.197340i \(-0.936770\pi\)
0.490622 + 0.871373i \(0.336770\pi\)
\(234\) −3.62955 + 4.03103i −0.237271 + 0.263517i
\(235\) 0 0
\(236\) 20.5951 + 9.16951i 1.34062 + 0.596884i
\(237\) −7.41290 + 6.67460i −0.481520 + 0.433562i
\(238\) −0.690146 + 0.0725373i −0.0447355 + 0.00470189i
\(239\) −24.8690 5.28607i −1.60864 0.341928i −0.686006 0.727596i \(-0.740638\pi\)
−0.922638 + 0.385668i \(0.873971\pi\)
\(240\) 0 0
\(241\) −2.30939 + 0.490876i −0.148761 + 0.0316201i −0.281690 0.959505i \(-0.590895\pi\)
0.132929 + 0.991126i \(0.457562\pi\)
\(242\) −1.54866 + 0.894121i −0.0995519 + 0.0574763i
\(243\) 8.46339 + 4.88634i 0.542927 + 0.313459i
\(244\) −8.37048 + 25.7617i −0.535865 + 1.64922i
\(245\) 0 0
\(246\) −5.71401 + 4.15147i −0.364312 + 0.264688i
\(247\) 6.08718i 0.387318i
\(248\) −3.78765 6.57173i −0.240516 0.417305i
\(249\) 37.1893 2.35677
\(250\) 0 0
\(251\) −0.246336 + 2.34373i −0.0155486 + 0.147935i −0.999542 0.0302716i \(-0.990363\pi\)
0.983993 + 0.178206i \(0.0570294\pi\)
\(252\) 10.3728 + 3.37034i 0.653428 + 0.212312i
\(253\) 0.931142 + 0.537595i 0.0585404 + 0.0337983i
\(254\) 0.0207005 + 0.0358542i 0.00129886 + 0.00224970i
\(255\) 0 0
\(256\) 2.16580 + 6.66565i 0.135363 + 0.416603i
\(257\) −5.40862 + 25.4455i −0.337380 + 1.58725i 0.403090 + 0.915160i \(0.367936\pi\)
−0.740470 + 0.672089i \(0.765397\pi\)
\(258\) −8.50682 + 0.894103i −0.529612 + 0.0556644i
\(259\) 2.27851 + 2.53054i 0.141580 + 0.157240i
\(260\) 0 0
\(261\) −15.5012 + 6.90157i −0.959499 + 0.427196i
\(262\) 1.51057 + 1.36012i 0.0933232 + 0.0840285i
\(263\) −13.4812 + 18.5552i −0.831285 + 1.14417i 0.156398 + 0.987694i \(0.450012\pi\)
−0.987683 + 0.156471i \(0.949988\pi\)
\(264\) −7.75322 5.63304i −0.477178 0.346690i
\(265\) 0 0
\(266\) −0.735922 + 0.327654i −0.0451223 + 0.0200897i
\(267\) 2.65886 5.97190i 0.162720 0.365474i
\(268\) 8.97726 8.08316i 0.548374 0.493758i
\(269\) −1.78193 16.9539i −0.108646 1.03370i −0.903994 0.427546i \(-0.859378\pi\)
0.795347 0.606154i \(-0.207288\pi\)
\(270\) 0 0
\(271\) 2.23929 + 6.89184i 0.136027 + 0.418649i 0.995748 0.0921146i \(-0.0293626\pi\)
−0.859721 + 0.510764i \(0.829363\pi\)
\(272\) 1.24221 + 5.84413i 0.0753199 + 0.354352i
\(273\) −7.79175 + 4.49857i −0.471578 + 0.272266i
\(274\) 2.07440 3.59297i 0.125319 0.217059i
\(275\) 0 0
\(276\) 0.250962 2.38775i 0.0151062 0.143725i
\(277\) −8.87748 12.2188i −0.533396 0.734157i 0.454247 0.890876i \(-0.349908\pi\)
−0.987643 + 0.156719i \(0.949908\pi\)
\(278\) 5.41979i 0.325058i
\(279\) −0.0223278 + 29.9052i −0.00133673 + 1.79038i
\(280\) 0 0
\(281\) 2.01209 1.46187i 0.120031 0.0872078i −0.526150 0.850392i \(-0.676365\pi\)
0.646181 + 0.763184i \(0.276365\pi\)
\(282\) −8.05144 0.846240i −0.479456 0.0503929i
\(283\) 4.49503 + 1.46052i 0.267202 + 0.0868192i 0.439554 0.898216i \(-0.355137\pi\)
−0.172352 + 0.985035i \(0.555137\pi\)
\(284\) −1.57426 + 2.72670i −0.0934153 + 0.161800i
\(285\) 0 0
\(286\) 2.40177 0.510512i 0.142020 0.0301872i
\(287\) −7.14881 + 2.32279i −0.421981 + 0.137110i
\(288\) −4.32766 + 20.3600i −0.255010 + 1.19973i
\(289\) −1.42893 13.5953i −0.0840546 0.799726i
\(290\) 0 0
\(291\) −9.02071 4.01628i −0.528804 0.235439i
\(292\) −10.9602 24.6171i −0.641400 1.44061i
\(293\) 7.83935 + 7.05858i 0.457980 + 0.412367i 0.865562 0.500802i \(-0.166961\pi\)
−0.407582 + 0.913169i \(0.633628\pi\)
\(294\) 4.79497 + 3.48375i 0.279648 + 0.203177i
\(295\) 0 0
\(296\) −2.86850 + 3.18579i −0.166728 + 0.185170i
\(297\) 6.78443 + 15.2381i 0.393673 + 0.884203i
\(298\) −1.70817 + 3.83662i −0.0989517 + 0.222249i
\(299\) 0.850314 + 0.944369i 0.0491749 + 0.0546143i
\(300\) 0 0
\(301\) −8.90432 1.89267i −0.513237 0.109092i
\(302\) 1.44459 0.469377i 0.0831271 0.0270096i
\(303\) −10.6578 50.1411i −0.612276 2.88053i
\(304\) 3.46785 + 6.00650i 0.198895 + 0.344496i
\(305\) 0 0
\(306\) −1.06438 + 3.27583i −0.0608467 + 0.187267i
\(307\) −2.63399 0.276844i −0.150330 0.0158003i 0.0290645 0.999578i \(-0.490747\pi\)
−0.179394 + 0.983777i \(0.557414\pi\)
\(308\) −2.90198 3.99424i −0.165356 0.227593i
\(309\) 23.3600 1.32890
\(310\) 0 0
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) −6.65773 9.16358i −0.376920 0.518786i
\(313\) −26.5293 2.78834i −1.49953 0.157607i −0.681088 0.732201i \(-0.738493\pi\)
−0.818438 + 0.574595i \(0.805160\pi\)
\(314\) 0.945290 2.90930i 0.0533458 0.164181i
\(315\) 0 0
\(316\) −3.23474 5.60274i −0.181969 0.315179i
\(317\) −2.23302 10.5055i −0.125419 0.590050i −0.995304 0.0967957i \(-0.969141\pi\)
0.869885 0.493254i \(-0.164193\pi\)
\(318\) 4.81291 1.56381i 0.269895 0.0876941i
\(319\) 7.51318 + 1.59698i 0.420657 + 0.0894135i
\(320\) 0 0
\(321\) 23.5246 + 26.1267i 1.31301 + 1.45825i
\(322\) −0.0684017 + 0.153633i −0.00381188 + 0.00856162i
\(323\) 1.57218 + 3.53117i 0.0874784 + 0.196480i
\(324\) 4.69064 5.20948i 0.260591 0.289416i
\(325\) 0 0
\(326\) −0.889309 0.646121i −0.0492543 0.0357853i
\(327\) 1.35911 + 1.22374i 0.0751587 + 0.0676732i
\(328\) −3.84897 8.64492i −0.212524 0.477336i
\(329\) −7.87106 3.50442i −0.433945 0.193205i
\(330\) 0 0
\(331\) −2.05373 19.5400i −0.112883 1.07401i −0.893518 0.449027i \(-0.851771\pi\)
0.780635 0.624987i \(-0.214896\pi\)
\(332\) −5.01478 + 23.5927i −0.275222 + 1.29482i
\(333\) 16.0744 5.22289i 0.880872 0.286213i
\(334\) −4.59080 + 0.975804i −0.251197 + 0.0533936i
\(335\) 0 0
\(336\) −5.12565 + 8.87788i −0.279627 + 0.484328i
\(337\) 18.2401 + 5.92655i 0.993599 + 0.322840i 0.760305 0.649566i \(-0.225050\pi\)
0.233294 + 0.972406i \(0.425050\pi\)
\(338\) −1.65741 0.174200i −0.0901510 0.00947525i
\(339\) 26.4510 19.2178i 1.43662 1.04376i
\(340\) 0 0
\(341\) 7.96520 10.9460i 0.431340 0.592757i
\(342\) 3.99844i 0.216211i
\(343\) 8.15999 + 11.2313i 0.440598 + 0.606431i
\(344\) 1.19794 11.3976i 0.0645885 0.614519i
\(345\) 0 0
\(346\) −3.34647 + 5.79626i −0.179907 + 0.311609i
\(347\) 9.23180 5.32998i 0.495589 0.286128i −0.231301 0.972882i \(-0.574298\pi\)
0.726890 + 0.686754i \(0.240965\pi\)
\(348\) −3.56605 16.7769i −0.191160 0.899338i
\(349\) 5.77910 + 17.7862i 0.309348 + 0.952075i 0.978019 + 0.208517i \(0.0668636\pi\)
−0.668671 + 0.743559i \(0.733136\pi\)
\(350\) 0 0
\(351\) 2.06072 + 19.6064i 0.109993 + 1.04651i
\(352\) 7.00216 6.30478i 0.373217 0.336046i
\(353\) −5.15020 + 11.5675i −0.274117 + 0.615678i −0.997175 0.0751097i \(-0.976069\pi\)
0.723058 + 0.690787i \(0.242736\pi\)
\(354\) −11.1596 + 4.96859i −0.593127 + 0.264077i
\(355\) 0 0
\(356\) 3.43001 + 2.49205i 0.181790 + 0.132078i
\(357\) −3.35812 + 4.62205i −0.177730 + 0.244625i
\(358\) 0.0207182 + 0.0186548i 0.00109499 + 0.000985936i
\(359\) 20.7175 9.22402i 1.09343 0.486825i 0.220853 0.975307i \(-0.429116\pi\)
0.872574 + 0.488482i \(0.162449\pi\)
\(360\) 0 0
\(361\) −9.71104 10.7852i −0.511107 0.567642i
\(362\) 0.755932 0.0794517i 0.0397309 0.00417589i
\(363\) −3.06095 + 14.4006i −0.160658 + 0.755837i
\(364\) −1.80319 5.54965i −0.0945129 0.290881i
\(365\) 0 0
\(366\) −7.33880 12.7112i −0.383605 0.664424i
\(367\) −7.55147 4.35984i −0.394183 0.227582i 0.289788 0.957091i \(-0.406415\pi\)
−0.683971 + 0.729509i \(0.739749\pi\)
\(368\) 1.37705 + 0.447430i 0.0717836 + 0.0233239i
\(369\) −3.89987 + 37.1048i −0.203019 + 1.93160i
\(370\) 0 0
\(371\) 5.38574 0.279614
\(372\) −29.5635 6.30699i −1.53280 0.327002i
\(373\) 25.4134i 1.31586i −0.753081 0.657928i \(-0.771433\pi\)
0.753081 0.657928i \(-0.228567\pi\)
\(374\) 1.26141 0.916471i 0.0652262 0.0473896i
\(375\) 0 0
\(376\) 3.35188 10.3160i 0.172860 0.532009i
\(377\) 7.86200 + 4.53913i 0.404914 + 0.233777i
\(378\) −2.25943 + 1.30448i −0.116213 + 0.0670954i
\(379\) 21.6150 4.59441i 1.11029 0.235999i 0.383961 0.923349i \(-0.374560\pi\)
0.726326 + 0.687350i \(0.241226\pi\)
\(380\) 0 0
\(381\) 0.333399 + 0.0708662i 0.0170806 + 0.00363059i
\(382\) −1.86696 + 0.196226i −0.0955220 + 0.0100398i
\(383\) −19.7993 + 17.8274i −1.01170 + 0.910938i −0.996037 0.0889398i \(-0.971652\pi\)
−0.0156617 + 0.999877i \(0.504985\pi\)
\(384\) −25.3039 11.2660i −1.29128 0.574916i
\(385\) 0 0
\(386\) −0.501743 + 0.557242i −0.0255380 + 0.0283629i
\(387\) −26.5585 + 36.5547i −1.35005 + 1.85818i
\(388\) 3.76430 5.18112i 0.191104 0.263032i
\(389\) 8.66862 9.62748i 0.439517 0.488133i −0.482165 0.876081i \(-0.660149\pi\)
0.921681 + 0.387948i \(0.126816\pi\)
\(390\) 0 0
\(391\) 0.737176 + 0.328212i 0.0372806 + 0.0165984i
\(392\) −5.90132 + 5.31357i −0.298062 + 0.268376i
\(393\) 16.6430 1.74925i 0.839528 0.0882379i
\(394\) −2.01980 0.429321i −0.101756 0.0216289i
\(395\) 0 0
\(396\) −23.9701 + 5.09500i −1.20454 + 0.256033i
\(397\) −2.53508 + 1.46363i −0.127232 + 0.0734574i −0.562265 0.826957i \(-0.690070\pi\)
0.435033 + 0.900414i \(0.356737\pi\)
\(398\) 2.10852 + 1.21736i 0.105691 + 0.0610205i
\(399\) −2.04944 + 6.30752i −0.102600 + 0.315771i
\(400\) 0 0
\(401\) 9.93025 7.21475i 0.495893 0.360287i −0.311553 0.950229i \(-0.600849\pi\)
0.807446 + 0.589942i \(0.200849\pi\)
\(402\) 6.54572i 0.326471i
\(403\) 12.9511 9.39479i 0.645142 0.467988i
\(404\) 33.2464 1.65407
\(405\) 0 0
\(406\) −0.125581 + 1.19482i −0.00623246 + 0.0592979i
\(407\) −7.27645 2.36426i −0.360680 0.117192i
\(408\) −6.22889 3.59625i −0.308376 0.178041i
\(409\) −8.59861 14.8932i −0.425174 0.736423i 0.571263 0.820767i \(-0.306454\pi\)
−0.996437 + 0.0843442i \(0.973120\pi\)
\(410\) 0 0
\(411\) −10.5549 32.4848i −0.520637 1.60236i
\(412\) −3.14997 + 14.8195i −0.155188 + 0.730102i
\(413\) −12.9294 + 1.35893i −0.636213 + 0.0668687i
\(414\) 0.558539 + 0.620320i 0.0274507 + 0.0304871i
\(415\) 0 0
\(416\) 10.1735 4.52955i 0.498799 0.222080i
\(417\) 33.1594 + 29.8568i 1.62382 + 1.46210i
\(418\) 1.06388 1.46431i 0.0520362 0.0716217i
\(419\) 18.7251 + 13.6046i 0.914782 + 0.664628i 0.942220 0.334996i \(-0.108735\pi\)
−0.0274378 + 0.999624i \(0.508735\pi\)
\(420\) 0 0
\(421\) 26.6593 11.8695i 1.29929 0.578483i 0.363686 0.931522i \(-0.381518\pi\)
0.935609 + 0.353038i \(0.114851\pi\)
\(422\) −2.38836 + 5.36434i −0.116263 + 0.261132i
\(423\) −31.7808 + 28.6156i −1.54524 + 1.39134i
\(424\) 0.708734 + 6.74315i 0.0344192 + 0.327476i
\(425\) 0 0
\(426\) −0.527201 1.62256i −0.0255430 0.0786132i
\(427\) −3.24771 15.2793i −0.157168 0.739416i
\(428\) −19.7468 + 11.4008i −0.954498 + 0.551080i
\(429\) 10.1076 17.5069i 0.487999 0.845239i
\(430\) 0 0
\(431\) −3.17267 + 30.1859i −0.152822 + 1.45401i 0.602220 + 0.798330i \(0.294283\pi\)
−0.755042 + 0.655676i \(0.772384\pi\)
\(432\) 13.2031 + 18.1725i 0.635235 + 0.874326i
\(433\) 13.8400i 0.665107i 0.943084 + 0.332553i \(0.107910\pi\)
−0.943084 + 0.332553i \(0.892090\pi\)
\(434\) 1.83292 + 1.06006i 0.0879830 + 0.0508846i
\(435\) 0 0
\(436\) −0.959605 + 0.697194i −0.0459567 + 0.0333895i
\(437\) 0.931602 + 0.0979154i 0.0445646 + 0.00468393i
\(438\) 13.8867 + 4.51207i 0.663534 + 0.215595i
\(439\) 6.46006 11.1892i 0.308322 0.534029i −0.669674 0.742656i \(-0.733566\pi\)
0.977995 + 0.208626i \(0.0668993\pi\)
\(440\) 0 0
\(441\) 30.6242 6.50938i 1.45830 0.309970i
\(442\) 1.75263 0.569463i 0.0833639 0.0270866i
\(443\) −4.93962 + 23.2391i −0.234688 + 1.10412i 0.690122 + 0.723693i \(0.257557\pi\)
−0.924810 + 0.380429i \(0.875776\pi\)
\(444\) 1.78582 + 16.9909i 0.0847511 + 0.806353i
\(445\) 0 0
\(446\) −2.01027 0.895031i −0.0951892 0.0423809i
\(447\) 14.0631 + 31.5863i 0.665163 + 1.49398i
\(448\) −4.17089 3.75549i −0.197056 0.177430i
\(449\) −15.7054 11.4106i −0.741181 0.538500i 0.151900 0.988396i \(-0.451461\pi\)
−0.893081 + 0.449896i \(0.851461\pi\)
\(450\) 0 0
\(451\) 11.3009 12.5509i 0.532137 0.590998i
\(452\) 8.62487 + 19.3718i 0.405680 + 0.911171i
\(453\) 5.08632 11.4241i 0.238976 0.536749i
\(454\) 1.84538 + 2.04950i 0.0866078 + 0.0961877i
\(455\) 0 0
\(456\) −8.16695 1.73594i −0.382452 0.0812928i
\(457\) −23.1506 + 7.52208i −1.08294 + 0.351868i −0.795514 0.605935i \(-0.792799\pi\)
−0.287424 + 0.957803i \(0.592799\pi\)
\(458\) 0.933283 + 4.39075i 0.0436094 + 0.205166i
\(459\) 6.25931 + 10.8414i 0.292159 + 0.506035i
\(460\) 0 0
\(461\) −11.8487 + 36.4665i −0.551848 + 1.69841i 0.152279 + 0.988338i \(0.451339\pi\)
−0.704126 + 0.710075i \(0.748661\pi\)
\(462\) 2.66059 + 0.279639i 0.123782 + 0.0130100i
\(463\) −3.87603 5.33489i −0.180134 0.247934i 0.709396 0.704810i \(-0.248968\pi\)
−0.889530 + 0.456877i \(0.848968\pi\)
\(464\) 10.3437 0.480195
\(465\) 0 0
\(466\) 4.46933 0.207038
\(467\) −22.5718 31.0674i −1.04450 1.43763i −0.893484 0.449096i \(-0.851746\pi\)
−0.151014 0.988532i \(-0.548254\pi\)
\(468\) −28.8046 3.02749i −1.33149 0.139946i
\(469\) −2.15270 + 6.62532i −0.0994024 + 0.305929i
\(470\) 0 0
\(471\) −12.5922 21.8104i −0.580220 1.00497i
\(472\) −3.40287 16.0092i −0.156630 0.736885i
\(473\) 19.4525 6.32051i 0.894429 0.290617i
\(474\) 3.42895 + 0.728845i 0.157497 + 0.0334770i
\(475\) 0 0
\(476\) −2.47938 2.75363i −0.113642 0.126212i
\(477\) 10.8729 24.4210i 0.497838 1.11816i
\(478\) 3.63421 + 8.16256i 0.166225 + 0.373347i
\(479\) −5.03531 + 5.59228i −0.230069 + 0.255518i −0.847115 0.531409i \(-0.821663\pi\)
0.617046 + 0.786927i \(0.288329\pi\)
\(480\) 0 0
\(481\) −7.31567 5.31515i −0.333566 0.242350i
\(482\) 0.616606 + 0.555195i 0.0280856 + 0.0252884i
\(483\) 0.563141 + 1.26484i 0.0256238 + 0.0575520i
\(484\) −8.72293 3.88370i −0.396497 0.176532i
\(485\) 0 0
\(486\) −0.358996 3.41562i −0.0162844 0.154936i
\(487\) 5.20450 24.4852i 0.235838 1.10953i −0.687691 0.726004i \(-0.741375\pi\)
0.923529 0.383528i \(-0.125291\pi\)
\(488\) 18.7029 6.07693i 0.846639 0.275090i
\(489\) −8.85217 + 1.88159i −0.400309 + 0.0850883i
\(490\) 0 0
\(491\) 19.8550 34.3899i 0.896044 1.55199i 0.0635377 0.997979i \(-0.479762\pi\)
0.832507 0.554015i \(-0.186905\pi\)
\(492\) −35.8670 11.6539i −1.61701 0.525399i
\(493\) 5.73310 + 0.602573i 0.258206 + 0.0271385i
\(494\) 1.73068 1.25741i 0.0778668 0.0565735i
\(495\) 0 0
\(496\) 7.42729 16.6485i 0.333495 0.747539i
\(497\) 1.81567i 0.0814440i
\(498\) −7.68207 10.5735i −0.344242 0.473808i
\(499\) −2.47252 + 23.5245i −0.110685 + 1.05310i 0.788351 + 0.615226i \(0.210935\pi\)
−0.899036 + 0.437875i \(0.855731\pi\)
\(500\) 0 0
\(501\) −19.3199 + 33.4630i −0.863148 + 1.49502i
\(502\) 0.717241 0.414099i 0.0320120 0.0184822i
\(503\) −4.19699 19.7453i −0.187135 0.880400i −0.967064 0.254532i \(-0.918078\pi\)
0.779930 0.625867i \(-0.215255\pi\)
\(504\) −2.44685 7.53063i −0.108991 0.335441i
\(505\) 0 0
\(506\) −0.0394968 0.375787i −0.00175585 0.0167058i
\(507\) −10.1962 + 9.18070i −0.452829 + 0.407729i
\(508\) −0.0899143 + 0.201951i −0.00398930 + 0.00896012i
\(509\) −10.8155 + 4.81536i −0.479387 + 0.213437i −0.632180 0.774821i \(-0.717840\pi\)
0.152793 + 0.988258i \(0.451173\pi\)
\(510\) 0 0
\(511\) 12.5717 + 9.13389i 0.556140 + 0.404060i
\(512\) 12.7019 17.4827i 0.561351 0.772633i
\(513\) 10.7995 + 9.72394i 0.476811 + 0.429322i
\(514\) 8.35179 3.71845i 0.368381 0.164014i
\(515\) 0 0
\(516\) −30.5611 33.9416i −1.34538 1.49419i
\(517\) 19.2526 2.02354i 0.846731 0.0889950i
\(518\) 0.248806 1.17054i 0.0109319 0.0514306i
\(519\) 17.0275 + 52.4051i 0.747422 + 2.30033i
\(520\) 0 0
\(521\) 16.3742 + 28.3610i 0.717368 + 1.24252i 0.962039 + 0.272911i \(0.0879865\pi\)
−0.244672 + 0.969606i \(0.578680\pi\)
\(522\) 5.16425 + 2.98158i 0.226033 + 0.130500i
\(523\) 28.0587 + 9.11682i 1.22692 + 0.398651i 0.849598 0.527431i \(-0.176845\pi\)
0.377323 + 0.926082i \(0.376845\pi\)
\(524\) −1.13451 + 10.7941i −0.0495611 + 0.471543i
\(525\) 0 0
\(526\) 8.06030 0.351446
\(527\) 5.08650 8.79490i 0.221571 0.383112i
\(528\) 23.0331i 1.00239i
\(529\) −18.4492 + 13.4041i −0.802138 + 0.582788i
\(530\) 0 0
\(531\) −19.9404 + 61.3703i −0.865340 + 2.66324i
\(532\) −3.72510 2.15069i −0.161504 0.0932441i
\(533\) 17.2868 9.98053i 0.748774 0.432305i
\(534\) −2.24713 + 0.477643i −0.0972430 + 0.0206696i
\(535\) 0 0
\(536\) −8.57845 1.82340i −0.370532 0.0787591i
\(537\) 0.228267 0.0239919i 0.00985047 0.00103533i
\(538\) −4.45217 + 4.00875i −0.191947 + 0.172830i
\(539\) −12.9472 5.76446i −0.557675 0.248293i
\(540\) 0 0
\(541\) 8.87657 9.85843i 0.381634 0.423847i −0.521470 0.853270i \(-0.674616\pi\)
0.903104 + 0.429423i \(0.141283\pi\)
\(542\) 1.49689 2.06029i 0.0642968 0.0884970i
\(543\) 3.67822 5.06264i 0.157848 0.217258i
\(544\) 4.73179 5.25519i 0.202874 0.225314i
\(545\) 0 0
\(546\) 2.88853 + 1.28605i 0.123618 + 0.0550381i
\(547\) −28.0640 + 25.2689i −1.19993 + 1.08042i −0.205114 + 0.978738i \(0.565756\pi\)
−0.994817 + 0.101684i \(0.967577\pi\)
\(548\) 22.0315 2.31560i 0.941137 0.0989175i
\(549\) −75.8388 16.1200i −3.23672 0.687986i
\(550\) 0 0
\(551\) 6.54568 1.39133i 0.278855 0.0592725i
\(552\) −1.50952 + 0.871520i −0.0642493 + 0.0370944i
\(553\) 3.23095 + 1.86539i 0.137394 + 0.0793245i
\(554\) −1.64019 + 5.04800i −0.0696852 + 0.214469i
\(555\) 0 0
\(556\) −23.4124 + 17.0101i −0.992907 + 0.721389i
\(557\) 11.3637i 0.481496i −0.970588 0.240748i \(-0.922607\pi\)
0.970588 0.240748i \(-0.0773928\pi\)
\(558\) 8.50711 6.17108i 0.360135 0.261243i
\(559\) 24.1743 1.02246
\(560\) 0 0
\(561\) 1.34179 12.7663i 0.0566505 0.538993i
\(562\) −0.831262 0.270094i −0.0350647 0.0113932i
\(563\) −17.4821 10.0933i −0.736781 0.425381i 0.0841167 0.996456i \(-0.473193\pi\)
−0.820898 + 0.571075i \(0.806526\pi\)
\(564\) −21.6140 37.4365i −0.910113 1.57636i
\(565\) 0 0
\(566\) −0.513276 1.57970i −0.0215746 0.0663998i
\(567\) −0.840485 + 3.95417i −0.0352971 + 0.166060i
\(568\) 2.27329 0.238933i 0.0953852 0.0100254i
\(569\) 20.7361 + 23.0298i 0.869304 + 0.965460i 0.999662 0.0260074i \(-0.00827935\pi\)
−0.130358 + 0.991467i \(0.541613\pi\)
\(570\) 0 0
\(571\) −9.50060 + 4.22994i −0.397588 + 0.177017i −0.595784 0.803145i \(-0.703158\pi\)
0.198196 + 0.980162i \(0.436492\pi\)
\(572\) 9.74330 + 8.77291i 0.407388 + 0.366814i
\(573\) −9.08427 + 12.5034i −0.379501 + 0.522338i
\(574\) 2.13711 + 1.55270i 0.0892012 + 0.0648085i
\(575\) 0 0
\(576\) −25.4492 + 11.3307i −1.06038 + 0.472113i
\(577\) −2.20201 + 4.94581i −0.0916711 + 0.205897i −0.953562 0.301197i \(-0.902614\pi\)
0.861891 + 0.507094i \(0.169280\pi\)
\(578\) −3.57019 + 3.21461i −0.148500 + 0.133710i
\(579\) 0.645291 + 6.13953i 0.0268174 + 0.255150i
\(580\) 0 0
\(581\) −4.29819 13.2285i −0.178319 0.548809i
\(582\) 0.721492 + 3.39435i 0.0299068 + 0.140700i
\(583\) −10.4797 + 6.05046i −0.434025 + 0.250585i
\(584\) −9.78162 + 16.9423i −0.404766 + 0.701076i
\(585\) 0 0
\(586\) 0.387510 3.68691i 0.0160079 0.152305i
\(587\) 7.38424 + 10.1635i 0.304780 + 0.419494i 0.933744 0.357940i \(-0.116521\pi\)
−0.628964 + 0.777434i \(0.716521\pi\)
\(588\) 31.6471i 1.30510i
\(589\) 2.46073 11.5345i 0.101393 0.475270i
\(590\) 0 0
\(591\) −13.7535 + 9.99247i −0.565741 + 0.411035i
\(592\) −10.2467 1.07697i −0.421138 0.0442634i
\(593\) −25.7451 8.36510i −1.05723 0.343513i −0.271726 0.962375i \(-0.587594\pi\)
−0.785500 + 0.618861i \(0.787594\pi\)
\(594\) 2.93098 5.07660i 0.120259 0.208295i
\(595\) 0 0
\(596\) −21.9345 + 4.66233i −0.898473 + 0.190976i
\(597\) 19.0636 6.19413i 0.780220 0.253509i
\(598\) 0.0928516 0.436832i 0.00379698 0.0178634i
\(599\) −1.50051 14.2764i −0.0613094 0.583320i −0.981448 0.191727i \(-0.938591\pi\)
0.920139 0.391592i \(-0.128076\pi\)
\(600\) 0 0
\(601\) 0.584684 + 0.260318i 0.0238498 + 0.0106186i 0.418627 0.908158i \(-0.362512\pi\)
−0.394777 + 0.918777i \(0.629178\pi\)
\(602\) 1.30122 + 2.92260i 0.0530339 + 0.119116i
\(603\) 25.6958 + 23.1366i 1.04642 + 0.942197i
\(604\) 6.56150 + 4.76721i 0.266984 + 0.193975i
\(605\) 0 0
\(606\) −12.0543 + 13.3877i −0.489673 + 0.543837i
\(607\) −2.65104 5.95432i −0.107602 0.241679i 0.851717 0.524002i \(-0.175562\pi\)
−0.959319 + 0.282323i \(0.908895\pi\)
\(608\) 3.33890 7.49929i 0.135410 0.304136i
\(609\) 6.61834 + 7.35041i 0.268189 + 0.297854i
\(610\) 0 0
\(611\) 22.3802 + 4.75706i 0.905405 + 0.192450i
\(612\) −17.4915 + 5.68333i −0.707052 + 0.229735i
\(613\) 2.17170 + 10.2171i 0.0877143 + 0.412663i 0.999995 + 0.00309833i \(0.000986230\pi\)
−0.912281 + 0.409565i \(0.865680\pi\)
\(614\) 0.465385 + 0.806070i 0.0187814 + 0.0325303i
\(615\) 0 0
\(616\) −1.10762 + 3.40892i −0.0446274 + 0.137349i
\(617\) −21.5845 2.26862i −0.868958 0.0913311i −0.340453 0.940262i \(-0.610580\pi\)
−0.528505 + 0.848930i \(0.677247\pi\)
\(618\) −4.82540 6.64159i −0.194106 0.267164i
\(619\) −28.5478 −1.14743 −0.573716 0.819054i \(-0.694499\pi\)
−0.573716 + 0.819054i \(0.694499\pi\)
\(620\) 0 0
\(621\) 3.03377 0.121741
\(622\) −1.13877 1.56738i −0.0456604 0.0628462i
\(623\) −2.43155 0.255566i −0.0974178 0.0102390i
\(624\) 8.41235 25.8906i 0.336764 1.03645i
\(625\) 0 0
\(626\) 4.68731 + 8.11866i 0.187343 + 0.324487i
\(627\) −3.09816 14.5757i −0.123729 0.582098i
\(628\) 15.5344 5.04743i 0.619890 0.201414i
\(629\) −5.61660 1.19385i −0.223949 0.0476018i
\(630\) 0 0
\(631\) 18.2275 + 20.2436i 0.725624 + 0.805887i 0.987232 0.159287i \(-0.0509196\pi\)
−0.261609 + 0.965174i \(0.584253\pi\)
\(632\) −1.91037 + 4.29075i −0.0759903 + 0.170677i
\(633\) 19.6630 + 44.1638i 0.781533 + 1.75535i
\(634\) −2.52561 + 2.80498i −0.100305 + 0.111400i
\(635\) 0 0
\(636\) 21.8607 + 15.8828i 0.866835 + 0.629792i
\(637\) −12.4481 11.2083i −0.493210 0.444089i
\(638\) −1.09793 2.46599i −0.0434675 0.0976295i
\(639\) −8.23296 3.66555i −0.325691 0.145007i
\(640\) 0 0
\(641\) −4.30742 40.9824i −0.170133 1.61871i −0.663013 0.748608i \(-0.730722\pi\)
0.492880 0.870097i \(-0.335944\pi\)
\(642\) 2.56881 12.0853i 0.101383 0.476969i
\(643\) −29.3044 + 9.52156i −1.15565 + 0.375494i −0.823269 0.567651i \(-0.807852\pi\)
−0.332382 + 0.943145i \(0.607852\pi\)
\(644\) −0.878342 + 0.186697i −0.0346115 + 0.00735691i
\(645\) 0 0
\(646\) 0.679205 1.17642i 0.0267230 0.0462855i
\(647\) 8.47978 + 2.75525i 0.333375 + 0.108320i 0.470921 0.882175i \(-0.343922\pi\)
−0.137547 + 0.990495i \(0.543922\pi\)
\(648\) −5.06138 0.531973i −0.198830 0.0208979i
\(649\) 23.6317 17.1694i 0.927623 0.673958i
\(650\) 0 0
\(651\) 16.5830 5.37445i 0.649938 0.210641i
\(652\) 5.86949i 0.229867i
\(653\) 23.0655 + 31.7469i 0.902623 + 1.24235i 0.969624 + 0.244601i \(0.0786569\pi\)
−0.0670010 + 0.997753i \(0.521343\pi\)
\(654\) 0.0671825 0.639199i 0.00262704 0.0249946i
\(655\) 0 0
\(656\) 11.3718 19.6965i 0.443993 0.769018i
\(657\) 66.7969 38.5652i 2.60600 1.50457i
\(658\) 0.629540 + 2.96175i 0.0245420 + 0.115461i
\(659\) −10.1832 31.3407i −0.396681 1.22086i −0.927644 0.373465i \(-0.878170\pi\)
0.530963 0.847395i \(-0.321830\pi\)
\(660\) 0 0
\(661\) 0.0177359 + 0.168746i 0.000689846 + 0.00656345i 0.994861 0.101246i \(-0.0322830\pi\)
−0.994172 + 0.107810i \(0.965616\pi\)
\(662\) −5.13127 + 4.62022i −0.199433 + 0.179570i
\(663\) 6.17087 13.8600i 0.239657 0.538278i
\(664\) 15.9969 7.12229i 0.620801 0.276398i
\(665\) 0 0
\(666\) −4.80539 3.49132i −0.186205 0.135286i
\(667\) 0.821147 1.13021i 0.0317950 0.0437620i
\(668\) −18.6236 16.7687i −0.720567 0.648801i
\(669\) −16.5503 + 7.36866i −0.639871 + 0.284889i
\(670\) 0 0
\(671\) 23.4846 + 26.0823i 0.906612 + 1.00689i
\(672\) 12.0668 1.26827i 0.465487 0.0489246i
\(673\) 3.03267 14.2676i 0.116901 0.549976i −0.880248 0.474514i \(-0.842624\pi\)
0.997149 0.0754613i \(-0.0240429\pi\)
\(674\) −2.08278 6.41015i −0.0802258 0.246910i
\(675\) 0 0
\(676\) −4.44929 7.70639i −0.171126 0.296400i
\(677\) −13.6545 7.88341i −0.524784 0.302984i 0.214106 0.976810i \(-0.431316\pi\)
−0.738890 + 0.673826i \(0.764650\pi\)
\(678\) −10.9278 3.55065i −0.419679 0.136362i
\(679\) −0.386039 + 3.67291i −0.0148148 + 0.140953i
\(680\) 0 0
\(681\) 22.7051 0.870063
\(682\) −4.75744 0.00355200i −0.182172 0.000136013i
\(683\) 20.5935i 0.787988i −0.919113 0.393994i \(-0.871093\pi\)
0.919113 0.393994i \(-0.128907\pi\)
\(684\) −17.2724 + 12.5492i −0.660428 + 0.479829i
\(685\) 0 0
\(686\) 1.50763 4.64001i 0.0575616 0.177156i
\(687\) 32.0048 + 18.4780i 1.22106 + 0.704979i
\(688\) 23.8538 13.7720i 0.909418 0.525053i
\(689\) −13.9896 + 2.97359i −0.532962 + 0.113285i
\(690\) 0 0
\(691\) 5.82165 + 1.23743i 0.221466 + 0.0470741i 0.317308 0.948322i \(-0.397221\pi\)
−0.0958421 + 0.995397i \(0.530554\pi\)
\(692\) −35.5416 + 3.73557i −1.35109 + 0.142005i
\(693\) 10.5019 9.45597i 0.398935 0.359203i
\(694\) −3.42238 1.52374i −0.129912 0.0578404i
\(695\) 0 0
\(696\) −8.33206 + 9.25369i −0.315826 + 0.350760i
\(697\) 7.45032 10.2545i 0.282201 0.388417i
\(698\) 3.86312 5.31713i 0.146221 0.201256i
\(699\) 24.6209 27.3443i 0.931248 1.03426i
\(700\) 0 0
\(701\) −24.3281 10.8316i −0.918859 0.409103i −0.107871 0.994165i \(-0.534403\pi\)
−0.810988 + 0.585062i \(0.801070\pi\)
\(702\) 5.14871 4.63592i 0.194326 0.174972i
\(703\) −6.62916 + 0.696753i −0.250024 + 0.0262785i
\(704\) 12.3348 + 2.62185i 0.464886 + 0.0988146i
\(705\) 0 0
\(706\) 4.35268 0.925191i 0.163815 0.0348200i
\(707\) −16.6037 + 9.58617i −0.624448 + 0.360525i
\(708\) −56.4879 32.6133i −2.12295 1.22568i
\(709\) 0.816662 2.51343i 0.0306704 0.0943938i −0.934550 0.355833i \(-0.884197\pi\)
0.965220 + 0.261439i \(0.0841971\pi\)
\(710\) 0 0
\(711\) 14.9812 10.8845i 0.561839 0.408200i
\(712\) 3.07802i 0.115354i
\(713\) −1.22948 2.13321i −0.0460445 0.0798892i
\(714\) 2.00779 0.0751398
\(715\) 0 0
\(716\) −0.0155603 + 0.148047i −0.000581518 + 0.00553277i
\(717\) 69.9605 + 22.7315i 2.61272 + 0.848925i
\(718\) −6.90207 3.98491i −0.257583 0.148716i
\(719\) 2.59912 + 4.50181i 0.0969308 + 0.167889i 0.910413 0.413701i \(-0.135764\pi\)
−0.813482 + 0.581590i \(0.802431\pi\)
\(720\) 0 0
\(721\) −2.69986 8.30930i −0.100548 0.309455i
\(722\) −1.06041 + 4.98886i −0.0394645 + 0.185666i
\(723\) 6.79359 0.714035i 0.252656 0.0265552i
\(724\) 2.71572 + 3.01611i 0.100929 + 0.112093i
\(725\) 0 0
\(726\) 4.72660 2.10442i 0.175421 0.0781023i
\(727\) 17.9889 + 16.1973i 0.667171 + 0.600723i 0.931514 0.363705i \(-0.118488\pi\)
−0.264343 + 0.964429i \(0.585155\pi\)
\(728\) −2.49007 + 3.42729i −0.0922882 + 0.127024i
\(729\) −31.9419 23.2071i −1.18303 0.859524i
\(730\) 0 0
\(731\) 14.0235 6.24366i 0.518677 0.230930i
\(732\) 31.8767 71.5963i 1.17820 2.64628i
\(733\) 29.9954 27.0080i 1.10790 0.997562i 0.107910 0.994161i \(-0.465584\pi\)
0.999994 0.00340093i \(-0.00108255\pi\)
\(734\) 0.320315 + 3.04759i 0.0118230 + 0.112489i
\(735\) 0 0
\(736\) −0.529571 1.62985i −0.0195202 0.0600771i
\(737\) −3.25427 15.3101i −0.119872 0.563955i
\(738\) 11.3550 6.55583i 0.417985 0.241324i
\(739\) 3.04893 5.28089i 0.112157 0.194261i −0.804483 0.593976i \(-0.797558\pi\)
0.916640 + 0.399715i \(0.130891\pi\)
\(740\) 0 0
\(741\) 1.84095 17.5155i 0.0676292 0.643449i
\(742\) −1.11251 1.53125i −0.0408417 0.0562138i
\(743\) 16.2263i 0.595284i −0.954678 0.297642i \(-0.903800\pi\)
0.954678 0.297642i \(-0.0962001\pi\)
\(744\) 8.91125 + 20.0553i 0.326702 + 0.735262i
\(745\) 0 0
\(746\) −7.22540 + 5.24956i −0.264541 + 0.192200i
\(747\) −68.6603 7.21649i −2.51215 0.264038i
\(748\) 7.91793 + 2.57269i 0.289508 + 0.0940670i
\(749\) 6.57456 11.3875i 0.240229 0.416089i
\(750\) 0 0
\(751\) −35.6481 + 7.57723i −1.30082 + 0.276497i −0.805697 0.592328i \(-0.798209\pi\)
−0.495119 + 0.868825i \(0.664876\pi\)
\(752\) 24.7936 8.05593i 0.904130 0.293770i
\(753\) 1.41763 6.66944i 0.0516614 0.243048i
\(754\) −0.333487 3.17292i −0.0121449 0.115551i
\(755\) 0 0
\(756\) −12.7264 5.66615i −0.462854 0.206076i
\(757\) 17.7183 + 39.7960i 0.643984 + 1.44641i 0.880148 + 0.474699i \(0.157443\pi\)
−0.236164 + 0.971713i \(0.575890\pi\)
\(758\) −5.77120 5.19641i −0.209619 0.188742i
\(759\) −2.51672 1.82851i −0.0913512 0.0663705i
\(760\) 0 0
\(761\) 2.20765 2.45184i 0.0800272 0.0888792i −0.701801 0.712373i \(-0.747621\pi\)
0.781828 + 0.623494i \(0.214287\pi\)
\(762\) −0.0487209 0.109429i −0.00176497 0.00396419i
\(763\) 0.278214 0.624878i 0.0100720 0.0226221i
\(764\) −6.70714 7.44903i −0.242656 0.269497i
\(765\) 0 0
\(766\) 9.15848 + 1.94669i 0.330909 + 0.0703369i
\(767\) 32.8342 10.6685i 1.18557 0.385216i
\(768\) −4.21607 19.8350i −0.152134 0.715735i
\(769\) −22.8568 39.5891i −0.824237 1.42762i −0.902501 0.430688i \(-0.858271\pi\)
0.0782634 0.996933i \(-0.475062\pi\)
\(770\) 0 0
\(771\) 23.2585 71.5823i 0.837635 2.57798i
\(772\) −3.98190 0.418515i −0.143312 0.0150627i
\(773\) 17.6339 + 24.2710i 0.634249 + 0.872969i 0.998292 0.0584131i \(-0.0186041\pi\)
−0.364044 + 0.931382i \(0.618604\pi\)
\(774\) 15.8791 0.570764
\(775\) 0 0
\(776\) −4.64943 −0.166905
\(777\) −5.79097 7.97058i −0.207750 0.285943i
\(778\) −4.52789 0.475900i −0.162333 0.0170618i
\(779\) 4.54689 13.9939i 0.162909 0.501383i
\(780\) 0 0
\(781\) 2.03977 + 3.53298i 0.0729886 + 0.126420i
\(782\) −0.0589606 0.277388i −0.00210843 0.00991937i
\(783\) 20.6122 6.69730i 0.736619 0.239342i
\(784\) −18.6684 3.96809i −0.666729 0.141718i
\(785\) 0 0
\(786\) −3.93523 4.37051i −0.140365 0.155891i
\(787\) 17.5840 39.4944i 0.626803 1.40782i −0.268899 0.963168i \(-0.586660\pi\)
0.895702 0.444654i \(-0.146673\pi\)
\(788\) −4.48459 10.0725i −0.159757 0.358820i
\(789\) 44.4030 49.3145i 1.58079 1.75564i
\(790\) 0 0
\(791\) −9.89298 7.18767i −0.351754 0.255564i
\(792\) 13.2212 + 11.9045i 0.469796 + 0.423006i
\(793\) 16.8721 + 37.8953i 0.599145 + 1.34570i
\(794\) 0.939794 + 0.418423i 0.0333520 + 0.0148493i
\(795\) 0 0
\(796\) 1.35890 + 12.9291i 0.0481649 + 0.458259i
\(797\) 4.74532 22.3250i 0.168088 0.790792i −0.810626 0.585564i \(-0.800873\pi\)
0.978714 0.205228i \(-0.0657935\pi\)
\(798\) 2.21667 0.720239i 0.0784691 0.0254962i
\(799\) 14.2114 3.02072i 0.502763 0.106865i
\(800\) 0 0
\(801\) −6.06773 + 10.5096i −0.214393 + 0.371339i
\(802\) −4.10252 1.33299i −0.144865 0.0470695i
\(803\) −34.7236 3.64960i −1.22537 0.128792i
\(804\) −28.2762 + 20.5438i −0.997223 + 0.724525i
\(805\) 0 0
\(806\) −5.34635 1.74155i −0.188317 0.0613435i
\(807\) 49.3229i 1.73625i
\(808\) −14.1872 19.5270i −0.499105 0.686959i
\(809\) −2.22002 + 21.1221i −0.0780517 + 0.742613i 0.883582 + 0.468276i \(0.155125\pi\)
−0.961634 + 0.274336i \(0.911542\pi\)
\(810\) 0 0
\(811\) −1.06157 + 1.83869i −0.0372767 + 0.0645652i −0.884062 0.467370i \(-0.845202\pi\)
0.846785 + 0.531935i \(0.178535\pi\)
\(812\) −5.55551 + 3.20748i −0.194960 + 0.112560i
\(813\) −4.35913 20.5081i −0.152881 0.719250i
\(814\) 0.830879 + 2.55718i 0.0291223 + 0.0896292i
\(815\) 0 0
\(816\) −1.80693 17.1918i −0.0632553 0.601834i
\(817\) 13.2426 11.9237i 0.463301 0.417158i
\(818\) −2.45818 + 5.52116i −0.0859482 + 0.193043i
\(819\) 15.2584 6.79347i 0.533171 0.237383i
\(820\) 0 0
\(821\) −33.8104 24.5647i −1.17999 0.857313i −0.187819 0.982204i \(-0.560142\pi\)
−0.992171 + 0.124891i \(0.960142\pi\)
\(822\) −7.05561 + 9.71121i −0.246093 + 0.338717i
\(823\) −12.1121 10.9058i −0.422203 0.380153i 0.430464 0.902608i \(-0.358350\pi\)
−0.852667 + 0.522454i \(0.825016\pi\)
\(824\) 10.0483 4.47378i 0.350049 0.155852i
\(825\) 0 0
\(826\) 3.05714 + 3.39530i 0.106372 + 0.118138i
\(827\) −30.9192 + 3.24974i −1.07517 + 0.113005i −0.625524 0.780205i \(-0.715115\pi\)
−0.449642 + 0.893209i \(0.648448\pi\)
\(828\) −0.926674 + 4.35966i −0.0322041 + 0.151509i
\(829\) 8.66756 + 26.6760i 0.301037 + 0.926496i 0.981126 + 0.193367i \(0.0619409\pi\)
−0.680090 + 0.733129i \(0.738059\pi\)
\(830\) 0 0
\(831\) 21.8491 + 37.8437i 0.757936 + 1.31278i
\(832\) 12.9075 + 7.45215i 0.447487 + 0.258357i
\(833\) −10.1160 3.28688i −0.350498 0.113884i
\(834\) 1.63912 15.5951i 0.0567579 0.540015i
\(835\) 0 0
\(836\) 9.66453 0.334255
\(837\) 4.02104 37.9848i 0.138988 1.31295i
\(838\) 8.13409i 0.280987i
\(839\) −18.6621 + 13.5588i −0.644287 + 0.468102i −0.861320 0.508062i \(-0.830362\pi\)
0.217034 + 0.976164i \(0.430362\pi\)
\(840\) 0 0
\(841\) −5.87746 + 18.0890i −0.202671 + 0.623757i
\(842\) −8.88160 5.12779i −0.306080 0.176715i
\(843\) −6.23179 + 3.59793i −0.214634 + 0.123919i
\(844\) −30.6687 + 6.51884i −1.05566 + 0.224388i
\(845\) 0 0
\(846\) 14.7007 + 3.12473i 0.505420 + 0.107430i
\(847\) 5.47617 0.575568i 0.188163 0.0197768i
\(848\) −12.1101 + 10.9040i −0.415864 + 0.374446i
\(849\) −12.4925 5.56202i −0.428741 0.190888i
\(850\) 0 0
\(851\) −0.931124 + 1.03412i −0.0319185 + 0.0354491i
\(852\) 5.35449 7.36982i 0.183442 0.252486i
\(853\) −17.6458 + 24.2874i −0.604182 + 0.831585i −0.996083 0.0884221i \(-0.971818\pi\)
0.391901 + 0.920007i \(0.371818\pi\)
\(854\) −3.67326 + 4.07957i −0.125696 + 0.139600i
\(855\) 0 0
\(856\) 15.1227 + 6.73307i 0.516884 + 0.230132i
\(857\) 40.5663 36.5261i 1.38572 1.24771i 0.450904 0.892572i \(-0.351102\pi\)
0.934815 0.355135i \(-0.115565\pi\)
\(858\) −7.06535 + 0.742598i −0.241207 + 0.0253519i
\(859\) 9.13238 + 1.94115i 0.311593 + 0.0662311i 0.361054 0.932545i \(-0.382417\pi\)
−0.0494610 + 0.998776i \(0.515750\pi\)
\(860\) 0 0
\(861\) 21.2728 4.52167i 0.724974 0.154098i
\(862\) 9.23768 5.33338i 0.314637 0.181656i
\(863\) 11.5326 + 6.65836i 0.392575 + 0.226653i 0.683275 0.730161i \(-0.260555\pi\)
−0.290700 + 0.956814i \(0.593888\pi\)
\(864\) 8.21560 25.2850i 0.279500 0.860214i
\(865\) 0 0
\(866\) 3.93491 2.85888i 0.133714 0.0971487i
\(867\) 39.5520i 1.34326i
\(868\) 1.17340 + 11.2449i 0.0398276 + 0.381676i
\(869\) −8.38250 −0.284357
\(870\) 0 0
\(871\) 1.93371 18.3980i 0.0655213 0.623394i
\(872\) 0.818983 + 0.266104i 0.0277343 + 0.00901141i
\(873\) 15.8751 + 9.16547i 0.537290 + 0.310204i
\(874\) −0.164599 0.285094i −0.00556766 0.00964346i
\(875\) 0 0
\(876\) 24.0925 + 74.1490i 0.814010 + 2.50526i
\(877\) −8.84998 + 41.6359i −0.298843 + 1.40594i 0.530728 + 0.847542i \(0.321919\pi\)
−0.829571 + 0.558402i \(0.811415\pi\)
\(878\) −4.51568 + 0.474617i −0.152397 + 0.0160175i
\(879\) −20.4225 22.6815i −0.688835 0.765029i
\(880\) 0 0
\(881\) −5.27402 + 2.34814i −0.177686 + 0.0791110i −0.493652 0.869660i \(-0.664338\pi\)
0.315966 + 0.948771i \(0.397672\pi\)
\(882\) −8.17666 7.36230i −0.275323 0.247902i
\(883\) −15.9860 + 22.0029i −0.537973 + 0.740457i −0.988319 0.152397i \(-0.951301\pi\)
0.450346 + 0.892854i \(0.351301\pi\)
\(884\) 7.96061 + 5.78372i 0.267744 + 0.194528i
\(885\) 0 0
\(886\) 7.62758 3.39602i 0.256254 0.114091i
\(887\) 2.99834 6.73437i 0.100674 0.226118i −0.856185 0.516669i \(-0.827172\pi\)
0.956860 + 0.290551i \(0.0938385\pi\)
\(888\) 9.21742 8.29940i 0.309316 0.278510i
\(889\) −0.0133254 0.126783i −0.000446920 0.00425216i
\(890\) 0 0
\(891\) −2.80677 8.63835i −0.0940304 0.289396i
\(892\) −2.44292 11.4930i −0.0817950 0.384815i
\(893\) 14.6062 8.43290i 0.488778 0.282196i
\(894\) 6.07548 10.5230i 0.203194 0.351943i
\(895\) 0 0
\(896\) −1.08287 + 10.3028i −0.0361762 + 0.344193i
\(897\) −2.16112 2.97453i −0.0721578 0.0993166i
\(898\) 6.82232i 0.227664i
\(899\) −13.0626 11.7793i −0.435663 0.392862i
\(900\) 0 0
\(901\) −7.34737 + 5.33818i −0.244776 + 0.177841i
\(902\) −5.90278 0.620408i −0.196541 0.0206573i
\(903\) 25.0493 + 8.13900i 0.833588 + 0.270849i
\(904\) 7.69738 13.3322i 0.256011 0.443424i
\(905\) 0 0
\(906\) −4.29869 + 0.913715i −0.142814 + 0.0303562i
\(907\) −15.6763 + 5.09354i −0.520523 + 0.169128i −0.557482 0.830189i \(-0.688233\pi\)
0.0369599 + 0.999317i \(0.488233\pi\)
\(908\) −3.06167 + 14.4040i −0.101605 + 0.478014i
\(909\) 9.94714 + 94.6408i 0.329926 + 3.13904i
\(910\) 0 0
\(911\) 40.9333 + 18.2247i 1.35618 + 0.603810i 0.950648 0.310271i \(-0.100420\pi\)
0.405531 + 0.914081i \(0.367087\pi\)
\(912\) −8.16199 18.3321i −0.270271 0.607038i
\(913\) 23.2247 + 20.9116i 0.768625 + 0.692073i
\(914\) 6.92078 + 5.02824i 0.228919 + 0.166319i
\(915\) 0 0
\(916\) −16.0380 + 17.8120i −0.529911 + 0.588526i
\(917\) −2.54575 5.71785i −0.0840681 0.188820i
\(918\) 1.78942 4.01909i 0.0590595 0.132650i
\(919\) 6.93006 + 7.69662i 0.228602 + 0.253888i 0.846523 0.532352i \(-0.178692\pi\)
−0.617921 + 0.786240i \(0.712025\pi\)
\(920\) 0 0
\(921\) 7.49544 + 1.59320i 0.246983 + 0.0524979i
\(922\) 12.8155 4.16401i 0.422056 0.137134i
\(923\) 1.00247 + 4.71626i 0.0329968 + 0.155238i
\(924\) 7.14231 + 12.3708i 0.234965 + 0.406971i
\(925\) 0 0
\(926\) −0.716131 + 2.20402i −0.0235335 + 0.0724287i
\(927\) −43.1282 4.53296i −1.41652 0.148882i
\(928\) −7.19606 9.90452i −0.236222 0.325132i
\(929\) −44.0624 −1.44564 −0.722820 0.691037i \(-0.757154\pi\)
−0.722820 + 0.691037i \(0.757154\pi\)
\(930\) 0 0
\(931\) −12.3474 −0.404671
\(932\) 14.0271 + 19.3066i 0.459472 + 0.632409i
\(933\) −15.8629 1.66725i −0.519327 0.0545834i
\(934\) −4.17034 + 12.8350i −0.136458 + 0.419974i
\(935\) 0 0
\(936\) 10.5136 + 18.2101i 0.343648 + 0.595216i
\(937\) 7.18687 + 33.8116i 0.234785 + 1.10458i 0.924703 + 0.380689i \(0.124313\pi\)
−0.689918 + 0.723887i \(0.742354\pi\)
\(938\) 2.32835 0.756528i 0.0760235 0.0247015i
\(939\) 75.4933 + 16.0466i 2.46363 + 0.523661i
\(940\) 0 0
\(941\) −14.8206 16.4600i −0.483138 0.536580i 0.451457 0.892293i \(-0.350905\pi\)
−0.934595 + 0.355713i \(0.884238\pi\)
\(942\) −3.59988 + 8.08546i −0.117290 + 0.263439i
\(943\) −1.24939 2.80617i −0.0406856 0.0913814i
\(944\) 26.3211 29.2326i 0.856680 0.951440i
\(945\) 0 0
\(946\) −5.81526 4.22504i −0.189071 0.137368i
\(947\) −20.8694 18.7909i −0.678165 0.610622i 0.256334 0.966588i \(-0.417485\pi\)
−0.934499 + 0.355966i \(0.884152\pi\)
\(948\) 7.61334 + 17.0998i 0.247270 + 0.555377i
\(949\) −37.6985 16.7844i −1.22374 0.544846i
\(950\) 0 0
\(951\) 3.24818 + 30.9044i 0.105330 + 1.00214i
\(952\) −0.559300 + 2.63130i −0.0181270 + 0.0852809i
\(953\) 7.29152 2.36916i 0.236196 0.0767446i −0.188527 0.982068i \(-0.560371\pi\)
0.424723 + 0.905323i \(0.360371\pi\)
\(954\) −9.18925 + 1.95324i −0.297513 + 0.0632383i
\(955\) 0 0
\(956\) −23.8546 + 41.3173i −0.771512 + 1.33630i
\(957\) −21.1358 6.86743i −0.683222 0.221992i
\(958\) 2.63009 + 0.276434i 0.0849745 + 0.00893118i
\(959\) −10.3352 + 7.50893i −0.333740 + 0.242476i
\(960\) 0 0
\(961\) −28.3387 + 12.5665i −0.914152 + 0.405372i
\(962\) 3.17789i 0.102459i
\(963\) −38.3622 52.8011i −1.23621 1.70149i
\(964\) −0.463100 + 4.40610i −0.0149154 + 0.141911i
\(965\) 0 0
\(966\) 0.243285 0.421383i 0.00782758 0.0135578i
\(967\) −1.60246 + 0.925182i −0.0515317 + 0.0297518i −0.525545 0.850766i \(-0.676138\pi\)
0.474013 + 0.880518i \(0.342805\pi\)
\(968\) 1.44127 + 6.78063i 0.0463241 + 0.217938i
\(969\) −3.45592 10.6362i −0.111020 0.341685i
\(970\) 0 0
\(971\) −5.16072 49.1010i −0.165615 1.57573i −0.689723 0.724074i \(-0.742268\pi\)
0.524107 0.851652i \(-0.324399\pi\)
\(972\) 13.6281 12.2708i 0.437121 0.393585i
\(973\) 6.78784 15.2457i 0.217608 0.488756i
\(974\) −8.03659 + 3.57812i −0.257509 + 0.114650i
\(975\) 0 0
\(976\) 38.2373 + 27.7810i 1.22395 + 0.889248i
\(977\) −20.9383 + 28.8192i −0.669877 + 0.922007i −0.999758 0.0220160i \(-0.992992\pi\)
0.329881 + 0.944023i \(0.392992\pi\)
\(978\) 2.36353 + 2.12813i 0.0755773 + 0.0680501i
\(979\) 5.01847 2.23437i 0.160391 0.0714107i
\(980\) 0 0
\(981\) −2.27177 2.52306i −0.0725321 0.0805550i
\(982\) −13.8789 + 1.45874i −0.442895 + 0.0465501i
\(983\) 1.32722 6.24409i 0.0423318 0.199156i −0.951900 0.306409i \(-0.900872\pi\)
0.994232 + 0.107254i \(0.0342057\pi\)
\(984\) 8.46068 + 26.0393i 0.269717 + 0.830103i
\(985\) 0 0
\(986\) −1.01295 1.75448i −0.0322588 0.0558739i
\(987\) 21.5887 + 12.4642i 0.687175 + 0.396740i
\(988\) 10.8635 + 3.52977i 0.345614 + 0.112297i
\(989\) 0.388855 3.69971i 0.0123649 0.117644i
\(990\) 0 0
\(991\) −44.2919 −1.40698 −0.703489 0.710706i \(-0.748376\pi\)
−0.703489 + 0.710706i \(0.748376\pi\)
\(992\) −21.1087 + 4.47033i −0.670202 + 0.141933i
\(993\) 56.8463i 1.80396i
\(994\) −0.516222 + 0.375058i −0.0163736 + 0.0118961i
\(995\) 0 0
\(996\) 21.5649 66.3699i 0.683310 2.10301i
\(997\) −4.60999 2.66158i −0.146000 0.0842931i 0.425221 0.905090i \(-0.360197\pi\)
−0.571220 + 0.820797i \(0.693530\pi\)
\(998\) 7.19911 4.15641i 0.227884 0.131569i
\(999\) −21.1162 + 4.48839i −0.668087 + 0.142006i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.a.524.2 32
5.2 odd 4 775.2.bl.a.276.1 16
5.3 odd 4 31.2.g.a.28.2 yes 16
5.4 even 2 inner 775.2.ck.a.524.3 32
15.8 even 4 279.2.y.c.28.1 16
20.3 even 4 496.2.bg.c.369.1 16
31.10 even 15 inner 775.2.ck.a.599.3 32
155.3 even 60 961.2.d.q.531.2 16
155.8 odd 20 961.2.c.j.521.4 16
155.13 even 60 961.2.g.m.547.1 16
155.18 odd 60 961.2.g.s.547.1 16
155.23 even 20 961.2.c.i.521.4 16
155.28 odd 60 961.2.d.p.531.2 16
155.33 odd 20 961.2.g.k.732.2 16
155.38 odd 60 961.2.d.p.628.2 16
155.43 even 60 961.2.d.n.374.3 16
155.48 even 60 961.2.a.j.1.4 8
155.53 even 60 961.2.c.i.439.4 16
155.58 even 20 961.2.g.m.448.1 16
155.68 even 12 961.2.d.n.388.3 16
155.72 odd 60 775.2.bl.a.351.1 16
155.73 even 60 961.2.g.n.846.1 16
155.78 odd 20 961.2.g.t.844.1 16
155.83 even 60 961.2.g.l.816.2 16
155.88 even 12 961.2.g.j.235.2 16
155.98 odd 12 961.2.g.k.235.2 16
155.103 odd 60 31.2.g.a.10.2 16
155.108 even 20 961.2.g.n.844.1 16
155.113 odd 60 961.2.g.t.846.1 16
155.118 odd 12 961.2.d.o.388.3 16
155.123 even 4 961.2.g.l.338.2 16
155.128 odd 20 961.2.g.s.448.1 16
155.133 odd 60 961.2.c.j.439.4 16
155.134 even 30 inner 775.2.ck.a.599.2 32
155.138 odd 60 961.2.a.i.1.4 8
155.143 odd 60 961.2.d.o.374.3 16
155.148 even 60 961.2.d.q.628.2 16
155.153 even 20 961.2.g.j.732.2 16
465.203 odd 60 8649.2.a.be.1.5 8
465.293 even 60 8649.2.a.bf.1.5 8
465.413 even 60 279.2.y.c.10.1 16
620.103 even 60 496.2.bg.c.289.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.2 16 155.103 odd 60
31.2.g.a.28.2 yes 16 5.3 odd 4
279.2.y.c.10.1 16 465.413 even 60
279.2.y.c.28.1 16 15.8 even 4
496.2.bg.c.289.1 16 620.103 even 60
496.2.bg.c.369.1 16 20.3 even 4
775.2.bl.a.276.1 16 5.2 odd 4
775.2.bl.a.351.1 16 155.72 odd 60
775.2.ck.a.524.2 32 1.1 even 1 trivial
775.2.ck.a.524.3 32 5.4 even 2 inner
775.2.ck.a.599.2 32 155.134 even 30 inner
775.2.ck.a.599.3 32 31.10 even 15 inner
961.2.a.i.1.4 8 155.138 odd 60
961.2.a.j.1.4 8 155.48 even 60
961.2.c.i.439.4 16 155.53 even 60
961.2.c.i.521.4 16 155.23 even 20
961.2.c.j.439.4 16 155.133 odd 60
961.2.c.j.521.4 16 155.8 odd 20
961.2.d.n.374.3 16 155.43 even 60
961.2.d.n.388.3 16 155.68 even 12
961.2.d.o.374.3 16 155.143 odd 60
961.2.d.o.388.3 16 155.118 odd 12
961.2.d.p.531.2 16 155.28 odd 60
961.2.d.p.628.2 16 155.38 odd 60
961.2.d.q.531.2 16 155.3 even 60
961.2.d.q.628.2 16 155.148 even 60
961.2.g.j.235.2 16 155.88 even 12
961.2.g.j.732.2 16 155.153 even 20
961.2.g.k.235.2 16 155.98 odd 12
961.2.g.k.732.2 16 155.33 odd 20
961.2.g.l.338.2 16 155.123 even 4
961.2.g.l.816.2 16 155.83 even 60
961.2.g.m.448.1 16 155.58 even 20
961.2.g.m.547.1 16 155.13 even 60
961.2.g.n.844.1 16 155.108 even 20
961.2.g.n.846.1 16 155.73 even 60
961.2.g.s.448.1 16 155.128 odd 20
961.2.g.s.547.1 16 155.18 odd 60
961.2.g.t.844.1 16 155.78 odd 20
961.2.g.t.846.1 16 155.113 odd 60
8649.2.a.be.1.5 8 465.203 odd 60
8649.2.a.bf.1.5 8 465.293 even 60