Properties

Label 784.2.a.m
Level 784784
Weight 22
Character orbit 784.a
Self dual yes
Analytic conductor 6.2606.260
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(1,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 784=2472 784 = 2^{4} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.260271518476.26027151847
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 196)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2βq3+βq5+5q94q11+3βq13+4q15+βq172βq19+4q233q25+4βq27+8q298βq338q37+12q39+20q99+O(q100) q + 2 \beta q^{3} + \beta q^{5} + 5 q^{9} - 4 q^{11} + 3 \beta q^{13} + 4 q^{15} + \beta q^{17} - 2 \beta q^{19} + 4 q^{23} - 3 q^{25} + 4 \beta q^{27} + 8 q^{29} - 8 \beta q^{33} - 8 q^{37} + 12 q^{39} + \cdots - 20 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+10q98q11+8q15+8q236q25+16q2916q37+24q39+8q43+8q51+20q5316q57+12q6516q79+2q81+4q858q9540q99+O(q100) 2 q + 10 q^{9} - 8 q^{11} + 8 q^{15} + 8 q^{23} - 6 q^{25} + 16 q^{29} - 16 q^{37} + 24 q^{39} + 8 q^{43} + 8 q^{51} + 20 q^{53} - 16 q^{57} + 12 q^{65} - 16 q^{79} + 2 q^{81} + 4 q^{85} - 8 q^{95} - 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.41421
1.41421
0 −2.82843 0 −1.41421 0 0 0 5.00000 0
1.2 0 2.82843 0 1.41421 0 0 0 5.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.2.a.m 2
3.b odd 2 1 7056.2.a.cr 2
4.b odd 2 1 196.2.a.c 2
7.b odd 2 1 inner 784.2.a.m 2
7.c even 3 2 784.2.i.l 4
7.d odd 6 2 784.2.i.l 4
8.b even 2 1 3136.2.a.bs 2
8.d odd 2 1 3136.2.a.br 2
12.b even 2 1 1764.2.a.l 2
20.d odd 2 1 4900.2.a.y 2
20.e even 4 2 4900.2.e.p 4
21.c even 2 1 7056.2.a.cr 2
28.d even 2 1 196.2.a.c 2
28.f even 6 2 196.2.e.b 4
28.g odd 6 2 196.2.e.b 4
56.e even 2 1 3136.2.a.br 2
56.h odd 2 1 3136.2.a.bs 2
84.h odd 2 1 1764.2.a.l 2
84.j odd 6 2 1764.2.k.l 4
84.n even 6 2 1764.2.k.l 4
140.c even 2 1 4900.2.a.y 2
140.j odd 4 2 4900.2.e.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
196.2.a.c 2 4.b odd 2 1
196.2.a.c 2 28.d even 2 1
196.2.e.b 4 28.f even 6 2
196.2.e.b 4 28.g odd 6 2
784.2.a.m 2 1.a even 1 1 trivial
784.2.a.m 2 7.b odd 2 1 inner
784.2.i.l 4 7.c even 3 2
784.2.i.l 4 7.d odd 6 2
1764.2.a.l 2 12.b even 2 1
1764.2.a.l 2 84.h odd 2 1
1764.2.k.l 4 84.j odd 6 2
1764.2.k.l 4 84.n even 6 2
3136.2.a.br 2 8.d odd 2 1
3136.2.a.br 2 56.e even 2 1
3136.2.a.bs 2 8.b even 2 1
3136.2.a.bs 2 56.h odd 2 1
4900.2.a.y 2 20.d odd 2 1
4900.2.a.y 2 140.c even 2 1
4900.2.e.p 4 20.e even 4 2
4900.2.e.p 4 140.j odd 4 2
7056.2.a.cr 2 3.b odd 2 1
7056.2.a.cr 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(784))S_{2}^{\mathrm{new}}(\Gamma_0(784)):

T328 T_{3}^{2} - 8 Copy content Toggle raw display
T522 T_{5}^{2} - 2 Copy content Toggle raw display
T11+4 T_{11} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T28 T^{2} - 8 Copy content Toggle raw display
55 T22 T^{2} - 2 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1313 T218 T^{2} - 18 Copy content Toggle raw display
1717 T22 T^{2} - 2 Copy content Toggle raw display
1919 T28 T^{2} - 8 Copy content Toggle raw display
2323 (T4)2 (T - 4)^{2} Copy content Toggle raw display
2929 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
4141 T250 T^{2} - 50 Copy content Toggle raw display
4343 (T4)2 (T - 4)^{2} Copy content Toggle raw display
4747 T232 T^{2} - 32 Copy content Toggle raw display
5353 (T10)2 (T - 10)^{2} Copy content Toggle raw display
5959 T2200 T^{2} - 200 Copy content Toggle raw display
6161 T250 T^{2} - 50 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T250 T^{2} - 50 Copy content Toggle raw display
7979 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
8383 T2200 T^{2} - 200 Copy content Toggle raw display
8989 T250 T^{2} - 50 Copy content Toggle raw display
9797 T22 T^{2} - 2 Copy content Toggle raw display
show more
show less