Properties

Label 784.2.m.j.197.5
Level $784$
Weight $2$
Character 784.197
Analytic conductor $6.260$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(197,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 197.5
Character \(\chi\) \(=\) 784.197
Dual form 784.2.m.j.589.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.604218 + 1.27864i) q^{2} +(-0.853080 + 0.853080i) q^{3} +(-1.26984 - 1.54515i) q^{4} +(-0.718099 - 0.718099i) q^{5} +(-0.575337 - 1.60623i) q^{6} +(2.74296 - 0.690063i) q^{8} +1.54451i q^{9} +(1.35208 - 0.484303i) q^{10} +(1.73491 + 1.73491i) q^{11} +(2.40142 + 0.234863i) q^{12} +(-2.65786 + 2.65786i) q^{13} +1.22519 q^{15} +(-0.775001 + 3.92420i) q^{16} +1.01826 q^{17} +(-1.97487 - 0.933219i) q^{18} +(-0.0685610 + 0.0685610i) q^{19} +(-0.197701 + 2.02145i) q^{20} +(-3.26658 + 1.17006i) q^{22} -1.93110i q^{23} +(-1.75128 + 2.92864i) q^{24} -3.96867i q^{25} +(-1.79252 - 5.00437i) q^{26} +(-3.87683 - 3.87683i) q^{27} +(-5.05325 + 5.05325i) q^{29} +(-0.740283 + 1.56658i) q^{30} -8.56498 q^{31} +(-4.54938 - 3.36202i) q^{32} -2.96003 q^{33} +(-0.615248 + 1.30198i) q^{34} +(2.38650 - 1.96128i) q^{36} +(5.64724 + 5.64724i) q^{37} +(-0.0462391 - 0.129091i) q^{38} -4.53473i q^{39} +(-2.46525 - 1.47418i) q^{40} -8.51782i q^{41} +(-4.47950 - 4.47950i) q^{43} +(0.477640 - 4.88375i) q^{44} +(1.10911 - 1.10911i) q^{45} +(2.46918 + 1.16681i) q^{46} -12.0599 q^{47} +(-2.68652 - 4.00880i) q^{48} +(5.07450 + 2.39794i) q^{50} +(-0.868654 + 0.868654i) q^{51} +(7.48186 + 0.731739i) q^{52} +(1.04091 + 1.04091i) q^{53} +(7.29952 - 2.61462i) q^{54} -2.49167i q^{55} -0.116976i q^{57} +(-3.40803 - 9.51455i) q^{58} +(-5.09623 - 5.09623i) q^{59} +(-1.55580 - 1.89311i) q^{60} +(-3.24045 + 3.24045i) q^{61} +(5.17511 - 10.9515i) q^{62} +(7.04763 - 3.78563i) q^{64} +3.81721 q^{65} +(1.78850 - 3.78481i) q^{66} +(2.47945 - 2.47945i) q^{67} +(-1.29302 - 1.57336i) q^{68} +(1.64738 + 1.64738i) q^{69} +5.43131i q^{71} +(1.06581 + 4.23652i) q^{72} +8.47900i q^{73} +(-10.6330 + 3.80863i) q^{74} +(3.38559 + 3.38559i) q^{75} +(0.192999 + 0.0188756i) q^{76} +(5.79829 + 2.73996i) q^{78} +0.867190 q^{79} +(3.37450 - 2.26144i) q^{80} +1.98097 q^{81} +(10.8912 + 5.14661i) q^{82} +(-5.44318 + 5.44318i) q^{83} +(-0.731209 - 0.731209i) q^{85} +(8.43425 - 3.02107i) q^{86} -8.62165i q^{87} +(5.95597 + 3.56158i) q^{88} -4.53977i q^{89} +(0.748010 + 2.08830i) q^{90} +(-2.98385 + 2.45219i) q^{92} +(7.30661 - 7.30661i) q^{93} +(7.28680 - 15.4203i) q^{94} +0.0984673 q^{95} +(6.74905 - 1.01291i) q^{96} +16.4025 q^{97} +(-2.67958 + 2.67958i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 4 q^{4} - 4 q^{5} - 2 q^{6} - 2 q^{8} + 2 q^{10} + 4 q^{11} - 2 q^{12} - 12 q^{13} - 20 q^{15} - 16 q^{16} - 8 q^{17} - 18 q^{18} + 4 q^{19} - 8 q^{20} - 18 q^{24} + 10 q^{26} - 12 q^{27}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.604218 + 1.27864i −0.427246 + 0.904135i
\(3\) −0.853080 + 0.853080i −0.492526 + 0.492526i −0.909101 0.416575i \(-0.863230\pi\)
0.416575 + 0.909101i \(0.363230\pi\)
\(4\) −1.26984 1.54515i −0.634921 0.772577i
\(5\) −0.718099 0.718099i −0.321144 0.321144i 0.528062 0.849206i \(-0.322919\pi\)
−0.849206 + 0.528062i \(0.822919\pi\)
\(6\) −0.575337 1.60623i −0.234880 0.655740i
\(7\) 0 0
\(8\) 2.74296 0.690063i 0.969782 0.243974i
\(9\) 1.54451i 0.514836i
\(10\) 1.35208 0.484303i 0.427565 0.153150i
\(11\) 1.73491 + 1.73491i 0.523094 + 0.523094i 0.918504 0.395411i \(-0.129398\pi\)
−0.395411 + 0.918504i \(0.629398\pi\)
\(12\) 2.40142 + 0.234863i 0.693229 + 0.0677990i
\(13\) −2.65786 + 2.65786i −0.737157 + 0.737157i −0.972027 0.234870i \(-0.924534\pi\)
0.234870 + 0.972027i \(0.424534\pi\)
\(14\) 0 0
\(15\) 1.22519 0.316343
\(16\) −0.775001 + 3.92420i −0.193750 + 0.981051i
\(17\) 1.01826 0.246963 0.123482 0.992347i \(-0.460594\pi\)
0.123482 + 0.992347i \(0.460594\pi\)
\(18\) −1.97487 0.933219i −0.465482 0.219962i
\(19\) −0.0685610 + 0.0685610i −0.0157290 + 0.0157290i −0.714928 0.699199i \(-0.753540\pi\)
0.699199 + 0.714928i \(0.253540\pi\)
\(20\) −0.197701 + 2.02145i −0.0442073 + 0.452009i
\(21\) 0 0
\(22\) −3.26658 + 1.17006i −0.696438 + 0.249458i
\(23\) 1.93110i 0.402662i −0.979523 0.201331i \(-0.935473\pi\)
0.979523 0.201331i \(-0.0645268\pi\)
\(24\) −1.75128 + 2.92864i −0.357479 + 0.597806i
\(25\) 3.96867i 0.793733i
\(26\) −1.79252 5.00437i −0.351542 0.981438i
\(27\) −3.87683 3.87683i −0.746096 0.746096i
\(28\) 0 0
\(29\) −5.05325 + 5.05325i −0.938365 + 0.938365i −0.998208 0.0598432i \(-0.980940\pi\)
0.0598432 + 0.998208i \(0.480940\pi\)
\(30\) −0.740283 + 1.56658i −0.135157 + 0.286017i
\(31\) −8.56498 −1.53832 −0.769158 0.639059i \(-0.779324\pi\)
−0.769158 + 0.639059i \(0.779324\pi\)
\(32\) −4.54938 3.36202i −0.804224 0.594327i
\(33\) −2.96003 −0.515275
\(34\) −0.615248 + 1.30198i −0.105514 + 0.223288i
\(35\) 0 0
\(36\) 2.38650 1.96128i 0.397751 0.326880i
\(37\) 5.64724 + 5.64724i 0.928401 + 0.928401i 0.997603 0.0692014i \(-0.0220451\pi\)
−0.0692014 + 0.997603i \(0.522045\pi\)
\(38\) −0.0462391 0.129091i −0.00750098 0.0209413i
\(39\) 4.53473i 0.726138i
\(40\) −2.46525 1.47418i −0.389790 0.233089i
\(41\) 8.51782i 1.33026i −0.746728 0.665130i \(-0.768376\pi\)
0.746728 0.665130i \(-0.231624\pi\)
\(42\) 0 0
\(43\) −4.47950 4.47950i −0.683117 0.683117i 0.277584 0.960701i \(-0.410466\pi\)
−0.960701 + 0.277584i \(0.910466\pi\)
\(44\) 0.477640 4.88375i 0.0720069 0.736254i
\(45\) 1.10911 1.10911i 0.165336 0.165336i
\(46\) 2.46918 + 1.16681i 0.364061 + 0.172036i
\(47\) −12.0599 −1.75912 −0.879559 0.475791i \(-0.842162\pi\)
−0.879559 + 0.475791i \(0.842162\pi\)
\(48\) −2.68652 4.00880i −0.387766 0.578620i
\(49\) 0 0
\(50\) 5.07450 + 2.39794i 0.717642 + 0.339120i
\(51\) −0.868654 + 0.868654i −0.121636 + 0.121636i
\(52\) 7.48186 + 0.731739i 1.03755 + 0.101474i
\(53\) 1.04091 + 1.04091i 0.142980 + 0.142980i 0.774974 0.631993i \(-0.217763\pi\)
−0.631993 + 0.774974i \(0.717763\pi\)
\(54\) 7.29952 2.61462i 0.993339 0.355805i
\(55\) 2.49167i 0.335977i
\(56\) 0 0
\(57\) 0.116976i 0.0154939i
\(58\) −3.40803 9.51455i −0.447496 1.24932i
\(59\) −5.09623 5.09623i −0.663472 0.663472i 0.292724 0.956197i \(-0.405438\pi\)
−0.956197 + 0.292724i \(0.905438\pi\)
\(60\) −1.55580 1.89311i −0.200853 0.244400i
\(61\) −3.24045 + 3.24045i −0.414897 + 0.414897i −0.883441 0.468543i \(-0.844779\pi\)
0.468543 + 0.883441i \(0.344779\pi\)
\(62\) 5.17511 10.9515i 0.657240 1.39085i
\(63\) 0 0
\(64\) 7.04763 3.78563i 0.880953 0.473203i
\(65\) 3.81721 0.473467
\(66\) 1.78850 3.78481i 0.220149 0.465878i
\(67\) 2.47945 2.47945i 0.302913 0.302913i −0.539239 0.842153i \(-0.681288\pi\)
0.842153 + 0.539239i \(0.181288\pi\)
\(68\) −1.29302 1.57336i −0.156802 0.190798i
\(69\) 1.64738 + 1.64738i 0.198322 + 0.198322i
\(70\) 0 0
\(71\) 5.43131i 0.644578i 0.946641 + 0.322289i \(0.104452\pi\)
−0.946641 + 0.322289i \(0.895548\pi\)
\(72\) 1.06581 + 4.23652i 0.125607 + 0.499279i
\(73\) 8.47900i 0.992392i 0.868211 + 0.496196i \(0.165270\pi\)
−0.868211 + 0.496196i \(0.834730\pi\)
\(74\) −10.6330 + 3.80863i −1.23606 + 0.442744i
\(75\) 3.38559 + 3.38559i 0.390934 + 0.390934i
\(76\) 0.192999 + 0.0188756i 0.0221385 + 0.00216518i
\(77\) 0 0
\(78\) 5.79829 + 2.73996i 0.656527 + 0.310240i
\(79\) 0.867190 0.0975665 0.0487832 0.998809i \(-0.484466\pi\)
0.0487832 + 0.998809i \(0.484466\pi\)
\(80\) 3.37450 2.26144i 0.377280 0.252837i
\(81\) 1.98097 0.220107
\(82\) 10.8912 + 5.14661i 1.20273 + 0.568349i
\(83\) −5.44318 + 5.44318i −0.597466 + 0.597466i −0.939638 0.342171i \(-0.888838\pi\)
0.342171 + 0.939638i \(0.388838\pi\)
\(84\) 0 0
\(85\) −0.731209 0.731209i −0.0793108 0.0793108i
\(86\) 8.43425 3.02107i 0.909489 0.325771i
\(87\) 8.62165i 0.924338i
\(88\) 5.95597 + 3.56158i 0.634908 + 0.379666i
\(89\) 4.53977i 0.481214i −0.970623 0.240607i \(-0.922653\pi\)
0.970623 0.240607i \(-0.0773465\pi\)
\(90\) 0.748010 + 2.08830i 0.0788471 + 0.220126i
\(91\) 0 0
\(92\) −2.98385 + 2.45219i −0.311088 + 0.255659i
\(93\) 7.30661 7.30661i 0.757660 0.757660i
\(94\) 7.28680 15.4203i 0.751576 1.59048i
\(95\) 0.0984673 0.0101025
\(96\) 6.74905 1.01291i 0.688822 0.103380i
\(97\) 16.4025 1.66542 0.832712 0.553706i \(-0.186787\pi\)
0.832712 + 0.553706i \(0.186787\pi\)
\(98\) 0 0
\(99\) −2.67958 + 2.67958i −0.269308 + 0.269308i
\(100\) −6.13220 + 5.03958i −0.613220 + 0.503958i
\(101\) 6.50363 + 6.50363i 0.647135 + 0.647135i 0.952300 0.305164i \(-0.0987114\pi\)
−0.305164 + 0.952300i \(0.598711\pi\)
\(102\) −0.585840 1.63555i −0.0580068 0.161944i
\(103\) 7.73036i 0.761695i −0.924638 0.380848i \(-0.875632\pi\)
0.924638 0.380848i \(-0.124368\pi\)
\(104\) −5.45630 + 9.12448i −0.535034 + 0.894729i
\(105\) 0 0
\(106\) −1.95989 + 0.702015i −0.190361 + 0.0681857i
\(107\) −13.3639 13.3639i −1.29194 1.29194i −0.933586 0.358354i \(-0.883338\pi\)
−0.358354 0.933586i \(-0.616662\pi\)
\(108\) −1.06734 + 10.9133i −0.102704 + 1.05013i
\(109\) −11.5683 + 11.5683i −1.10804 + 1.10804i −0.114634 + 0.993408i \(0.536570\pi\)
−0.993408 + 0.114634i \(0.963430\pi\)
\(110\) 3.18595 + 1.50551i 0.303768 + 0.143545i
\(111\) −9.63510 −0.914524
\(112\) 0 0
\(113\) −20.1152 −1.89228 −0.946138 0.323765i \(-0.895051\pi\)
−0.946138 + 0.323765i \(0.895051\pi\)
\(114\) 0.149570 + 0.0706790i 0.0140085 + 0.00661970i
\(115\) −1.38672 + 1.38672i −0.129313 + 0.129313i
\(116\) 14.2249 + 1.39122i 1.32075 + 0.129171i
\(117\) −4.10509 4.10509i −0.379515 0.379515i
\(118\) 9.59547 3.43701i 0.883335 0.316403i
\(119\) 0 0
\(120\) 3.36065 0.845460i 0.306784 0.0771796i
\(121\) 4.98020i 0.452745i
\(122\) −2.18544 6.10131i −0.197860 0.552387i
\(123\) 7.26638 + 7.26638i 0.655187 + 0.655187i
\(124\) 10.8762 + 13.2342i 0.976709 + 1.18847i
\(125\) −6.44039 + 6.44039i −0.576046 + 0.576046i
\(126\) 0 0
\(127\) −0.988901 −0.0877508 −0.0438754 0.999037i \(-0.513970\pi\)
−0.0438754 + 0.999037i \(0.513970\pi\)
\(128\) 0.582154 + 11.2987i 0.0514556 + 0.998675i
\(129\) 7.64274 0.672905
\(130\) −2.30643 + 4.88084i −0.202287 + 0.428078i
\(131\) −5.57005 + 5.57005i −0.486657 + 0.486657i −0.907250 0.420592i \(-0.861822\pi\)
0.420592 + 0.907250i \(0.361822\pi\)
\(132\) 3.75877 + 4.57370i 0.327159 + 0.398089i
\(133\) 0 0
\(134\) 1.67220 + 4.66846i 0.144456 + 0.403293i
\(135\) 5.56790i 0.479208i
\(136\) 2.79303 0.702661i 0.239501 0.0602527i
\(137\) 11.0608i 0.944988i −0.881334 0.472494i \(-0.843354\pi\)
0.881334 0.472494i \(-0.156646\pi\)
\(138\) −3.10179 + 1.11103i −0.264042 + 0.0945774i
\(139\) 12.4154 + 12.4154i 1.05306 + 1.05306i 0.998511 + 0.0545473i \(0.0173716\pi\)
0.0545473 + 0.998511i \(0.482628\pi\)
\(140\) 0 0
\(141\) 10.2881 10.2881i 0.866411 0.866411i
\(142\) −6.94470 3.28170i −0.582786 0.275394i
\(143\) −9.22227 −0.771205
\(144\) −6.06097 1.19700i −0.505081 0.0997496i
\(145\) 7.25747 0.602700
\(146\) −10.8416 5.12316i −0.897256 0.423996i
\(147\) 0 0
\(148\) 1.55475 15.8970i 0.127800 1.30672i
\(149\) 3.70525 + 3.70525i 0.303546 + 0.303546i 0.842400 0.538853i \(-0.181142\pi\)
−0.538853 + 0.842400i \(0.681142\pi\)
\(150\) −6.37459 + 2.28332i −0.520483 + 0.186432i
\(151\) 1.36339i 0.110951i 0.998460 + 0.0554754i \(0.0176674\pi\)
−0.998460 + 0.0554754i \(0.982333\pi\)
\(152\) −0.140749 + 0.235371i −0.0114162 + 0.0190911i
\(153\) 1.57271i 0.127146i
\(154\) 0 0
\(155\) 6.15051 + 6.15051i 0.494021 + 0.494021i
\(156\) −7.00686 + 5.75840i −0.560998 + 0.461041i
\(157\) −0.224718 + 0.224718i −0.0179344 + 0.0179344i −0.716017 0.698083i \(-0.754037\pi\)
0.698083 + 0.716017i \(0.254037\pi\)
\(158\) −0.523971 + 1.10882i −0.0416849 + 0.0882133i
\(159\) −1.77596 −0.140843
\(160\) 0.852640 + 5.68117i 0.0674071 + 0.449136i
\(161\) 0 0
\(162\) −1.19693 + 2.53294i −0.0940400 + 0.199007i
\(163\) −10.4959 + 10.4959i −0.822098 + 0.822098i −0.986409 0.164310i \(-0.947460\pi\)
0.164310 + 0.986409i \(0.447460\pi\)
\(164\) −13.1613 + 10.8163i −1.02773 + 0.844610i
\(165\) 2.12559 + 2.12559i 0.165477 + 0.165477i
\(166\) −3.67100 10.2487i −0.284925 0.795455i
\(167\) 14.5986i 1.12967i −0.825204 0.564836i \(-0.808940\pi\)
0.825204 0.564836i \(-0.191060\pi\)
\(168\) 0 0
\(169\) 1.12842i 0.0868018i
\(170\) 1.37676 0.493144i 0.105593 0.0378224i
\(171\) −0.105893 0.105893i −0.00809785 0.00809785i
\(172\) −1.23326 + 12.6098i −0.0940349 + 0.961485i
\(173\) −8.73327 + 8.73327i −0.663978 + 0.663978i −0.956315 0.292337i \(-0.905567\pi\)
0.292337 + 0.956315i \(0.405567\pi\)
\(174\) 11.0240 + 5.20935i 0.835727 + 0.394920i
\(175\) 0 0
\(176\) −8.15268 + 5.46357i −0.614531 + 0.411832i
\(177\) 8.69498 0.653555
\(178\) 5.80473 + 2.74301i 0.435083 + 0.205597i
\(179\) −0.333536 + 0.333536i −0.0249297 + 0.0249297i −0.719462 0.694532i \(-0.755611\pi\)
0.694532 + 0.719462i \(0.255611\pi\)
\(180\) −3.12214 0.305351i −0.232711 0.0227595i
\(181\) 15.4654 + 15.4654i 1.14953 + 1.14953i 0.986645 + 0.162887i \(0.0520807\pi\)
0.162887 + 0.986645i \(0.447919\pi\)
\(182\) 0 0
\(183\) 5.52873i 0.408696i
\(184\) −1.33258 5.29693i −0.0982392 0.390495i
\(185\) 8.11057i 0.596301i
\(186\) 4.92775 + 13.7573i 0.361320 + 1.00874i
\(187\) 1.76658 + 1.76658i 0.129185 + 0.129185i
\(188\) 15.3142 + 18.6344i 1.11690 + 1.35905i
\(189\) 0 0
\(190\) −0.0594956 + 0.125904i −0.00431627 + 0.00913405i
\(191\) 6.08216 0.440090 0.220045 0.975490i \(-0.429380\pi\)
0.220045 + 0.975490i \(0.429380\pi\)
\(192\) −2.78275 + 9.24163i −0.200828 + 0.666957i
\(193\) 10.0618 0.724262 0.362131 0.932127i \(-0.382049\pi\)
0.362131 + 0.932127i \(0.382049\pi\)
\(194\) −9.91069 + 20.9729i −0.711546 + 1.50577i
\(195\) −3.25639 + 3.25639i −0.233195 + 0.233195i
\(196\) 0 0
\(197\) −10.0837 10.0837i −0.718432 0.718432i 0.249852 0.968284i \(-0.419618\pi\)
−0.968284 + 0.249852i \(0.919618\pi\)
\(198\) −1.80717 5.04527i −0.128430 0.358551i
\(199\) 11.6601i 0.826563i 0.910603 + 0.413282i \(0.135617\pi\)
−0.910603 + 0.413282i \(0.864383\pi\)
\(200\) −2.73863 10.8859i −0.193650 0.769748i
\(201\) 4.23034i 0.298386i
\(202\) −12.2454 + 4.38620i −0.861584 + 0.308612i
\(203\) 0 0
\(204\) 2.44526 + 0.239150i 0.171202 + 0.0167439i
\(205\) −6.11664 + 6.11664i −0.427205 + 0.427205i
\(206\) 9.88435 + 4.67082i 0.688676 + 0.325431i
\(207\) 2.98260 0.207305
\(208\) −8.37014 12.4898i −0.580365 0.866013i
\(209\) −0.237894 −0.0164555
\(210\) 0 0
\(211\) 6.53423 6.53423i 0.449835 0.449835i −0.445465 0.895300i \(-0.646962\pi\)
0.895300 + 0.445465i \(0.146962\pi\)
\(212\) 0.286575 2.93016i 0.0196821 0.201244i
\(213\) −4.63335 4.63335i −0.317472 0.317472i
\(214\) 25.1624 9.01294i 1.72007 0.616112i
\(215\) 6.43345i 0.438757i
\(216\) −13.3092 7.95872i −0.905579 0.541522i
\(217\) 0 0
\(218\) −7.80192 21.7815i −0.528413 1.47523i
\(219\) −7.23326 7.23326i −0.488779 0.488779i
\(220\) −3.85001 + 3.16403i −0.259568 + 0.213319i
\(221\) −2.70638 + 2.70638i −0.182051 + 0.182051i
\(222\) 5.82170 12.3198i 0.390727 0.826853i
\(223\) −23.3350 −1.56263 −0.781315 0.624137i \(-0.785451\pi\)
−0.781315 + 0.624137i \(0.785451\pi\)
\(224\) 0 0
\(225\) 6.12964 0.408643
\(226\) 12.1539 25.7201i 0.808468 1.71087i
\(227\) −11.0658 + 11.0658i −0.734461 + 0.734461i −0.971500 0.237039i \(-0.923823\pi\)
0.237039 + 0.971500i \(0.423823\pi\)
\(228\) −0.180746 + 0.148541i −0.0119702 + 0.00983738i
\(229\) 18.9083 + 18.9083i 1.24950 + 1.24950i 0.955943 + 0.293553i \(0.0948377\pi\)
0.293553 + 0.955943i \(0.405162\pi\)
\(230\) −0.935237 2.61100i −0.0616677 0.172164i
\(231\) 0 0
\(232\) −10.3738 + 17.3479i −0.681072 + 1.13895i
\(233\) 12.7481i 0.835156i 0.908641 + 0.417578i \(0.137121\pi\)
−0.908641 + 0.417578i \(0.862879\pi\)
\(234\) 7.72929 2.76856i 0.505280 0.180987i
\(235\) 8.66021 + 8.66021i 0.564930 + 0.564930i
\(236\) −1.40305 + 14.3459i −0.0913308 + 0.933836i
\(237\) −0.739782 + 0.739782i −0.0480540 + 0.0480540i
\(238\) 0 0
\(239\) 14.9688 0.968253 0.484127 0.874998i \(-0.339137\pi\)
0.484127 + 0.874998i \(0.339137\pi\)
\(240\) −0.949525 + 4.80791i −0.0612916 + 0.310349i
\(241\) 19.8105 1.27611 0.638054 0.769992i \(-0.279740\pi\)
0.638054 + 0.769992i \(0.279740\pi\)
\(242\) 6.36788 + 3.00912i 0.409343 + 0.193434i
\(243\) 9.94057 9.94057i 0.637688 0.637688i
\(244\) 9.12186 + 0.892134i 0.583967 + 0.0571130i
\(245\) 0 0
\(246\) −13.6816 + 4.90061i −0.872305 + 0.312452i
\(247\) 0.364451i 0.0231895i
\(248\) −23.4934 + 5.91037i −1.49183 + 0.375309i
\(249\) 9.28693i 0.588535i
\(250\) −4.34355 12.1263i −0.274710 0.766938i
\(251\) 9.23966 + 9.23966i 0.583202 + 0.583202i 0.935782 0.352580i \(-0.114695\pi\)
−0.352580 + 0.935782i \(0.614695\pi\)
\(252\) 0 0
\(253\) 3.35028 3.35028i 0.210630 0.210630i
\(254\) 0.597511 1.26445i 0.0374912 0.0793386i
\(255\) 1.24756 0.0781252
\(256\) −14.7987 6.08252i −0.924922 0.380158i
\(257\) 23.2219 1.44854 0.724271 0.689516i \(-0.242177\pi\)
0.724271 + 0.689516i \(0.242177\pi\)
\(258\) −4.61788 + 9.77231i −0.287496 + 0.608398i
\(259\) 0 0
\(260\) −4.84726 5.89818i −0.300614 0.365790i
\(261\) −7.80479 7.80479i −0.483104 0.483104i
\(262\) −3.75657 10.4876i −0.232081 0.647926i
\(263\) 4.52013i 0.278723i −0.990242 0.139361i \(-0.955495\pi\)
0.990242 0.139361i \(-0.0445050\pi\)
\(264\) −8.11923 + 2.04261i −0.499704 + 0.125714i
\(265\) 1.49496i 0.0918345i
\(266\) 0 0
\(267\) 3.87278 + 3.87278i 0.237011 + 0.237011i
\(268\) −6.97965 0.682622i −0.426350 0.0416978i
\(269\) 0.282106 0.282106i 0.0172003 0.0172003i −0.698454 0.715655i \(-0.746128\pi\)
0.715655 + 0.698454i \(0.246128\pi\)
\(270\) −7.11934 3.36422i −0.433269 0.204740i
\(271\) 10.6217 0.645221 0.322611 0.946532i \(-0.395440\pi\)
0.322611 + 0.946532i \(0.395440\pi\)
\(272\) −0.789149 + 3.99584i −0.0478492 + 0.242284i
\(273\) 0 0
\(274\) 14.1428 + 6.68313i 0.854397 + 0.403742i
\(275\) 6.88526 6.88526i 0.415197 0.415197i
\(276\) 0.453544 4.63738i 0.0273001 0.279137i
\(277\) −8.14182 8.14182i −0.489195 0.489195i 0.418857 0.908052i \(-0.362431\pi\)
−0.908052 + 0.418857i \(0.862431\pi\)
\(278\) −23.3764 + 8.37321i −1.40202 + 0.502192i
\(279\) 13.2287i 0.791981i
\(280\) 0 0
\(281\) 18.6360i 1.11173i 0.831272 + 0.555866i \(0.187613\pi\)
−0.831272 + 0.555866i \(0.812387\pi\)
\(282\) 6.93850 + 19.3710i 0.413182 + 1.15352i
\(283\) 6.42639 + 6.42639i 0.382009 + 0.382009i 0.871826 0.489817i \(-0.162936\pi\)
−0.489817 + 0.871826i \(0.662936\pi\)
\(284\) 8.39222 6.89691i 0.497986 0.409257i
\(285\) −0.0840005 + 0.0840005i −0.00497576 + 0.00497576i
\(286\) 5.57226 11.7920i 0.329495 0.697274i
\(287\) 0 0
\(288\) 5.19267 7.02655i 0.305981 0.414044i
\(289\) −15.9632 −0.939009
\(290\) −4.38509 + 9.27969i −0.257501 + 0.544922i
\(291\) −13.9927 + 13.9927i −0.820265 + 0.820265i
\(292\) 13.1014 10.7670i 0.766699 0.630091i
\(293\) −12.0193 12.0193i −0.702174 0.702174i 0.262703 0.964877i \(-0.415386\pi\)
−0.964877 + 0.262703i \(0.915386\pi\)
\(294\) 0 0
\(295\) 7.31920i 0.426140i
\(296\) 19.3871 + 11.5932i 1.12685 + 0.673841i
\(297\) 13.4519i 0.780557i
\(298\) −6.97646 + 2.49891i −0.404136 + 0.144758i
\(299\) 5.13259 + 5.13259i 0.296826 + 0.296826i
\(300\) 0.932092 9.53042i 0.0538143 0.550239i
\(301\) 0 0
\(302\) −1.74328 0.823782i −0.100315 0.0474033i
\(303\) −11.0962 −0.637462
\(304\) −0.215913 0.322182i −0.0123834 0.0184784i
\(305\) 4.65393 0.266483
\(306\) −2.01092 0.950256i −0.114957 0.0543225i
\(307\) 17.8339 17.8339i 1.01784 1.01784i 0.0179975 0.999838i \(-0.494271\pi\)
0.999838 0.0179975i \(-0.00572909\pi\)
\(308\) 0 0
\(309\) 6.59462 + 6.59462i 0.375155 + 0.375155i
\(310\) −11.5805 + 4.14804i −0.657730 + 0.235593i
\(311\) 6.54459i 0.371109i −0.982634 0.185555i \(-0.940592\pi\)
0.982634 0.185555i \(-0.0594082\pi\)
\(312\) −3.12925 12.4386i −0.177159 0.704196i
\(313\) 19.1734i 1.08375i −0.840461 0.541873i \(-0.817715\pi\)
0.840461 0.541873i \(-0.182285\pi\)
\(314\) −0.151555 0.423112i −0.00855274 0.0238776i
\(315\) 0 0
\(316\) −1.10119 1.33994i −0.0619470 0.0753776i
\(317\) 13.3082 13.3082i 0.747464 0.747464i −0.226538 0.974002i \(-0.572741\pi\)
0.974002 + 0.226538i \(0.0727407\pi\)
\(318\) 1.07307 2.27082i 0.0601747 0.127341i
\(319\) −17.5338 −0.981706
\(320\) −7.77935 2.34244i −0.434879 0.130946i
\(321\) 22.8010 1.27263
\(322\) 0 0
\(323\) −0.0698127 + 0.0698127i −0.00388448 + 0.00388448i
\(324\) −2.51551 3.06090i −0.139751 0.170050i
\(325\) 10.5482 + 10.5482i 0.585106 + 0.585106i
\(326\) −7.07864 19.7622i −0.392050 1.09453i
\(327\) 19.7374i 1.09148i
\(328\) −5.87783 23.3640i −0.324549 1.29006i
\(329\) 0 0
\(330\) −4.00219 + 1.43355i −0.220313 + 0.0789143i
\(331\) 6.92509 + 6.92509i 0.380637 + 0.380637i 0.871332 0.490694i \(-0.163257\pi\)
−0.490694 + 0.871332i \(0.663257\pi\)
\(332\) 15.3225 + 1.49857i 0.840932 + 0.0822446i
\(333\) −8.72222 + 8.72222i −0.477975 + 0.477975i
\(334\) 18.6663 + 8.82071i 1.02138 + 0.482648i
\(335\) −3.56099 −0.194558
\(336\) 0 0
\(337\) 4.91600 0.267792 0.133896 0.990995i \(-0.457251\pi\)
0.133896 + 0.990995i \(0.457251\pi\)
\(338\) 1.44285 + 0.681813i 0.0784806 + 0.0370857i
\(339\) 17.1598 17.1598i 0.931995 0.931995i
\(340\) −0.201310 + 2.05835i −0.0109176 + 0.111630i
\(341\) −14.8594 14.8594i −0.804684 0.804684i
\(342\) 0.199382 0.0714167i 0.0107813 0.00386178i
\(343\) 0 0
\(344\) −15.3782 9.19593i −0.829137 0.495811i
\(345\) 2.36597i 0.127380i
\(346\) −5.88992 16.4435i −0.316644 0.884008i
\(347\) 6.61363 + 6.61363i 0.355038 + 0.355038i 0.861980 0.506942i \(-0.169224\pi\)
−0.506942 + 0.861980i \(0.669224\pi\)
\(348\) −13.3218 + 10.9481i −0.714122 + 0.586882i
\(349\) −17.2061 + 17.2061i −0.921021 + 0.921021i −0.997102 0.0760810i \(-0.975759\pi\)
0.0760810 + 0.997102i \(0.475759\pi\)
\(350\) 0 0
\(351\) 20.6081 1.09998
\(352\) −2.05995 13.7255i −0.109796 0.731573i
\(353\) −8.16944 −0.434815 −0.217408 0.976081i \(-0.569760\pi\)
−0.217408 + 0.976081i \(0.569760\pi\)
\(354\) −5.25366 + 11.1178i −0.279229 + 0.590902i
\(355\) 3.90022 3.90022i 0.207002 0.207002i
\(356\) −7.01464 + 5.76479i −0.371775 + 0.305533i
\(357\) 0 0
\(358\) −0.224944 0.628001i −0.0118887 0.0331909i
\(359\) 11.5693i 0.610604i 0.952256 + 0.305302i \(0.0987574\pi\)
−0.952256 + 0.305302i \(0.901243\pi\)
\(360\) 2.27689 3.80760i 0.120003 0.200678i
\(361\) 18.9906i 0.999505i
\(362\) −29.1191 + 10.4302i −1.53047 + 0.548199i
\(363\) 4.24851 + 4.24851i 0.222989 + 0.222989i
\(364\) 0 0
\(365\) 6.08876 6.08876i 0.318700 0.318700i
\(366\) 7.06926 + 3.34056i 0.369516 + 0.174614i
\(367\) 8.50712 0.444068 0.222034 0.975039i \(-0.428730\pi\)
0.222034 + 0.975039i \(0.428730\pi\)
\(368\) 7.57803 + 1.49660i 0.395032 + 0.0780159i
\(369\) 13.1558 0.684866
\(370\) 10.3705 + 4.90055i 0.539136 + 0.254767i
\(371\) 0 0
\(372\) −20.5681 2.01159i −1.06641 0.104296i
\(373\) 3.70893 + 3.70893i 0.192041 + 0.192041i 0.796577 0.604536i \(-0.206642\pi\)
−0.604536 + 0.796577i \(0.706642\pi\)
\(374\) −3.32622 + 1.19142i −0.171995 + 0.0616069i
\(375\) 10.9883i 0.567436i
\(376\) −33.0798 + 8.32209i −1.70596 + 0.429179i
\(377\) 26.8616i 1.38344i
\(378\) 0 0
\(379\) −3.62966 3.62966i −0.186443 0.186443i 0.607713 0.794156i \(-0.292087\pi\)
−0.794156 + 0.607713i \(0.792087\pi\)
\(380\) −0.125038 0.152147i −0.00641431 0.00780498i
\(381\) 0.843612 0.843612i 0.0432195 0.0432195i
\(382\) −3.67495 + 7.77690i −0.188027 + 0.397901i
\(383\) −6.96253 −0.355769 −0.177884 0.984051i \(-0.556925\pi\)
−0.177884 + 0.984051i \(0.556925\pi\)
\(384\) −10.1353 9.14209i −0.517217 0.466530i
\(385\) 0 0
\(386\) −6.07950 + 12.8654i −0.309438 + 0.654831i
\(387\) 6.91862 6.91862i 0.351693 0.351693i
\(388\) −20.8286 25.3444i −1.05741 1.28667i
\(389\) −9.32025 9.32025i −0.472555 0.472555i 0.430185 0.902741i \(-0.358448\pi\)
−0.902741 + 0.430185i \(0.858448\pi\)
\(390\) −2.19618 6.13132i −0.111208 0.310471i
\(391\) 1.96636i 0.0994429i
\(392\) 0 0
\(393\) 9.50339i 0.479383i
\(394\) 18.9861 6.80066i 0.956507 0.342612i
\(395\) −0.622728 0.622728i −0.0313329 0.0313329i
\(396\) 7.54300 + 0.737718i 0.379050 + 0.0370717i
\(397\) 4.41374 4.41374i 0.221519 0.221519i −0.587619 0.809138i \(-0.699934\pi\)
0.809138 + 0.587619i \(0.199934\pi\)
\(398\) −14.9091 7.04524i −0.747325 0.353146i
\(399\) 0 0
\(400\) 15.5739 + 3.07572i 0.778693 + 0.153786i
\(401\) −15.9015 −0.794085 −0.397042 0.917800i \(-0.629963\pi\)
−0.397042 + 0.917800i \(0.629963\pi\)
\(402\) −5.40909 2.55605i −0.269781 0.127484i
\(403\) 22.7645 22.7645i 1.13398 1.13398i
\(404\) 1.79052 18.3077i 0.0890819 0.910842i
\(405\) −1.42253 1.42253i −0.0706861 0.0706861i
\(406\) 0 0
\(407\) 19.5949i 0.971282i
\(408\) −1.78325 + 2.98211i −0.0882843 + 0.147636i
\(409\) 5.70265i 0.281978i 0.990011 + 0.140989i \(0.0450282\pi\)
−0.990011 + 0.140989i \(0.954972\pi\)
\(410\) −4.12520 11.5168i −0.203729 0.568772i
\(411\) 9.43575 + 9.43575i 0.465431 + 0.465431i
\(412\) −11.9446 + 9.81634i −0.588468 + 0.483616i
\(413\) 0 0
\(414\) −1.80214 + 3.81368i −0.0885704 + 0.187432i
\(415\) 7.81748 0.383745
\(416\) 21.0274 3.15583i 1.03095 0.154727i
\(417\) −21.1826 −1.03732
\(418\) 0.143740 0.304181i 0.00703054 0.0148780i
\(419\) −4.57142 + 4.57142i −0.223328 + 0.223328i −0.809898 0.586570i \(-0.800478\pi\)
0.586570 + 0.809898i \(0.300478\pi\)
\(420\) 0 0
\(421\) 0.421252 + 0.421252i 0.0205306 + 0.0205306i 0.717298 0.696767i \(-0.245379\pi\)
−0.696767 + 0.717298i \(0.745379\pi\)
\(422\) 4.40683 + 12.3030i 0.214521 + 0.598902i
\(423\) 18.6266i 0.905657i
\(424\) 3.57347 + 2.13688i 0.173543 + 0.103776i
\(425\) 4.04112i 0.196023i
\(426\) 8.72393 3.12483i 0.422676 0.151399i
\(427\) 0 0
\(428\) −3.67924 + 37.6194i −0.177843 + 1.81840i
\(429\) 7.86734 7.86734i 0.379839 0.379839i
\(430\) −8.22606 3.88720i −0.396696 0.187457i
\(431\) −21.1036 −1.01652 −0.508262 0.861202i \(-0.669712\pi\)
−0.508262 + 0.861202i \(0.669712\pi\)
\(432\) 18.2180 12.2089i 0.876515 0.587402i
\(433\) −13.9717 −0.671436 −0.335718 0.941962i \(-0.608979\pi\)
−0.335718 + 0.941962i \(0.608979\pi\)
\(434\) 0 0
\(435\) −6.19120 + 6.19120i −0.296845 + 0.296845i
\(436\) 32.5647 + 3.18488i 1.55957 + 0.152528i
\(437\) 0.132398 + 0.132398i 0.00633347 + 0.00633347i
\(438\) 13.6192 4.87828i 0.650751 0.233093i
\(439\) 5.41926i 0.258647i −0.991602 0.129324i \(-0.958719\pi\)
0.991602 0.129324i \(-0.0412806\pi\)
\(440\) −1.71941 6.83455i −0.0819696 0.325824i
\(441\) 0 0
\(442\) −1.82525 5.09573i −0.0868181 0.242379i
\(443\) 4.27297 + 4.27297i 0.203015 + 0.203015i 0.801290 0.598276i \(-0.204147\pi\)
−0.598276 + 0.801290i \(0.704147\pi\)
\(444\) 12.2351 + 14.8877i 0.580650 + 0.706540i
\(445\) −3.26000 + 3.26000i −0.154539 + 0.154539i
\(446\) 14.0994 29.8371i 0.667628 1.41283i
\(447\) −6.32175 −0.299009
\(448\) 0 0
\(449\) 18.4262 0.869587 0.434794 0.900530i \(-0.356821\pi\)
0.434794 + 0.900530i \(0.356821\pi\)
\(450\) −3.70364 + 7.83761i −0.174591 + 0.369468i
\(451\) 14.7776 14.7776i 0.695851 0.695851i
\(452\) 25.5431 + 31.0810i 1.20145 + 1.46193i
\(453\) −1.16308 1.16308i −0.0546462 0.0546462i
\(454\) −7.46301 20.8353i −0.350257 0.977848i
\(455\) 0 0
\(456\) −0.0807208 0.320860i −0.00378010 0.0150257i
\(457\) 35.9724i 1.68272i 0.540478 + 0.841358i \(0.318243\pi\)
−0.540478 + 0.841358i \(0.681757\pi\)
\(458\) −35.6016 + 12.7522i −1.66356 + 0.595871i
\(459\) −3.94761 3.94761i −0.184258 0.184258i
\(460\) 3.90362 + 0.381781i 0.182007 + 0.0178006i
\(461\) −0.903879 + 0.903879i −0.0420978 + 0.0420978i −0.727842 0.685745i \(-0.759477\pi\)
0.685745 + 0.727842i \(0.259477\pi\)
\(462\) 0 0
\(463\) −12.5999 −0.585565 −0.292782 0.956179i \(-0.594581\pi\)
−0.292782 + 0.956179i \(0.594581\pi\)
\(464\) −15.9137 23.7462i −0.738775 1.10239i
\(465\) −10.4937 −0.486636
\(466\) −16.3002 7.70263i −0.755094 0.356817i
\(467\) −5.86130 + 5.86130i −0.271228 + 0.271228i −0.829595 0.558366i \(-0.811428\pi\)
0.558366 + 0.829595i \(0.311428\pi\)
\(468\) −1.13018 + 11.5558i −0.0522424 + 0.534167i
\(469\) 0 0
\(470\) −16.3059 + 5.84064i −0.752137 + 0.269409i
\(471\) 0.383405i 0.0176664i
\(472\) −17.4955 10.4620i −0.805294 0.481553i
\(473\) 15.5430i 0.714668i
\(474\) −0.498926 1.39290i −0.0229164 0.0639782i
\(475\) 0.272096 + 0.272096i 0.0124846 + 0.0124846i
\(476\) 0 0
\(477\) −1.60770 + 1.60770i −0.0736114 + 0.0736114i
\(478\) −9.04443 + 19.1397i −0.413683 + 0.875432i
\(479\) 9.27836 0.423939 0.211969 0.977276i \(-0.432012\pi\)
0.211969 + 0.977276i \(0.432012\pi\)
\(480\) −5.57386 4.11912i −0.254411 0.188011i
\(481\) −30.0192 −1.36876
\(482\) −11.9699 + 25.3305i −0.545212 + 1.15377i
\(483\) 0 0
\(484\) −7.69517 + 6.32407i −0.349781 + 0.287458i
\(485\) −11.7786 11.7786i −0.534841 0.534841i
\(486\) 6.70415 + 18.7167i 0.304106 + 0.849006i
\(487\) 38.6868i 1.75307i −0.481342 0.876533i \(-0.659851\pi\)
0.481342 0.876533i \(-0.340149\pi\)
\(488\) −6.65231 + 11.1245i −0.301136 + 0.503584i
\(489\) 17.9076i 0.809810i
\(490\) 0 0
\(491\) −29.8086 29.8086i −1.34524 1.34524i −0.890750 0.454494i \(-0.849820\pi\)
−0.454494 0.890750i \(-0.650180\pi\)
\(492\) 2.00052 20.4548i 0.0901903 0.922175i
\(493\) −5.14550 + 5.14550i −0.231742 + 0.231742i
\(494\) 0.466002 + 0.220208i 0.0209664 + 0.00990761i
\(495\) 3.84841 0.172973
\(496\) 6.63786 33.6107i 0.298049 1.50917i
\(497\) 0 0
\(498\) 11.8746 + 5.61132i 0.532115 + 0.251449i
\(499\) −7.90565 + 7.90565i −0.353905 + 0.353905i −0.861560 0.507655i \(-0.830512\pi\)
0.507655 + 0.861560i \(0.330512\pi\)
\(500\) 18.1297 + 1.77311i 0.810784 + 0.0792961i
\(501\) 12.4537 + 12.4537i 0.556392 + 0.556392i
\(502\) −17.3970 + 6.23144i −0.776464 + 0.278123i
\(503\) 18.1532i 0.809409i 0.914448 + 0.404704i \(0.132626\pi\)
−0.914448 + 0.404704i \(0.867374\pi\)
\(504\) 0 0
\(505\) 9.34050i 0.415647i
\(506\) 2.25951 + 6.30810i 0.100447 + 0.280429i
\(507\) 0.962635 + 0.962635i 0.0427521 + 0.0427521i
\(508\) 1.25575 + 1.52800i 0.0557148 + 0.0677942i
\(509\) 1.44869 1.44869i 0.0642121 0.0642121i −0.674271 0.738484i \(-0.735542\pi\)
0.738484 + 0.674271i \(0.235542\pi\)
\(510\) −0.753798 + 1.59518i −0.0333787 + 0.0706358i
\(511\) 0 0
\(512\) 16.7190 15.2471i 0.738883 0.673834i
\(513\) 0.531599 0.0234707
\(514\) −14.0311 + 29.6924i −0.618884 + 1.30968i
\(515\) −5.55117 + 5.55117i −0.244614 + 0.244614i
\(516\) −9.70507 11.8092i −0.427242 0.519871i
\(517\) −20.9228 20.9228i −0.920183 0.920183i
\(518\) 0 0
\(519\) 14.9004i 0.654053i
\(520\) 10.4705 2.63412i 0.459160 0.115514i
\(521\) 2.90874i 0.127434i −0.997968 0.0637172i \(-0.979704\pi\)
0.997968 0.0637172i \(-0.0202956\pi\)
\(522\) 14.6953 5.26373i 0.643196 0.230387i
\(523\) 11.7145 + 11.7145i 0.512240 + 0.512240i 0.915212 0.402972i \(-0.132023\pi\)
−0.402972 + 0.915212i \(0.632023\pi\)
\(524\) 15.6797 + 1.53350i 0.684969 + 0.0669911i
\(525\) 0 0
\(526\) 5.77962 + 2.73114i 0.252003 + 0.119083i
\(527\) −8.72134 −0.379908
\(528\) 2.29402 11.6158i 0.0998346 0.505511i
\(529\) 19.2708 0.837863
\(530\) 1.91151 + 0.903279i 0.0830308 + 0.0392359i
\(531\) 7.87117 7.87117i 0.341580 0.341580i
\(532\) 0 0
\(533\) 22.6392 + 22.6392i 0.980611 + 0.980611i
\(534\) −7.29190 + 2.61189i −0.315552 + 0.113028i
\(535\) 19.1933i 0.829797i
\(536\) 5.09006 8.51201i 0.219857 0.367663i
\(537\) 0.569066i 0.0245570i
\(538\) 0.190258 + 0.531165i 0.00820262 + 0.0229001i
\(539\) 0 0
\(540\) 8.60326 7.07035i 0.370225 0.304260i
\(541\) 5.13565 5.13565i 0.220799 0.220799i −0.588036 0.808835i \(-0.700099\pi\)
0.808835 + 0.588036i \(0.200099\pi\)
\(542\) −6.41780 + 13.5813i −0.275668 + 0.583367i
\(543\) −26.3864 −1.13235
\(544\) −4.63243 3.42340i −0.198614 0.146777i
\(545\) 16.6144 0.711682
\(546\) 0 0
\(547\) 18.2712 18.2712i 0.781218 0.781218i −0.198818 0.980036i \(-0.563710\pi\)
0.980036 + 0.198818i \(0.0637103\pi\)
\(548\) −17.0906 + 14.0455i −0.730076 + 0.599993i
\(549\) −5.00491 5.00491i −0.213604 0.213604i
\(550\) 4.64358 + 12.9640i 0.198003 + 0.552786i
\(551\) 0.692912i 0.0295190i
\(552\) 5.65550 + 3.38190i 0.240714 + 0.143943i
\(553\) 0 0
\(554\) 15.3299 5.49103i 0.651305 0.233291i
\(555\) 6.91896 + 6.91896i 0.293694 + 0.293694i
\(556\) 3.41809 34.9492i 0.144960 1.48218i
\(557\) 3.50389 3.50389i 0.148465 0.148465i −0.628967 0.777432i \(-0.716522\pi\)
0.777432 + 0.628967i \(0.216522\pi\)
\(558\) 16.9147 + 7.99300i 0.716058 + 0.338371i
\(559\) 23.8117 1.00713
\(560\) 0 0
\(561\) −3.01407 −0.127254
\(562\) −23.8288 11.2602i −1.00516 0.474983i
\(563\) −17.1928 + 17.1928i −0.724591 + 0.724591i −0.969537 0.244946i \(-0.921230\pi\)
0.244946 + 0.969537i \(0.421230\pi\)
\(564\) −28.9608 2.83242i −1.21947 0.119266i
\(565\) 14.4447 + 14.4447i 0.607693 + 0.607693i
\(566\) −12.1000 + 4.33410i −0.508600 + 0.182176i
\(567\) 0 0
\(568\) 3.74795 + 14.8979i 0.157260 + 0.625100i
\(569\) 2.70044i 0.113208i −0.998397 0.0566041i \(-0.981973\pi\)
0.998397 0.0566041i \(-0.0180273\pi\)
\(570\) −0.0566518 0.158161i −0.00237288 0.00662463i
\(571\) −9.38460 9.38460i −0.392733 0.392733i 0.482927 0.875660i \(-0.339574\pi\)
−0.875660 + 0.482927i \(0.839574\pi\)
\(572\) 11.7108 + 14.2498i 0.489654 + 0.595815i
\(573\) −5.18857 + 5.18857i −0.216756 + 0.216756i
\(574\) 0 0
\(575\) −7.66390 −0.319607
\(576\) 5.84693 + 10.8851i 0.243622 + 0.453547i
\(577\) −24.8922 −1.03627 −0.518137 0.855298i \(-0.673374\pi\)
−0.518137 + 0.855298i \(0.673374\pi\)
\(578\) 9.64522 20.4111i 0.401188 0.848991i
\(579\) −8.58350 + 8.58350i −0.356718 + 0.356718i
\(580\) −9.21584 11.2139i −0.382667 0.465632i
\(581\) 0 0
\(582\) −9.43697 26.3462i −0.391175 1.09209i
\(583\) 3.61177i 0.149584i
\(584\) 5.85104 + 23.2575i 0.242118 + 0.962403i
\(585\) 5.89572i 0.243758i
\(586\) 22.6306 8.10608i 0.934862 0.334859i
\(587\) 23.9315 + 23.9315i 0.987758 + 0.987758i 0.999926 0.0121684i \(-0.00387340\pi\)
−0.0121684 + 0.999926i \(0.503873\pi\)
\(588\) 0 0
\(589\) 0.587224 0.587224i 0.0241961 0.0241961i
\(590\) −9.35862 4.42239i −0.385288 0.182067i
\(591\) 17.2044 0.707692
\(592\) −26.5376 + 17.7843i −1.09069 + 0.730931i
\(593\) 1.79017 0.0735134 0.0367567 0.999324i \(-0.488297\pi\)
0.0367567 + 0.999324i \(0.488297\pi\)
\(594\) 17.2001 + 8.12786i 0.705729 + 0.333490i
\(595\) 0 0
\(596\) 1.02010 10.4303i 0.0417849 0.427241i
\(597\) −9.94701 9.94701i −0.407104 0.407104i
\(598\) −9.66394 + 3.46154i −0.395188 + 0.141553i
\(599\) 43.1613i 1.76352i 0.471696 + 0.881761i \(0.343642\pi\)
−0.471696 + 0.881761i \(0.656358\pi\)
\(600\) 11.6228 + 6.95026i 0.474499 + 0.283743i
\(601\) 27.6564i 1.12813i 0.825730 + 0.564065i \(0.190763\pi\)
−0.825730 + 0.564065i \(0.809237\pi\)
\(602\) 0 0
\(603\) 3.82954 + 3.82954i 0.155951 + 0.155951i
\(604\) 2.10664 1.73129i 0.0857180 0.0704450i
\(605\) −3.57628 + 3.57628i −0.145396 + 0.145396i
\(606\) 6.70454 14.1881i 0.272353 0.576352i
\(607\) −21.5936 −0.876455 −0.438228 0.898864i \(-0.644394\pi\)
−0.438228 + 0.898864i \(0.644394\pi\)
\(608\) 0.542413 0.0814064i 0.0219978 0.00330147i
\(609\) 0 0
\(610\) −2.81199 + 5.95071i −0.113854 + 0.240937i
\(611\) 32.0535 32.0535i 1.29675 1.29675i
\(612\) 2.43007 1.99709i 0.0982298 0.0807275i
\(613\) −7.01823 7.01823i −0.283464 0.283464i 0.551025 0.834489i \(-0.314237\pi\)
−0.834489 + 0.551025i \(0.814237\pi\)
\(614\) 12.0276 + 33.5787i 0.485395 + 1.35513i
\(615\) 10.4360i 0.420819i
\(616\) 0 0
\(617\) 14.2458i 0.573515i 0.958003 + 0.286758i \(0.0925774\pi\)
−0.958003 + 0.286758i \(0.907423\pi\)
\(618\) −12.4167 + 4.44756i −0.499474 + 0.178907i
\(619\) 25.8337 + 25.8337i 1.03834 + 1.03834i 0.999235 + 0.0391090i \(0.0124519\pi\)
0.0391090 + 0.999235i \(0.487548\pi\)
\(620\) 1.69330 17.3137i 0.0680048 0.695333i
\(621\) −7.48655 + 7.48655i −0.300425 + 0.300425i
\(622\) 8.36817 + 3.95435i 0.335533 + 0.158555i
\(623\) 0 0
\(624\) 17.7952 + 3.51442i 0.712379 + 0.140689i
\(625\) −10.5936 −0.423746
\(626\) 24.5159 + 11.5849i 0.979853 + 0.463026i
\(627\) 0.202943 0.202943i 0.00810475 0.00810475i
\(628\) 0.632580 + 0.0618674i 0.0252427 + 0.00246878i
\(629\) 5.75034 + 5.75034i 0.229281 + 0.229281i
\(630\) 0 0
\(631\) 4.87006i 0.193874i −0.995291 0.0969370i \(-0.969095\pi\)
0.995291 0.0969370i \(-0.0309045\pi\)
\(632\) 2.37866 0.598415i 0.0946182 0.0238037i
\(633\) 11.1484i 0.443111i
\(634\) 8.97537 + 25.0575i 0.356458 + 0.995160i
\(635\) 0.710129 + 0.710129i 0.0281806 + 0.0281806i
\(636\) 2.25519 + 2.74414i 0.0894242 + 0.108812i
\(637\) 0 0
\(638\) 10.5942 22.4195i 0.419430 0.887595i
\(639\) −8.38871 −0.331852
\(640\) 7.69556 8.53165i 0.304194 0.337243i
\(641\) 34.3879 1.35824 0.679120 0.734027i \(-0.262362\pi\)
0.679120 + 0.734027i \(0.262362\pi\)
\(642\) −13.7768 + 29.1543i −0.543726 + 1.15063i
\(643\) −11.9018 + 11.9018i −0.469361 + 0.469361i −0.901708 0.432346i \(-0.857686\pi\)
0.432346 + 0.901708i \(0.357686\pi\)
\(644\) 0 0
\(645\) −5.48825 5.48825i −0.216099 0.216099i
\(646\) −0.0470833 0.131447i −0.00185247 0.00517173i
\(647\) 5.26762i 0.207092i −0.994625 0.103546i \(-0.966981\pi\)
0.994625 0.103546i \(-0.0330188\pi\)
\(648\) 5.43370 1.36699i 0.213456 0.0537005i
\(649\) 17.6830i 0.694117i
\(650\) −19.8607 + 7.11392i −0.779000 + 0.279031i
\(651\) 0 0
\(652\) 29.5458 + 2.88963i 1.15710 + 0.113167i
\(653\) −24.2555 + 24.2555i −0.949190 + 0.949190i −0.998770 0.0495806i \(-0.984212\pi\)
0.0495806 + 0.998770i \(0.484212\pi\)
\(654\) 25.2370 + 11.9257i 0.986845 + 0.466330i
\(655\) 7.99969 0.312574
\(656\) 33.4257 + 6.60131i 1.30505 + 0.257738i
\(657\) −13.0959 −0.510919
\(658\) 0 0
\(659\) −14.4817 + 14.4817i −0.564126 + 0.564126i −0.930477 0.366351i \(-0.880607\pi\)
0.366351 + 0.930477i \(0.380607\pi\)
\(660\) 0.585200 5.98354i 0.0227789 0.232909i
\(661\) −11.2258 11.2258i −0.436633 0.436633i 0.454244 0.890877i \(-0.349909\pi\)
−0.890877 + 0.454244i \(0.849909\pi\)
\(662\) −13.0390 + 4.67044i −0.506774 + 0.181522i
\(663\) 4.61752i 0.179330i
\(664\) −11.1743 + 18.6865i −0.433646 + 0.725178i
\(665\) 0 0
\(666\) −5.88246 16.4227i −0.227941 0.636367i
\(667\) 9.75833 + 9.75833i 0.377844 + 0.377844i
\(668\) −22.5570 + 18.5379i −0.872758 + 0.717252i
\(669\) 19.9067 19.9067i 0.769636 0.769636i
\(670\) 2.15161 4.55322i 0.0831240 0.175906i
\(671\) −11.2438 −0.434061
\(672\) 0 0
\(673\) −8.09831 −0.312167 −0.156083 0.987744i \(-0.549887\pi\)
−0.156083 + 0.987744i \(0.549887\pi\)
\(674\) −2.97033 + 6.28580i −0.114413 + 0.242120i
\(675\) −15.3858 + 15.3858i −0.592201 + 0.592201i
\(676\) −1.74359 + 1.43292i −0.0670611 + 0.0551123i
\(677\) −16.0136 16.0136i −0.615452 0.615452i 0.328909 0.944362i \(-0.393319\pi\)
−0.944362 + 0.328909i \(0.893319\pi\)
\(678\) 11.5730 + 32.3095i 0.444458 + 1.24084i
\(679\) 0 0
\(680\) −2.51026 1.50110i −0.0962639 0.0575644i
\(681\) 18.8800i 0.723483i
\(682\) 27.9782 10.0215i 1.07134 0.383745i
\(683\) 26.9423 + 26.9423i 1.03092 + 1.03092i 0.999507 + 0.0314113i \(0.0100002\pi\)
0.0314113 + 0.999507i \(0.490000\pi\)
\(684\) −0.0291536 + 0.298089i −0.00111472 + 0.0113977i
\(685\) −7.94275 + 7.94275i −0.303477 + 0.303477i
\(686\) 0 0
\(687\) −32.2606 −1.23082
\(688\) 21.0501 14.1068i 0.802526 0.537818i
\(689\) −5.53319 −0.210798
\(690\) 3.02523 + 1.42956i 0.115168 + 0.0544225i
\(691\) 17.4925 17.4925i 0.665447 0.665447i −0.291211 0.956659i \(-0.594058\pi\)
0.956659 + 0.291211i \(0.0940583\pi\)
\(692\) 24.5841 + 2.40437i 0.934548 + 0.0914004i
\(693\) 0 0
\(694\) −12.4525 + 4.46038i −0.472691 + 0.169314i
\(695\) 17.8309i 0.676366i
\(696\) −5.94948 23.6488i −0.225514 0.896406i
\(697\) 8.67332i 0.328525i
\(698\) −11.6042 32.3966i −0.439225 1.22623i
\(699\) −10.8752 10.8752i −0.411336 0.411336i
\(700\) 0 0
\(701\) −10.6300 + 10.6300i −0.401489 + 0.401489i −0.878757 0.477269i \(-0.841627\pi\)
0.477269 + 0.878757i \(0.341627\pi\)
\(702\) −12.4518 + 26.3504i −0.469963 + 0.994531i
\(703\) −0.774362 −0.0292056
\(704\) 18.7947 + 5.65927i 0.708351 + 0.213292i
\(705\) −14.7757 −0.556485
\(706\) 4.93612 10.4458i 0.185773 0.393132i
\(707\) 0 0
\(708\) −11.0413 13.4351i −0.414956 0.504921i
\(709\) −2.50496 2.50496i −0.0940757 0.0940757i 0.658503 0.752578i \(-0.271190\pi\)
−0.752578 + 0.658503i \(0.771190\pi\)
\(710\) 2.63040 + 7.34357i 0.0987172 + 0.275599i
\(711\) 1.33938i 0.0502308i
\(712\) −3.13272 12.4524i −0.117404 0.466673i
\(713\) 16.5398i 0.619422i
\(714\) 0 0
\(715\) 6.62251 + 6.62251i 0.247668 + 0.247668i
\(716\) 0.938903 + 0.0918263i 0.0350884 + 0.00343171i
\(717\) −12.7696 + 12.7696i −0.476890 + 0.476890i
\(718\) −14.7930 6.99037i −0.552069 0.260878i
\(719\) 16.2120 0.604604 0.302302 0.953212i \(-0.402245\pi\)
0.302302 + 0.953212i \(0.402245\pi\)
\(720\) 3.49282 + 5.21194i 0.130170 + 0.194237i
\(721\) 0 0
\(722\) −24.2821 11.4745i −0.903688 0.427035i
\(723\) −16.9000 + 16.9000i −0.628516 + 0.628516i
\(724\) 4.25779 43.5350i 0.158240 1.61796i
\(725\) 20.0547 + 20.0547i 0.744811 + 0.744811i
\(726\) −7.99934 + 2.86529i −0.296883 + 0.106341i
\(727\) 14.2822i 0.529699i 0.964290 + 0.264849i \(0.0853223\pi\)
−0.964290 + 0.264849i \(0.914678\pi\)
\(728\) 0 0
\(729\) 22.9031i 0.848263i
\(730\) 4.10640 + 11.4643i 0.151985 + 0.424312i
\(731\) −4.56127 4.56127i −0.168705 0.168705i
\(732\) −8.54274 + 7.02062i −0.315749 + 0.259489i
\(733\) −24.3482 + 24.3482i −0.899322 + 0.899322i −0.995376 0.0960545i \(-0.969378\pi\)
0.0960545 + 0.995376i \(0.469378\pi\)
\(734\) −5.14015 + 10.8775i −0.189726 + 0.401497i
\(735\) 0 0
\(736\) −6.49240 + 8.78531i −0.239313 + 0.323831i
\(737\) 8.60324 0.316904
\(738\) −7.94899 + 16.8216i −0.292606 + 0.619211i
\(739\) −14.7533 + 14.7533i −0.542710 + 0.542710i −0.924322 0.381612i \(-0.875369\pi\)
0.381612 + 0.924322i \(0.375369\pi\)
\(740\) −12.5321 + 10.2991i −0.460688 + 0.378604i
\(741\) 0.310906 + 0.310906i 0.0114214 + 0.0114214i
\(742\) 0 0
\(743\) 30.1201i 1.10500i −0.833513 0.552500i \(-0.813674\pi\)
0.833513 0.552500i \(-0.186326\pi\)
\(744\) 14.9997 25.0837i 0.549916 0.919615i
\(745\) 5.32148i 0.194964i
\(746\) −6.98339 + 2.50139i −0.255680 + 0.0915823i
\(747\) −8.40703 8.40703i −0.307597 0.307597i
\(748\) 0.486359 4.97291i 0.0177831 0.181828i
\(749\) 0 0
\(750\) 14.0501 + 6.63935i 0.513039 + 0.242435i
\(751\) 45.2186 1.65005 0.825026 0.565095i \(-0.191161\pi\)
0.825026 + 0.565095i \(0.191161\pi\)
\(752\) 9.34643 47.3255i 0.340829 1.72578i
\(753\) −15.7643 −0.574484
\(754\) 34.3464 + 16.2303i 1.25082 + 0.591072i
\(755\) 0.979047 0.979047i 0.0356312 0.0356312i
\(756\) 0 0
\(757\) −10.1353 10.1353i −0.368375 0.368375i 0.498509 0.866884i \(-0.333881\pi\)
−0.866884 + 0.498509i \(0.833881\pi\)
\(758\) 6.83414 2.44793i 0.248227 0.0889127i
\(759\) 5.71611i 0.207482i
\(760\) 0.270091 0.0679486i 0.00979725 0.00246475i
\(761\) 19.7273i 0.715113i 0.933892 + 0.357556i \(0.116390\pi\)
−0.933892 + 0.357556i \(0.883610\pi\)
\(762\) 0.568951 + 1.58840i 0.0206109 + 0.0575417i
\(763\) 0 0
\(764\) −7.72339 9.39788i −0.279422 0.340003i
\(765\) 1.12936 1.12936i 0.0408321 0.0408321i
\(766\) 4.20688 8.90257i 0.152001 0.321663i
\(767\) 27.0901 0.978167
\(768\) 17.8134 7.43564i 0.642785 0.268311i
\(769\) −41.2736 −1.48837 −0.744183 0.667976i \(-0.767161\pi\)
−0.744183 + 0.667976i \(0.767161\pi\)
\(770\) 0 0
\(771\) −19.8101 + 19.8101i −0.713444 + 0.713444i
\(772\) −12.7769 15.5470i −0.459849 0.559548i
\(773\) −37.7572 37.7572i −1.35803 1.35803i −0.876342 0.481689i \(-0.840023\pi\)
−0.481689 0.876342i \(-0.659977\pi\)
\(774\) 4.66608 + 13.0268i 0.167719 + 0.468238i
\(775\) 33.9915i 1.22101i
\(776\) 44.9914 11.3188i 1.61510 0.406320i
\(777\) 0 0
\(778\) 17.5487 6.28579i 0.629152 0.225356i
\(779\) 0.583990 + 0.583990i 0.0209236 + 0.0209236i
\(780\) 9.16672 + 0.896521i 0.328221 + 0.0321006i
\(781\) −9.42282 + 9.42282i −0.337175 + 0.337175i
\(782\) 2.51426 + 1.18811i 0.0899098 + 0.0424866i
\(783\) 39.1812 1.40022
\(784\) 0 0
\(785\) 0.322740 0.0115191
\(786\) 12.1514 + 5.74212i 0.433427 + 0.204814i
\(787\) −0.361908 + 0.361908i −0.0129006 + 0.0129006i −0.713528 0.700627i \(-0.752904\pi\)
0.700627 + 0.713528i \(0.252904\pi\)
\(788\) −2.77615 + 28.3855i −0.0988962 + 1.01119i
\(789\) 3.85603 + 3.85603i 0.137278 + 0.137278i
\(790\) 1.17251 0.419982i 0.0417160 0.0149423i
\(791\) 0 0
\(792\) −5.50089 + 9.19905i −0.195466 + 0.326874i
\(793\) 17.2253i 0.611689i
\(794\) 2.97673 + 8.31045i 0.105640 + 0.294927i
\(795\) 1.27532 + 1.27532i 0.0452309 + 0.0452309i
\(796\) 18.0167 14.8065i 0.638584 0.524803i
\(797\) 35.5605 35.5605i 1.25962 1.25962i 0.308341 0.951276i \(-0.400226\pi\)
0.951276 0.308341i \(-0.0997736\pi\)
\(798\) 0 0
\(799\) −12.2801 −0.434438
\(800\) −13.3427 + 18.0550i −0.471737 + 0.638339i
\(801\) 7.01171 0.247747
\(802\) 9.60798 20.3323i 0.339270 0.717960i
\(803\) −14.7103 + 14.7103i −0.519114 + 0.519114i
\(804\) 6.53653 5.37187i 0.230526 0.189451i
\(805\) 0 0
\(806\) 15.3529 + 42.8623i 0.540783 + 1.50976i
\(807\) 0.481317i 0.0169432i
\(808\) 22.3271 + 13.3513i 0.785464 + 0.469696i
\(809\) 1.36026i 0.0478243i −0.999714 0.0239121i \(-0.992388\pi\)
0.999714 0.0239121i \(-0.00761220\pi\)
\(810\) 2.67842 0.959387i 0.0941102 0.0337094i
\(811\) 12.4370 + 12.4370i 0.436722 + 0.436722i 0.890907 0.454186i \(-0.150070\pi\)
−0.454186 + 0.890907i \(0.650070\pi\)
\(812\) 0 0
\(813\) −9.06114 + 9.06114i −0.317788 + 0.317788i
\(814\) −25.0548 11.8396i −0.878171 0.414977i
\(815\) 15.0741 0.528024
\(816\) −2.73557 4.08198i −0.0957640 0.142898i
\(817\) 0.614238 0.0214895
\(818\) −7.29164 3.44564i −0.254946 0.120474i
\(819\) 0 0
\(820\) 17.2183 + 1.68398i 0.601290 + 0.0588072i
\(821\) −3.90598 3.90598i −0.136320 0.136320i 0.635654 0.771974i \(-0.280730\pi\)
−0.771974 + 0.635654i \(0.780730\pi\)
\(822\) −17.7662 + 6.36368i −0.619666 + 0.221959i
\(823\) 19.0620i 0.664460i 0.943198 + 0.332230i \(0.107801\pi\)
−0.943198 + 0.332230i \(0.892199\pi\)
\(824\) −5.33444 21.2041i −0.185834 0.738678i
\(825\) 11.7474i 0.408991i
\(826\) 0 0
\(827\) 3.94521 + 3.94521i 0.137188 + 0.137188i 0.772366 0.635178i \(-0.219073\pi\)
−0.635178 + 0.772366i \(0.719073\pi\)
\(828\) −3.78744 4.60858i −0.131622 0.160159i
\(829\) −18.9628 + 18.9628i −0.658604 + 0.658604i −0.955050 0.296446i \(-0.904199\pi\)
0.296446 + 0.955050i \(0.404199\pi\)
\(830\) −4.72346 + 9.99575i −0.163954 + 0.346957i
\(831\) 13.8912 0.481882
\(832\) −8.66994 + 28.7932i −0.300576 + 0.998226i
\(833\) 0 0
\(834\) 12.7989 27.0850i 0.443190 0.937875i
\(835\) −10.4832 + 10.4832i −0.362787 + 0.362787i
\(836\) 0.302088 + 0.367583i 0.0104479 + 0.0127131i
\(837\) 33.2050 + 33.2050i 1.14773 + 1.14773i
\(838\) −3.08307 8.60733i −0.106503 0.297335i
\(839\) 5.34140i 0.184406i −0.995740 0.0922028i \(-0.970609\pi\)
0.995740 0.0922028i \(-0.0293908\pi\)
\(840\) 0 0
\(841\) 22.0706i 0.761056i
\(842\) −0.793158 + 0.284102i −0.0273340 + 0.00979081i
\(843\) −15.8980 15.8980i −0.547557 0.547557i
\(844\) −18.3938 1.79895i −0.633142 0.0619223i
\(845\) −0.810320 + 0.810320i −0.0278759 + 0.0278759i
\(846\) 23.8167 + 11.2545i 0.818837 + 0.386939i
\(847\) 0 0
\(848\) −4.89146 + 3.27804i −0.167973 + 0.112568i
\(849\) −10.9644 −0.376299
\(850\) 5.16714 + 2.44171i 0.177231 + 0.0837501i
\(851\) 10.9054 10.9054i 0.373832 0.373832i
\(852\) −1.27561 + 13.0429i −0.0437018 + 0.446841i
\(853\) 1.42841 + 1.42841i 0.0489078 + 0.0489078i 0.731138 0.682230i \(-0.238990\pi\)
−0.682230 + 0.731138i \(0.738990\pi\)
\(854\) 0 0
\(855\) 0.152084i 0.00520115i
\(856\) −45.8786 27.4347i −1.56810 0.937700i
\(857\) 25.5816i 0.873852i −0.899498 0.436926i \(-0.856067\pi\)
0.899498 0.436926i \(-0.143933\pi\)
\(858\) 5.30591 + 14.8131i 0.181141 + 0.505710i
\(859\) −32.2295 32.2295i −1.09966 1.09966i −0.994450 0.105207i \(-0.966449\pi\)
−0.105207 0.994450i \(-0.533551\pi\)
\(860\) 9.94066 8.16946i 0.338974 0.278576i
\(861\) 0 0
\(862\) 12.7512 26.9839i 0.434306 0.919075i
\(863\) 39.4446 1.34271 0.671356 0.741135i \(-0.265712\pi\)
0.671356 + 0.741135i \(0.265712\pi\)
\(864\) 4.60318 + 30.6711i 0.156603 + 1.04345i
\(865\) 12.5427 0.426465
\(866\) 8.44194 17.8648i 0.286869 0.607069i
\(867\) 13.6178 13.6178i 0.462486 0.462486i
\(868\) 0 0
\(869\) 1.50449 + 1.50449i 0.0510364 + 0.0510364i
\(870\) −4.17549 11.6572i −0.141562 0.395215i
\(871\) 13.1801i 0.446590i
\(872\) −23.7485 + 39.7142i −0.804225 + 1.34489i
\(873\) 25.3338i 0.857421i
\(874\) −0.249287 + 0.0892924i −0.00843226 + 0.00302036i
\(875\) 0 0
\(876\) −1.99140 + 20.3616i −0.0672832 + 0.687955i
\(877\) −7.45394 + 7.45394i −0.251702 + 0.251702i −0.821668 0.569966i \(-0.806956\pi\)
0.569966 + 0.821668i \(0.306956\pi\)
\(878\) 6.92928 + 3.27441i 0.233852 + 0.110506i
\(879\) 20.5068 0.691678
\(880\) 9.77782 + 1.93105i 0.329610 + 0.0650955i
\(881\) −15.4426 −0.520274 −0.260137 0.965572i \(-0.583768\pi\)
−0.260137 + 0.965572i \(0.583768\pi\)
\(882\) 0 0
\(883\) 10.0224 10.0224i 0.337280 0.337280i −0.518063 0.855343i \(-0.673347\pi\)
0.855343 + 0.518063i \(0.173347\pi\)
\(884\) 7.61845 + 0.745098i 0.256236 + 0.0250603i
\(885\) −6.24386 6.24386i −0.209885 0.209885i
\(886\) −8.04539 + 2.88179i −0.270290 + 0.0968155i
\(887\) 43.7662i 1.46953i 0.678324 + 0.734763i \(0.262707\pi\)
−0.678324 + 0.734763i \(0.737293\pi\)
\(888\) −26.4287 + 6.64883i −0.886888 + 0.223120i
\(889\) 0 0
\(890\) −2.19862 6.13812i −0.0736979 0.205750i
\(891\) 3.43679 + 3.43679i 0.115137 + 0.115137i
\(892\) 29.6318 + 36.0562i 0.992147 + 1.20725i
\(893\) 0.826839 0.826839i 0.0276691 0.0276691i
\(894\) 3.81971 8.08325i 0.127750 0.270344i
\(895\) 0.479024 0.0160120
\(896\) 0 0
\(897\) −8.75703 −0.292389
\(898\) −11.1334 + 23.5605i −0.371528 + 0.786225i
\(899\) 43.2810 43.2810i 1.44350 1.44350i
\(900\) −7.78368 9.47124i −0.259456 0.315708i
\(901\) 1.05992 + 1.05992i 0.0353109 + 0.0353109i
\(902\) 9.96636 + 27.8242i 0.331844 + 0.926443i
\(903\) 0 0
\(904\) −55.1750 + 13.8807i −1.83509 + 0.461666i
\(905\) 22.2113i 0.738330i
\(906\) 2.18991 0.784406i 0.0727549 0.0260602i
\(907\) −34.3143 34.3143i −1.13939 1.13939i −0.988560 0.150829i \(-0.951806\pi\)
−0.150829 0.988560i \(-0.548194\pi\)
\(908\) 31.1501 + 3.04653i 1.03375 + 0.101103i
\(909\) −10.0449 + 10.0449i −0.333169 + 0.333169i
\(910\) 0 0
\(911\) −35.2525 −1.16797 −0.583983 0.811766i \(-0.698507\pi\)
−0.583983 + 0.811766i \(0.698507\pi\)
\(912\) 0.459038 + 0.0906565i 0.0152003 + 0.00300194i
\(913\) −18.8868 −0.625062
\(914\) −45.9957 21.7351i −1.52140 0.718934i
\(915\) −3.97018 + 3.97018i −0.131250 + 0.131250i
\(916\) 5.20567 53.2268i 0.172000 1.75866i
\(917\) 0 0
\(918\) 7.43278 2.66236i 0.245318 0.0878708i
\(919\) 25.5452i 0.842657i 0.906908 + 0.421329i \(0.138436\pi\)
−0.906908 + 0.421329i \(0.861564\pi\)
\(920\) −2.84679 + 4.76065i −0.0938560 + 0.156954i
\(921\) 30.4275i 1.00262i
\(922\) −0.609597 1.70188i −0.0200760 0.0560483i
\(923\) −14.4357 14.4357i −0.475156 0.475156i
\(924\) 0 0
\(925\) 22.4120 22.4120i 0.736903 0.736903i
\(926\) 7.61305 16.1107i 0.250180 0.529430i
\(927\) 11.9396 0.392148
\(928\) 39.9782 6.00001i 1.31235 0.196960i
\(929\) 3.97030 0.130261 0.0651306 0.997877i \(-0.479254\pi\)
0.0651306 + 0.997877i \(0.479254\pi\)
\(930\) 6.34051 13.4177i 0.207913 0.439985i
\(931\) 0 0
\(932\) 19.6978 16.1881i 0.645222 0.530258i
\(933\) 5.58306 + 5.58306i 0.182781 + 0.182781i
\(934\) −3.95299 11.0360i −0.129346 0.361109i
\(935\) 2.53716i 0.0829740i
\(936\) −14.0928 8.42731i −0.460639 0.275455i
\(937\) 18.3326i 0.598899i 0.954112 + 0.299450i \(0.0968031\pi\)
−0.954112 + 0.299450i \(0.903197\pi\)
\(938\) 0 0
\(939\) 16.3565 + 16.3565i 0.533773 + 0.533773i
\(940\) 2.38425 24.3784i 0.0777658 0.795137i
\(941\) 21.0781 21.0781i 0.687126 0.687126i −0.274470 0.961596i \(-0.588502\pi\)
0.961596 + 0.274470i \(0.0885023\pi\)
\(942\) 0.490237 + 0.231660i 0.0159728 + 0.00754788i
\(943\) −16.4488 −0.535646
\(944\) 23.9482 16.0491i 0.779448 0.522352i
\(945\) 0 0
\(946\) 19.8739 + 9.39136i 0.646157 + 0.305339i
\(947\) 19.9001 19.9001i 0.646666 0.646666i −0.305520 0.952186i \(-0.598830\pi\)
0.952186 + 0.305520i \(0.0988302\pi\)
\(948\) 2.08248 + 0.203671i 0.0676360 + 0.00661491i
\(949\) −22.5360 22.5360i −0.731549 0.731549i
\(950\) −0.512318 + 0.183508i −0.0166218 + 0.00595378i
\(951\) 22.7060i 0.736291i
\(952\) 0 0
\(953\) 9.54510i 0.309196i −0.987977 0.154598i \(-0.950592\pi\)
0.987977 0.154598i \(-0.0494083\pi\)
\(954\) −1.08427 3.02707i −0.0351045 0.0980049i
\(955\) −4.36760 4.36760i −0.141332 0.141332i
\(956\) −19.0081 23.1291i −0.614764 0.748050i
\(957\) 14.9578 14.9578i 0.483516 0.483516i
\(958\) −5.60615 + 11.8637i −0.181126 + 0.383298i
\(959\) 0 0
\(960\) 8.63470 4.63812i 0.278684 0.149695i
\(961\) 42.3589 1.36642
\(962\) 18.1381 38.3837i 0.584796 1.23754i
\(963\) 20.6407 20.6407i 0.665138 0.665138i
\(964\) −25.1562 30.6103i −0.810228 0.985892i
\(965\) −7.22535 7.22535i −0.232592 0.232592i
\(966\) 0 0
\(967\) 54.0255i 1.73734i 0.495388 + 0.868672i \(0.335026\pi\)
−0.495388 + 0.868672i \(0.664974\pi\)
\(968\) −3.43665 13.6605i −0.110458 0.439064i
\(969\) 0.119112i 0.00382642i
\(970\) 22.1775 7.94379i 0.712077 0.255060i
\(971\) 4.21246 + 4.21246i 0.135184 + 0.135184i 0.771461 0.636277i \(-0.219526\pi\)
−0.636277 + 0.771461i \(0.719526\pi\)
\(972\) −27.9827 2.73675i −0.897544 0.0877813i
\(973\) 0 0
\(974\) 49.4665 + 23.3752i 1.58501 + 0.748991i
\(975\) −17.9968 −0.576360
\(976\) −10.2048 15.2275i −0.326649 0.487422i
\(977\) −29.2997 −0.937381 −0.468690 0.883363i \(-0.655274\pi\)
−0.468690 + 0.883363i \(0.655274\pi\)
\(978\) 22.8974 + 10.8201i 0.732178 + 0.345988i
\(979\) 7.87607 7.87607i 0.251720 0.251720i
\(980\) 0 0
\(981\) −17.8673 17.8673i −0.570460 0.570460i
\(982\) 56.1254 20.1036i 1.79103 0.641532i
\(983\) 15.9859i 0.509871i 0.966958 + 0.254936i \(0.0820543\pi\)
−0.966958 + 0.254936i \(0.917946\pi\)
\(984\) 24.9456 + 14.9171i 0.795238 + 0.475540i
\(985\) 14.4822i 0.461440i
\(986\) −3.47024 9.68825i −0.110515 0.308537i
\(987\) 0 0
\(988\) −0.563133 + 0.462795i −0.0179156 + 0.0147235i
\(989\) −8.65036 + 8.65036i −0.275065 + 0.275065i
\(990\) −2.32527 + 4.92073i −0.0739021 + 0.156391i
\(991\) 20.7652 0.659628 0.329814 0.944046i \(-0.393014\pi\)
0.329814 + 0.944046i \(0.393014\pi\)
\(992\) 38.9653 + 28.7956i 1.23715 + 0.914262i
\(993\) −11.8153 −0.374948
\(994\) 0 0
\(995\) 8.37312 8.37312i 0.265446 0.265446i
\(996\) −14.3497 + 11.7929i −0.454689 + 0.373673i
\(997\) 35.1562 + 35.1562i 1.11341 + 1.11341i 0.992687 + 0.120721i \(0.0385205\pi\)
0.120721 + 0.992687i \(0.461479\pi\)
\(998\) −5.33175 14.8852i −0.168774 0.471183i
\(999\) 43.7868i 1.38535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.m.j.197.5 24
7.2 even 3 112.2.w.c.53.12 yes 48
7.3 odd 6 784.2.x.o.373.5 48
7.4 even 3 112.2.w.c.37.5 48
7.5 odd 6 784.2.x.o.165.12 48
7.6 odd 2 784.2.m.k.197.5 24
16.13 even 4 inner 784.2.m.j.589.5 24
28.11 odd 6 448.2.ba.c.177.4 48
28.23 odd 6 448.2.ba.c.305.9 48
56.11 odd 6 896.2.ba.e.737.9 48
56.37 even 6 896.2.ba.f.865.9 48
56.51 odd 6 896.2.ba.e.865.4 48
56.53 even 6 896.2.ba.f.737.4 48
112.11 odd 12 896.2.ba.e.289.4 48
112.13 odd 4 784.2.m.k.589.5 24
112.37 even 12 896.2.ba.f.417.4 48
112.45 odd 12 784.2.x.o.765.12 48
112.51 odd 12 448.2.ba.c.81.4 48
112.53 even 12 896.2.ba.f.289.9 48
112.61 odd 12 784.2.x.o.557.5 48
112.67 odd 12 448.2.ba.c.401.9 48
112.93 even 12 112.2.w.c.109.5 yes 48
112.107 odd 12 896.2.ba.e.417.9 48
112.109 even 12 112.2.w.c.93.12 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.5 48 7.4 even 3
112.2.w.c.53.12 yes 48 7.2 even 3
112.2.w.c.93.12 yes 48 112.109 even 12
112.2.w.c.109.5 yes 48 112.93 even 12
448.2.ba.c.81.4 48 112.51 odd 12
448.2.ba.c.177.4 48 28.11 odd 6
448.2.ba.c.305.9 48 28.23 odd 6
448.2.ba.c.401.9 48 112.67 odd 12
784.2.m.j.197.5 24 1.1 even 1 trivial
784.2.m.j.589.5 24 16.13 even 4 inner
784.2.m.k.197.5 24 7.6 odd 2
784.2.m.k.589.5 24 112.13 odd 4
784.2.x.o.165.12 48 7.5 odd 6
784.2.x.o.373.5 48 7.3 odd 6
784.2.x.o.557.5 48 112.61 odd 12
784.2.x.o.765.12 48 112.45 odd 12
896.2.ba.e.289.4 48 112.11 odd 12
896.2.ba.e.417.9 48 112.107 odd 12
896.2.ba.e.737.9 48 56.11 odd 6
896.2.ba.e.865.4 48 56.51 odd 6
896.2.ba.f.289.9 48 112.53 even 12
896.2.ba.f.417.4 48 112.37 even 12
896.2.ba.f.737.4 48 56.53 even 6
896.2.ba.f.865.9 48 56.37 even 6