Properties

Label 784.2.m.k.589.5
Level $784$
Weight $2$
Character 784.589
Analytic conductor $6.260$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(197,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 589.5
Character \(\chi\) \(=\) 784.589
Dual form 784.2.m.k.197.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.604218 - 1.27864i) q^{2} +(0.853080 + 0.853080i) q^{3} +(-1.26984 + 1.54515i) q^{4} +(0.718099 - 0.718099i) q^{5} +(0.575337 - 1.60623i) q^{6} +(2.74296 + 0.690063i) q^{8} -1.54451i q^{9} +(-1.35208 - 0.484303i) q^{10} +(1.73491 - 1.73491i) q^{11} +(-2.40142 + 0.234863i) q^{12} +(2.65786 + 2.65786i) q^{13} +1.22519 q^{15} +(-0.775001 - 3.92420i) q^{16} -1.01826 q^{17} +(-1.97487 + 0.933219i) q^{18} +(0.0685610 + 0.0685610i) q^{19} +(0.197701 + 2.02145i) q^{20} +(-3.26658 - 1.17006i) q^{22} +1.93110i q^{23} +(1.75128 + 2.92864i) q^{24} +3.96867i q^{25} +(1.79252 - 5.00437i) q^{26} +(3.87683 - 3.87683i) q^{27} +(-5.05325 - 5.05325i) q^{29} +(-0.740283 - 1.56658i) q^{30} +8.56498 q^{31} +(-4.54938 + 3.36202i) q^{32} +2.96003 q^{33} +(0.615248 + 1.30198i) q^{34} +(2.38650 + 1.96128i) q^{36} +(5.64724 - 5.64724i) q^{37} +(0.0462391 - 0.129091i) q^{38} +4.53473i q^{39} +(2.46525 - 1.47418i) q^{40} -8.51782i q^{41} +(-4.47950 + 4.47950i) q^{43} +(0.477640 + 4.88375i) q^{44} +(-1.10911 - 1.10911i) q^{45} +(2.46918 - 1.16681i) q^{46} +12.0599 q^{47} +(2.68652 - 4.00880i) q^{48} +(5.07450 - 2.39794i) q^{50} +(-0.868654 - 0.868654i) q^{51} +(-7.48186 + 0.731739i) q^{52} +(1.04091 - 1.04091i) q^{53} +(-7.29952 - 2.61462i) q^{54} -2.49167i q^{55} +0.116976i q^{57} +(-3.40803 + 9.51455i) q^{58} +(5.09623 - 5.09623i) q^{59} +(-1.55580 + 1.89311i) q^{60} +(3.24045 + 3.24045i) q^{61} +(-5.17511 - 10.9515i) q^{62} +(7.04763 + 3.78563i) q^{64} +3.81721 q^{65} +(-1.78850 - 3.78481i) q^{66} +(2.47945 + 2.47945i) q^{67} +(1.29302 - 1.57336i) q^{68} +(-1.64738 + 1.64738i) q^{69} -5.43131i q^{71} +(1.06581 - 4.23652i) q^{72} +8.47900i q^{73} +(-10.6330 - 3.80863i) q^{74} +(-3.38559 + 3.38559i) q^{75} +(-0.192999 + 0.0188756i) q^{76} +(5.79829 - 2.73996i) q^{78} +0.867190 q^{79} +(-3.37450 - 2.26144i) q^{80} +1.98097 q^{81} +(-10.8912 + 5.14661i) q^{82} +(5.44318 + 5.44318i) q^{83} +(-0.731209 + 0.731209i) q^{85} +(8.43425 + 3.02107i) q^{86} -8.62165i q^{87} +(5.95597 - 3.56158i) q^{88} -4.53977i q^{89} +(-0.748010 + 2.08830i) q^{90} +(-2.98385 - 2.45219i) q^{92} +(7.30661 + 7.30661i) q^{93} +(-7.28680 - 15.4203i) q^{94} +0.0984673 q^{95} +(-6.74905 - 1.01291i) q^{96} -16.4025 q^{97} +(-2.67958 - 2.67958i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 4 q^{4} + 4 q^{5} + 2 q^{6} - 2 q^{8} - 2 q^{10} + 4 q^{11} + 2 q^{12} + 12 q^{13} - 20 q^{15} - 16 q^{16} + 8 q^{17} - 18 q^{18} - 4 q^{19} + 8 q^{20} + 18 q^{24} - 10 q^{26} + 12 q^{27}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.604218 1.27864i −0.427246 0.904135i
\(3\) 0.853080 + 0.853080i 0.492526 + 0.492526i 0.909101 0.416575i \(-0.136770\pi\)
−0.416575 + 0.909101i \(0.636770\pi\)
\(4\) −1.26984 + 1.54515i −0.634921 + 0.772577i
\(5\) 0.718099 0.718099i 0.321144 0.321144i −0.528062 0.849206i \(-0.677081\pi\)
0.849206 + 0.528062i \(0.177081\pi\)
\(6\) 0.575337 1.60623i 0.234880 0.655740i
\(7\) 0 0
\(8\) 2.74296 + 0.690063i 0.969782 + 0.243974i
\(9\) 1.54451i 0.514836i
\(10\) −1.35208 0.484303i −0.427565 0.153150i
\(11\) 1.73491 1.73491i 0.523094 0.523094i −0.395411 0.918504i \(-0.629398\pi\)
0.918504 + 0.395411i \(0.129398\pi\)
\(12\) −2.40142 + 0.234863i −0.693229 + 0.0677990i
\(13\) 2.65786 + 2.65786i 0.737157 + 0.737157i 0.972027 0.234870i \(-0.0754663\pi\)
−0.234870 + 0.972027i \(0.575466\pi\)
\(14\) 0 0
\(15\) 1.22519 0.316343
\(16\) −0.775001 3.92420i −0.193750 0.981051i
\(17\) −1.01826 −0.246963 −0.123482 0.992347i \(-0.539406\pi\)
−0.123482 + 0.992347i \(0.539406\pi\)
\(18\) −1.97487 + 0.933219i −0.465482 + 0.219962i
\(19\) 0.0685610 + 0.0685610i 0.0157290 + 0.0157290i 0.714928 0.699199i \(-0.246460\pi\)
−0.699199 + 0.714928i \(0.746460\pi\)
\(20\) 0.197701 + 2.02145i 0.0442073 + 0.452009i
\(21\) 0 0
\(22\) −3.26658 1.17006i −0.696438 0.249458i
\(23\) 1.93110i 0.402662i 0.979523 + 0.201331i \(0.0645268\pi\)
−0.979523 + 0.201331i \(0.935473\pi\)
\(24\) 1.75128 + 2.92864i 0.357479 + 0.597806i
\(25\) 3.96867i 0.793733i
\(26\) 1.79252 5.00437i 0.351542 0.981438i
\(27\) 3.87683 3.87683i 0.746096 0.746096i
\(28\) 0 0
\(29\) −5.05325 5.05325i −0.938365 0.938365i 0.0598432 0.998208i \(-0.480940\pi\)
−0.998208 + 0.0598432i \(0.980940\pi\)
\(30\) −0.740283 1.56658i −0.135157 0.286017i
\(31\) 8.56498 1.53832 0.769158 0.639059i \(-0.220676\pi\)
0.769158 + 0.639059i \(0.220676\pi\)
\(32\) −4.54938 + 3.36202i −0.804224 + 0.594327i
\(33\) 2.96003 0.515275
\(34\) 0.615248 + 1.30198i 0.105514 + 0.223288i
\(35\) 0 0
\(36\) 2.38650 + 1.96128i 0.397751 + 0.326880i
\(37\) 5.64724 5.64724i 0.928401 0.928401i −0.0692014 0.997603i \(-0.522045\pi\)
0.997603 + 0.0692014i \(0.0220451\pi\)
\(38\) 0.0462391 0.129091i 0.00750098 0.0209413i
\(39\) 4.53473i 0.726138i
\(40\) 2.46525 1.47418i 0.389790 0.233089i
\(41\) 8.51782i 1.33026i −0.746728 0.665130i \(-0.768376\pi\)
0.746728 0.665130i \(-0.231624\pi\)
\(42\) 0 0
\(43\) −4.47950 + 4.47950i −0.683117 + 0.683117i −0.960701 0.277584i \(-0.910466\pi\)
0.277584 + 0.960701i \(0.410466\pi\)
\(44\) 0.477640 + 4.88375i 0.0720069 + 0.736254i
\(45\) −1.10911 1.10911i −0.165336 0.165336i
\(46\) 2.46918 1.16681i 0.364061 0.172036i
\(47\) 12.0599 1.75912 0.879559 0.475791i \(-0.157838\pi\)
0.879559 + 0.475791i \(0.157838\pi\)
\(48\) 2.68652 4.00880i 0.387766 0.578620i
\(49\) 0 0
\(50\) 5.07450 2.39794i 0.717642 0.339120i
\(51\) −0.868654 0.868654i −0.121636 0.121636i
\(52\) −7.48186 + 0.731739i −1.03755 + 0.101474i
\(53\) 1.04091 1.04091i 0.142980 0.142980i −0.631993 0.774974i \(-0.717763\pi\)
0.774974 + 0.631993i \(0.217763\pi\)
\(54\) −7.29952 2.61462i −0.993339 0.355805i
\(55\) 2.49167i 0.335977i
\(56\) 0 0
\(57\) 0.116976i 0.0154939i
\(58\) −3.40803 + 9.51455i −0.447496 + 1.24932i
\(59\) 5.09623 5.09623i 0.663472 0.663472i −0.292724 0.956197i \(-0.594562\pi\)
0.956197 + 0.292724i \(0.0945618\pi\)
\(60\) −1.55580 + 1.89311i −0.200853 + 0.244400i
\(61\) 3.24045 + 3.24045i 0.414897 + 0.414897i 0.883441 0.468543i \(-0.155221\pi\)
−0.468543 + 0.883441i \(0.655221\pi\)
\(62\) −5.17511 10.9515i −0.657240 1.39085i
\(63\) 0 0
\(64\) 7.04763 + 3.78563i 0.880953 + 0.473203i
\(65\) 3.81721 0.473467
\(66\) −1.78850 3.78481i −0.220149 0.465878i
\(67\) 2.47945 + 2.47945i 0.302913 + 0.302913i 0.842153 0.539239i \(-0.181288\pi\)
−0.539239 + 0.842153i \(0.681288\pi\)
\(68\) 1.29302 1.57336i 0.156802 0.190798i
\(69\) −1.64738 + 1.64738i −0.198322 + 0.198322i
\(70\) 0 0
\(71\) 5.43131i 0.644578i −0.946641 0.322289i \(-0.895548\pi\)
0.946641 0.322289i \(-0.104452\pi\)
\(72\) 1.06581 4.23652i 0.125607 0.499279i
\(73\) 8.47900i 0.992392i 0.868211 + 0.496196i \(0.165270\pi\)
−0.868211 + 0.496196i \(0.834730\pi\)
\(74\) −10.6330 3.80863i −1.23606 0.442744i
\(75\) −3.38559 + 3.38559i −0.390934 + 0.390934i
\(76\) −0.192999 + 0.0188756i −0.0221385 + 0.00216518i
\(77\) 0 0
\(78\) 5.79829 2.73996i 0.656527 0.310240i
\(79\) 0.867190 0.0975665 0.0487832 0.998809i \(-0.484466\pi\)
0.0487832 + 0.998809i \(0.484466\pi\)
\(80\) −3.37450 2.26144i −0.377280 0.252837i
\(81\) 1.98097 0.220107
\(82\) −10.8912 + 5.14661i −1.20273 + 0.568349i
\(83\) 5.44318 + 5.44318i 0.597466 + 0.597466i 0.939638 0.342171i \(-0.111162\pi\)
−0.342171 + 0.939638i \(0.611162\pi\)
\(84\) 0 0
\(85\) −0.731209 + 0.731209i −0.0793108 + 0.0793108i
\(86\) 8.43425 + 3.02107i 0.909489 + 0.325771i
\(87\) 8.62165i 0.924338i
\(88\) 5.95597 3.56158i 0.634908 0.379666i
\(89\) 4.53977i 0.481214i −0.970623 0.240607i \(-0.922653\pi\)
0.970623 0.240607i \(-0.0773465\pi\)
\(90\) −0.748010 + 2.08830i −0.0788471 + 0.220126i
\(91\) 0 0
\(92\) −2.98385 2.45219i −0.311088 0.255659i
\(93\) 7.30661 + 7.30661i 0.757660 + 0.757660i
\(94\) −7.28680 15.4203i −0.751576 1.59048i
\(95\) 0.0984673 0.0101025
\(96\) −6.74905 1.01291i −0.688822 0.103380i
\(97\) −16.4025 −1.66542 −0.832712 0.553706i \(-0.813213\pi\)
−0.832712 + 0.553706i \(0.813213\pi\)
\(98\) 0 0
\(99\) −2.67958 2.67958i −0.269308 0.269308i
\(100\) −6.13220 5.03958i −0.613220 0.503958i
\(101\) −6.50363 + 6.50363i −0.647135 + 0.647135i −0.952300 0.305164i \(-0.901289\pi\)
0.305164 + 0.952300i \(0.401289\pi\)
\(102\) −0.585840 + 1.63555i −0.0580068 + 0.161944i
\(103\) 7.73036i 0.761695i −0.924638 0.380848i \(-0.875632\pi\)
0.924638 0.380848i \(-0.124368\pi\)
\(104\) 5.45630 + 9.12448i 0.535034 + 0.894729i
\(105\) 0 0
\(106\) −1.95989 0.702015i −0.190361 0.0681857i
\(107\) −13.3639 + 13.3639i −1.29194 + 1.29194i −0.358354 + 0.933586i \(0.616662\pi\)
−0.933586 + 0.358354i \(0.883338\pi\)
\(108\) 1.06734 + 10.9133i 0.102704 + 1.05013i
\(109\) −11.5683 11.5683i −1.10804 1.10804i −0.993408 0.114634i \(-0.963430\pi\)
−0.114634 0.993408i \(-0.536570\pi\)
\(110\) −3.18595 + 1.50551i −0.303768 + 0.143545i
\(111\) 9.63510 0.914524
\(112\) 0 0
\(113\) −20.1152 −1.89228 −0.946138 0.323765i \(-0.895051\pi\)
−0.946138 + 0.323765i \(0.895051\pi\)
\(114\) 0.149570 0.0706790i 0.0140085 0.00661970i
\(115\) 1.38672 + 1.38672i 0.129313 + 0.129313i
\(116\) 14.2249 1.39122i 1.32075 0.129171i
\(117\) 4.10509 4.10509i 0.379515 0.379515i
\(118\) −9.59547 3.43701i −0.883335 0.316403i
\(119\) 0 0
\(120\) 3.36065 + 0.845460i 0.306784 + 0.0771796i
\(121\) 4.98020i 0.452745i
\(122\) 2.18544 6.10131i 0.197860 0.552387i
\(123\) 7.26638 7.26638i 0.655187 0.655187i
\(124\) −10.8762 + 13.2342i −0.976709 + 1.18847i
\(125\) 6.44039 + 6.44039i 0.576046 + 0.576046i
\(126\) 0 0
\(127\) −0.988901 −0.0877508 −0.0438754 0.999037i \(-0.513970\pi\)
−0.0438754 + 0.999037i \(0.513970\pi\)
\(128\) 0.582154 11.2987i 0.0514556 0.998675i
\(129\) −7.64274 −0.672905
\(130\) −2.30643 4.88084i −0.202287 0.428078i
\(131\) 5.57005 + 5.57005i 0.486657 + 0.486657i 0.907250 0.420592i \(-0.138178\pi\)
−0.420592 + 0.907250i \(0.638178\pi\)
\(132\) −3.75877 + 4.57370i −0.327159 + 0.398089i
\(133\) 0 0
\(134\) 1.67220 4.66846i 0.144456 0.403293i
\(135\) 5.56790i 0.479208i
\(136\) −2.79303 0.702661i −0.239501 0.0602527i
\(137\) 11.0608i 0.944988i 0.881334 + 0.472494i \(0.156646\pi\)
−0.881334 + 0.472494i \(0.843354\pi\)
\(138\) 3.10179 + 1.11103i 0.264042 + 0.0945774i
\(139\) −12.4154 + 12.4154i −1.05306 + 1.05306i −0.0545473 + 0.998511i \(0.517372\pi\)
−0.998511 + 0.0545473i \(0.982628\pi\)
\(140\) 0 0
\(141\) 10.2881 + 10.2881i 0.866411 + 0.866411i
\(142\) −6.94470 + 3.28170i −0.582786 + 0.275394i
\(143\) 9.22227 0.771205
\(144\) −6.06097 + 1.19700i −0.505081 + 0.0997496i
\(145\) −7.25747 −0.602700
\(146\) 10.8416 5.12316i 0.897256 0.423996i
\(147\) 0 0
\(148\) 1.55475 + 15.8970i 0.127800 + 1.30672i
\(149\) 3.70525 3.70525i 0.303546 0.303546i −0.538853 0.842400i \(-0.681142\pi\)
0.842400 + 0.538853i \(0.181142\pi\)
\(150\) 6.37459 + 2.28332i 0.520483 + 0.186432i
\(151\) 1.36339i 0.110951i −0.998460 0.0554754i \(-0.982333\pi\)
0.998460 0.0554754i \(-0.0176674\pi\)
\(152\) 0.140749 + 0.235371i 0.0114162 + 0.0190911i
\(153\) 1.57271i 0.127146i
\(154\) 0 0
\(155\) 6.15051 6.15051i 0.494021 0.494021i
\(156\) −7.00686 5.75840i −0.560998 0.461041i
\(157\) 0.224718 + 0.224718i 0.0179344 + 0.0179344i 0.716017 0.698083i \(-0.245963\pi\)
−0.698083 + 0.716017i \(0.745963\pi\)
\(158\) −0.523971 1.10882i −0.0416849 0.0882133i
\(159\) 1.77596 0.140843
\(160\) −0.852640 + 5.68117i −0.0674071 + 0.449136i
\(161\) 0 0
\(162\) −1.19693 2.53294i −0.0940400 0.199007i
\(163\) −10.4959 10.4959i −0.822098 0.822098i 0.164310 0.986409i \(-0.447460\pi\)
−0.986409 + 0.164310i \(0.947460\pi\)
\(164\) 13.1613 + 10.8163i 1.02773 + 0.844610i
\(165\) 2.12559 2.12559i 0.165477 0.165477i
\(166\) 3.67100 10.2487i 0.284925 0.795455i
\(167\) 14.5986i 1.12967i −0.825204 0.564836i \(-0.808940\pi\)
0.825204 0.564836i \(-0.191060\pi\)
\(168\) 0 0
\(169\) 1.12842i 0.0868018i
\(170\) 1.37676 + 0.493144i 0.105593 + 0.0378224i
\(171\) 0.105893 0.105893i 0.00809785 0.00809785i
\(172\) −1.23326 12.6098i −0.0940349 0.961485i
\(173\) 8.73327 + 8.73327i 0.663978 + 0.663978i 0.956315 0.292337i \(-0.0944330\pi\)
−0.292337 + 0.956315i \(0.594433\pi\)
\(174\) −11.0240 + 5.20935i −0.835727 + 0.394920i
\(175\) 0 0
\(176\) −8.15268 5.46357i −0.614531 0.411832i
\(177\) 8.69498 0.653555
\(178\) −5.80473 + 2.74301i −0.435083 + 0.205597i
\(179\) −0.333536 0.333536i −0.0249297 0.0249297i 0.694532 0.719462i \(-0.255611\pi\)
−0.719462 + 0.694532i \(0.755611\pi\)
\(180\) 3.12214 0.305351i 0.232711 0.0227595i
\(181\) −15.4654 + 15.4654i −1.14953 + 1.14953i −0.162887 + 0.986645i \(0.552081\pi\)
−0.986645 + 0.162887i \(0.947919\pi\)
\(182\) 0 0
\(183\) 5.52873i 0.408696i
\(184\) −1.33258 + 5.29693i −0.0982392 + 0.390495i
\(185\) 8.11057i 0.596301i
\(186\) 4.92775 13.7573i 0.361320 1.00874i
\(187\) −1.76658 + 1.76658i −0.129185 + 0.129185i
\(188\) −15.3142 + 18.6344i −1.11690 + 1.35905i
\(189\) 0 0
\(190\) −0.0594956 0.125904i −0.00431627 0.00913405i
\(191\) 6.08216 0.440090 0.220045 0.975490i \(-0.429380\pi\)
0.220045 + 0.975490i \(0.429380\pi\)
\(192\) 2.78275 + 9.24163i 0.200828 + 0.666957i
\(193\) 10.0618 0.724262 0.362131 0.932127i \(-0.382049\pi\)
0.362131 + 0.932127i \(0.382049\pi\)
\(194\) 9.91069 + 20.9729i 0.711546 + 1.50577i
\(195\) 3.25639 + 3.25639i 0.233195 + 0.233195i
\(196\) 0 0
\(197\) −10.0837 + 10.0837i −0.718432 + 0.718432i −0.968284 0.249852i \(-0.919618\pi\)
0.249852 + 0.968284i \(0.419618\pi\)
\(198\) −1.80717 + 5.04527i −0.128430 + 0.358551i
\(199\) 11.6601i 0.826563i 0.910603 + 0.413282i \(0.135617\pi\)
−0.910603 + 0.413282i \(0.864383\pi\)
\(200\) −2.73863 + 10.8859i −0.193650 + 0.769748i
\(201\) 4.23034i 0.298386i
\(202\) 12.2454 + 4.38620i 0.861584 + 0.308612i
\(203\) 0 0
\(204\) 2.44526 0.239150i 0.171202 0.0167439i
\(205\) −6.11664 6.11664i −0.427205 0.427205i
\(206\) −9.88435 + 4.67082i −0.688676 + 0.325431i
\(207\) 2.98260 0.207305
\(208\) 8.37014 12.4898i 0.580365 0.866013i
\(209\) 0.237894 0.0164555
\(210\) 0 0
\(211\) 6.53423 + 6.53423i 0.449835 + 0.449835i 0.895300 0.445465i \(-0.146962\pi\)
−0.445465 + 0.895300i \(0.646962\pi\)
\(212\) 0.286575 + 2.93016i 0.0196821 + 0.201244i
\(213\) 4.63335 4.63335i 0.317472 0.317472i
\(214\) 25.1624 + 9.01294i 1.72007 + 0.616112i
\(215\) 6.43345i 0.438757i
\(216\) 13.3092 7.95872i 0.905579 0.541522i
\(217\) 0 0
\(218\) −7.80192 + 21.7815i −0.528413 + 1.47523i
\(219\) −7.23326 + 7.23326i −0.488779 + 0.488779i
\(220\) 3.85001 + 3.16403i 0.259568 + 0.213319i
\(221\) −2.70638 2.70638i −0.182051 0.182051i
\(222\) −5.82170 12.3198i −0.390727 0.826853i
\(223\) 23.3350 1.56263 0.781315 0.624137i \(-0.214549\pi\)
0.781315 + 0.624137i \(0.214549\pi\)
\(224\) 0 0
\(225\) 6.12964 0.408643
\(226\) 12.1539 + 25.7201i 0.808468 + 1.71087i
\(227\) 11.0658 + 11.0658i 0.734461 + 0.734461i 0.971500 0.237039i \(-0.0761769\pi\)
−0.237039 + 0.971500i \(0.576177\pi\)
\(228\) −0.180746 0.148541i −0.0119702 0.00983738i
\(229\) −18.9083 + 18.9083i −1.24950 + 1.24950i −0.293553 + 0.955943i \(0.594838\pi\)
−0.955943 + 0.293553i \(0.905162\pi\)
\(230\) 0.935237 2.61100i 0.0616677 0.172164i
\(231\) 0 0
\(232\) −10.3738 17.3479i −0.681072 1.13895i
\(233\) 12.7481i 0.835156i −0.908641 0.417578i \(-0.862879\pi\)
0.908641 0.417578i \(-0.137121\pi\)
\(234\) −7.72929 2.76856i −0.505280 0.180987i
\(235\) 8.66021 8.66021i 0.564930 0.564930i
\(236\) 1.40305 + 14.3459i 0.0913308 + 0.933836i
\(237\) 0.739782 + 0.739782i 0.0480540 + 0.0480540i
\(238\) 0 0
\(239\) 14.9688 0.968253 0.484127 0.874998i \(-0.339137\pi\)
0.484127 + 0.874998i \(0.339137\pi\)
\(240\) −0.949525 4.80791i −0.0612916 0.310349i
\(241\) −19.8105 −1.27611 −0.638054 0.769992i \(-0.720260\pi\)
−0.638054 + 0.769992i \(0.720260\pi\)
\(242\) 6.36788 3.00912i 0.409343 0.193434i
\(243\) −9.94057 9.94057i −0.637688 0.637688i
\(244\) −9.12186 + 0.892134i −0.583967 + 0.0571130i
\(245\) 0 0
\(246\) −13.6816 4.90061i −0.872305 0.312452i
\(247\) 0.364451i 0.0231895i
\(248\) 23.4934 + 5.91037i 1.49183 + 0.375309i
\(249\) 9.28693i 0.588535i
\(250\) 4.34355 12.1263i 0.274710 0.766938i
\(251\) −9.23966 + 9.23966i −0.583202 + 0.583202i −0.935782 0.352580i \(-0.885305\pi\)
0.352580 + 0.935782i \(0.385305\pi\)
\(252\) 0 0
\(253\) 3.35028 + 3.35028i 0.210630 + 0.210630i
\(254\) 0.597511 + 1.26445i 0.0374912 + 0.0793386i
\(255\) −1.24756 −0.0781252
\(256\) −14.7987 + 6.08252i −0.924922 + 0.380158i
\(257\) −23.2219 −1.44854 −0.724271 0.689516i \(-0.757823\pi\)
−0.724271 + 0.689516i \(0.757823\pi\)
\(258\) 4.61788 + 9.77231i 0.287496 + 0.608398i
\(259\) 0 0
\(260\) −4.84726 + 5.89818i −0.300614 + 0.365790i
\(261\) −7.80479 + 7.80479i −0.483104 + 0.483104i
\(262\) 3.75657 10.4876i 0.232081 0.647926i
\(263\) 4.52013i 0.278723i 0.990242 + 0.139361i \(0.0445050\pi\)
−0.990242 + 0.139361i \(0.955495\pi\)
\(264\) 8.11923 + 2.04261i 0.499704 + 0.125714i
\(265\) 1.49496i 0.0918345i
\(266\) 0 0
\(267\) 3.87278 3.87278i 0.237011 0.237011i
\(268\) −6.97965 + 0.682622i −0.426350 + 0.0416978i
\(269\) −0.282106 0.282106i −0.0172003 0.0172003i 0.698454 0.715655i \(-0.253872\pi\)
−0.715655 + 0.698454i \(0.753872\pi\)
\(270\) −7.11934 + 3.36422i −0.433269 + 0.204740i
\(271\) −10.6217 −0.645221 −0.322611 0.946532i \(-0.604560\pi\)
−0.322611 + 0.946532i \(0.604560\pi\)
\(272\) 0.789149 + 3.99584i 0.0478492 + 0.242284i
\(273\) 0 0
\(274\) 14.1428 6.68313i 0.854397 0.403742i
\(275\) 6.88526 + 6.88526i 0.415197 + 0.415197i
\(276\) −0.453544 4.63738i −0.0273001 0.279137i
\(277\) −8.14182 + 8.14182i −0.489195 + 0.489195i −0.908052 0.418857i \(-0.862431\pi\)
0.418857 + 0.908052i \(0.362431\pi\)
\(278\) 23.3764 + 8.37321i 1.40202 + 0.502192i
\(279\) 13.2287i 0.791981i
\(280\) 0 0
\(281\) 18.6360i 1.11173i −0.831272 0.555866i \(-0.812387\pi\)
0.831272 0.555866i \(-0.187613\pi\)
\(282\) 6.93850 19.3710i 0.413182 1.15352i
\(283\) −6.42639 + 6.42639i −0.382009 + 0.382009i −0.871826 0.489817i \(-0.837064\pi\)
0.489817 + 0.871826i \(0.337064\pi\)
\(284\) 8.39222 + 6.89691i 0.497986 + 0.409257i
\(285\) 0.0840005 + 0.0840005i 0.00497576 + 0.00497576i
\(286\) −5.57226 11.7920i −0.329495 0.697274i
\(287\) 0 0
\(288\) 5.19267 + 7.02655i 0.305981 + 0.414044i
\(289\) −15.9632 −0.939009
\(290\) 4.38509 + 9.27969i 0.257501 + 0.544922i
\(291\) −13.9927 13.9927i −0.820265 0.820265i
\(292\) −13.1014 10.7670i −0.766699 0.630091i
\(293\) 12.0193 12.0193i 0.702174 0.702174i −0.262703 0.964877i \(-0.584614\pi\)
0.964877 + 0.262703i \(0.0846138\pi\)
\(294\) 0 0
\(295\) 7.31920i 0.426140i
\(296\) 19.3871 11.5932i 1.12685 0.673841i
\(297\) 13.4519i 0.780557i
\(298\) −6.97646 2.49891i −0.404136 0.144758i
\(299\) −5.13259 + 5.13259i −0.296826 + 0.296826i
\(300\) −0.932092 9.53042i −0.0538143 0.550239i
\(301\) 0 0
\(302\) −1.74328 + 0.823782i −0.100315 + 0.0474033i
\(303\) −11.0962 −0.637462
\(304\) 0.215913 0.322182i 0.0123834 0.0184784i
\(305\) 4.65393 0.266483
\(306\) 2.01092 0.950256i 0.114957 0.0543225i
\(307\) −17.8339 17.8339i −1.01784 1.01784i −0.999838 0.0179975i \(-0.994271\pi\)
−0.0179975 0.999838i \(-0.505729\pi\)
\(308\) 0 0
\(309\) 6.59462 6.59462i 0.375155 0.375155i
\(310\) −11.5805 4.14804i −0.657730 0.235593i
\(311\) 6.54459i 0.371109i −0.982634 0.185555i \(-0.940592\pi\)
0.982634 0.185555i \(-0.0594082\pi\)
\(312\) −3.12925 + 12.4386i −0.177159 + 0.704196i
\(313\) 19.1734i 1.08375i −0.840461 0.541873i \(-0.817715\pi\)
0.840461 0.541873i \(-0.182285\pi\)
\(314\) 0.151555 0.423112i 0.00855274 0.0238776i
\(315\) 0 0
\(316\) −1.10119 + 1.33994i −0.0619470 + 0.0753776i
\(317\) 13.3082 + 13.3082i 0.747464 + 0.747464i 0.974002 0.226538i \(-0.0727407\pi\)
−0.226538 + 0.974002i \(0.572741\pi\)
\(318\) −1.07307 2.27082i −0.0601747 0.127341i
\(319\) −17.5338 −0.981706
\(320\) 7.77935 2.34244i 0.434879 0.130946i
\(321\) −22.8010 −1.27263
\(322\) 0 0
\(323\) −0.0698127 0.0698127i −0.00388448 0.00388448i
\(324\) −2.51551 + 3.06090i −0.139751 + 0.170050i
\(325\) −10.5482 + 10.5482i −0.585106 + 0.585106i
\(326\) −7.07864 + 19.7622i −0.392050 + 1.09453i
\(327\) 19.7374i 1.09148i
\(328\) 5.87783 23.3640i 0.324549 1.29006i
\(329\) 0 0
\(330\) −4.00219 1.43355i −0.220313 0.0789143i
\(331\) 6.92509 6.92509i 0.380637 0.380637i −0.490694 0.871332i \(-0.663257\pi\)
0.871332 + 0.490694i \(0.163257\pi\)
\(332\) −15.3225 + 1.49857i −0.840932 + 0.0822446i
\(333\) −8.72222 8.72222i −0.477975 0.477975i
\(334\) −18.6663 + 8.82071i −1.02138 + 0.482648i
\(335\) 3.56099 0.194558
\(336\) 0 0
\(337\) 4.91600 0.267792 0.133896 0.990995i \(-0.457251\pi\)
0.133896 + 0.990995i \(0.457251\pi\)
\(338\) 1.44285 0.681813i 0.0784806 0.0370857i
\(339\) −17.1598 17.1598i −0.931995 0.931995i
\(340\) −0.201310 2.05835i −0.0109176 0.111630i
\(341\) 14.8594 14.8594i 0.804684 0.804684i
\(342\) −0.199382 0.0714167i −0.0107813 0.00386178i
\(343\) 0 0
\(344\) −15.3782 + 9.19593i −0.829137 + 0.495811i
\(345\) 2.36597i 0.127380i
\(346\) 5.88992 16.4435i 0.316644 0.884008i
\(347\) 6.61363 6.61363i 0.355038 0.355038i −0.506942 0.861980i \(-0.669224\pi\)
0.861980 + 0.506942i \(0.169224\pi\)
\(348\) 13.3218 + 10.9481i 0.714122 + 0.586882i
\(349\) 17.2061 + 17.2061i 0.921021 + 0.921021i 0.997102 0.0760810i \(-0.0242407\pi\)
−0.0760810 + 0.997102i \(0.524241\pi\)
\(350\) 0 0
\(351\) 20.6081 1.09998
\(352\) −2.05995 + 13.7255i −0.109796 + 0.731573i
\(353\) 8.16944 0.434815 0.217408 0.976081i \(-0.430240\pi\)
0.217408 + 0.976081i \(0.430240\pi\)
\(354\) −5.25366 11.1178i −0.279229 0.590902i
\(355\) −3.90022 3.90022i −0.207002 0.207002i
\(356\) 7.01464 + 5.76479i 0.371775 + 0.305533i
\(357\) 0 0
\(358\) −0.224944 + 0.628001i −0.0118887 + 0.0331909i
\(359\) 11.5693i 0.610604i −0.952256 0.305302i \(-0.901243\pi\)
0.952256 0.305302i \(-0.0987574\pi\)
\(360\) −2.27689 3.80760i −0.120003 0.200678i
\(361\) 18.9906i 0.999505i
\(362\) 29.1191 + 10.4302i 1.53047 + 0.548199i
\(363\) −4.24851 + 4.24851i −0.222989 + 0.222989i
\(364\) 0 0
\(365\) 6.08876 + 6.08876i 0.318700 + 0.318700i
\(366\) 7.06926 3.34056i 0.369516 0.174614i
\(367\) −8.50712 −0.444068 −0.222034 0.975039i \(-0.571270\pi\)
−0.222034 + 0.975039i \(0.571270\pi\)
\(368\) 7.57803 1.49660i 0.395032 0.0780159i
\(369\) −13.1558 −0.684866
\(370\) −10.3705 + 4.90055i −0.539136 + 0.254767i
\(371\) 0 0
\(372\) −20.5681 + 2.01159i −1.06641 + 0.104296i
\(373\) 3.70893 3.70893i 0.192041 0.192041i −0.604536 0.796577i \(-0.706642\pi\)
0.796577 + 0.604536i \(0.206642\pi\)
\(374\) 3.32622 + 1.19142i 0.171995 + 0.0616069i
\(375\) 10.9883i 0.567436i
\(376\) 33.0798 + 8.32209i 1.70596 + 0.429179i
\(377\) 26.8616i 1.38344i
\(378\) 0 0
\(379\) −3.62966 + 3.62966i −0.186443 + 0.186443i −0.794156 0.607713i \(-0.792087\pi\)
0.607713 + 0.794156i \(0.292087\pi\)
\(380\) −0.125038 + 0.152147i −0.00641431 + 0.00780498i
\(381\) −0.843612 0.843612i −0.0432195 0.0432195i
\(382\) −3.67495 7.77690i −0.188027 0.397901i
\(383\) 6.96253 0.355769 0.177884 0.984051i \(-0.443075\pi\)
0.177884 + 0.984051i \(0.443075\pi\)
\(384\) 10.1353 9.14209i 0.517217 0.466530i
\(385\) 0 0
\(386\) −6.07950 12.8654i −0.309438 0.654831i
\(387\) 6.91862 + 6.91862i 0.351693 + 0.351693i
\(388\) 20.8286 25.3444i 1.05741 1.28667i
\(389\) −9.32025 + 9.32025i −0.472555 + 0.472555i −0.902741 0.430185i \(-0.858448\pi\)
0.430185 + 0.902741i \(0.358448\pi\)
\(390\) 2.19618 6.13132i 0.111208 0.310471i
\(391\) 1.96636i 0.0994429i
\(392\) 0 0
\(393\) 9.50339i 0.479383i
\(394\) 18.9861 + 6.80066i 0.956507 + 0.342612i
\(395\) 0.622728 0.622728i 0.0313329 0.0313329i
\(396\) 7.54300 0.737718i 0.379050 0.0370717i
\(397\) −4.41374 4.41374i −0.221519 0.221519i 0.587619 0.809138i \(-0.300066\pi\)
−0.809138 + 0.587619i \(0.800066\pi\)
\(398\) 14.9091 7.04524i 0.747325 0.353146i
\(399\) 0 0
\(400\) 15.5739 3.07572i 0.778693 0.153786i
\(401\) −15.9015 −0.794085 −0.397042 0.917800i \(-0.629963\pi\)
−0.397042 + 0.917800i \(0.629963\pi\)
\(402\) 5.40909 2.55605i 0.269781 0.127484i
\(403\) 22.7645 + 22.7645i 1.13398 + 1.13398i
\(404\) −1.79052 18.3077i −0.0890819 0.910842i
\(405\) 1.42253 1.42253i 0.0706861 0.0706861i
\(406\) 0 0
\(407\) 19.5949i 0.971282i
\(408\) −1.78325 2.98211i −0.0882843 0.147636i
\(409\) 5.70265i 0.281978i 0.990011 + 0.140989i \(0.0450282\pi\)
−0.990011 + 0.140989i \(0.954972\pi\)
\(410\) −4.12520 + 11.5168i −0.203729 + 0.568772i
\(411\) −9.43575 + 9.43575i −0.465431 + 0.465431i
\(412\) 11.9446 + 9.81634i 0.588468 + 0.483616i
\(413\) 0 0
\(414\) −1.80214 3.81368i −0.0885704 0.187432i
\(415\) 7.81748 0.383745
\(416\) −21.0274 3.15583i −1.03095 0.154727i
\(417\) −21.1826 −1.03732
\(418\) −0.143740 0.304181i −0.00703054 0.0148780i
\(419\) 4.57142 + 4.57142i 0.223328 + 0.223328i 0.809898 0.586570i \(-0.199522\pi\)
−0.586570 + 0.809898i \(0.699522\pi\)
\(420\) 0 0
\(421\) 0.421252 0.421252i 0.0205306 0.0205306i −0.696767 0.717298i \(-0.745379\pi\)
0.717298 + 0.696767i \(0.245379\pi\)
\(422\) 4.40683 12.3030i 0.214521 0.598902i
\(423\) 18.6266i 0.905657i
\(424\) 3.57347 2.13688i 0.173543 0.103776i
\(425\) 4.04112i 0.196023i
\(426\) −8.72393 3.12483i −0.422676 0.151399i
\(427\) 0 0
\(428\) −3.67924 37.6194i −0.177843 1.81840i
\(429\) 7.86734 + 7.86734i 0.379839 + 0.379839i
\(430\) 8.22606 3.88720i 0.396696 0.187457i
\(431\) −21.1036 −1.01652 −0.508262 0.861202i \(-0.669712\pi\)
−0.508262 + 0.861202i \(0.669712\pi\)
\(432\) −18.2180 12.2089i −0.876515 0.587402i
\(433\) 13.9717 0.671436 0.335718 0.941962i \(-0.391021\pi\)
0.335718 + 0.941962i \(0.391021\pi\)
\(434\) 0 0
\(435\) −6.19120 6.19120i −0.296845 0.296845i
\(436\) 32.5647 3.18488i 1.55957 0.152528i
\(437\) −0.132398 + 0.132398i −0.00633347 + 0.00633347i
\(438\) 13.6192 + 4.87828i 0.650751 + 0.233093i
\(439\) 5.41926i 0.258647i −0.991602 0.129324i \(-0.958719\pi\)
0.991602 0.129324i \(-0.0412806\pi\)
\(440\) 1.71941 6.83455i 0.0819696 0.325824i
\(441\) 0 0
\(442\) −1.82525 + 5.09573i −0.0868181 + 0.242379i
\(443\) 4.27297 4.27297i 0.203015 0.203015i −0.598276 0.801290i \(-0.704147\pi\)
0.801290 + 0.598276i \(0.204147\pi\)
\(444\) −12.2351 + 14.8877i −0.580650 + 0.706540i
\(445\) −3.26000 3.26000i −0.154539 0.154539i
\(446\) −14.0994 29.8371i −0.667628 1.41283i
\(447\) 6.32175 0.299009
\(448\) 0 0
\(449\) 18.4262 0.869587 0.434794 0.900530i \(-0.356821\pi\)
0.434794 + 0.900530i \(0.356821\pi\)
\(450\) −3.70364 7.83761i −0.174591 0.369468i
\(451\) −14.7776 14.7776i −0.695851 0.695851i
\(452\) 25.5431 31.0810i 1.20145 1.46193i
\(453\) 1.16308 1.16308i 0.0546462 0.0546462i
\(454\) 7.46301 20.8353i 0.350257 0.977848i
\(455\) 0 0
\(456\) −0.0807208 + 0.320860i −0.00378010 + 0.0150257i
\(457\) 35.9724i 1.68272i −0.540478 0.841358i \(-0.681757\pi\)
0.540478 0.841358i \(-0.318243\pi\)
\(458\) 35.6016 + 12.7522i 1.66356 + 0.595871i
\(459\) −3.94761 + 3.94761i −0.184258 + 0.184258i
\(460\) −3.90362 + 0.381781i −0.182007 + 0.0178006i
\(461\) 0.903879 + 0.903879i 0.0420978 + 0.0420978i 0.727842 0.685745i \(-0.240523\pi\)
−0.685745 + 0.727842i \(0.740523\pi\)
\(462\) 0 0
\(463\) −12.5999 −0.585565 −0.292782 0.956179i \(-0.594581\pi\)
−0.292782 + 0.956179i \(0.594581\pi\)
\(464\) −15.9137 + 23.7462i −0.738775 + 1.10239i
\(465\) 10.4937 0.486636
\(466\) −16.3002 + 7.70263i −0.755094 + 0.356817i
\(467\) 5.86130 + 5.86130i 0.271228 + 0.271228i 0.829595 0.558366i \(-0.188572\pi\)
−0.558366 + 0.829595i \(0.688572\pi\)
\(468\) 1.13018 + 11.5558i 0.0522424 + 0.534167i
\(469\) 0 0
\(470\) −16.3059 5.84064i −0.752137 0.269409i
\(471\) 0.383405i 0.0176664i
\(472\) 17.4955 10.4620i 0.805294 0.481553i
\(473\) 15.5430i 0.714668i
\(474\) 0.498926 1.39290i 0.0229164 0.0639782i
\(475\) −0.272096 + 0.272096i −0.0124846 + 0.0124846i
\(476\) 0 0
\(477\) −1.60770 1.60770i −0.0736114 0.0736114i
\(478\) −9.04443 19.1397i −0.413683 0.875432i
\(479\) −9.27836 −0.423939 −0.211969 0.977276i \(-0.567988\pi\)
−0.211969 + 0.977276i \(0.567988\pi\)
\(480\) −5.57386 + 4.11912i −0.254411 + 0.188011i
\(481\) 30.0192 1.36876
\(482\) 11.9699 + 25.3305i 0.545212 + 1.15377i
\(483\) 0 0
\(484\) −7.69517 6.32407i −0.349781 0.287458i
\(485\) −11.7786 + 11.7786i −0.534841 + 0.534841i
\(486\) −6.70415 + 18.7167i −0.304106 + 0.849006i
\(487\) 38.6868i 1.75307i 0.481342 + 0.876533i \(0.340149\pi\)
−0.481342 + 0.876533i \(0.659851\pi\)
\(488\) 6.65231 + 11.1245i 0.301136 + 0.503584i
\(489\) 17.9076i 0.809810i
\(490\) 0 0
\(491\) −29.8086 + 29.8086i −1.34524 + 1.34524i −0.454494 + 0.890750i \(0.650180\pi\)
−0.890750 + 0.454494i \(0.849820\pi\)
\(492\) 2.00052 + 20.4548i 0.0901903 + 0.922175i
\(493\) 5.14550 + 5.14550i 0.231742 + 0.231742i
\(494\) 0.466002 0.220208i 0.0209664 0.00990761i
\(495\) −3.84841 −0.172973
\(496\) −6.63786 33.6107i −0.298049 1.50917i
\(497\) 0 0
\(498\) 11.8746 5.61132i 0.532115 0.251449i
\(499\) −7.90565 7.90565i −0.353905 0.353905i 0.507655 0.861560i \(-0.330512\pi\)
−0.861560 + 0.507655i \(0.830512\pi\)
\(500\) −18.1297 + 1.77311i −0.810784 + 0.0792961i
\(501\) 12.4537 12.4537i 0.556392 0.556392i
\(502\) 17.3970 + 6.23144i 0.776464 + 0.278123i
\(503\) 18.1532i 0.809409i 0.914448 + 0.404704i \(0.132626\pi\)
−0.914448 + 0.404704i \(0.867374\pi\)
\(504\) 0 0
\(505\) 9.34050i 0.415647i
\(506\) 2.25951 6.30810i 0.100447 0.280429i
\(507\) −0.962635 + 0.962635i −0.0427521 + 0.0427521i
\(508\) 1.25575 1.52800i 0.0557148 0.0677942i
\(509\) −1.44869 1.44869i −0.0642121 0.0642121i 0.674271 0.738484i \(-0.264458\pi\)
−0.738484 + 0.674271i \(0.764458\pi\)
\(510\) 0.753798 + 1.59518i 0.0333787 + 0.0706358i
\(511\) 0 0
\(512\) 16.7190 + 15.2471i 0.738883 + 0.673834i
\(513\) 0.531599 0.0234707
\(514\) 14.0311 + 29.6924i 0.618884 + 1.30968i
\(515\) −5.55117 5.55117i −0.244614 0.244614i
\(516\) 9.70507 11.8092i 0.427242 0.519871i
\(517\) 20.9228 20.9228i 0.920183 0.920183i
\(518\) 0 0
\(519\) 14.9004i 0.654053i
\(520\) 10.4705 + 2.63412i 0.459160 + 0.115514i
\(521\) 2.90874i 0.127434i −0.997968 0.0637172i \(-0.979704\pi\)
0.997968 0.0637172i \(-0.0202956\pi\)
\(522\) 14.6953 + 5.26373i 0.643196 + 0.230387i
\(523\) −11.7145 + 11.7145i −0.512240 + 0.512240i −0.915212 0.402972i \(-0.867977\pi\)
0.402972 + 0.915212i \(0.367977\pi\)
\(524\) −15.6797 + 1.53350i −0.684969 + 0.0669911i
\(525\) 0 0
\(526\) 5.77962 2.73114i 0.252003 0.119083i
\(527\) −8.72134 −0.379908
\(528\) −2.29402 11.6158i −0.0998346 0.505511i
\(529\) 19.2708 0.837863
\(530\) −1.91151 + 0.903279i −0.0830308 + 0.0392359i
\(531\) −7.87117 7.87117i −0.341580 0.341580i
\(532\) 0 0
\(533\) 22.6392 22.6392i 0.980611 0.980611i
\(534\) −7.29190 2.61189i −0.315552 0.113028i
\(535\) 19.1933i 0.829797i
\(536\) 5.09006 + 8.51201i 0.219857 + 0.367663i
\(537\) 0.569066i 0.0245570i
\(538\) −0.190258 + 0.531165i −0.00820262 + 0.0229001i
\(539\) 0 0
\(540\) 8.60326 + 7.07035i 0.370225 + 0.304260i
\(541\) 5.13565 + 5.13565i 0.220799 + 0.220799i 0.808835 0.588036i \(-0.200099\pi\)
−0.588036 + 0.808835i \(0.700099\pi\)
\(542\) 6.41780 + 13.5813i 0.275668 + 0.583367i
\(543\) −26.3864 −1.13235
\(544\) 4.63243 3.42340i 0.198614 0.146777i
\(545\) −16.6144 −0.711682
\(546\) 0 0
\(547\) 18.2712 + 18.2712i 0.781218 + 0.781218i 0.980036 0.198818i \(-0.0637103\pi\)
−0.198818 + 0.980036i \(0.563710\pi\)
\(548\) −17.0906 14.0455i −0.730076 0.599993i
\(549\) 5.00491 5.00491i 0.213604 0.213604i
\(550\) 4.64358 12.9640i 0.198003 0.552786i
\(551\) 0.692912i 0.0295190i
\(552\) −5.65550 + 3.38190i −0.240714 + 0.143943i
\(553\) 0 0
\(554\) 15.3299 + 5.49103i 0.651305 + 0.233291i
\(555\) 6.91896 6.91896i 0.293694 0.293694i
\(556\) −3.41809 34.9492i −0.144960 1.48218i
\(557\) 3.50389 + 3.50389i 0.148465 + 0.148465i 0.777432 0.628967i \(-0.216522\pi\)
−0.628967 + 0.777432i \(0.716522\pi\)
\(558\) −16.9147 + 7.99300i −0.716058 + 0.338371i
\(559\) −23.8117 −1.00713
\(560\) 0 0
\(561\) −3.01407 −0.127254
\(562\) −23.8288 + 11.2602i −1.00516 + 0.474983i
\(563\) 17.1928 + 17.1928i 0.724591 + 0.724591i 0.969537 0.244946i \(-0.0787703\pi\)
−0.244946 + 0.969537i \(0.578770\pi\)
\(564\) −28.9608 + 2.83242i −1.21947 + 0.119266i
\(565\) −14.4447 + 14.4447i −0.607693 + 0.607693i
\(566\) 12.1000 + 4.33410i 0.508600 + 0.182176i
\(567\) 0 0
\(568\) 3.74795 14.8979i 0.157260 0.625100i
\(569\) 2.70044i 0.113208i 0.998397 + 0.0566041i \(0.0180273\pi\)
−0.998397 + 0.0566041i \(0.981973\pi\)
\(570\) 0.0566518 0.158161i 0.00237288 0.00662463i
\(571\) −9.38460 + 9.38460i −0.392733 + 0.392733i −0.875660 0.482927i \(-0.839574\pi\)
0.482927 + 0.875660i \(0.339574\pi\)
\(572\) −11.7108 + 14.2498i −0.489654 + 0.595815i
\(573\) 5.18857 + 5.18857i 0.216756 + 0.216756i
\(574\) 0 0
\(575\) −7.66390 −0.319607
\(576\) 5.84693 10.8851i 0.243622 0.453547i
\(577\) 24.8922 1.03627 0.518137 0.855298i \(-0.326626\pi\)
0.518137 + 0.855298i \(0.326626\pi\)
\(578\) 9.64522 + 20.4111i 0.401188 + 0.848991i
\(579\) 8.58350 + 8.58350i 0.356718 + 0.356718i
\(580\) 9.21584 11.2139i 0.382667 0.465632i
\(581\) 0 0
\(582\) −9.43697 + 26.3462i −0.391175 + 1.09209i
\(583\) 3.61177i 0.149584i
\(584\) −5.85104 + 23.2575i −0.242118 + 0.962403i
\(585\) 5.89572i 0.243758i
\(586\) −22.6306 8.10608i −0.934862 0.334859i
\(587\) −23.9315 + 23.9315i −0.987758 + 0.987758i −0.999926 0.0121684i \(-0.996127\pi\)
0.0121684 + 0.999926i \(0.496127\pi\)
\(588\) 0 0
\(589\) 0.587224 + 0.587224i 0.0241961 + 0.0241961i
\(590\) −9.35862 + 4.42239i −0.385288 + 0.182067i
\(591\) −17.2044 −0.707692
\(592\) −26.5376 17.7843i −1.09069 0.730931i
\(593\) −1.79017 −0.0735134 −0.0367567 0.999324i \(-0.511703\pi\)
−0.0367567 + 0.999324i \(0.511703\pi\)
\(594\) −17.2001 + 8.12786i −0.705729 + 0.333490i
\(595\) 0 0
\(596\) 1.02010 + 10.4303i 0.0417849 + 0.427241i
\(597\) −9.94701 + 9.94701i −0.407104 + 0.407104i
\(598\) 9.66394 + 3.46154i 0.395188 + 0.141553i
\(599\) 43.1613i 1.76352i −0.471696 0.881761i \(-0.656358\pi\)
0.471696 0.881761i \(-0.343642\pi\)
\(600\) −11.6228 + 6.95026i −0.474499 + 0.283743i
\(601\) 27.6564i 1.12813i 0.825730 + 0.564065i \(0.190763\pi\)
−0.825730 + 0.564065i \(0.809237\pi\)
\(602\) 0 0
\(603\) 3.82954 3.82954i 0.155951 0.155951i
\(604\) 2.10664 + 1.73129i 0.0857180 + 0.0704450i
\(605\) 3.57628 + 3.57628i 0.145396 + 0.145396i
\(606\) 6.70454 + 14.1881i 0.272353 + 0.576352i
\(607\) 21.5936 0.876455 0.438228 0.898864i \(-0.355606\pi\)
0.438228 + 0.898864i \(0.355606\pi\)
\(608\) −0.542413 0.0814064i −0.0219978 0.00330147i
\(609\) 0 0
\(610\) −2.81199 5.95071i −0.113854 0.240937i
\(611\) 32.0535 + 32.0535i 1.29675 + 1.29675i
\(612\) −2.43007 1.99709i −0.0982298 0.0807275i
\(613\) −7.01823 + 7.01823i −0.283464 + 0.283464i −0.834489 0.551025i \(-0.814237\pi\)
0.551025 + 0.834489i \(0.314237\pi\)
\(614\) −12.0276 + 33.5787i −0.485395 + 1.35513i
\(615\) 10.4360i 0.420819i
\(616\) 0 0
\(617\) 14.2458i 0.573515i −0.958003 0.286758i \(-0.907423\pi\)
0.958003 0.286758i \(-0.0925774\pi\)
\(618\) −12.4167 4.44756i −0.499474 0.178907i
\(619\) −25.8337 + 25.8337i −1.03834 + 1.03834i −0.0391090 + 0.999235i \(0.512452\pi\)
−0.999235 + 0.0391090i \(0.987548\pi\)
\(620\) 1.69330 + 17.3137i 0.0680048 + 0.695333i
\(621\) 7.48655 + 7.48655i 0.300425 + 0.300425i
\(622\) −8.36817 + 3.95435i −0.335533 + 0.158555i
\(623\) 0 0
\(624\) 17.7952 3.51442i 0.712379 0.140689i
\(625\) −10.5936 −0.423746
\(626\) −24.5159 + 11.5849i −0.979853 + 0.463026i
\(627\) 0.202943 + 0.202943i 0.00810475 + 0.00810475i
\(628\) −0.632580 + 0.0618674i −0.0252427 + 0.00246878i
\(629\) −5.75034 + 5.75034i −0.229281 + 0.229281i
\(630\) 0 0
\(631\) 4.87006i 0.193874i 0.995291 + 0.0969370i \(0.0309045\pi\)
−0.995291 + 0.0969370i \(0.969095\pi\)
\(632\) 2.37866 + 0.598415i 0.0946182 + 0.0238037i
\(633\) 11.1484i 0.443111i
\(634\) 8.97537 25.0575i 0.356458 0.995160i
\(635\) −0.710129 + 0.710129i −0.0281806 + 0.0281806i
\(636\) −2.25519 + 2.74414i −0.0894242 + 0.108812i
\(637\) 0 0
\(638\) 10.5942 + 22.4195i 0.419430 + 0.887595i
\(639\) −8.38871 −0.331852
\(640\) −7.69556 8.53165i −0.304194 0.337243i
\(641\) 34.3879 1.35824 0.679120 0.734027i \(-0.262362\pi\)
0.679120 + 0.734027i \(0.262362\pi\)
\(642\) 13.7768 + 29.1543i 0.543726 + 1.15063i
\(643\) 11.9018 + 11.9018i 0.469361 + 0.469361i 0.901708 0.432346i \(-0.142314\pi\)
−0.432346 + 0.901708i \(0.642314\pi\)
\(644\) 0 0
\(645\) −5.48825 + 5.48825i −0.216099 + 0.216099i
\(646\) −0.0470833 + 0.131447i −0.00185247 + 0.00517173i
\(647\) 5.26762i 0.207092i −0.994625 0.103546i \(-0.966981\pi\)
0.994625 0.103546i \(-0.0330188\pi\)
\(648\) 5.43370 + 1.36699i 0.213456 + 0.0537005i
\(649\) 17.6830i 0.694117i
\(650\) 19.8607 + 7.11392i 0.779000 + 0.279031i
\(651\) 0 0
\(652\) 29.5458 2.88963i 1.15710 0.113167i
\(653\) −24.2555 24.2555i −0.949190 0.949190i 0.0495806 0.998770i \(-0.484212\pi\)
−0.998770 + 0.0495806i \(0.984212\pi\)
\(654\) −25.2370 + 11.9257i −0.986845 + 0.466330i
\(655\) 7.99969 0.312574
\(656\) −33.4257 + 6.60131i −1.30505 + 0.257738i
\(657\) 13.0959 0.510919
\(658\) 0 0
\(659\) −14.4817 14.4817i −0.564126 0.564126i 0.366351 0.930477i \(-0.380607\pi\)
−0.930477 + 0.366351i \(0.880607\pi\)
\(660\) 0.585200 + 5.98354i 0.0227789 + 0.232909i
\(661\) 11.2258 11.2258i 0.436633 0.436633i −0.454244 0.890877i \(-0.650091\pi\)
0.890877 + 0.454244i \(0.150091\pi\)
\(662\) −13.0390 4.67044i −0.506774 0.181522i
\(663\) 4.61752i 0.179330i
\(664\) 11.1743 + 18.6865i 0.433646 + 0.725178i
\(665\) 0 0
\(666\) −5.88246 + 16.4227i −0.227941 + 0.636367i
\(667\) 9.75833 9.75833i 0.377844 0.377844i
\(668\) 22.5570 + 18.5379i 0.872758 + 0.717252i
\(669\) 19.9067 + 19.9067i 0.769636 + 0.769636i
\(670\) −2.15161 4.55322i −0.0831240 0.175906i
\(671\) 11.2438 0.434061
\(672\) 0 0
\(673\) −8.09831 −0.312167 −0.156083 0.987744i \(-0.549887\pi\)
−0.156083 + 0.987744i \(0.549887\pi\)
\(674\) −2.97033 6.28580i −0.114413 0.242120i
\(675\) 15.3858 + 15.3858i 0.592201 + 0.592201i
\(676\) −1.74359 1.43292i −0.0670611 0.0551123i
\(677\) 16.0136 16.0136i 0.615452 0.615452i −0.328909 0.944362i \(-0.606681\pi\)
0.944362 + 0.328909i \(0.106681\pi\)
\(678\) −11.5730 + 32.3095i −0.444458 + 1.24084i
\(679\) 0 0
\(680\) −2.51026 + 1.50110i −0.0962639 + 0.0575644i
\(681\) 18.8800i 0.723483i
\(682\) −27.9782 10.0215i −1.07134 0.383745i
\(683\) 26.9423 26.9423i 1.03092 1.03092i 0.0314113 0.999507i \(-0.490000\pi\)
0.999507 0.0314113i \(-0.0100002\pi\)
\(684\) 0.0291536 + 0.298089i 0.00111472 + 0.0113977i
\(685\) 7.94275 + 7.94275i 0.303477 + 0.303477i
\(686\) 0 0
\(687\) −32.2606 −1.23082
\(688\) 21.0501 + 14.1068i 0.802526 + 0.537818i
\(689\) 5.53319 0.210798
\(690\) 3.02523 1.42956i 0.115168 0.0544225i
\(691\) −17.4925 17.4925i −0.665447 0.665447i 0.291211 0.956659i \(-0.405942\pi\)
−0.956659 + 0.291211i \(0.905942\pi\)
\(692\) −24.5841 + 2.40437i −0.934548 + 0.0914004i
\(693\) 0 0
\(694\) −12.4525 4.46038i −0.472691 0.169314i
\(695\) 17.8309i 0.676366i
\(696\) 5.94948 23.6488i 0.225514 0.896406i
\(697\) 8.67332i 0.328525i
\(698\) 11.6042 32.3966i 0.439225 1.22623i
\(699\) 10.8752 10.8752i 0.411336 0.411336i
\(700\) 0 0
\(701\) −10.6300 10.6300i −0.401489 0.401489i 0.477269 0.878757i \(-0.341627\pi\)
−0.878757 + 0.477269i \(0.841627\pi\)
\(702\) −12.4518 26.3504i −0.469963 0.994531i
\(703\) 0.774362 0.0292056
\(704\) 18.7947 5.65927i 0.708351 0.213292i
\(705\) 14.7757 0.556485
\(706\) −4.93612 10.4458i −0.185773 0.393132i
\(707\) 0 0
\(708\) −11.0413 + 13.4351i −0.414956 + 0.504921i
\(709\) −2.50496 + 2.50496i −0.0940757 + 0.0940757i −0.752578 0.658503i \(-0.771190\pi\)
0.658503 + 0.752578i \(0.271190\pi\)
\(710\) −2.63040 + 7.34357i −0.0987172 + 0.275599i
\(711\) 1.33938i 0.0502308i
\(712\) 3.13272 12.4524i 0.117404 0.466673i
\(713\) 16.5398i 0.619422i
\(714\) 0 0
\(715\) 6.62251 6.62251i 0.247668 0.247668i
\(716\) 0.938903 0.0918263i 0.0350884 0.00343171i
\(717\) 12.7696 + 12.7696i 0.476890 + 0.476890i
\(718\) −14.7930 + 6.99037i −0.552069 + 0.260878i
\(719\) −16.2120 −0.604604 −0.302302 0.953212i \(-0.597755\pi\)
−0.302302 + 0.953212i \(0.597755\pi\)
\(720\) −3.49282 + 5.21194i −0.130170 + 0.194237i
\(721\) 0 0
\(722\) −24.2821 + 11.4745i −0.903688 + 0.427035i
\(723\) −16.9000 16.9000i −0.628516 0.628516i
\(724\) −4.25779 43.5350i −0.158240 1.61796i
\(725\) 20.0547 20.0547i 0.744811 0.744811i
\(726\) 7.99934 + 2.86529i 0.296883 + 0.106341i
\(727\) 14.2822i 0.529699i 0.964290 + 0.264849i \(0.0853223\pi\)
−0.964290 + 0.264849i \(0.914678\pi\)
\(728\) 0 0
\(729\) 22.9031i 0.848263i
\(730\) 4.10640 11.4643i 0.151985 0.424312i
\(731\) 4.56127 4.56127i 0.168705 0.168705i
\(732\) −8.54274 7.02062i −0.315749 0.259489i
\(733\) 24.3482 + 24.3482i 0.899322 + 0.899322i 0.995376 0.0960545i \(-0.0306223\pi\)
−0.0960545 + 0.995376i \(0.530622\pi\)
\(734\) 5.14015 + 10.8775i 0.189726 + 0.401497i
\(735\) 0 0
\(736\) −6.49240 8.78531i −0.239313 0.323831i
\(737\) 8.60324 0.316904
\(738\) 7.94899 + 16.8216i 0.292606 + 0.619211i
\(739\) −14.7533 14.7533i −0.542710 0.542710i 0.381612 0.924322i \(-0.375369\pi\)
−0.924322 + 0.381612i \(0.875369\pi\)
\(740\) 12.5321 + 10.2991i 0.460688 + 0.378604i
\(741\) −0.310906 + 0.310906i −0.0114214 + 0.0114214i
\(742\) 0 0
\(743\) 30.1201i 1.10500i 0.833513 + 0.552500i \(0.186326\pi\)
−0.833513 + 0.552500i \(0.813674\pi\)
\(744\) 14.9997 + 25.0837i 0.549916 + 0.919615i
\(745\) 5.32148i 0.194964i
\(746\) −6.98339 2.50139i −0.255680 0.0915823i
\(747\) 8.40703 8.40703i 0.307597 0.307597i
\(748\) −0.486359 4.97291i −0.0177831 0.181828i
\(749\) 0 0
\(750\) 14.0501 6.63935i 0.513039 0.242435i
\(751\) 45.2186 1.65005 0.825026 0.565095i \(-0.191161\pi\)
0.825026 + 0.565095i \(0.191161\pi\)
\(752\) −9.34643 47.3255i −0.340829 1.72578i
\(753\) −15.7643 −0.574484
\(754\) −34.3464 + 16.2303i −1.25082 + 0.591072i
\(755\) −0.979047 0.979047i −0.0356312 0.0356312i
\(756\) 0 0
\(757\) −10.1353 + 10.1353i −0.368375 + 0.368375i −0.866884 0.498509i \(-0.833881\pi\)
0.498509 + 0.866884i \(0.333881\pi\)
\(758\) 6.83414 + 2.44793i 0.248227 + 0.0889127i
\(759\) 5.71611i 0.207482i
\(760\) 0.270091 + 0.0679486i 0.00979725 + 0.00246475i
\(761\) 19.7273i 0.715113i 0.933892 + 0.357556i \(0.116390\pi\)
−0.933892 + 0.357556i \(0.883610\pi\)
\(762\) −0.568951 + 1.58840i −0.0206109 + 0.0575417i
\(763\) 0 0
\(764\) −7.72339 + 9.39788i −0.279422 + 0.340003i
\(765\) 1.12936 + 1.12936i 0.0408321 + 0.0408321i
\(766\) −4.20688 8.90257i −0.152001 0.321663i
\(767\) 27.0901 0.978167
\(768\) −17.8134 7.43564i −0.642785 0.268311i
\(769\) 41.2736 1.48837 0.744183 0.667976i \(-0.232839\pi\)
0.744183 + 0.667976i \(0.232839\pi\)
\(770\) 0 0
\(771\) −19.8101 19.8101i −0.713444 0.713444i
\(772\) −12.7769 + 15.5470i −0.459849 + 0.559548i
\(773\) 37.7572 37.7572i 1.35803 1.35803i 0.481689 0.876342i \(-0.340023\pi\)
0.876342 0.481689i \(-0.159977\pi\)
\(774\) 4.66608 13.0268i 0.167719 0.468238i
\(775\) 33.9915i 1.22101i
\(776\) −44.9914 11.3188i −1.61510 0.406320i
\(777\) 0 0
\(778\) 17.5487 + 6.28579i 0.629152 + 0.225356i
\(779\) 0.583990 0.583990i 0.0209236 0.0209236i
\(780\) −9.16672 + 0.896521i −0.328221 + 0.0321006i
\(781\) −9.42282 9.42282i −0.337175 0.337175i
\(782\) −2.51426 + 1.18811i −0.0899098 + 0.0424866i
\(783\) −39.1812 −1.40022
\(784\) 0 0
\(785\) 0.322740 0.0115191
\(786\) 12.1514 5.74212i 0.433427 0.204814i
\(787\) 0.361908 + 0.361908i 0.0129006 + 0.0129006i 0.713528 0.700627i \(-0.247096\pi\)
−0.700627 + 0.713528i \(0.747096\pi\)
\(788\) −2.77615 28.3855i −0.0988962 1.01119i
\(789\) −3.85603 + 3.85603i −0.137278 + 0.137278i
\(790\) −1.17251 0.419982i −0.0417160 0.0149423i
\(791\) 0 0
\(792\) −5.50089 9.19905i −0.195466 0.326874i
\(793\) 17.2253i 0.611689i
\(794\) −2.97673 + 8.31045i −0.105640 + 0.294927i
\(795\) 1.27532 1.27532i 0.0452309 0.0452309i
\(796\) −18.0167 14.8065i −0.638584 0.524803i
\(797\) −35.5605 35.5605i −1.25962 1.25962i −0.951276 0.308341i \(-0.900226\pi\)
−0.308341 0.951276i \(-0.599774\pi\)
\(798\) 0 0
\(799\) −12.2801 −0.434438
\(800\) −13.3427 18.0550i −0.471737 0.638339i
\(801\) −7.01171 −0.247747
\(802\) 9.60798 + 20.3323i 0.339270 + 0.717960i
\(803\) 14.7103 + 14.7103i 0.519114 + 0.519114i
\(804\) −6.53653 5.37187i −0.230526 0.189451i
\(805\) 0 0
\(806\) 15.3529 42.8623i 0.540783 1.50976i
\(807\) 0.481317i 0.0169432i
\(808\) −22.3271 + 13.3513i −0.785464 + 0.469696i
\(809\) 1.36026i 0.0478243i 0.999714 + 0.0239121i \(0.00761220\pi\)
−0.999714 + 0.0239121i \(0.992388\pi\)
\(810\) −2.67842 0.959387i −0.0941102 0.0337094i
\(811\) −12.4370 + 12.4370i −0.436722 + 0.436722i −0.890907 0.454186i \(-0.849930\pi\)
0.454186 + 0.890907i \(0.349930\pi\)
\(812\) 0 0
\(813\) −9.06114 9.06114i −0.317788 0.317788i
\(814\) −25.0548 + 11.8396i −0.878171 + 0.414977i
\(815\) −15.0741 −0.528024
\(816\) −2.73557 + 4.08198i −0.0957640 + 0.142898i
\(817\) −0.614238 −0.0214895
\(818\) 7.29164 3.44564i 0.254946 0.120474i
\(819\) 0 0
\(820\) 17.2183 1.68398i 0.601290 0.0588072i
\(821\) −3.90598 + 3.90598i −0.136320 + 0.136320i −0.771974 0.635654i \(-0.780730\pi\)
0.635654 + 0.771974i \(0.280730\pi\)
\(822\) 17.7662 + 6.36368i 0.619666 + 0.221959i
\(823\) 19.0620i 0.664460i −0.943198 0.332230i \(-0.892199\pi\)
0.943198 0.332230i \(-0.107801\pi\)
\(824\) 5.33444 21.2041i 0.185834 0.738678i
\(825\) 11.7474i 0.408991i
\(826\) 0 0
\(827\) 3.94521 3.94521i 0.137188 0.137188i −0.635178 0.772366i \(-0.719073\pi\)
0.772366 + 0.635178i \(0.219073\pi\)
\(828\) −3.78744 + 4.60858i −0.131622 + 0.160159i
\(829\) 18.9628 + 18.9628i 0.658604 + 0.658604i 0.955050 0.296446i \(-0.0958015\pi\)
−0.296446 + 0.955050i \(0.595801\pi\)
\(830\) −4.72346 9.99575i −0.163954 0.346957i
\(831\) −13.8912 −0.481882
\(832\) 8.66994 + 28.7932i 0.300576 + 0.998226i
\(833\) 0 0
\(834\) 12.7989 + 27.0850i 0.443190 + 0.937875i
\(835\) −10.4832 10.4832i −0.362787 0.362787i
\(836\) −0.302088 + 0.367583i −0.0104479 + 0.0127131i
\(837\) 33.2050 33.2050i 1.14773 1.14773i
\(838\) 3.08307 8.60733i 0.106503 0.297335i
\(839\) 5.34140i 0.184406i −0.995740 0.0922028i \(-0.970609\pi\)
0.995740 0.0922028i \(-0.0293908\pi\)
\(840\) 0 0
\(841\) 22.0706i 0.761056i
\(842\) −0.793158 0.284102i −0.0273340 0.00979081i
\(843\) 15.8980 15.8980i 0.547557 0.547557i
\(844\) −18.3938 + 1.79895i −0.633142 + 0.0619223i
\(845\) 0.810320 + 0.810320i 0.0278759 + 0.0278759i
\(846\) −23.8167 + 11.2545i −0.818837 + 0.386939i
\(847\) 0 0
\(848\) −4.89146 3.27804i −0.167973 0.112568i
\(849\) −10.9644 −0.376299
\(850\) −5.16714 + 2.44171i −0.177231 + 0.0837501i
\(851\) 10.9054 + 10.9054i 0.373832 + 0.373832i
\(852\) 1.27561 + 13.0429i 0.0437018 + 0.446841i
\(853\) −1.42841 + 1.42841i −0.0489078 + 0.0489078i −0.731138 0.682230i \(-0.761010\pi\)
0.682230 + 0.731138i \(0.261010\pi\)
\(854\) 0 0
\(855\) 0.152084i 0.00520115i
\(856\) −45.8786 + 27.4347i −1.56810 + 0.937700i
\(857\) 25.5816i 0.873852i −0.899498 0.436926i \(-0.856067\pi\)
0.899498 0.436926i \(-0.143933\pi\)
\(858\) 5.30591 14.8131i 0.181141 0.505710i
\(859\) 32.2295 32.2295i 1.09966 1.09966i 0.105207 0.994450i \(-0.466449\pi\)
0.994450 0.105207i \(-0.0335506\pi\)
\(860\) −9.94066 8.16946i −0.338974 0.278576i
\(861\) 0 0
\(862\) 12.7512 + 26.9839i 0.434306 + 0.919075i
\(863\) 39.4446 1.34271 0.671356 0.741135i \(-0.265712\pi\)
0.671356 + 0.741135i \(0.265712\pi\)
\(864\) −4.60318 + 30.6711i −0.156603 + 1.04345i
\(865\) 12.5427 0.426465
\(866\) −8.44194 17.8648i −0.286869 0.607069i
\(867\) −13.6178 13.6178i −0.462486 0.462486i
\(868\) 0 0
\(869\) 1.50449 1.50449i 0.0510364 0.0510364i
\(870\) −4.17549 + 11.6572i −0.141562 + 0.395215i
\(871\) 13.1801i 0.446590i
\(872\) −23.7485 39.7142i −0.804225 1.34489i
\(873\) 25.3338i 0.857421i
\(874\) 0.249287 + 0.0892924i 0.00843226 + 0.00302036i
\(875\) 0 0
\(876\) −1.99140 20.3616i −0.0672832 0.687955i
\(877\) −7.45394 7.45394i −0.251702 0.251702i 0.569966 0.821668i \(-0.306956\pi\)
−0.821668 + 0.569966i \(0.806956\pi\)
\(878\) −6.92928 + 3.27441i −0.233852 + 0.110506i
\(879\) 20.5068 0.691678
\(880\) −9.77782 + 1.93105i −0.329610 + 0.0650955i
\(881\) 15.4426 0.520274 0.260137 0.965572i \(-0.416232\pi\)
0.260137 + 0.965572i \(0.416232\pi\)
\(882\) 0 0
\(883\) 10.0224 + 10.0224i 0.337280 + 0.337280i 0.855343 0.518063i \(-0.173347\pi\)
−0.518063 + 0.855343i \(0.673347\pi\)
\(884\) 7.61845 0.745098i 0.256236 0.0250603i
\(885\) 6.24386 6.24386i 0.209885 0.209885i
\(886\) −8.04539 2.88179i −0.270290 0.0968155i
\(887\) 43.7662i 1.46953i 0.678324 + 0.734763i \(0.262707\pi\)
−0.678324 + 0.734763i \(0.737293\pi\)
\(888\) 26.4287 + 6.64883i 0.886888 + 0.223120i
\(889\) 0 0
\(890\) −2.19862 + 6.13812i −0.0736979 + 0.205750i
\(891\) 3.43679 3.43679i 0.115137 0.115137i
\(892\) −29.6318 + 36.0562i −0.992147 + 1.20725i
\(893\) 0.826839 + 0.826839i 0.0276691 + 0.0276691i
\(894\) −3.81971 8.08325i −0.127750 0.270344i
\(895\) −0.479024 −0.0160120
\(896\) 0 0
\(897\) −8.75703 −0.292389
\(898\) −11.1334 23.5605i −0.371528 0.786225i
\(899\) −43.2810 43.2810i −1.44350 1.44350i
\(900\) −7.78368 + 9.47124i −0.259456 + 0.315708i
\(901\) −1.05992 + 1.05992i −0.0353109 + 0.0353109i
\(902\) −9.96636 + 27.8242i −0.331844 + 0.926443i
\(903\) 0 0
\(904\) −55.1750 13.8807i −1.83509 0.461666i
\(905\) 22.2113i 0.738330i
\(906\) −2.18991 0.784406i −0.0727549 0.0260602i
\(907\) −34.3143 + 34.3143i −1.13939 + 1.13939i −0.150829 + 0.988560i \(0.548194\pi\)
−0.988560 + 0.150829i \(0.951806\pi\)
\(908\) −31.1501 + 3.04653i −1.03375 + 0.101103i
\(909\) 10.0449 + 10.0449i 0.333169 + 0.333169i
\(910\) 0 0
\(911\) −35.2525 −1.16797 −0.583983 0.811766i \(-0.698507\pi\)
−0.583983 + 0.811766i \(0.698507\pi\)
\(912\) 0.459038 0.0906565i 0.0152003 0.00300194i
\(913\) 18.8868 0.625062
\(914\) −45.9957 + 21.7351i −1.52140 + 0.718934i
\(915\) 3.97018 + 3.97018i 0.131250 + 0.131250i
\(916\) −5.20567 53.2268i −0.172000 1.75866i
\(917\) 0 0
\(918\) 7.43278 + 2.66236i 0.245318 + 0.0878708i
\(919\) 25.5452i 0.842657i −0.906908 0.421329i \(-0.861564\pi\)
0.906908 0.421329i \(-0.138436\pi\)
\(920\) 2.84679 + 4.76065i 0.0938560 + 0.156954i
\(921\) 30.4275i 1.00262i
\(922\) 0.609597 1.70188i 0.0200760 0.0560483i
\(923\) 14.4357 14.4357i 0.475156 0.475156i
\(924\) 0 0
\(925\) 22.4120 + 22.4120i 0.736903 + 0.736903i
\(926\) 7.61305 + 16.1107i 0.250180 + 0.529430i
\(927\) −11.9396 −0.392148
\(928\) 39.9782 + 6.00001i 1.31235 + 0.196960i
\(929\) −3.97030 −0.130261 −0.0651306 0.997877i \(-0.520746\pi\)
−0.0651306 + 0.997877i \(0.520746\pi\)
\(930\) −6.34051 13.4177i −0.207913 0.439985i
\(931\) 0 0
\(932\) 19.6978 + 16.1881i 0.645222 + 0.530258i
\(933\) 5.58306 5.58306i 0.182781 0.182781i
\(934\) 3.95299 11.0360i 0.129346 0.361109i
\(935\) 2.53716i 0.0829740i
\(936\) 14.0928 8.42731i 0.460639 0.275455i
\(937\) 18.3326i 0.598899i 0.954112 + 0.299450i \(0.0968031\pi\)
−0.954112 + 0.299450i \(0.903197\pi\)
\(938\) 0 0
\(939\) 16.3565 16.3565i 0.533773 0.533773i
\(940\) 2.38425 + 24.3784i 0.0777658 + 0.795137i
\(941\) −21.0781 21.0781i −0.687126 0.687126i 0.274470 0.961596i \(-0.411498\pi\)
−0.961596 + 0.274470i \(0.911498\pi\)
\(942\) 0.490237 0.231660i 0.0159728 0.00754788i
\(943\) 16.4488 0.535646
\(944\) −23.9482 16.0491i −0.779448 0.522352i
\(945\) 0 0
\(946\) 19.8739 9.39136i 0.646157 0.305339i
\(947\) 19.9001 + 19.9001i 0.646666 + 0.646666i 0.952186 0.305520i \(-0.0988302\pi\)
−0.305520 + 0.952186i \(0.598830\pi\)
\(948\) −2.08248 + 0.203671i −0.0676360 + 0.00661491i
\(949\) −22.5360 + 22.5360i −0.731549 + 0.731549i
\(950\) 0.512318 + 0.183508i 0.0166218 + 0.00595378i
\(951\) 22.7060i 0.736291i
\(952\) 0 0
\(953\) 9.54510i 0.309196i 0.987977 + 0.154598i \(0.0494083\pi\)
−0.987977 + 0.154598i \(0.950592\pi\)
\(954\) −1.08427 + 3.02707i −0.0351045 + 0.0980049i
\(955\) 4.36760 4.36760i 0.141332 0.141332i
\(956\) −19.0081 + 23.1291i −0.614764 + 0.748050i
\(957\) −14.9578 14.9578i −0.483516 0.483516i
\(958\) 5.60615 + 11.8637i 0.181126 + 0.383298i
\(959\) 0 0
\(960\) 8.63470 + 4.63812i 0.278684 + 0.149695i
\(961\) 42.3589 1.36642
\(962\) −18.1381 38.3837i −0.584796 1.23754i
\(963\) 20.6407 + 20.6407i 0.665138 + 0.665138i
\(964\) 25.1562 30.6103i 0.810228 0.985892i
\(965\) 7.22535 7.22535i 0.232592 0.232592i
\(966\) 0 0
\(967\) 54.0255i 1.73734i −0.495388 0.868672i \(-0.664974\pi\)
0.495388 0.868672i \(-0.335026\pi\)
\(968\) −3.43665 + 13.6605i −0.110458 + 0.439064i
\(969\) 0.119112i 0.00382642i
\(970\) 22.1775 + 7.94379i 0.712077 + 0.255060i
\(971\) −4.21246 + 4.21246i −0.135184 + 0.135184i −0.771461 0.636277i \(-0.780474\pi\)
0.636277 + 0.771461i \(0.280474\pi\)
\(972\) 27.9827 2.73675i 0.897544 0.0877813i
\(973\) 0 0
\(974\) 49.4665 23.3752i 1.58501 0.748991i
\(975\) −17.9968 −0.576360
\(976\) 10.2048 15.2275i 0.326649 0.487422i
\(977\) −29.2997 −0.937381 −0.468690 0.883363i \(-0.655274\pi\)
−0.468690 + 0.883363i \(0.655274\pi\)
\(978\) −22.8974 + 10.8201i −0.732178 + 0.345988i
\(979\) −7.87607 7.87607i −0.251720 0.251720i
\(980\) 0 0
\(981\) −17.8673 + 17.8673i −0.570460 + 0.570460i
\(982\) 56.1254 + 20.1036i 1.79103 + 0.641532i
\(983\) 15.9859i 0.509871i 0.966958 + 0.254936i \(0.0820543\pi\)
−0.966958 + 0.254936i \(0.917946\pi\)
\(984\) 24.9456 14.9171i 0.795238 0.475540i
\(985\) 14.4822i 0.461440i
\(986\) 3.47024 9.68825i 0.110515 0.308537i
\(987\) 0 0
\(988\) −0.563133 0.462795i −0.0179156 0.0147235i
\(989\) −8.65036 8.65036i −0.275065 0.275065i
\(990\) 2.32527 + 4.92073i 0.0739021 + 0.156391i
\(991\) 20.7652 0.659628 0.329814 0.944046i \(-0.393014\pi\)
0.329814 + 0.944046i \(0.393014\pi\)
\(992\) −38.9653 + 28.7956i −1.23715 + 0.914262i
\(993\) 11.8153 0.374948
\(994\) 0 0
\(995\) 8.37312 + 8.37312i 0.265446 + 0.265446i
\(996\) −14.3497 11.7929i −0.454689 0.373673i
\(997\) −35.1562 + 35.1562i −1.11341 + 1.11341i −0.120721 + 0.992687i \(0.538521\pi\)
−0.992687 + 0.120721i \(0.961479\pi\)
\(998\) −5.33175 + 14.8852i −0.168774 + 0.471183i
\(999\) 43.7868i 1.38535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.m.k.589.5 24
7.2 even 3 784.2.x.o.557.5 48
7.3 odd 6 112.2.w.c.93.12 yes 48
7.4 even 3 784.2.x.o.765.12 48
7.5 odd 6 112.2.w.c.109.5 yes 48
7.6 odd 2 784.2.m.j.589.5 24
16.5 even 4 inner 784.2.m.k.197.5 24
28.3 even 6 448.2.ba.c.401.9 48
28.19 even 6 448.2.ba.c.81.4 48
56.3 even 6 896.2.ba.e.289.4 48
56.5 odd 6 896.2.ba.f.417.4 48
56.19 even 6 896.2.ba.e.417.9 48
56.45 odd 6 896.2.ba.f.289.9 48
112.3 even 12 896.2.ba.e.737.9 48
112.5 odd 12 112.2.w.c.53.12 yes 48
112.19 even 12 896.2.ba.e.865.4 48
112.37 even 12 784.2.x.o.165.12 48
112.45 odd 12 896.2.ba.f.737.4 48
112.53 even 12 784.2.x.o.373.5 48
112.59 even 12 448.2.ba.c.177.4 48
112.61 odd 12 896.2.ba.f.865.9 48
112.69 odd 4 784.2.m.j.197.5 24
112.75 even 12 448.2.ba.c.305.9 48
112.101 odd 12 112.2.w.c.37.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.5 48 112.101 odd 12
112.2.w.c.53.12 yes 48 112.5 odd 12
112.2.w.c.93.12 yes 48 7.3 odd 6
112.2.w.c.109.5 yes 48 7.5 odd 6
448.2.ba.c.81.4 48 28.19 even 6
448.2.ba.c.177.4 48 112.59 even 12
448.2.ba.c.305.9 48 112.75 even 12
448.2.ba.c.401.9 48 28.3 even 6
784.2.m.j.197.5 24 112.69 odd 4
784.2.m.j.589.5 24 7.6 odd 2
784.2.m.k.197.5 24 16.5 even 4 inner
784.2.m.k.589.5 24 1.1 even 1 trivial
784.2.x.o.165.12 48 112.37 even 12
784.2.x.o.373.5 48 112.53 even 12
784.2.x.o.557.5 48 7.2 even 3
784.2.x.o.765.12 48 7.4 even 3
896.2.ba.e.289.4 48 56.3 even 6
896.2.ba.e.417.9 48 56.19 even 6
896.2.ba.e.737.9 48 112.3 even 12
896.2.ba.e.865.4 48 112.19 even 12
896.2.ba.f.289.9 48 56.45 odd 6
896.2.ba.f.417.4 48 56.5 odd 6
896.2.ba.f.737.4 48 112.45 odd 12
896.2.ba.f.865.9 48 112.61 odd 12