Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [784,2,Mod(197,784)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(784, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("784.197");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 784.m (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.26027151847\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 112) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
197.1 | −1.38357 | − | 0.292823i | −0.0398054 | + | 0.0398054i | 1.82851 | + | 0.810281i | 0.920778 | + | 0.920778i | 0.0667293 | − | 0.0434174i | 0 | −2.29259 | − | 1.65651i | 2.99683i | −1.00433 | − | 1.54358i | ||||
197.2 | −1.33465 | + | 0.467669i | 2.13390 | − | 2.13390i | 1.56257 | − | 1.24835i | −0.545748 | − | 0.545748i | −1.85005 | + | 3.84597i | 0 | −1.50167 | + | 2.39687i | − | 6.10706i | 0.983611 | + | 0.473152i | |||
197.3 | −0.913051 | − | 1.07997i | −1.80111 | + | 1.80111i | −0.332676 | + | 1.97214i | 1.37283 | + | 1.37283i | 3.58965 | + | 0.300642i | 0 | 2.43360 | − | 1.44138i | − | 3.48800i | 0.229153 | − | 2.73608i | |||
197.4 | −0.669670 | − | 1.24561i | 0.608827 | − | 0.608827i | −1.10308 | + | 1.66829i | −1.48423 | − | 1.48423i | −1.16607 | − | 0.350647i | 0 | 2.81674 | + | 0.256804i | 2.25866i | −0.854824 | + | 2.84271i | ||||
197.5 | −0.604218 | + | 1.27864i | 0.853080 | − | 0.853080i | −1.26984 | − | 1.54515i | 0.718099 | + | 0.718099i | 0.575337 | + | 1.60623i | 0 | 2.74296 | − | 0.690063i | 1.54451i | −1.35208 | + | 0.484303i | ||||
197.6 | 0.350694 | + | 1.37004i | −1.17747 | + | 1.17747i | −1.75403 | + | 0.960931i | 1.42676 | + | 1.42676i | −2.02612 | − | 1.20025i | 0 | −1.93164 | − | 2.06610i | 0.227125i | −1.45437 | + | 2.45508i | ||||
197.7 | 0.700256 | − | 1.22867i | −2.22611 | + | 2.22611i | −1.01928 | − | 1.72077i | −1.37091 | − | 1.37091i | 1.17632 | + | 4.29401i | 0 | −2.82803 | + | 0.0473857i | − | 6.91115i | −2.64439 | + | 0.724414i | |||
197.8 | 0.844695 | + | 1.13424i | −0.614312 | + | 0.614312i | −0.572980 | + | 1.91617i | −2.31562 | − | 2.31562i | −1.21568 | − | 0.177868i | 0 | −2.65738 | + | 0.968682i | 2.24524i | 0.670466 | − | 4.58245i | ||||
197.9 | 1.08920 | − | 0.902016i | 0.606021 | − | 0.606021i | 0.372734 | − | 1.96496i | 3.00784 | + | 3.00784i | 0.113440 | − | 1.20672i | 0 | −1.36644 | − | 2.47646i | 2.26548i | 5.98927 | + | 0.563034i | ||||
197.10 | 1.19460 | + | 0.756916i | 1.42954 | − | 1.42954i | 0.854157 | + | 1.80843i | 0.702089 | + | 0.702089i | 2.78978 | − | 0.625694i | 0 | −0.348448 | + | 2.80688i | − | 1.08719i | 0.307296 | + | 1.37014i | |||
197.11 | 1.32935 | − | 0.482511i | 1.83801 | − | 1.83801i | 1.53437 | − | 1.28286i | −2.13175 | − | 2.13175i | 1.55651 | − | 3.33023i | 0 | 1.42072 | − | 2.44572i | − | 3.75657i | −3.86245 | − | 1.80526i | |||
197.12 | 1.39634 | + | 0.224104i | −1.61057 | + | 1.61057i | 1.89956 | + | 0.625852i | 1.69986 | + | 1.69986i | −2.60985 | + | 1.88798i | 0 | 2.51218 | + | 1.29960i | − | 2.18789i | 1.99265 | + | 2.75454i | |||
589.1 | −1.38357 | + | 0.292823i | −0.0398054 | − | 0.0398054i | 1.82851 | − | 0.810281i | 0.920778 | − | 0.920778i | 0.0667293 | + | 0.0434174i | 0 | −2.29259 | + | 1.65651i | − | 2.99683i | −1.00433 | + | 1.54358i | |||
589.2 | −1.33465 | − | 0.467669i | 2.13390 | + | 2.13390i | 1.56257 | + | 1.24835i | −0.545748 | + | 0.545748i | −1.85005 | − | 3.84597i | 0 | −1.50167 | − | 2.39687i | 6.10706i | 0.983611 | − | 0.473152i | ||||
589.3 | −0.913051 | + | 1.07997i | −1.80111 | − | 1.80111i | −0.332676 | − | 1.97214i | 1.37283 | − | 1.37283i | 3.58965 | − | 0.300642i | 0 | 2.43360 | + | 1.44138i | 3.48800i | 0.229153 | + | 2.73608i | ||||
589.4 | −0.669670 | + | 1.24561i | 0.608827 | + | 0.608827i | −1.10308 | − | 1.66829i | −1.48423 | + | 1.48423i | −1.16607 | + | 0.350647i | 0 | 2.81674 | − | 0.256804i | − | 2.25866i | −0.854824 | − | 2.84271i | |||
589.5 | −0.604218 | − | 1.27864i | 0.853080 | + | 0.853080i | −1.26984 | + | 1.54515i | 0.718099 | − | 0.718099i | 0.575337 | − | 1.60623i | 0 | 2.74296 | + | 0.690063i | − | 1.54451i | −1.35208 | − | 0.484303i | |||
589.6 | 0.350694 | − | 1.37004i | −1.17747 | − | 1.17747i | −1.75403 | − | 0.960931i | 1.42676 | − | 1.42676i | −2.02612 | + | 1.20025i | 0 | −1.93164 | + | 2.06610i | − | 0.227125i | −1.45437 | − | 2.45508i | |||
589.7 | 0.700256 | + | 1.22867i | −2.22611 | − | 2.22611i | −1.01928 | + | 1.72077i | −1.37091 | + | 1.37091i | 1.17632 | − | 4.29401i | 0 | −2.82803 | − | 0.0473857i | 6.91115i | −2.64439 | − | 0.724414i | ||||
589.8 | 0.844695 | − | 1.13424i | −0.614312 | − | 0.614312i | −0.572980 | − | 1.91617i | −2.31562 | + | 2.31562i | −1.21568 | + | 0.177868i | 0 | −2.65738 | − | 0.968682i | − | 2.24524i | 0.670466 | + | 4.58245i | |||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 784.2.m.k | 24 | |
7.b | odd | 2 | 1 | 784.2.m.j | 24 | ||
7.c | even | 3 | 2 | 784.2.x.o | 48 | ||
7.d | odd | 6 | 2 | 112.2.w.c | ✓ | 48 | |
16.e | even | 4 | 1 | inner | 784.2.m.k | 24 | |
28.f | even | 6 | 2 | 448.2.ba.c | 48 | ||
56.j | odd | 6 | 2 | 896.2.ba.f | 48 | ||
56.m | even | 6 | 2 | 896.2.ba.e | 48 | ||
112.l | odd | 4 | 1 | 784.2.m.j | 24 | ||
112.v | even | 12 | 2 | 448.2.ba.c | 48 | ||
112.v | even | 12 | 2 | 896.2.ba.e | 48 | ||
112.w | even | 12 | 2 | 784.2.x.o | 48 | ||
112.x | odd | 12 | 2 | 112.2.w.c | ✓ | 48 | |
112.x | odd | 12 | 2 | 896.2.ba.f | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
112.2.w.c | ✓ | 48 | 7.d | odd | 6 | 2 | |
112.2.w.c | ✓ | 48 | 112.x | odd | 12 | 2 | |
448.2.ba.c | 48 | 28.f | even | 6 | 2 | ||
448.2.ba.c | 48 | 112.v | even | 12 | 2 | ||
784.2.m.j | 24 | 7.b | odd | 2 | 1 | ||
784.2.m.j | 24 | 112.l | odd | 4 | 1 | ||
784.2.m.k | 24 | 1.a | even | 1 | 1 | trivial | |
784.2.m.k | 24 | 16.e | even | 4 | 1 | inner | |
784.2.x.o | 48 | 7.c | even | 3 | 2 | ||
784.2.x.o | 48 | 112.w | even | 12 | 2 | ||
896.2.ba.e | 48 | 56.m | even | 6 | 2 | ||
896.2.ba.e | 48 | 112.v | even | 12 | 2 | ||
896.2.ba.f | 48 | 56.j | odd | 6 | 2 | ||
896.2.ba.f | 48 | 112.x | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(784, [\chi])\):
\( T_{3}^{24} - 4 T_{3}^{21} + 162 T_{3}^{20} - 24 T_{3}^{19} + 8 T_{3}^{18} - 468 T_{3}^{17} + 7855 T_{3}^{16} + \cdots + 441 \) |
\( T_{5}^{24} - 4 T_{5}^{23} + 8 T_{5}^{22} + 4 T_{5}^{21} + 266 T_{5}^{20} - 908 T_{5}^{19} + \cdots + 2660161 \) |