Properties

Label 784.2.m.k
Level $784$
Weight $2$
Character orbit 784.m
Analytic conductor $6.260$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(197,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 4 q^{2} + 4 q^{4} + 4 q^{5} + 2 q^{6} - 2 q^{8} - 2 q^{10} + 4 q^{11} + 2 q^{12} + 12 q^{13} - 20 q^{15} - 16 q^{16} + 8 q^{17} - 18 q^{18} - 4 q^{19} + 8 q^{20} + 18 q^{24} - 10 q^{26} + 12 q^{27}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
197.1 −1.38357 0.292823i −0.0398054 + 0.0398054i 1.82851 + 0.810281i 0.920778 + 0.920778i 0.0667293 0.0434174i 0 −2.29259 1.65651i 2.99683i −1.00433 1.54358i
197.2 −1.33465 + 0.467669i 2.13390 2.13390i 1.56257 1.24835i −0.545748 0.545748i −1.85005 + 3.84597i 0 −1.50167 + 2.39687i 6.10706i 0.983611 + 0.473152i
197.3 −0.913051 1.07997i −1.80111 + 1.80111i −0.332676 + 1.97214i 1.37283 + 1.37283i 3.58965 + 0.300642i 0 2.43360 1.44138i 3.48800i 0.229153 2.73608i
197.4 −0.669670 1.24561i 0.608827 0.608827i −1.10308 + 1.66829i −1.48423 1.48423i −1.16607 0.350647i 0 2.81674 + 0.256804i 2.25866i −0.854824 + 2.84271i
197.5 −0.604218 + 1.27864i 0.853080 0.853080i −1.26984 1.54515i 0.718099 + 0.718099i 0.575337 + 1.60623i 0 2.74296 0.690063i 1.54451i −1.35208 + 0.484303i
197.6 0.350694 + 1.37004i −1.17747 + 1.17747i −1.75403 + 0.960931i 1.42676 + 1.42676i −2.02612 1.20025i 0 −1.93164 2.06610i 0.227125i −1.45437 + 2.45508i
197.7 0.700256 1.22867i −2.22611 + 2.22611i −1.01928 1.72077i −1.37091 1.37091i 1.17632 + 4.29401i 0 −2.82803 + 0.0473857i 6.91115i −2.64439 + 0.724414i
197.8 0.844695 + 1.13424i −0.614312 + 0.614312i −0.572980 + 1.91617i −2.31562 2.31562i −1.21568 0.177868i 0 −2.65738 + 0.968682i 2.24524i 0.670466 4.58245i
197.9 1.08920 0.902016i 0.606021 0.606021i 0.372734 1.96496i 3.00784 + 3.00784i 0.113440 1.20672i 0 −1.36644 2.47646i 2.26548i 5.98927 + 0.563034i
197.10 1.19460 + 0.756916i 1.42954 1.42954i 0.854157 + 1.80843i 0.702089 + 0.702089i 2.78978 0.625694i 0 −0.348448 + 2.80688i 1.08719i 0.307296 + 1.37014i
197.11 1.32935 0.482511i 1.83801 1.83801i 1.53437 1.28286i −2.13175 2.13175i 1.55651 3.33023i 0 1.42072 2.44572i 3.75657i −3.86245 1.80526i
197.12 1.39634 + 0.224104i −1.61057 + 1.61057i 1.89956 + 0.625852i 1.69986 + 1.69986i −2.60985 + 1.88798i 0 2.51218 + 1.29960i 2.18789i 1.99265 + 2.75454i
589.1 −1.38357 + 0.292823i −0.0398054 0.0398054i 1.82851 0.810281i 0.920778 0.920778i 0.0667293 + 0.0434174i 0 −2.29259 + 1.65651i 2.99683i −1.00433 + 1.54358i
589.2 −1.33465 0.467669i 2.13390 + 2.13390i 1.56257 + 1.24835i −0.545748 + 0.545748i −1.85005 3.84597i 0 −1.50167 2.39687i 6.10706i 0.983611 0.473152i
589.3 −0.913051 + 1.07997i −1.80111 1.80111i −0.332676 1.97214i 1.37283 1.37283i 3.58965 0.300642i 0 2.43360 + 1.44138i 3.48800i 0.229153 + 2.73608i
589.4 −0.669670 + 1.24561i 0.608827 + 0.608827i −1.10308 1.66829i −1.48423 + 1.48423i −1.16607 + 0.350647i 0 2.81674 0.256804i 2.25866i −0.854824 2.84271i
589.5 −0.604218 1.27864i 0.853080 + 0.853080i −1.26984 + 1.54515i 0.718099 0.718099i 0.575337 1.60623i 0 2.74296 + 0.690063i 1.54451i −1.35208 0.484303i
589.6 0.350694 1.37004i −1.17747 1.17747i −1.75403 0.960931i 1.42676 1.42676i −2.02612 + 1.20025i 0 −1.93164 + 2.06610i 0.227125i −1.45437 2.45508i
589.7 0.700256 + 1.22867i −2.22611 2.22611i −1.01928 + 1.72077i −1.37091 + 1.37091i 1.17632 4.29401i 0 −2.82803 0.0473857i 6.91115i −2.64439 0.724414i
589.8 0.844695 1.13424i −0.614312 0.614312i −0.572980 1.91617i −2.31562 + 2.31562i −1.21568 + 0.177868i 0 −2.65738 0.968682i 2.24524i 0.670466 + 4.58245i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 197.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.2.m.k 24
7.b odd 2 1 784.2.m.j 24
7.c even 3 2 784.2.x.o 48
7.d odd 6 2 112.2.w.c 48
16.e even 4 1 inner 784.2.m.k 24
28.f even 6 2 448.2.ba.c 48
56.j odd 6 2 896.2.ba.f 48
56.m even 6 2 896.2.ba.e 48
112.l odd 4 1 784.2.m.j 24
112.v even 12 2 448.2.ba.c 48
112.v even 12 2 896.2.ba.e 48
112.w even 12 2 784.2.x.o 48
112.x odd 12 2 112.2.w.c 48
112.x odd 12 2 896.2.ba.f 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.w.c 48 7.d odd 6 2
112.2.w.c 48 112.x odd 12 2
448.2.ba.c 48 28.f even 6 2
448.2.ba.c 48 112.v even 12 2
784.2.m.j 24 7.b odd 2 1
784.2.m.j 24 112.l odd 4 1
784.2.m.k 24 1.a even 1 1 trivial
784.2.m.k 24 16.e even 4 1 inner
784.2.x.o 48 7.c even 3 2
784.2.x.o 48 112.w even 12 2
896.2.ba.e 48 56.m even 6 2
896.2.ba.e 48 112.v even 12 2
896.2.ba.f 48 56.j odd 6 2
896.2.ba.f 48 112.x odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(784, [\chi])\):

\( T_{3}^{24} - 4 T_{3}^{21} + 162 T_{3}^{20} - 24 T_{3}^{19} + 8 T_{3}^{18} - 468 T_{3}^{17} + 7855 T_{3}^{16} + \cdots + 441 \) Copy content Toggle raw display
\( T_{5}^{24} - 4 T_{5}^{23} + 8 T_{5}^{22} + 4 T_{5}^{21} + 266 T_{5}^{20} - 908 T_{5}^{19} + \cdots + 2660161 \) Copy content Toggle raw display