Properties

Label 784.2.m.j.589.6
Level $784$
Weight $2$
Character 784.589
Analytic conductor $6.260$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(197,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 589.6
Character \(\chi\) \(=\) 784.589
Dual form 784.2.m.j.197.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.350694 - 1.37004i) q^{2} +(1.17747 + 1.17747i) q^{3} +(-1.75403 - 0.960931i) q^{4} +(-1.42676 + 1.42676i) q^{5} +(2.02612 - 1.20025i) q^{6} +(-1.93164 + 2.06610i) q^{8} -0.227125i q^{9} +(1.45437 + 2.45508i) q^{10} +(4.46446 - 4.46446i) q^{11} +(-0.933847 - 3.19678i) q^{12} +(1.13388 + 1.13388i) q^{13} -3.35995 q^{15} +(2.15322 + 3.37100i) q^{16} +1.92158 q^{17} +(-0.311171 - 0.0796515i) q^{18} +(4.46208 + 4.46208i) q^{19} +(3.87361 - 1.13156i) q^{20} +(-4.55083 - 7.68215i) q^{22} -1.06764i q^{23} +(-4.70722 + 0.158316i) q^{24} +0.928685i q^{25} +(1.95110 - 1.15581i) q^{26} +(3.79985 - 3.79985i) q^{27} +(5.08936 + 5.08936i) q^{29} +(-1.17831 + 4.60327i) q^{30} +0.396586 q^{31} +(5.37353 - 1.76781i) q^{32} +10.5135 q^{33} +(0.673887 - 2.63264i) q^{34} +(-0.218252 + 0.398384i) q^{36} +(-0.239603 + 0.239603i) q^{37} +(7.67806 - 4.54841i) q^{38} +2.67021i q^{39} +(-0.191834 - 5.70383i) q^{40} -7.26189i q^{41} +(1.75565 - 1.75565i) q^{43} +(-12.1208 + 3.54074i) q^{44} +(0.324054 + 0.324054i) q^{45} +(-1.46271 - 0.374416i) q^{46} +2.16235 q^{47} +(-1.43390 + 6.50461i) q^{48} +(1.27234 + 0.325684i) q^{50} +(2.26260 + 2.26260i) q^{51} +(-0.899272 - 3.07842i) q^{52} +(0.304333 - 0.304333i) q^{53} +(-3.87336 - 6.53853i) q^{54} +12.7395i q^{55} +10.5079i q^{57} +(8.75744 - 5.18782i) q^{58} +(-6.35074 + 6.35074i) q^{59} +(5.89344 + 3.22868i) q^{60} +(-7.44956 - 7.44956i) q^{61} +(0.139080 - 0.543339i) q^{62} +(-0.537512 - 7.98192i) q^{64} -3.23555 q^{65} +(3.68704 - 14.4040i) q^{66} +(-5.76447 - 5.76447i) q^{67} +(-3.37050 - 1.84651i) q^{68} +(1.25712 - 1.25712i) q^{69} +2.78982i q^{71} +(0.469263 + 0.438725i) q^{72} -2.37557i q^{73} +(0.244238 + 0.412293i) q^{74} +(-1.09350 + 1.09350i) q^{75} +(-3.53886 - 12.1144i) q^{76} +(3.65830 + 0.936427i) q^{78} -10.2166 q^{79} +(-7.88176 - 1.73748i) q^{80} +8.26704 q^{81} +(-9.94909 - 2.54670i) q^{82} +(1.17951 + 1.17951i) q^{83} +(-2.74164 + 2.74164i) q^{85} +(-1.78962 - 3.02101i) q^{86} +11.9851i q^{87} +(0.600264 + 17.8477i) q^{88} +12.7560i q^{89} +(0.557612 - 0.330324i) q^{90} +(-1.02593 + 1.87267i) q^{92} +(0.466968 + 0.466968i) q^{93} +(0.758325 - 2.96252i) q^{94} -12.7327 q^{95} +(8.40872 + 4.24563i) q^{96} -2.21148 q^{97} +(-1.01399 - 1.01399i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 4 q^{4} - 4 q^{5} - 2 q^{6} - 2 q^{8} + 2 q^{10} + 4 q^{11} - 2 q^{12} - 12 q^{13} - 20 q^{15} - 16 q^{16} - 8 q^{17} - 18 q^{18} + 4 q^{19} - 8 q^{20} - 18 q^{24} + 10 q^{26} - 12 q^{27}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.350694 1.37004i 0.247978 0.968766i
\(3\) 1.17747 + 1.17747i 0.679813 + 0.679813i 0.959958 0.280145i \(-0.0903825\pi\)
−0.280145 + 0.959958i \(0.590382\pi\)
\(4\) −1.75403 0.960931i −0.877014 0.480466i
\(5\) −1.42676 + 1.42676i −0.638069 + 0.638069i −0.950079 0.312010i \(-0.898998\pi\)
0.312010 + 0.950079i \(0.398998\pi\)
\(6\) 2.02612 1.20025i 0.827158 0.490001i
\(7\) 0 0
\(8\) −1.93164 + 2.06610i −0.682939 + 0.730476i
\(9\) 0.227125i 0.0757084i
\(10\) 1.45437 + 2.45508i 0.459912 + 0.776366i
\(11\) 4.46446 4.46446i 1.34608 1.34608i 0.456216 0.889869i \(-0.349205\pi\)
0.889869 0.456216i \(-0.150795\pi\)
\(12\) −0.933847 3.19678i −0.269578 0.922832i
\(13\) 1.13388 + 1.13388i 0.314480 + 0.314480i 0.846642 0.532162i \(-0.178620\pi\)
−0.532162 + 0.846642i \(0.678620\pi\)
\(14\) 0 0
\(15\) −3.35995 −0.867535
\(16\) 2.15322 + 3.37100i 0.538306 + 0.842750i
\(17\) 1.92158 0.466051 0.233026 0.972471i \(-0.425137\pi\)
0.233026 + 0.972471i \(0.425137\pi\)
\(18\) −0.311171 0.0796515i −0.0733437 0.0187740i
\(19\) 4.46208 + 4.46208i 1.02367 + 1.02367i 0.999713 + 0.0239589i \(0.00762708\pi\)
0.0239589 + 0.999713i \(0.492373\pi\)
\(20\) 3.87361 1.13156i 0.866165 0.253025i
\(21\) 0 0
\(22\) −4.55083 7.68215i −0.970241 1.63784i
\(23\) 1.06764i 0.222619i −0.993786 0.111309i \(-0.964496\pi\)
0.993786 0.111309i \(-0.0355045\pi\)
\(24\) −4.70722 + 0.158316i −0.960858 + 0.0323160i
\(25\) 0.928685i 0.185737i
\(26\) 1.95110 1.15581i 0.382642 0.226673i
\(27\) 3.79985 3.79985i 0.731281 0.731281i
\(28\) 0 0
\(29\) 5.08936 + 5.08936i 0.945070 + 0.945070i 0.998568 0.0534979i \(-0.0170370\pi\)
−0.0534979 + 0.998568i \(0.517037\pi\)
\(30\) −1.17831 + 4.60327i −0.215130 + 0.840438i
\(31\) 0.396586 0.0712290 0.0356145 0.999366i \(-0.488661\pi\)
0.0356145 + 0.999366i \(0.488661\pi\)
\(32\) 5.37353 1.76781i 0.949915 0.312508i
\(33\) 10.5135 1.83017
\(34\) 0.673887 2.63264i 0.115571 0.451494i
\(35\) 0 0
\(36\) −0.218252 + 0.398384i −0.0363753 + 0.0663973i
\(37\) −0.239603 + 0.239603i −0.0393904 + 0.0393904i −0.726528 0.687137i \(-0.758867\pi\)
0.687137 + 0.726528i \(0.258867\pi\)
\(38\) 7.67806 4.54841i 1.24555 0.737850i
\(39\) 2.67021i 0.427576i
\(40\) −0.191834 5.70383i −0.0303316 0.901855i
\(41\) 7.26189i 1.13412i −0.823678 0.567058i \(-0.808081\pi\)
0.823678 0.567058i \(-0.191919\pi\)
\(42\) 0 0
\(43\) 1.75565 1.75565i 0.267734 0.267734i −0.560452 0.828187i \(-0.689373\pi\)
0.828187 + 0.560452i \(0.189373\pi\)
\(44\) −12.1208 + 3.54074i −1.82728 + 0.533787i
\(45\) 0.324054 + 0.324054i 0.0483072 + 0.0483072i
\(46\) −1.46271 0.374416i −0.215666 0.0552047i
\(47\) 2.16235 0.315412 0.157706 0.987486i \(-0.449590\pi\)
0.157706 + 0.987486i \(0.449590\pi\)
\(48\) −1.43390 + 6.50461i −0.206965 + 0.938859i
\(49\) 0 0
\(50\) 1.27234 + 0.325684i 0.179936 + 0.0460587i
\(51\) 2.26260 + 2.26260i 0.316828 + 0.316828i
\(52\) −0.899272 3.07842i −0.124707 0.426901i
\(53\) 0.304333 0.304333i 0.0418034 0.0418034i −0.685896 0.727699i \(-0.740590\pi\)
0.727699 + 0.685896i \(0.240590\pi\)
\(54\) −3.87336 6.53853i −0.527098 0.889781i
\(55\) 12.7395i 1.71779i
\(56\) 0 0
\(57\) 10.5079i 1.39181i
\(58\) 8.75744 5.18782i 1.14991 0.681195i
\(59\) −6.35074 + 6.35074i −0.826795 + 0.826795i −0.987072 0.160277i \(-0.948761\pi\)
0.160277 + 0.987072i \(0.448761\pi\)
\(60\) 5.89344 + 3.22868i 0.760840 + 0.416821i
\(61\) −7.44956 7.44956i −0.953818 0.953818i 0.0451612 0.998980i \(-0.485620\pi\)
−0.998980 + 0.0451612i \(0.985620\pi\)
\(62\) 0.139080 0.543339i 0.0176632 0.0690042i
\(63\) 0 0
\(64\) −0.537512 7.98192i −0.0671890 0.997740i
\(65\) −3.23555 −0.401320
\(66\) 3.68704 14.4040i 0.453843 1.77301i
\(67\) −5.76447 5.76447i −0.704242 0.704242i 0.261076 0.965318i \(-0.415923\pi\)
−0.965318 + 0.261076i \(0.915923\pi\)
\(68\) −3.37050 1.84651i −0.408733 0.223922i
\(69\) 1.25712 1.25712i 0.151339 0.151339i
\(70\) 0 0
\(71\) 2.78982i 0.331090i 0.986202 + 0.165545i \(0.0529384\pi\)
−0.986202 + 0.165545i \(0.947062\pi\)
\(72\) 0.469263 + 0.438725i 0.0553031 + 0.0517042i
\(73\) 2.37557i 0.278040i −0.990290 0.139020i \(-0.955605\pi\)
0.990290 0.139020i \(-0.0443952\pi\)
\(74\) 0.244238 + 0.412293i 0.0283921 + 0.0479281i
\(75\) −1.09350 + 1.09350i −0.126266 + 0.126266i
\(76\) −3.53886 12.1144i −0.405935 1.38961i
\(77\) 0 0
\(78\) 3.65830 + 0.936427i 0.414221 + 0.106029i
\(79\) −10.2166 −1.14945 −0.574727 0.818345i \(-0.694892\pi\)
−0.574727 + 0.818345i \(0.694892\pi\)
\(80\) −7.88176 1.73748i −0.881208 0.194256i
\(81\) 8.26704 0.918560
\(82\) −9.94909 2.54670i −1.09869 0.281236i
\(83\) 1.17951 + 1.17951i 0.129468 + 0.129468i 0.768871 0.639404i \(-0.220819\pi\)
−0.639404 + 0.768871i \(0.720819\pi\)
\(84\) 0 0
\(85\) −2.74164 + 2.74164i −0.297373 + 0.297373i
\(86\) −1.78962 3.02101i −0.192980 0.325764i
\(87\) 11.9851i 1.28494i
\(88\) 0.600264 + 17.8477i 0.0639884 + 1.90258i
\(89\) 12.7560i 1.35213i 0.736841 + 0.676066i \(0.236317\pi\)
−0.736841 + 0.676066i \(0.763683\pi\)
\(90\) 0.557612 0.330324i 0.0587774 0.0348192i
\(91\) 0 0
\(92\) −1.02593 + 1.87267i −0.106961 + 0.195240i
\(93\) 0.466968 + 0.466968i 0.0484224 + 0.0484224i
\(94\) 0.758325 2.96252i 0.0782153 0.305560i
\(95\) −12.7327 −1.30635
\(96\) 8.40872 + 4.24563i 0.858212 + 0.433317i
\(97\) −2.21148 −0.224542 −0.112271 0.993678i \(-0.535813\pi\)
−0.112271 + 0.993678i \(0.535813\pi\)
\(98\) 0 0
\(99\) −1.01399 1.01399i −0.101910 0.101910i
\(100\) 0.892402 1.62894i 0.0892402 0.162894i
\(101\) 5.08793 5.08793i 0.506268 0.506268i −0.407111 0.913379i \(-0.633464\pi\)
0.913379 + 0.407111i \(0.133464\pi\)
\(102\) 3.89334 2.30638i 0.385498 0.228365i
\(103\) 17.4888i 1.72322i 0.507572 + 0.861609i \(0.330543\pi\)
−0.507572 + 0.861609i \(0.669457\pi\)
\(104\) −4.53294 + 0.152454i −0.444491 + 0.0149493i
\(105\) 0 0
\(106\) −0.310221 0.523677i −0.0301314 0.0508640i
\(107\) −2.12921 + 2.12921i −0.205838 + 0.205838i −0.802496 0.596658i \(-0.796495\pi\)
0.596658 + 0.802496i \(0.296495\pi\)
\(108\) −10.3164 + 3.01364i −0.992698 + 0.289988i
\(109\) −5.02579 5.02579i −0.481384 0.481384i 0.424190 0.905573i \(-0.360559\pi\)
−0.905573 + 0.424190i \(0.860559\pi\)
\(110\) 17.4536 + 4.46766i 1.66413 + 0.425974i
\(111\) −0.564250 −0.0535562
\(112\) 0 0
\(113\) −5.96535 −0.561173 −0.280586 0.959829i \(-0.590529\pi\)
−0.280586 + 0.959829i \(0.590529\pi\)
\(114\) 14.3963 + 3.68507i 1.34834 + 0.345139i
\(115\) 1.52328 + 1.52328i 0.142046 + 0.142046i
\(116\) −4.03635 13.8174i −0.374766 1.28291i
\(117\) 0.257532 0.257532i 0.0238088 0.0238088i
\(118\) 6.47360 + 10.9279i 0.595944 + 1.00600i
\(119\) 0 0
\(120\) 6.49022 6.94198i 0.592473 0.633713i
\(121\) 28.8628i 2.62389i
\(122\) −12.8187 + 7.59369i −1.16055 + 0.687500i
\(123\) 8.55066 8.55066i 0.770987 0.770987i
\(124\) −0.695623 0.381092i −0.0624688 0.0342231i
\(125\) −8.45884 8.45884i −0.756582 0.756582i
\(126\) 0 0
\(127\) 6.41296 0.569058 0.284529 0.958667i \(-0.408163\pi\)
0.284529 + 0.958667i \(0.408163\pi\)
\(128\) −11.1241 2.06280i −0.983238 0.182328i
\(129\) 4.13446 0.364019
\(130\) −1.13469 + 4.43283i −0.0995187 + 0.388785i
\(131\) −10.5812 10.5812i −0.924482 0.924482i 0.0728597 0.997342i \(-0.476787\pi\)
−0.997342 + 0.0728597i \(0.976787\pi\)
\(132\) −18.4410 10.1028i −1.60509 0.879335i
\(133\) 0 0
\(134\) −9.91913 + 5.87600i −0.856882 + 0.507609i
\(135\) 10.8430i 0.933214i
\(136\) −3.71180 + 3.97017i −0.318285 + 0.340439i
\(137\) 1.74276i 0.148894i −0.997225 0.0744472i \(-0.976281\pi\)
0.997225 0.0744472i \(-0.0237192\pi\)
\(138\) −1.28144 2.16317i −0.109083 0.184141i
\(139\) 2.84436 2.84436i 0.241256 0.241256i −0.576114 0.817370i \(-0.695431\pi\)
0.817370 + 0.576114i \(0.195431\pi\)
\(140\) 0 0
\(141\) 2.54611 + 2.54611i 0.214421 + 0.214421i
\(142\) 3.82217 + 0.978373i 0.320749 + 0.0821032i
\(143\) 10.1243 0.846634
\(144\) 0.765639 0.489051i 0.0638033 0.0407543i
\(145\) −14.5226 −1.20604
\(146\) −3.25463 0.833099i −0.269355 0.0689478i
\(147\) 0 0
\(148\) 0.650511 0.190028i 0.0534717 0.0156202i
\(149\) 13.0194 13.0194i 1.06659 1.06659i 0.0689725 0.997619i \(-0.478028\pi\)
0.997619 0.0689725i \(-0.0219721\pi\)
\(150\) 1.11466 + 1.88162i 0.0910112 + 0.153634i
\(151\) 6.37899i 0.519115i 0.965728 + 0.259557i \(0.0835767\pi\)
−0.965728 + 0.259557i \(0.916423\pi\)
\(152\) −17.8382 + 0.599944i −1.44687 + 0.0486619i
\(153\) 0.436439i 0.0352840i
\(154\) 0 0
\(155\) −0.565835 + 0.565835i −0.0454490 + 0.0454490i
\(156\) 2.56589 4.68362i 0.205435 0.374990i
\(157\) −12.8971 12.8971i −1.02930 1.02930i −0.999558 0.0297395i \(-0.990532\pi\)
−0.0297395 0.999558i \(-0.509468\pi\)
\(158\) −3.58290 + 13.9971i −0.285040 + 1.11355i
\(159\) 0.716687 0.0568370
\(160\) −5.14451 + 10.1890i −0.406709 + 0.805513i
\(161\) 0 0
\(162\) 2.89920 11.3262i 0.227783 0.889869i
\(163\) 8.12343 + 8.12343i 0.636276 + 0.636276i 0.949635 0.313359i \(-0.101454\pi\)
−0.313359 + 0.949635i \(0.601454\pi\)
\(164\) −6.97818 + 12.7376i −0.544904 + 0.994636i
\(165\) −15.0003 + 15.0003i −1.16778 + 1.16778i
\(166\) 2.02962 1.20233i 0.157529 0.0933186i
\(167\) 21.6693i 1.67682i 0.545040 + 0.838410i \(0.316514\pi\)
−0.545040 + 0.838410i \(0.683486\pi\)
\(168\) 0 0
\(169\) 10.4287i 0.802204i
\(170\) 2.79468 + 4.71764i 0.214342 + 0.361826i
\(171\) 1.01345 1.01345i 0.0775006 0.0775006i
\(172\) −4.76652 + 1.39240i −0.363444 + 0.106170i
\(173\) 9.04787 + 9.04787i 0.687897 + 0.687897i 0.961767 0.273870i \(-0.0883038\pi\)
−0.273870 + 0.961767i \(0.588304\pi\)
\(174\) 16.4201 + 4.20312i 1.24481 + 0.318638i
\(175\) 0 0
\(176\) 24.6627 + 5.43671i 1.85902 + 0.409808i
\(177\) −14.9556 −1.12413
\(178\) 17.4762 + 4.47345i 1.30990 + 0.335300i
\(179\) −2.23963 2.23963i −0.167398 0.167398i 0.618437 0.785835i \(-0.287766\pi\)
−0.785835 + 0.618437i \(0.787766\pi\)
\(180\) −0.257006 0.879794i −0.0191561 0.0655760i
\(181\) −14.3765 + 14.3765i −1.06860 + 1.06860i −0.0711279 + 0.997467i \(0.522660\pi\)
−0.997467 + 0.0711279i \(0.977340\pi\)
\(182\) 0 0
\(183\) 17.5433i 1.29684i
\(184\) 2.20585 + 2.06230i 0.162618 + 0.152035i
\(185\) 0.683713i 0.0502676i
\(186\) 0.803529 0.476003i 0.0589176 0.0349022i
\(187\) 8.57881 8.57881i 0.627345 0.627345i
\(188\) −3.79283 2.07787i −0.276620 0.151545i
\(189\) 0 0
\(190\) −4.46528 + 17.4443i −0.323945 + 1.26554i
\(191\) 12.2418 0.885784 0.442892 0.896575i \(-0.353953\pi\)
0.442892 + 0.896575i \(0.353953\pi\)
\(192\) 8.76558 10.0314i 0.632601 0.723953i
\(193\) −2.17799 −0.156775 −0.0783877 0.996923i \(-0.524977\pi\)
−0.0783877 + 0.996923i \(0.524977\pi\)
\(194\) −0.775555 + 3.02983i −0.0556816 + 0.217529i
\(195\) −3.80976 3.80976i −0.272823 0.272823i
\(196\) 0 0
\(197\) 9.97878 9.97878i 0.710959 0.710959i −0.255777 0.966736i \(-0.582331\pi\)
0.966736 + 0.255777i \(0.0823313\pi\)
\(198\) −1.74481 + 1.03361i −0.123998 + 0.0734554i
\(199\) 10.5571i 0.748372i 0.927354 + 0.374186i \(0.122078\pi\)
−0.927354 + 0.374186i \(0.877922\pi\)
\(200\) −1.91875 1.79389i −0.135676 0.126847i
\(201\) 13.5750i 0.957506i
\(202\) −5.18637 8.75499i −0.364912 0.615999i
\(203\) 0 0
\(204\) −1.79446 6.14287i −0.125637 0.430087i
\(205\) 10.3610 + 10.3610i 0.723644 + 0.723644i
\(206\) 23.9603 + 6.13321i 1.66940 + 0.427321i
\(207\) −0.242489 −0.0168541
\(208\) −1.38081 + 6.26378i −0.0957417 + 0.434315i
\(209\) 39.8416 2.75590
\(210\) 0 0
\(211\) 5.20378 + 5.20378i 0.358243 + 0.358243i 0.863165 0.504922i \(-0.168479\pi\)
−0.504922 + 0.863165i \(0.668479\pi\)
\(212\) −0.826252 + 0.241366i −0.0567472 + 0.0165771i
\(213\) −3.28493 + 3.28493i −0.225080 + 0.225080i
\(214\) 2.17040 + 3.66380i 0.148366 + 0.250452i
\(215\) 5.00981i 0.341666i
\(216\) 0.510904 + 15.1908i 0.0347626 + 1.03360i
\(217\) 0 0
\(218\) −8.64806 + 5.12303i −0.585721 + 0.346975i
\(219\) 2.79717 2.79717i 0.189015 0.189015i
\(220\) 12.2417 22.3454i 0.825339 1.50652i
\(221\) 2.17883 + 2.17883i 0.146564 + 0.146564i
\(222\) −0.197879 + 0.773046i −0.0132808 + 0.0518835i
\(223\) −22.3888 −1.49926 −0.749632 0.661855i \(-0.769770\pi\)
−0.749632 + 0.661855i \(0.769770\pi\)
\(224\) 0 0
\(225\) 0.210928 0.0140619
\(226\) −2.09201 + 8.17277i −0.139159 + 0.543645i
\(227\) 13.1588 + 13.1588i 0.873383 + 0.873383i 0.992839 0.119456i \(-0.0381152\pi\)
−0.119456 + 0.992839i \(0.538115\pi\)
\(228\) 10.0974 18.4312i 0.668717 1.22064i
\(229\) −5.94737 + 5.94737i −0.393014 + 0.393014i −0.875760 0.482747i \(-0.839639\pi\)
0.482747 + 0.875760i \(0.339639\pi\)
\(230\) 2.62115 1.55275i 0.172834 0.102385i
\(231\) 0 0
\(232\) −20.3459 + 0.684284i −1.33578 + 0.0449255i
\(233\) 17.2372i 1.12925i 0.825349 + 0.564623i \(0.190978\pi\)
−0.825349 + 0.564623i \(0.809022\pi\)
\(234\) −0.262514 0.443144i −0.0171611 0.0289692i
\(235\) −3.08517 + 3.08517i −0.201254 + 0.201254i
\(236\) 17.2420 5.03674i 1.12236 0.327864i
\(237\) −12.0297 12.0297i −0.781414 0.781414i
\(238\) 0 0
\(239\) −0.572679 −0.0370435 −0.0185218 0.999828i \(-0.505896\pi\)
−0.0185218 + 0.999828i \(0.505896\pi\)
\(240\) −7.23471 11.3264i −0.466999 0.731115i
\(241\) −11.7864 −0.759227 −0.379613 0.925145i \(-0.623943\pi\)
−0.379613 + 0.925145i \(0.623943\pi\)
\(242\) −39.5432 10.1220i −2.54193 0.650667i
\(243\) −1.66534 1.66534i −0.106832 0.106832i
\(244\) 5.90822 + 20.2252i 0.378235 + 1.29479i
\(245\) 0 0
\(246\) −8.71610 14.7134i −0.555718 0.938094i
\(247\) 10.1189i 0.643849i
\(248\) −0.766063 + 0.819385i −0.0486450 + 0.0520310i
\(249\) 2.77767i 0.176027i
\(250\) −14.5554 + 8.62249i −0.920566 + 0.545334i
\(251\) −5.57539 + 5.57539i −0.351916 + 0.351916i −0.860822 0.508906i \(-0.830050\pi\)
0.508906 + 0.860822i \(0.330050\pi\)
\(252\) 0 0
\(253\) −4.76645 4.76645i −0.299664 0.299664i
\(254\) 2.24899 8.78602i 0.141114 0.551284i
\(255\) −6.45640 −0.404316
\(256\) −6.72727 + 14.5170i −0.420454 + 0.907314i
\(257\) 29.0655 1.81306 0.906528 0.422146i \(-0.138723\pi\)
0.906528 + 0.422146i \(0.138723\pi\)
\(258\) 1.44993 5.66438i 0.0902688 0.352649i
\(259\) 0 0
\(260\) 5.67523 + 3.10914i 0.351963 + 0.192820i
\(261\) 1.15592 1.15592i 0.0715498 0.0715498i
\(262\) −18.2074 + 10.7859i −1.12486 + 0.666355i
\(263\) 17.6833i 1.09040i 0.838307 + 0.545198i \(0.183546\pi\)
−0.838307 + 0.545198i \(0.816454\pi\)
\(264\) −20.3084 + 21.7220i −1.24990 + 1.33690i
\(265\) 0.868424i 0.0533469i
\(266\) 0 0
\(267\) −15.0198 + 15.0198i −0.919198 + 0.919198i
\(268\) 4.57178 + 15.6503i 0.279266 + 0.955994i
\(269\) −10.5612 10.5612i −0.643927 0.643927i 0.307592 0.951518i \(-0.400477\pi\)
−0.951518 + 0.307592i \(0.900477\pi\)
\(270\) 14.8553 + 3.80257i 0.904066 + 0.231417i
\(271\) −13.8634 −0.842145 −0.421072 0.907027i \(-0.638346\pi\)
−0.421072 + 0.907027i \(0.638346\pi\)
\(272\) 4.13759 + 6.47764i 0.250878 + 0.392765i
\(273\) 0 0
\(274\) −2.38766 0.611177i −0.144244 0.0369226i
\(275\) 4.14607 + 4.14607i 0.250018 + 0.250018i
\(276\) −3.41302 + 0.997015i −0.205440 + 0.0600133i
\(277\) −1.63232 + 1.63232i −0.0980768 + 0.0980768i −0.754443 0.656366i \(-0.772093\pi\)
0.656366 + 0.754443i \(0.272093\pi\)
\(278\) −2.89939 4.89440i −0.173894 0.293546i
\(279\) 0.0900747i 0.00539263i
\(280\) 0 0
\(281\) 0.680351i 0.0405863i 0.999794 + 0.0202932i \(0.00645996\pi\)
−0.999794 + 0.0202932i \(0.993540\pi\)
\(282\) 4.38118 2.59537i 0.260896 0.154552i
\(283\) 0.269140 0.269140i 0.0159987 0.0159987i −0.699062 0.715061i \(-0.746399\pi\)
0.715061 + 0.699062i \(0.246399\pi\)
\(284\) 2.68082 4.89342i 0.159078 0.290371i
\(285\) −14.9924 14.9924i −0.888071 0.888071i
\(286\) 3.55053 13.8707i 0.209947 0.820190i
\(287\) 0 0
\(288\) −0.401515 1.22046i −0.0236595 0.0719166i
\(289\) −13.3075 −0.782796
\(290\) −5.09300 + 19.8966i −0.299071 + 1.16837i
\(291\) −2.60396 2.60396i −0.152647 0.152647i
\(292\) −2.28276 + 4.16682i −0.133588 + 0.243844i
\(293\) 7.49220 7.49220i 0.437699 0.437699i −0.453538 0.891237i \(-0.649838\pi\)
0.891237 + 0.453538i \(0.149838\pi\)
\(294\) 0 0
\(295\) 18.1220i 1.05510i
\(296\) −0.0322155 0.957869i −0.00187249 0.0556750i
\(297\) 33.9285i 1.96873i
\(298\) −13.2713 22.4030i −0.768785 1.29777i
\(299\) 1.21057 1.21057i 0.0700093 0.0700093i
\(300\) 2.96880 0.867250i 0.171404 0.0500707i
\(301\) 0 0
\(302\) 8.73948 + 2.23707i 0.502901 + 0.128729i
\(303\) 11.9818 0.688335
\(304\) −5.43382 + 24.6495i −0.311651 + 1.41375i
\(305\) 21.2575 1.21720
\(306\) −0.597940 0.153057i −0.0341819 0.00874967i
\(307\) −6.27988 6.27988i −0.358412 0.358412i 0.504816 0.863227i \(-0.331561\pi\)
−0.863227 + 0.504816i \(0.831561\pi\)
\(308\) 0 0
\(309\) −20.5925 + 20.5925i −1.17147 + 1.17147i
\(310\) 0.576782 + 0.973652i 0.0327590 + 0.0552997i
\(311\) 9.88060i 0.560278i −0.959960 0.280139i \(-0.909620\pi\)
0.959960 0.280139i \(-0.0903805\pi\)
\(312\) −5.51691 5.15789i −0.312334 0.292008i
\(313\) 17.1743i 0.970747i −0.874307 0.485374i \(-0.838684\pi\)
0.874307 0.485374i \(-0.161316\pi\)
\(314\) −22.1924 + 13.1466i −1.25239 + 0.741904i
\(315\) 0 0
\(316\) 17.9202 + 9.81743i 1.00809 + 0.552274i
\(317\) −15.0227 15.0227i −0.843760 0.843760i 0.145585 0.989346i \(-0.453493\pi\)
−0.989346 + 0.145585i \(0.953493\pi\)
\(318\) 0.251338 0.981891i 0.0140943 0.0550617i
\(319\) 45.4425 2.54429
\(320\) 12.1552 + 10.6214i 0.679498 + 0.593756i
\(321\) −5.01416 −0.279863
\(322\) 0 0
\(323\) 8.57424 + 8.57424i 0.477084 + 0.477084i
\(324\) −14.5006 7.94406i −0.805589 0.441336i
\(325\) −1.05301 + 1.05301i −0.0584106 + 0.0584106i
\(326\) 13.9783 8.28060i 0.774185 0.458620i
\(327\) 11.8355i 0.654502i
\(328\) 15.0038 + 14.0274i 0.828445 + 0.774532i
\(329\) 0 0
\(330\) 15.2906 + 25.8116i 0.841718 + 1.42088i
\(331\) −17.1115 + 17.1115i −0.940535 + 0.940535i −0.998329 0.0577937i \(-0.981593\pi\)
0.0577937 + 0.998329i \(0.481593\pi\)
\(332\) −0.935461 3.20231i −0.0513401 0.175750i
\(333\) 0.0544198 + 0.0544198i 0.00298219 + 0.00298219i
\(334\) 29.6878 + 7.59929i 1.62445 + 0.415815i
\(335\) 16.4491 0.898709
\(336\) 0 0
\(337\) −4.26739 −0.232460 −0.116230 0.993222i \(-0.537081\pi\)
−0.116230 + 0.993222i \(0.537081\pi\)
\(338\) −14.2877 3.65727i −0.777148 0.198929i
\(339\) −7.02402 7.02402i −0.381493 0.381493i
\(340\) 7.44344 2.17438i 0.403677 0.117923i
\(341\) 1.77054 1.77054i 0.0958802 0.0958802i
\(342\) −1.03306 1.74388i −0.0558614 0.0942983i
\(343\) 0 0
\(344\) 0.236054 + 7.01864i 0.0127272 + 0.378420i
\(345\) 3.58722i 0.193130i
\(346\) 15.5690 9.22292i 0.836994 0.495827i
\(347\) −0.0382032 + 0.0382032i −0.00205085 + 0.00205085i −0.708131 0.706081i \(-0.750462\pi\)
0.706081 + 0.708131i \(0.250462\pi\)
\(348\) 11.5169 21.0223i 0.617370 1.12691i
\(349\) −15.4928 15.4928i −0.829309 0.829309i 0.158112 0.987421i \(-0.449459\pi\)
−0.987421 + 0.158112i \(0.949459\pi\)
\(350\) 0 0
\(351\) 8.61710 0.459947
\(352\) 16.0976 31.8822i 0.858004 1.69933i
\(353\) 16.7632 0.892217 0.446108 0.894979i \(-0.352810\pi\)
0.446108 + 0.894979i \(0.352810\pi\)
\(354\) −5.24485 + 20.4898i −0.278760 + 1.08902i
\(355\) −3.98041 3.98041i −0.211258 0.211258i
\(356\) 12.2576 22.3744i 0.649653 1.18584i
\(357\) 0 0
\(358\) −3.85381 + 2.28296i −0.203680 + 0.120658i
\(359\) 34.4998i 1.82083i −0.413696 0.910415i \(-0.635762\pi\)
0.413696 0.910415i \(-0.364238\pi\)
\(360\) −1.29548 + 0.0435704i −0.0682780 + 0.00229636i
\(361\) 20.8204i 1.09581i
\(362\) 14.6546 + 24.7381i 0.770230 + 1.30021i
\(363\) 33.9851 33.9851i 1.78375 1.78375i
\(364\) 0 0
\(365\) 3.38938 + 3.38938i 0.177408 + 0.177408i
\(366\) −24.0350 6.15233i −1.25633 0.321587i
\(367\) −20.5289 −1.07160 −0.535799 0.844345i \(-0.679990\pi\)
−0.535799 + 0.844345i \(0.679990\pi\)
\(368\) 3.59902 2.29887i 0.187612 0.119837i
\(369\) −1.64936 −0.0858622
\(370\) −0.936715 0.239774i −0.0486975 0.0124653i
\(371\) 0 0
\(372\) −0.370351 1.26780i −0.0192018 0.0657324i
\(373\) −11.1837 + 11.1837i −0.579072 + 0.579072i −0.934647 0.355576i \(-0.884285\pi\)
0.355576 + 0.934647i \(0.384285\pi\)
\(374\) −8.74478 14.7619i −0.452182 0.763318i
\(375\) 19.9201i 1.02867i
\(376\) −4.17690 + 4.46763i −0.215407 + 0.230401i
\(377\) 11.5414i 0.594412i
\(378\) 0 0
\(379\) 11.2717 11.2717i 0.578987 0.578987i −0.355637 0.934624i \(-0.615736\pi\)
0.934624 + 0.355637i \(0.115736\pi\)
\(380\) 22.3335 + 12.2352i 1.14568 + 0.627654i
\(381\) 7.55107 + 7.55107i 0.386853 + 0.386853i
\(382\) 4.29312 16.7717i 0.219655 0.858117i
\(383\) 10.2919 0.525890 0.262945 0.964811i \(-0.415306\pi\)
0.262945 + 0.964811i \(0.415306\pi\)
\(384\) −10.6694 15.5272i −0.544469 0.792367i
\(385\) 0 0
\(386\) −0.763809 + 2.98394i −0.0388769 + 0.151879i
\(387\) −0.398753 0.398753i −0.0202698 0.0202698i
\(388\) 3.87900 + 2.12508i 0.196927 + 0.107885i
\(389\) 14.4939 14.4939i 0.734869 0.734869i −0.236711 0.971580i \(-0.576069\pi\)
0.971580 + 0.236711i \(0.0760695\pi\)
\(390\) −6.55559 + 3.88347i −0.331955 + 0.196647i
\(391\) 2.05156i 0.103752i
\(392\) 0 0
\(393\) 24.9181i 1.25695i
\(394\) −10.1718 17.1708i −0.512450 0.865055i
\(395\) 14.5767 14.5767i 0.733431 0.733431i
\(396\) 0.804192 + 2.75294i 0.0404122 + 0.138341i
\(397\) −5.53600 5.53600i −0.277844 0.277844i 0.554404 0.832248i \(-0.312946\pi\)
−0.832248 + 0.554404i \(0.812946\pi\)
\(398\) 14.4636 + 3.70231i 0.724997 + 0.185580i
\(399\) 0 0
\(400\) −3.13060 + 1.99966i −0.156530 + 0.0999832i
\(401\) 14.1997 0.709099 0.354549 0.935037i \(-0.384634\pi\)
0.354549 + 0.935037i \(0.384634\pi\)
\(402\) −18.5983 4.76067i −0.927599 0.237441i
\(403\) 0.449679 + 0.449679i 0.0224001 + 0.0224001i
\(404\) −13.8135 + 4.03522i −0.687248 + 0.200760i
\(405\) −11.7951 + 11.7951i −0.586104 + 0.586104i
\(406\) 0 0
\(407\) 2.13939i 0.106046i
\(408\) −9.04530 + 0.304216i −0.447809 + 0.0150609i
\(409\) 26.4149i 1.30613i 0.757302 + 0.653065i \(0.226517\pi\)
−0.757302 + 0.653065i \(0.773483\pi\)
\(410\) 17.8286 10.5615i 0.880490 0.521594i
\(411\) 2.05205 2.05205i 0.101220 0.101220i
\(412\) 16.8055 30.6758i 0.827947 1.51129i
\(413\) 0 0
\(414\) −0.0850394 + 0.332220i −0.00417946 + 0.0163277i
\(415\) −3.36575 −0.165218
\(416\) 8.09739 + 4.08843i 0.397007 + 0.200452i
\(417\) 6.69831 0.328018
\(418\) 13.9722 54.5846i 0.683403 2.66982i
\(419\) −15.6893 15.6893i −0.766471 0.766471i 0.211012 0.977483i \(-0.432324\pi\)
−0.977483 + 0.211012i \(0.932324\pi\)
\(420\) 0 0
\(421\) 25.7068 25.7068i 1.25287 1.25287i 0.298444 0.954427i \(-0.403532\pi\)
0.954427 0.298444i \(-0.0964675\pi\)
\(422\) 8.95433 5.30446i 0.435890 0.258217i
\(423\) 0.491125i 0.0238793i
\(424\) 0.0409188 + 1.21665i 0.00198719 + 0.0590855i
\(425\) 1.78454i 0.0865630i
\(426\) 3.34848 + 5.65249i 0.162235 + 0.273864i
\(427\) 0 0
\(428\) 5.78071 1.68867i 0.279421 0.0816247i
\(429\) 11.9210 + 11.9210i 0.575553 + 0.575553i
\(430\) 6.86364 + 1.75691i 0.330994 + 0.0847257i
\(431\) −24.7961 −1.19439 −0.597194 0.802097i \(-0.703718\pi\)
−0.597194 + 0.802097i \(0.703718\pi\)
\(432\) 20.9912 + 4.62736i 1.00994 + 0.222634i
\(433\) 5.22863 0.251272 0.125636 0.992076i \(-0.459903\pi\)
0.125636 + 0.992076i \(0.459903\pi\)
\(434\) 0 0
\(435\) −17.1000 17.1000i −0.819881 0.819881i
\(436\) 3.98594 + 13.6448i 0.190892 + 0.653469i
\(437\) 4.76391 4.76391i 0.227889 0.227889i
\(438\) −2.85128 4.81318i −0.136240 0.229983i
\(439\) 22.1438i 1.05687i −0.848975 0.528433i \(-0.822780\pi\)
0.848975 0.528433i \(-0.177220\pi\)
\(440\) −26.3210 24.6081i −1.25480 1.17314i
\(441\) 0 0
\(442\) 3.74919 2.22098i 0.178331 0.105641i
\(443\) −15.9636 + 15.9636i −0.758455 + 0.758455i −0.976041 0.217586i \(-0.930182\pi\)
0.217586 + 0.976041i \(0.430182\pi\)
\(444\) 0.989710 + 0.542206i 0.0469696 + 0.0257319i
\(445\) −18.1998 18.1998i −0.862754 0.862754i
\(446\) −7.85162 + 30.6736i −0.371785 + 1.45244i
\(447\) 30.6599 1.45017
\(448\) 0 0
\(449\) −36.3678 −1.71630 −0.858152 0.513396i \(-0.828387\pi\)
−0.858152 + 0.513396i \(0.828387\pi\)
\(450\) 0.0739712 0.288980i 0.00348703 0.0136226i
\(451\) −32.4204 32.4204i −1.52662 1.52662i
\(452\) 10.4634 + 5.73229i 0.492156 + 0.269624i
\(453\) −7.51107 + 7.51107i −0.352901 + 0.352901i
\(454\) 22.6429 13.4134i 1.06268 0.629523i
\(455\) 0 0
\(456\) −21.7104 20.2976i −1.01668 0.950522i
\(457\) 24.9193i 1.16567i 0.812589 + 0.582837i \(0.198057\pi\)
−0.812589 + 0.582837i \(0.801943\pi\)
\(458\) 6.06244 + 10.2339i 0.283279 + 0.478197i
\(459\) 7.30170 7.30170i 0.340814 0.340814i
\(460\) −1.20810 4.13563i −0.0563281 0.192825i
\(461\) −1.60588 1.60588i −0.0747933 0.0747933i 0.668721 0.743514i \(-0.266842\pi\)
−0.743514 + 0.668721i \(0.766842\pi\)
\(462\) 0 0
\(463\) −14.8176 −0.688634 −0.344317 0.938853i \(-0.611890\pi\)
−0.344317 + 0.938853i \(0.611890\pi\)
\(464\) −6.19770 + 28.1147i −0.287721 + 1.30519i
\(465\) −1.33251 −0.0617936
\(466\) 23.6157 + 6.04498i 1.09397 + 0.280028i
\(467\) −8.77849 8.77849i −0.406220 0.406220i 0.474198 0.880418i \(-0.342738\pi\)
−0.880418 + 0.474198i \(0.842738\pi\)
\(468\) −0.699188 + 0.204247i −0.0323200 + 0.00944133i
\(469\) 0 0
\(470\) 3.14486 + 5.30876i 0.145062 + 0.244875i
\(471\) 30.3718i 1.39946i
\(472\) −0.853881 25.3886i −0.0393031 1.16860i
\(473\) 15.6761i 0.720787i
\(474\) −20.7000 + 12.2625i −0.950781 + 0.563234i
\(475\) −4.14387 + 4.14387i −0.190134 + 0.190134i
\(476\) 0 0
\(477\) −0.0691218 0.0691218i −0.00316487 0.00316487i
\(478\) −0.200835 + 0.784594i −0.00918599 + 0.0358865i
\(479\) −2.05417 −0.0938576 −0.0469288 0.998898i \(-0.514943\pi\)
−0.0469288 + 0.998898i \(0.514943\pi\)
\(480\) −18.0548 + 5.93976i −0.824084 + 0.271112i
\(481\) −0.543359 −0.0247750
\(482\) −4.13341 + 16.1478i −0.188272 + 0.735513i
\(483\) 0 0
\(484\) −27.7351 + 50.6261i −1.26069 + 2.30119i
\(485\) 3.15527 3.15527i 0.143273 0.143273i
\(486\) −2.86561 + 1.69756i −0.129987 + 0.0770029i
\(487\) 40.8816i 1.85252i 0.376883 + 0.926261i \(0.376996\pi\)
−0.376883 + 0.926261i \(0.623004\pi\)
\(488\) 29.7814 1.00162i 1.34814 0.0453413i
\(489\) 19.1302i 0.865098i
\(490\) 0 0
\(491\) −0.278015 + 0.278015i −0.0125466 + 0.0125466i −0.713352 0.700806i \(-0.752824\pi\)
0.700806 + 0.713352i \(0.252824\pi\)
\(492\) −23.2147 + 6.78150i −1.04660 + 0.305733i
\(493\) 9.77960 + 9.77960i 0.440451 + 0.440451i
\(494\) 13.8633 + 3.54864i 0.623739 + 0.159661i
\(495\) 2.89345 0.130051
\(496\) 0.853938 + 1.33689i 0.0383429 + 0.0600282i
\(497\) 0 0
\(498\) 3.80552 + 0.974112i 0.170529 + 0.0436510i
\(499\) −8.71632 8.71632i −0.390196 0.390196i 0.484561 0.874757i \(-0.338979\pi\)
−0.874757 + 0.484561i \(0.838979\pi\)
\(500\) 6.70867 + 22.9654i 0.300021 + 1.02704i
\(501\) −25.5150 + 25.5150i −1.13992 + 1.13992i
\(502\) 5.68326 + 9.59378i 0.253656 + 0.428191i
\(503\) 0.367839i 0.0164011i 0.999966 + 0.00820057i \(0.00261035\pi\)
−0.999966 + 0.00820057i \(0.997390\pi\)
\(504\) 0 0
\(505\) 14.5186i 0.646068i
\(506\) −8.20180 + 4.85866i −0.364614 + 0.215994i
\(507\) 12.2794 12.2794i 0.545349 0.545349i
\(508\) −11.2485 6.16241i −0.499071 0.273413i
\(509\) −5.73240 5.73240i −0.254084 0.254084i 0.568559 0.822643i \(-0.307501\pi\)
−0.822643 + 0.568559i \(0.807501\pi\)
\(510\) −2.26422 + 8.84554i −0.100262 + 0.391687i
\(511\) 0 0
\(512\) 17.5297 + 14.3077i 0.774711 + 0.632316i
\(513\) 33.9104 1.49718
\(514\) 10.1931 39.8209i 0.449599 1.75643i
\(515\) −24.9523 24.9523i −1.09953 1.09953i
\(516\) −7.25195 3.97293i −0.319249 0.174899i
\(517\) 9.65374 9.65374i 0.424571 0.424571i
\(518\) 0 0
\(519\) 21.3072i 0.935282i
\(520\) 6.24992 6.68495i 0.274077 0.293154i
\(521\) 13.3039i 0.582853i 0.956593 + 0.291427i \(0.0941299\pi\)
−0.956593 + 0.291427i \(0.905870\pi\)
\(522\) −1.17829 1.98904i −0.0515722 0.0870577i
\(523\) 20.0974 20.0974i 0.878798 0.878798i −0.114612 0.993410i \(-0.536562\pi\)
0.993410 + 0.114612i \(0.0365625\pi\)
\(524\) 8.39189 + 28.7275i 0.366602 + 1.25497i
\(525\) 0 0
\(526\) 24.2268 + 6.20142i 1.05634 + 0.270395i
\(527\) 0.762071 0.0331964
\(528\) 22.6380 + 35.4411i 0.985192 + 1.54238i
\(529\) 21.8601 0.950441
\(530\) 1.18978 + 0.304551i 0.0516806 + 0.0132289i
\(531\) 1.44241 + 1.44241i 0.0625954 + 0.0625954i
\(532\) 0 0
\(533\) 8.23408 8.23408i 0.356657 0.356657i
\(534\) 15.3104 + 25.8451i 0.662546 + 1.11843i
\(535\) 6.07576i 0.262678i
\(536\) 23.0448 0.775056i 0.995386 0.0334773i
\(537\) 5.27420i 0.227599i
\(538\) −18.1730 + 10.7655i −0.783494 + 0.464134i
\(539\) 0 0
\(540\) 10.4194 19.0189i 0.448377 0.818442i
\(541\) −12.9992 12.9992i −0.558878 0.558878i 0.370110 0.928988i \(-0.379320\pi\)
−0.928988 + 0.370110i \(0.879320\pi\)
\(542\) −4.86183 + 18.9935i −0.208834 + 0.815841i
\(543\) −33.8558 −1.45289
\(544\) 10.3257 3.39699i 0.442709 0.145645i
\(545\) 14.3413 0.614312
\(546\) 0 0
\(547\) −22.9801 22.9801i −0.982558 0.982558i 0.0172930 0.999850i \(-0.494495\pi\)
−0.999850 + 0.0172930i \(0.994495\pi\)
\(548\) −1.67468 + 3.05685i −0.0715386 + 0.130582i
\(549\) −1.69198 + 1.69198i −0.0722121 + 0.0722121i
\(550\) 7.13430 4.22629i 0.304208 0.180210i
\(551\) 45.4183i 1.93488i
\(552\) 0.169024 + 5.02563i 0.00719416 + 0.213905i
\(553\) 0 0
\(554\) 1.66390 + 2.80880i 0.0706925 + 0.119334i
\(555\) 0.805052 0.805052i 0.0341726 0.0341726i
\(556\) −7.72233 + 2.25585i −0.327500 + 0.0956695i
\(557\) −3.29662 3.29662i −0.139682 0.139682i 0.633808 0.773490i \(-0.281491\pi\)
−0.773490 + 0.633808i \(0.781491\pi\)
\(558\) −0.123406 0.0315887i −0.00522420 0.00133726i
\(559\) 3.98138 0.168394
\(560\) 0 0
\(561\) 20.2026 0.852954
\(562\) 0.932108 + 0.238595i 0.0393186 + 0.0100645i
\(563\) 2.95969 + 2.95969i 0.124736 + 0.124736i 0.766719 0.641983i \(-0.221888\pi\)
−0.641983 + 0.766719i \(0.721888\pi\)
\(564\) −2.01931 6.91258i −0.0850282 0.291072i
\(565\) 8.51115 8.51115i 0.358067 0.358067i
\(566\) −0.274347 0.463118i −0.0115317 0.0194663i
\(567\) 0 0
\(568\) −5.76403 5.38893i −0.241853 0.226115i
\(569\) 4.48223i 0.187905i 0.995577 + 0.0939524i \(0.0299502\pi\)
−0.995577 + 0.0939524i \(0.970050\pi\)
\(570\) −25.7979 + 15.2824i −1.08055 + 0.640110i
\(571\) −0.344719 + 0.344719i −0.0144261 + 0.0144261i −0.714283 0.699857i \(-0.753247\pi\)
0.699857 + 0.714283i \(0.253247\pi\)
\(572\) −17.7583 9.72873i −0.742510 0.406779i
\(573\) 14.4143 + 14.4143i 0.602167 + 0.602167i
\(574\) 0 0
\(575\) 0.991504 0.0413486
\(576\) −1.81290 + 0.122083i −0.0755373 + 0.00508677i
\(577\) −10.6396 −0.442934 −0.221467 0.975168i \(-0.571085\pi\)
−0.221467 + 0.975168i \(0.571085\pi\)
\(578\) −4.66688 + 18.2319i −0.194116 + 0.758346i
\(579\) −2.56452 2.56452i −0.106578 0.106578i
\(580\) 25.4731 + 13.9553i 1.05771 + 0.579460i
\(581\) 0 0
\(582\) −4.48072 + 2.65434i −0.185732 + 0.110026i
\(583\) 2.71737i 0.112542i
\(584\) 4.90816 + 4.58875i 0.203101 + 0.189884i
\(585\) 0.734874i 0.0303833i
\(586\) −7.63716 12.8921i −0.315488 0.532568i
\(587\) −13.2861 + 13.2861i −0.548376 + 0.548376i −0.925971 0.377595i \(-0.876751\pi\)
0.377595 + 0.925971i \(0.376751\pi\)
\(588\) 0 0
\(589\) 1.76960 + 1.76960i 0.0729151 + 0.0729151i
\(590\) −24.8279 6.35528i −1.02215 0.261643i
\(591\) 23.4994 0.966638
\(592\) −1.32362 0.291782i −0.0544004 0.0119922i
\(593\) −0.396993 −0.0163026 −0.00815128 0.999967i \(-0.502595\pi\)
−0.00815128 + 0.999967i \(0.502595\pi\)
\(594\) −46.4835 11.8985i −1.90724 0.488203i
\(595\) 0 0
\(596\) −35.3471 + 10.3256i −1.44788 + 0.422954i
\(597\) −12.4307 + 12.4307i −0.508753 + 0.508753i
\(598\) −1.23399 2.08308i −0.0504618 0.0851834i
\(599\) 13.8238i 0.564825i −0.959293 0.282412i \(-0.908865\pi\)
0.959293 0.282412i \(-0.0911346\pi\)
\(600\) −0.147025 4.37152i −0.00600228 0.178467i
\(601\) 8.73396i 0.356266i −0.984006 0.178133i \(-0.942994\pi\)
0.984006 0.178133i \(-0.0570057\pi\)
\(602\) 0 0
\(603\) −1.30926 + 1.30926i −0.0533170 + 0.0533170i
\(604\) 6.12977 11.1889i 0.249417 0.455271i
\(605\) 41.1804 + 41.1804i 1.67422 + 1.67422i
\(606\) 4.20194 16.4155i 0.170692 0.666836i
\(607\) −28.7873 −1.16844 −0.584220 0.811595i \(-0.698600\pi\)
−0.584220 + 0.811595i \(0.698600\pi\)
\(608\) 31.8653 + 16.0890i 1.29231 + 0.652495i
\(609\) 0 0
\(610\) 7.45490 29.1237i 0.301840 1.17918i
\(611\) 2.45184 + 2.45184i 0.0991908 + 0.0991908i
\(612\) −0.419388 + 0.765526i −0.0169528 + 0.0309446i
\(613\) 24.9569 24.9569i 1.00800 1.00800i 0.00803222 0.999968i \(-0.497443\pi\)
0.999968 0.00803222i \(-0.00255676\pi\)
\(614\) −10.8060 + 6.40138i −0.436095 + 0.258339i
\(615\) 24.3996i 0.983886i
\(616\) 0 0
\(617\) 33.4612i 1.34710i 0.739143 + 0.673548i \(0.235231\pi\)
−0.739143 + 0.673548i \(0.764769\pi\)
\(618\) 20.9909 + 35.4343i 0.844378 + 1.42537i
\(619\) −6.59415 + 6.59415i −0.265041 + 0.265041i −0.827098 0.562057i \(-0.810010\pi\)
0.562057 + 0.827098i \(0.310010\pi\)
\(620\) 1.53622 0.448761i 0.0616960 0.0180227i
\(621\) −4.05688 4.05688i −0.162797 0.162797i
\(622\) −13.5368 3.46507i −0.542778 0.138937i
\(623\) 0 0
\(624\) −9.00127 + 5.74955i −0.360339 + 0.230166i
\(625\) 19.4941 0.779765
\(626\) −23.5295 6.02292i −0.940427 0.240724i
\(627\) 46.9123 + 46.9123i 1.87350 + 1.87350i
\(628\) 10.2286 + 35.0150i 0.408166 + 1.39725i
\(629\) −0.460415 + 0.460415i −0.0183580 + 0.0183580i
\(630\) 0 0
\(631\) 22.2587i 0.886105i 0.896496 + 0.443053i \(0.146104\pi\)
−0.896496 + 0.443053i \(0.853896\pi\)
\(632\) 19.7348 21.1084i 0.785007 0.839649i
\(633\) 12.2546i 0.487077i
\(634\) −25.8501 + 15.3134i −1.02664 + 0.608172i
\(635\) −9.14978 + 9.14978i −0.363098 + 0.363098i
\(636\) −1.25709 0.688687i −0.0498468 0.0273082i
\(637\) 0 0
\(638\) 15.9364 62.2580i 0.630928 2.46482i
\(639\) 0.633638 0.0250663
\(640\) 18.8146 12.9283i 0.743711 0.511036i
\(641\) −8.27515 −0.326849 −0.163424 0.986556i \(-0.552254\pi\)
−0.163424 + 0.986556i \(0.552254\pi\)
\(642\) −1.75844 + 6.86961i −0.0694000 + 0.271122i
\(643\) 4.19175 + 4.19175i 0.165307 + 0.165307i 0.784913 0.619606i \(-0.212708\pi\)
−0.619606 + 0.784913i \(0.712708\pi\)
\(644\) 0 0
\(645\) −5.89890 + 5.89890i −0.232269 + 0.232269i
\(646\) 14.7540 8.74013i 0.580489 0.343876i
\(647\) 21.0650i 0.828150i −0.910243 0.414075i \(-0.864105\pi\)
0.910243 0.414075i \(-0.135895\pi\)
\(648\) −15.9690 + 17.0805i −0.627320 + 0.670985i
\(649\) 56.7052i 2.22587i
\(650\) 1.07339 + 1.81196i 0.0421016 + 0.0710708i
\(651\) 0 0
\(652\) −6.44266 22.0548i −0.252314 0.863732i
\(653\) 12.1077 + 12.1077i 0.473811 + 0.473811i 0.903146 0.429334i \(-0.141252\pi\)
−0.429334 + 0.903146i \(0.641252\pi\)
\(654\) −16.2151 4.15062i −0.634059 0.162302i
\(655\) 30.1937 1.17977
\(656\) 24.4798 15.6365i 0.955777 0.610501i
\(657\) −0.539552 −0.0210499
\(658\) 0 0
\(659\) 19.9513 + 19.9513i 0.777192 + 0.777192i 0.979352 0.202161i \(-0.0647964\pi\)
−0.202161 + 0.979352i \(0.564796\pi\)
\(660\) 40.7253 11.8967i 1.58523 0.463079i
\(661\) −15.1853 + 15.1853i −0.590642 + 0.590642i −0.937805 0.347163i \(-0.887145\pi\)
0.347163 + 0.937805i \(0.387145\pi\)
\(662\) 17.4426 + 29.4444i 0.677926 + 1.14439i
\(663\) 5.13102i 0.199272i
\(664\) −4.71536 + 0.158589i −0.182991 + 0.00615445i
\(665\) 0 0
\(666\) 0.0936421 0.0554727i 0.00362856 0.00214952i
\(667\) 5.43362 5.43362i 0.210390 0.210390i
\(668\) 20.8227 38.0085i 0.805654 1.47059i
\(669\) −26.3621 26.3621i −1.01922 1.01922i
\(670\) 5.76860 22.5359i 0.222860 0.870639i
\(671\) −66.5165 −2.56784
\(672\) 0 0
\(673\) 21.0339 0.810796 0.405398 0.914140i \(-0.367133\pi\)
0.405398 + 0.914140i \(0.367133\pi\)
\(674\) −1.49655 + 5.84651i −0.0576450 + 0.225199i
\(675\) 3.52886 + 3.52886i 0.135826 + 0.135826i
\(676\) −10.0212 + 18.2921i −0.385432 + 0.703544i
\(677\) −4.40719 + 4.40719i −0.169382 + 0.169382i −0.786708 0.617326i \(-0.788216\pi\)
0.617326 + 0.786708i \(0.288216\pi\)
\(678\) −12.0865 + 7.15992i −0.464179 + 0.274975i
\(679\) 0 0
\(680\) −0.368624 10.9604i −0.0141361 0.420311i
\(681\) 30.9883i 1.18747i
\(682\) −1.80480 3.04663i −0.0691093 0.116662i
\(683\) −15.7913 + 15.7913i −0.604236 + 0.604236i −0.941434 0.337198i \(-0.890521\pi\)
0.337198 + 0.941434i \(0.390521\pi\)
\(684\) −2.75148 + 0.803764i −0.105205 + 0.0307327i
\(685\) 2.48651 + 2.48651i 0.0950048 + 0.0950048i
\(686\) 0 0
\(687\) −14.0057 −0.534351
\(688\) 9.69861 + 2.13799i 0.369756 + 0.0815102i
\(689\) 0.690152 0.0262927
\(690\) 4.91465 + 1.25802i 0.187097 + 0.0478920i
\(691\) 27.1679 + 27.1679i 1.03351 + 1.03351i 0.999419 + 0.0340957i \(0.0108551\pi\)
0.0340957 + 0.999419i \(0.489145\pi\)
\(692\) −7.17583 24.5646i −0.272784 0.933805i
\(693\) 0 0
\(694\) 0.0389423 + 0.0657375i 0.00147823 + 0.00249536i
\(695\) 8.11647i 0.307875i
\(696\) −24.7625 23.1510i −0.938619 0.877537i
\(697\) 13.9543i 0.528557i
\(698\) −26.6590 + 15.7925i −1.00906 + 0.597756i
\(699\) −20.2963 + 20.2963i −0.767676 + 0.767676i
\(700\) 0 0
\(701\) 1.40129 + 1.40129i 0.0529259 + 0.0529259i 0.733074 0.680148i \(-0.238085\pi\)
−0.680148 + 0.733074i \(0.738085\pi\)
\(702\) 3.02197 11.8058i 0.114057 0.445581i
\(703\) −2.13825 −0.0806457
\(704\) −38.0347 33.2353i −1.43349 1.25260i
\(705\) −7.26540 −0.273631
\(706\) 5.87877 22.9663i 0.221250 0.864349i
\(707\) 0 0
\(708\) 26.2325 + 14.3713i 0.985879 + 0.540107i
\(709\) 6.16411 6.16411i 0.231498 0.231498i −0.581820 0.813318i \(-0.697659\pi\)
0.813318 + 0.581820i \(0.197659\pi\)
\(710\) −6.84924 + 4.05742i −0.257047 + 0.152272i
\(711\) 2.32044i 0.0870234i
\(712\) −26.3551 24.6400i −0.987700 0.923424i
\(713\) 0.423412i 0.0158569i
\(714\) 0 0
\(715\) −14.4450 + 14.4450i −0.540211 + 0.540211i
\(716\) 1.77624 + 6.08051i 0.0663813 + 0.227239i
\(717\) −0.674313 0.674313i −0.0251827 0.0251827i
\(718\) −47.2662 12.0989i −1.76396 0.451526i
\(719\) 26.6660 0.994473 0.497236 0.867615i \(-0.334348\pi\)
0.497236 + 0.867615i \(0.334348\pi\)
\(720\) −0.394626 + 1.79015i −0.0147068 + 0.0667149i
\(721\) 0 0
\(722\) 28.5247 + 7.30158i 1.06158 + 0.271737i
\(723\) −13.8781 13.8781i −0.516132 0.516132i
\(724\) 39.0315 11.4019i 1.45060 0.423749i
\(725\) −4.72641 + 4.72641i −0.175534 + 0.175534i
\(726\) −34.6426 58.4793i −1.28571 2.17037i
\(727\) 37.7224i 1.39905i −0.714610 0.699523i \(-0.753396\pi\)
0.714610 0.699523i \(-0.246604\pi\)
\(728\) 0 0
\(729\) 28.7229i 1.06381i
\(730\) 5.83223 3.45496i 0.215860 0.127874i
\(731\) 3.37362 3.37362i 0.124778 0.124778i
\(732\) −16.8579 + 30.7714i −0.623085 + 1.13734i
\(733\) 16.0658 + 16.0658i 0.593405 + 0.593405i 0.938549 0.345145i \(-0.112170\pi\)
−0.345145 + 0.938549i \(0.612170\pi\)
\(734\) −7.19936 + 28.1254i −0.265733 + 1.03813i
\(735\) 0 0
\(736\) −1.88739 5.73701i −0.0695703 0.211469i
\(737\) −51.4705 −1.89594
\(738\) −0.578421 + 2.25969i −0.0212920 + 0.0831803i
\(739\) −18.5432 18.5432i −0.682121 0.682121i 0.278357 0.960478i \(-0.410210\pi\)
−0.960478 + 0.278357i \(0.910210\pi\)
\(740\) −0.657001 + 1.19925i −0.0241518 + 0.0440854i
\(741\) −11.9147 + 11.9147i −0.437697 + 0.437697i
\(742\) 0 0
\(743\) 20.7110i 0.759812i −0.925025 0.379906i \(-0.875956\pi\)
0.925025 0.379906i \(-0.124044\pi\)
\(744\) −1.86682 + 0.0627858i −0.0684409 + 0.00230184i
\(745\) 37.1513i 1.36112i
\(746\) 11.4001 + 19.2442i 0.417387 + 0.704582i
\(747\) 0.267896 0.267896i 0.00980179 0.00980179i
\(748\) −23.2911 + 6.80382i −0.851607 + 0.248772i
\(749\) 0 0
\(750\) −27.2913 6.98585i −0.996538 0.255087i
\(751\) −15.4773 −0.564775 −0.282387 0.959300i \(-0.591126\pi\)
−0.282387 + 0.959300i \(0.591126\pi\)
\(752\) 4.65603 + 7.28930i 0.169788 + 0.265813i
\(753\) −13.1297 −0.478474
\(754\) 15.8122 + 4.04750i 0.575846 + 0.147401i
\(755\) −9.10132 9.10132i −0.331231 0.331231i
\(756\) 0 0
\(757\) 18.4631 18.4631i 0.671051 0.671051i −0.286907 0.957958i \(-0.592627\pi\)
0.957958 + 0.286907i \(0.0926272\pi\)
\(758\) −11.4898 19.3956i −0.417327 0.704479i
\(759\) 11.2247i 0.407431i
\(760\) 24.5950 26.3070i 0.892154 0.954254i
\(761\) 12.8657i 0.466380i −0.972431 0.233190i \(-0.925084\pi\)
0.972431 0.233190i \(-0.0749164\pi\)
\(762\) 12.9934 7.69716i 0.470701 0.278839i
\(763\) 0 0
\(764\) −21.4724 11.7635i −0.776844 0.425589i
\(765\) 0.622696 + 0.622696i 0.0225136 + 0.0225136i
\(766\) 3.60930 14.1003i 0.130409 0.509464i
\(767\) −14.4019 −0.520022
\(768\) −25.0145 + 9.17220i −0.902634 + 0.330973i
\(769\) −16.5676 −0.597443 −0.298722 0.954340i \(-0.596560\pi\)
−0.298722 + 0.954340i \(0.596560\pi\)
\(770\) 0 0
\(771\) 34.2238 + 34.2238i 1.23254 + 1.23254i
\(772\) 3.82026 + 2.09290i 0.137494 + 0.0753252i
\(773\) −34.6443 + 34.6443i −1.24607 + 1.24607i −0.288626 + 0.957442i \(0.593198\pi\)
−0.957442 + 0.288626i \(0.906802\pi\)
\(774\) −0.686149 + 0.406468i −0.0246631 + 0.0146102i
\(775\) 0.368303i 0.0132298i
\(776\) 4.27180 4.56914i 0.153349 0.164023i
\(777\) 0 0
\(778\) −14.7743 24.9401i −0.529684 0.894147i
\(779\) 32.4032 32.4032i 1.16096 1.16096i
\(780\) 3.02151 + 10.3433i 0.108187 + 0.370351i
\(781\) 12.4550 + 12.4550i 0.445676 + 0.445676i
\(782\) −2.81072 0.719470i −0.100511 0.0257282i
\(783\) 38.6776 1.38222
\(784\) 0 0
\(785\) 36.8021 1.31352
\(786\) −34.1388 8.73862i −1.21769 0.311696i
\(787\) 3.70417 + 3.70417i 0.132039 + 0.132039i 0.770038 0.637998i \(-0.220237\pi\)
−0.637998 + 0.770038i \(0.720237\pi\)
\(788\) −27.0920 + 7.91413i −0.965112 + 0.281929i
\(789\) −20.8215 + 20.8215i −0.741266 + 0.741266i
\(790\) −14.8587 25.0826i −0.528648 0.892398i
\(791\) 0 0
\(792\) 4.05367 0.136335i 0.144041 0.00484446i
\(793\) 16.8937i 0.599914i
\(794\) −9.52599 + 5.64310i −0.338065 + 0.200266i
\(795\) −1.02254 + 1.02254i −0.0362659 + 0.0362659i
\(796\) 10.1446 18.5174i 0.359567 0.656332i
\(797\) 20.4204 + 20.4204i 0.723329 + 0.723329i 0.969282 0.245953i \(-0.0791009\pi\)
−0.245953 + 0.969282i \(0.579101\pi\)
\(798\) 0 0
\(799\) 4.15514 0.146998
\(800\) 1.64174 + 4.99032i 0.0580443 + 0.176434i
\(801\) 2.89721 0.102368
\(802\) 4.97975 19.4542i 0.175841 0.686951i
\(803\) −10.6056 10.6056i −0.374265 0.374265i
\(804\) −13.0446 + 23.8109i −0.460049 + 0.839746i
\(805\) 0 0
\(806\) 0.773779 0.458379i 0.0272552 0.0161457i
\(807\) 24.8710i 0.875499i
\(808\) 0.684092 + 20.3402i 0.0240663 + 0.715567i
\(809\) 38.8827i 1.36704i 0.729931 + 0.683521i \(0.239552\pi\)
−0.729931 + 0.683521i \(0.760448\pi\)
\(810\) 12.0233 + 20.2963i 0.422456 + 0.713139i
\(811\) 12.4718 12.4718i 0.437945 0.437945i −0.453375 0.891320i \(-0.649780\pi\)
0.891320 + 0.453375i \(0.149780\pi\)
\(812\) 0 0
\(813\) −16.3238 16.3238i −0.572501 0.572501i
\(814\) 2.93106 + 0.750272i 0.102733 + 0.0262970i
\(815\) −23.1805 −0.811976
\(816\) −2.75535 + 12.4991i −0.0964564 + 0.437557i
\(817\) 15.6677 0.548145
\(818\) 36.1894 + 9.26354i 1.26533 + 0.323892i
\(819\) 0 0
\(820\) −8.21727 28.1297i −0.286960 0.982332i
\(821\) 13.5414 13.5414i 0.472598 0.472598i −0.430156 0.902754i \(-0.641542\pi\)
0.902754 + 0.430156i \(0.141542\pi\)
\(822\) −2.09175 3.53104i −0.0729583 0.123159i
\(823\) 10.3548i 0.360944i −0.983580 0.180472i \(-0.942237\pi\)
0.983580 0.180472i \(-0.0577625\pi\)
\(824\) −36.1335 33.7820i −1.25877 1.17685i
\(825\) 9.76376i 0.339931i
\(826\) 0 0
\(827\) −9.65786 + 9.65786i −0.335837 + 0.335837i −0.854798 0.518961i \(-0.826319\pi\)
0.518961 + 0.854798i \(0.326319\pi\)
\(828\) 0.425332 + 0.233015i 0.0147813 + 0.00809783i
\(829\) −18.8124 18.8124i −0.653383 0.653383i 0.300423 0.953806i \(-0.402872\pi\)
−0.953806 + 0.300423i \(0.902872\pi\)
\(830\) −1.18035 + 4.61122i −0.0409706 + 0.160058i
\(831\) −3.84403 −0.133348
\(832\) 8.44103 9.65997i 0.292640 0.334899i
\(833\) 0 0
\(834\) 2.34906 9.17696i 0.0813412 0.317772i
\(835\) −30.9170 30.9170i −1.06993 1.06993i
\(836\) −69.8832 38.2850i −2.41696 1.32411i
\(837\) 1.50697 1.50697i 0.0520884 0.0520884i
\(838\) −26.9971 + 15.9928i −0.932599 + 0.552463i
\(839\) 46.4429i 1.60339i −0.597736 0.801693i \(-0.703933\pi\)
0.597736 0.801693i \(-0.296067\pi\)
\(840\) 0 0
\(841\) 22.8031i 0.786315i
\(842\) −26.2041 44.2345i −0.903054 1.52442i
\(843\) −0.801093 + 0.801093i −0.0275911 + 0.0275911i
\(844\) −4.12710 14.1281i −0.142061 0.486308i
\(845\) 14.8792 + 14.8792i 0.511861 + 0.511861i
\(846\) −0.672862 0.172235i −0.0231335 0.00592156i
\(847\) 0 0
\(848\) 1.68120 + 0.370610i 0.0577328 + 0.0127268i
\(849\) 0.633809 0.0217523
\(850\) 2.44490 + 0.625828i 0.0838592 + 0.0214657i
\(851\) 0.255810 + 0.255810i 0.00876905 + 0.00876905i
\(852\) 8.91845 2.60526i 0.305541 0.0892549i
\(853\) −31.3013 + 31.3013i −1.07174 + 1.07174i −0.0745177 + 0.997220i \(0.523742\pi\)
−0.997220 + 0.0745177i \(0.976258\pi\)
\(854\) 0 0
\(855\) 2.89191i 0.0989014i
\(856\) −0.286280 8.51202i −0.00978486 0.290935i
\(857\) 26.3725i 0.900869i −0.892810 0.450434i \(-0.851269\pi\)
0.892810 0.450434i \(-0.148731\pi\)
\(858\) 20.5130 12.1517i 0.700301 0.414851i
\(859\) 2.13661 2.13661i 0.0729004 0.0729004i −0.669717 0.742617i \(-0.733584\pi\)
0.742617 + 0.669717i \(0.233584\pi\)
\(860\) 4.81408 8.78734i 0.164159 0.299646i
\(861\) 0 0
\(862\) −8.69586 + 33.9717i −0.296182 + 1.15708i
\(863\) 7.00913 0.238593 0.119297 0.992859i \(-0.461936\pi\)
0.119297 + 0.992859i \(0.461936\pi\)
\(864\) 13.7012 27.1360i 0.466123 0.923186i
\(865\) −25.8184 −0.877851
\(866\) 1.83365 7.16344i 0.0623100 0.243424i
\(867\) −15.6692 15.6692i −0.532155 0.532155i
\(868\) 0 0
\(869\) −45.6115 + 45.6115i −1.54726 + 1.54726i
\(870\) −29.4245 + 17.4308i −0.997585 + 0.590960i
\(871\) 13.0724i 0.442941i
\(872\) 20.0918 0.675738i 0.680395 0.0228834i
\(873\) 0.502284i 0.0169997i
\(874\) −4.85608 8.19743i −0.164259 0.277282i
\(875\) 0 0
\(876\) −7.59419 + 2.21842i −0.256584 + 0.0749535i
\(877\) 29.0327 + 29.0327i 0.980363 + 0.980363i 0.999811 0.0194475i \(-0.00619074\pi\)
−0.0194475 + 0.999811i \(0.506191\pi\)
\(878\) −30.3379 7.76571i −1.02386 0.262080i
\(879\) 17.6437 0.595107
\(880\) −42.9447 + 27.4309i −1.44767 + 0.924695i
\(881\) −13.6166 −0.458755 −0.229377 0.973338i \(-0.573669\pi\)
−0.229377 + 0.973338i \(0.573669\pi\)
\(882\) 0 0
\(883\) 35.2238 + 35.2238i 1.18537 + 1.18537i 0.978332 + 0.207042i \(0.0663836\pi\)
0.207042 + 0.978332i \(0.433616\pi\)
\(884\) −1.72802 5.91543i −0.0581196 0.198958i
\(885\) 21.3381 21.3381i 0.717274 0.717274i
\(886\) 16.2725 + 27.4692i 0.546685 + 0.922845i
\(887\) 6.29208i 0.211268i −0.994405 0.105634i \(-0.966313\pi\)
0.994405 0.105634i \(-0.0336871\pi\)
\(888\) 1.08993 1.16580i 0.0365756 0.0391215i
\(889\) 0 0
\(890\) −31.3171 + 18.5519i −1.04975 + 0.621862i
\(891\) 36.9078 36.9078i 1.23646 1.23646i
\(892\) 39.2706 + 21.5141i 1.31488 + 0.720345i
\(893\) 9.64860 + 9.64860i 0.322878 + 0.322878i
\(894\) 10.7523 42.0054i 0.359609 1.40487i
\(895\) 6.39085 0.213623
\(896\) 0 0
\(897\) 2.85083 0.0951864
\(898\) −12.7540 + 49.8254i −0.425606 + 1.66270i
\(899\) 2.01837 + 2.01837i 0.0673164 + 0.0673164i
\(900\) −0.369973 0.202687i −0.0123324 0.00675624i
\(901\) 0.584800 0.584800i 0.0194825 0.0194825i
\(902\) −55.7870 + 33.0477i −1.85750 + 1.10037i
\(903\) 0 0
\(904\) 11.5229 12.3250i 0.383247 0.409923i
\(905\) 41.0237i 1.36367i
\(906\) 7.65639 + 12.9246i 0.254367 + 0.429390i
\(907\) 31.7014 31.7014i 1.05263 1.05263i 0.0540924 0.998536i \(-0.482773\pi\)
0.998536 0.0540924i \(-0.0172266\pi\)
\(908\) −10.4362 35.7257i −0.346338 1.18560i
\(909\) −1.15560 1.15560i −0.0383288 0.0383288i
\(910\) 0 0
\(911\) 42.8973 1.42125 0.710625 0.703571i \(-0.248412\pi\)
0.710625 + 0.703571i \(0.248412\pi\)
\(912\) −35.4223 + 22.6259i −1.17295 + 0.749220i
\(913\) 10.5317 0.348549
\(914\) 34.1404 + 8.73904i 1.12926 + 0.289062i
\(915\) 25.0301 + 25.0301i 0.827471 + 0.827471i
\(916\) 16.1469 4.71684i 0.533508 0.155849i
\(917\) 0 0
\(918\) −7.44297 12.5643i −0.245655 0.414684i
\(919\) 30.2811i 0.998880i 0.866348 + 0.499440i \(0.166461\pi\)
−0.866348 + 0.499440i \(0.833539\pi\)
\(920\) −6.08966 + 0.204810i −0.200770 + 0.00675240i
\(921\) 14.7888i 0.487306i
\(922\) −2.76330 + 1.63695i −0.0910043 + 0.0539101i
\(923\) −3.16330 + 3.16330i −0.104121 + 0.104121i
\(924\) 0 0
\(925\) −0.222515 0.222515i −0.00731626 0.00731626i
\(926\) −5.19646 + 20.3008i −0.170766 + 0.667125i
\(927\) 3.97214 0.130462
\(928\) 36.3449 + 18.3508i 1.19308 + 0.602394i
\(929\) −13.8667 −0.454951 −0.227475 0.973784i \(-0.573047\pi\)
−0.227475 + 0.973784i \(0.573047\pi\)
\(930\) −0.467303 + 1.82559i −0.0153235 + 0.0598635i
\(931\) 0 0
\(932\) 16.5638 30.2345i 0.542564 0.990364i
\(933\) 11.6341 11.6341i 0.380884 0.380884i
\(934\) −15.1055 + 8.94833i −0.494266 + 0.292798i
\(935\) 24.4799i 0.800578i
\(936\) 0.0346261 + 1.02954i 0.00113179 + 0.0336517i
\(937\) 46.7544i 1.52740i 0.645572 + 0.763699i \(0.276619\pi\)
−0.645572 + 0.763699i \(0.723381\pi\)
\(938\) 0 0
\(939\) 20.2222 20.2222i 0.659927 0.659927i
\(940\) 8.37611 2.44684i 0.273199 0.0798070i
\(941\) −5.88867 5.88867i −0.191965 0.191965i 0.604580 0.796545i \(-0.293341\pi\)
−0.796545 + 0.604580i \(0.793341\pi\)
\(942\) −41.6106 10.6512i −1.35575 0.347036i
\(943\) −7.75311 −0.252476
\(944\) −35.0829 7.73378i −1.14185 0.251713i
\(945\) 0 0
\(946\) −21.4769 5.49751i −0.698273 0.178739i
\(947\) 5.19057 + 5.19057i 0.168671 + 0.168671i 0.786395 0.617724i \(-0.211945\pi\)
−0.617724 + 0.786395i \(0.711945\pi\)
\(948\) 9.54072 + 32.6602i 0.309868 + 1.06075i
\(949\) 2.69360 2.69360i 0.0874380 0.0874380i
\(950\) 4.22404 + 7.13050i 0.137046 + 0.231344i
\(951\) 35.3776i 1.14720i
\(952\) 0 0
\(953\) 41.3553i 1.33963i −0.742528 0.669815i \(-0.766373\pi\)
0.742528 0.669815i \(-0.233627\pi\)
\(954\) −0.118940 + 0.0704591i −0.00385084 + 0.00228120i
\(955\) −17.4661 + 17.4661i −0.565191 + 0.565191i
\(956\) 1.00449 + 0.550305i 0.0324877 + 0.0177981i
\(957\) 53.5072 + 53.5072i 1.72964 + 1.72964i
\(958\) −0.720387 + 2.81430i −0.0232746 + 0.0909260i
\(959\) 0 0
\(960\) 1.80601 + 26.8188i 0.0582888 + 0.865574i
\(961\) −30.8427 −0.994926
\(962\) −0.190553 + 0.744424i −0.00614367 + 0.0240012i
\(963\) 0.483597 + 0.483597i 0.0155837 + 0.0155837i
\(964\) 20.6736 + 11.3259i 0.665852 + 0.364782i
\(965\) 3.10748 3.10748i 0.100033 0.100033i
\(966\) 0 0
\(967\) 40.5984i 1.30556i 0.757549 + 0.652778i \(0.226397\pi\)
−0.757549 + 0.652778i \(0.773603\pi\)
\(968\) 59.6333 + 55.7526i 1.91669 + 1.79196i
\(969\) 20.1918i 0.648655i
\(970\) −3.21631 5.42938i −0.103270 0.174327i
\(971\) −22.9960 + 22.9960i −0.737978 + 0.737978i −0.972186 0.234208i \(-0.924750\pi\)
0.234208 + 0.972186i \(0.424750\pi\)
\(972\) 1.32077 + 4.52133i 0.0423639 + 0.145022i
\(973\) 0 0
\(974\) 56.0095 + 14.3369i 1.79466 + 0.459385i
\(975\) −2.47978 −0.0794166
\(976\) 9.07190 41.1530i 0.290385 1.31728i
\(977\) −16.6857 −0.533823 −0.266912 0.963721i \(-0.586003\pi\)
−0.266912 + 0.963721i \(0.586003\pi\)
\(978\) 26.2092 + 6.70885i 0.838077 + 0.214525i
\(979\) 56.9486 + 56.9486i 1.82009 + 1.82009i
\(980\) 0 0
\(981\) −1.14148 + 1.14148i −0.0364448 + 0.0364448i
\(982\) 0.283393 + 0.478389i 0.00904344 + 0.0152660i
\(983\) 11.7778i 0.375655i 0.982202 + 0.187827i \(0.0601445\pi\)
−0.982202 + 0.187827i \(0.939855\pi\)
\(984\) 1.14967 + 34.1833i 0.0366502 + 1.08972i
\(985\) 28.4747i 0.907281i
\(986\) 16.8281 9.96881i 0.535916 0.317472i
\(987\) 0 0
\(988\) 9.72355 17.7488i 0.309347 0.564665i
\(989\) −1.87441 1.87441i −0.0596028 0.0596028i
\(990\) 1.01472 3.96415i 0.0322498 0.125989i
\(991\) −31.7745 −1.00935 −0.504675 0.863310i \(-0.668387\pi\)
−0.504675 + 0.863310i \(0.668387\pi\)
\(992\) 2.13107 0.701090i 0.0676615 0.0222596i
\(993\) −40.2967 −1.27878
\(994\) 0 0
\(995\) −15.0625 15.0625i −0.477513 0.477513i
\(996\) 2.66915 4.87210i 0.0845752 0.154379i
\(997\) −0.845464 + 0.845464i −0.0267761 + 0.0267761i −0.720368 0.693592i \(-0.756027\pi\)
0.693592 + 0.720368i \(0.256027\pi\)
\(998\) −14.9985 + 8.88496i −0.474769 + 0.281248i
\(999\) 1.82091i 0.0576109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.m.j.589.6 24
7.2 even 3 112.2.w.c.109.2 yes 48
7.3 odd 6 784.2.x.o.765.10 48
7.4 even 3 112.2.w.c.93.10 yes 48
7.5 odd 6 784.2.x.o.557.2 48
7.6 odd 2 784.2.m.k.589.6 24
16.5 even 4 inner 784.2.m.j.197.6 24
28.11 odd 6 448.2.ba.c.401.4 48
28.23 odd 6 448.2.ba.c.81.9 48
56.11 odd 6 896.2.ba.e.289.9 48
56.37 even 6 896.2.ba.f.417.9 48
56.51 odd 6 896.2.ba.e.417.4 48
56.53 even 6 896.2.ba.f.289.4 48
112.5 odd 12 784.2.x.o.165.10 48
112.11 odd 12 448.2.ba.c.177.9 48
112.37 even 12 112.2.w.c.53.10 yes 48
112.51 odd 12 896.2.ba.e.865.9 48
112.53 even 12 112.2.w.c.37.2 48
112.67 odd 12 896.2.ba.e.737.4 48
112.69 odd 4 784.2.m.k.197.6 24
112.93 even 12 896.2.ba.f.865.4 48
112.101 odd 12 784.2.x.o.373.2 48
112.107 odd 12 448.2.ba.c.305.4 48
112.109 even 12 896.2.ba.f.737.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.2 48 112.53 even 12
112.2.w.c.53.10 yes 48 112.37 even 12
112.2.w.c.93.10 yes 48 7.4 even 3
112.2.w.c.109.2 yes 48 7.2 even 3
448.2.ba.c.81.9 48 28.23 odd 6
448.2.ba.c.177.9 48 112.11 odd 12
448.2.ba.c.305.4 48 112.107 odd 12
448.2.ba.c.401.4 48 28.11 odd 6
784.2.m.j.197.6 24 16.5 even 4 inner
784.2.m.j.589.6 24 1.1 even 1 trivial
784.2.m.k.197.6 24 112.69 odd 4
784.2.m.k.589.6 24 7.6 odd 2
784.2.x.o.165.10 48 112.5 odd 12
784.2.x.o.373.2 48 112.101 odd 12
784.2.x.o.557.2 48 7.5 odd 6
784.2.x.o.765.10 48 7.3 odd 6
896.2.ba.e.289.9 48 56.11 odd 6
896.2.ba.e.417.4 48 56.51 odd 6
896.2.ba.e.737.4 48 112.67 odd 12
896.2.ba.e.865.9 48 112.51 odd 12
896.2.ba.f.289.4 48 56.53 even 6
896.2.ba.f.417.9 48 56.37 even 6
896.2.ba.f.737.9 48 112.109 even 12
896.2.ba.f.865.4 48 112.93 even 12