Properties

Label 784.2.x.o.557.2
Level $784$
Weight $2$
Character 784.557
Analytic conductor $6.260$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.2
Character \(\chi\) \(=\) 784.557
Dual form 784.2.x.o.373.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36184 + 0.381311i) q^{2} +(1.60845 - 0.430984i) q^{3} +(1.70920 - 1.03857i) q^{4} +(-1.94900 - 0.522232i) q^{5} +(-2.02612 + 1.20025i) q^{6} +(-1.93164 + 2.06610i) q^{8} +(-0.196696 + 0.113563i) q^{9} +(2.85335 - 0.0319777i) q^{10} +(1.63411 + 6.09856i) q^{11} +(2.30157 - 2.40713i) q^{12} +(-1.13388 - 1.13388i) q^{13} -3.35995 q^{15} +(1.84276 - 3.55024i) q^{16} +(0.960789 - 1.66414i) q^{17} +(0.224566 - 0.229656i) q^{18} +(-1.63324 + 6.09532i) q^{19} +(-3.87361 + 1.13156i) q^{20} +(-4.55083 - 7.68215i) q^{22} +(-0.924606 + 0.533821i) q^{23} +(-2.21651 + 4.15573i) q^{24} +(-0.804265 - 0.464342i) q^{25} +(1.97651 + 1.11180i) q^{26} +(-3.79985 + 3.79985i) q^{27} +(5.08936 + 5.08936i) q^{29} +(4.57570 - 1.28118i) q^{30} +(0.198293 - 0.343454i) q^{31} +(-1.15579 + 5.53752i) q^{32} +(5.25677 + 9.10499i) q^{33} +(-0.673887 + 2.63264i) q^{34} +(-0.218252 + 0.398384i) q^{36} +(0.327303 + 0.0877006i) q^{37} +(-0.100007 - 8.92360i) q^{38} +(-2.31247 - 1.33510i) q^{39} +(4.84375 - 3.01805i) q^{40} +7.26189i q^{41} +(1.75565 - 1.75565i) q^{43} +(9.12678 + 8.72657i) q^{44} +(0.442666 - 0.118612i) q^{45} +(1.05561 - 1.07954i) q^{46} +(1.08118 + 1.87265i) q^{47} +(1.43390 - 6.50461i) q^{48} +(1.27234 + 0.325684i) q^{50} +(0.828170 - 3.09077i) q^{51} +(-3.11563 - 0.760420i) q^{52} +(0.111394 + 0.415727i) q^{53} +(3.72585 - 6.62369i) q^{54} -12.7395i q^{55} +10.5079i q^{57} +(-8.87151 - 4.99025i) q^{58} +(2.32453 + 8.67527i) q^{59} +(-5.74284 + 3.48953i) q^{60} +(2.72673 - 10.1763i) q^{61} +(-0.139080 + 0.543339i) q^{62} +(-0.537512 - 7.98192i) q^{64} +(1.61777 + 2.80206i) q^{65} +(-10.6307 - 10.3951i) q^{66} +(7.87441 - 2.10994i) q^{67} +(-0.0861303 - 3.84219i) q^{68} +(-1.25712 + 1.25712i) q^{69} +2.78982i q^{71} +(0.145316 - 0.625756i) q^{72} +(-2.05730 - 1.18779i) q^{73} +(-0.479175 + 0.00537015i) q^{74} +(-1.49375 - 0.400248i) q^{75} +(3.53886 + 12.1144i) q^{76} +(3.65830 + 0.936427i) q^{78} +(5.10829 + 8.84782i) q^{79} +(-5.44558 + 5.95707i) q^{80} +(-4.13352 + 7.15947i) q^{81} +(-2.76904 - 9.88952i) q^{82} +(-1.17951 - 1.17951i) q^{83} +(-2.74164 + 2.74164i) q^{85} +(-1.72147 + 3.06036i) q^{86} +(10.3794 + 5.99257i) q^{87} +(-15.7567 - 8.40403i) q^{88} +(-11.0470 + 6.37800i) q^{89} +(-0.557612 + 0.330324i) q^{90} +(-1.02593 + 1.87267i) q^{92} +(0.170922 - 0.637891i) q^{93} +(-2.18645 - 2.13799i) q^{94} +(6.36634 - 11.0268i) q^{95} +(0.527542 + 9.40498i) q^{96} +2.21148 q^{97} +(-1.01399 - 1.01399i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{2} - 4 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{8} + 2 q^{10} - 4 q^{11} - 2 q^{12} + 24 q^{13} - 40 q^{15} + 16 q^{16} - 8 q^{17} + 18 q^{18} + 4 q^{19} + 16 q^{20} - 18 q^{24} + 10 q^{26} + 24 q^{27}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36184 + 0.381311i −0.962965 + 0.269627i
\(3\) 1.60845 0.430984i 0.928642 0.248829i 0.237366 0.971420i \(-0.423716\pi\)
0.691275 + 0.722591i \(0.257049\pi\)
\(4\) 1.70920 1.03857i 0.854602 0.519283i
\(5\) −1.94900 0.522232i −0.871618 0.233549i −0.204831 0.978797i \(-0.565664\pi\)
−0.666787 + 0.745248i \(0.732331\pi\)
\(6\) −2.02612 + 1.20025i −0.827158 + 0.490001i
\(7\) 0 0
\(8\) −1.93164 + 2.06610i −0.682939 + 0.730476i
\(9\) −0.196696 + 0.113563i −0.0655654 + 0.0378542i
\(10\) 2.85335 0.0319777i 0.902309 0.0101122i
\(11\) 1.63411 + 6.09856i 0.492701 + 1.83879i 0.542542 + 0.840029i \(0.317462\pi\)
−0.0498403 + 0.998757i \(0.515871\pi\)
\(12\) 2.30157 2.40713i 0.664407 0.694878i
\(13\) −1.13388 1.13388i −0.314480 0.314480i 0.532162 0.846642i \(-0.321380\pi\)
−0.846642 + 0.532162i \(0.821380\pi\)
\(14\) 0 0
\(15\) −3.35995 −0.867535
\(16\) 1.84276 3.55024i 0.460690 0.887561i
\(17\) 0.960789 1.66414i 0.233026 0.403612i −0.725671 0.688041i \(-0.758471\pi\)
0.958697 + 0.284429i \(0.0918041\pi\)
\(18\) 0.224566 0.229656i 0.0529307 0.0541305i
\(19\) −1.63324 + 6.09532i −0.374690 + 1.39836i 0.479107 + 0.877756i \(0.340960\pi\)
−0.853797 + 0.520605i \(0.825706\pi\)
\(20\) −3.87361 + 1.13156i −0.866165 + 0.253025i
\(21\) 0 0
\(22\) −4.55083 7.68215i −0.970241 1.63784i
\(23\) −0.924606 + 0.533821i −0.192794 + 0.111309i −0.593290 0.804989i \(-0.702171\pi\)
0.400496 + 0.916298i \(0.368838\pi\)
\(24\) −2.21651 + 4.15573i −0.452442 + 0.848285i
\(25\) −0.804265 0.464342i −0.160853 0.0928685i
\(26\) 1.97651 + 1.11180i 0.387626 + 0.218041i
\(27\) −3.79985 + 3.79985i −0.731281 + 0.731281i
\(28\) 0 0
\(29\) 5.08936 + 5.08936i 0.945070 + 0.945070i 0.998568 0.0534979i \(-0.0170370\pi\)
−0.0534979 + 0.998568i \(0.517037\pi\)
\(30\) 4.57570 1.28118i 0.835405 0.233911i
\(31\) 0.198293 0.343454i 0.0356145 0.0616861i −0.847669 0.530526i \(-0.821994\pi\)
0.883283 + 0.468840i \(0.155328\pi\)
\(32\) −1.15579 + 5.53752i −0.204317 + 0.978905i
\(33\) 5.25677 + 9.10499i 0.915086 + 1.58498i
\(34\) −0.673887 + 2.63264i −0.115571 + 0.451494i
\(35\) 0 0
\(36\) −0.218252 + 0.398384i −0.0363753 + 0.0663973i
\(37\) 0.327303 + 0.0877006i 0.0538083 + 0.0144179i 0.285623 0.958342i \(-0.407800\pi\)
−0.231814 + 0.972760i \(0.574466\pi\)
\(38\) −0.100007 8.92360i −0.0162234 1.44760i
\(39\) −2.31247 1.33510i −0.370291 0.213788i
\(40\) 4.84375 3.01805i 0.765864 0.477196i
\(41\) 7.26189i 1.13412i 0.823678 + 0.567058i \(0.191919\pi\)
−0.823678 + 0.567058i \(0.808081\pi\)
\(42\) 0 0
\(43\) 1.75565 1.75565i 0.267734 0.267734i −0.560452 0.828187i \(-0.689373\pi\)
0.828187 + 0.560452i \(0.189373\pi\)
\(44\) 9.12678 + 8.72657i 1.37591 + 1.31558i
\(45\) 0.442666 0.118612i 0.0659888 0.0176816i
\(46\) 1.05561 1.07954i 0.155641 0.159170i
\(47\) 1.08118 + 1.87265i 0.157706 + 0.273155i 0.934041 0.357166i \(-0.116257\pi\)
−0.776335 + 0.630320i \(0.782924\pi\)
\(48\) 1.43390 6.50461i 0.206965 0.938859i
\(49\) 0 0
\(50\) 1.27234 + 0.325684i 0.179936 + 0.0460587i
\(51\) 0.828170 3.09077i 0.115967 0.432795i
\(52\) −3.11563 0.760420i −0.432060 0.105451i
\(53\) 0.111394 + 0.415727i 0.0153011 + 0.0571045i 0.973154 0.230154i \(-0.0739229\pi\)
−0.957853 + 0.287258i \(0.907256\pi\)
\(54\) 3.72585 6.62369i 0.507024 0.901371i
\(55\) 12.7395i 1.71779i
\(56\) 0 0
\(57\) 10.5079i 1.39181i
\(58\) −8.87151 4.99025i −1.16489 0.655252i
\(59\) 2.32453 + 8.67527i 0.302628 + 1.12942i 0.934968 + 0.354732i \(0.115428\pi\)
−0.632340 + 0.774691i \(0.717905\pi\)
\(60\) −5.74284 + 3.48953i −0.741397 + 0.450496i
\(61\) 2.72673 10.1763i 0.349122 1.30294i −0.538601 0.842561i \(-0.681047\pi\)
0.887722 0.460379i \(-0.152287\pi\)
\(62\) −0.139080 + 0.543339i −0.0176632 + 0.0690042i
\(63\) 0 0
\(64\) −0.537512 7.98192i −0.0671890 0.997740i
\(65\) 1.61777 + 2.80206i 0.200660 + 0.347553i
\(66\) −10.6307 10.3951i −1.30855 1.27954i
\(67\) 7.87441 2.10994i 0.962012 0.257770i 0.256560 0.966528i \(-0.417411\pi\)
0.705452 + 0.708758i \(0.250744\pi\)
\(68\) −0.0861303 3.84219i −0.0104448 0.465934i
\(69\) −1.25712 + 1.25712i −0.151339 + 0.151339i
\(70\) 0 0
\(71\) 2.78982i 0.331090i 0.986202 + 0.165545i \(0.0529384\pi\)
−0.986202 + 0.165545i \(0.947062\pi\)
\(72\) 0.145316 0.625756i 0.0171256 0.0737460i
\(73\) −2.05730 1.18779i −0.240789 0.139020i 0.374750 0.927126i \(-0.377728\pi\)
−0.615539 + 0.788106i \(0.711062\pi\)
\(74\) −0.479175 + 0.00537015i −0.0557030 + 0.000624267i
\(75\) −1.49375 0.400248i −0.172483 0.0462167i
\(76\) 3.53886 + 12.1144i 0.405935 + 1.38961i
\(77\) 0 0
\(78\) 3.65830 + 0.936427i 0.414221 + 0.106029i
\(79\) 5.10829 + 8.84782i 0.574727 + 0.995457i 0.996071 + 0.0885562i \(0.0282253\pi\)
−0.421344 + 0.906901i \(0.638441\pi\)
\(80\) −5.44558 + 5.95707i −0.608835 + 0.666020i
\(81\) −4.13352 + 7.15947i −0.459280 + 0.795496i
\(82\) −2.76904 9.88952i −0.305789 1.09211i
\(83\) −1.17951 1.17951i −0.129468 0.129468i 0.639404 0.768871i \(-0.279181\pi\)
−0.768871 + 0.639404i \(0.779181\pi\)
\(84\) 0 0
\(85\) −2.74164 + 2.74164i −0.297373 + 0.297373i
\(86\) −1.72147 + 3.06036i −0.185630 + 0.330007i
\(87\) 10.3794 + 5.99257i 1.11279 + 0.642471i
\(88\) −15.7567 8.40403i −1.67967 0.895872i
\(89\) −11.0470 + 6.37800i −1.17098 + 0.676066i −0.953911 0.300089i \(-0.902983\pi\)
−0.217070 + 0.976156i \(0.569650\pi\)
\(90\) −0.557612 + 0.330324i −0.0587774 + 0.0348192i
\(91\) 0 0
\(92\) −1.02593 + 1.87267i −0.106961 + 0.195240i
\(93\) 0.170922 0.637891i 0.0177238 0.0661462i
\(94\) −2.18645 2.13799i −0.225515 0.220517i
\(95\) 6.36634 11.0268i 0.653173 1.13133i
\(96\) 0.527542 + 9.40498i 0.0538420 + 0.959892i
\(97\) 2.21148 0.224542 0.112271 0.993678i \(-0.464187\pi\)
0.112271 + 0.993678i \(0.464187\pi\)
\(98\) 0 0
\(99\) −1.01399 1.01399i −0.101910 0.101910i
\(100\) −1.85690 + 0.0416261i −0.185690 + 0.00416261i
\(101\) −1.86231 6.95024i −0.185307 0.691575i −0.994565 0.104121i \(-0.966797\pi\)
0.809258 0.587454i \(-0.199870\pi\)
\(102\) 0.0507111 + 4.52492i 0.00502115 + 0.448034i
\(103\) −15.1457 + 8.74438i −1.49235 + 0.861609i −0.999962 0.00876536i \(-0.997210\pi\)
−0.492390 + 0.870375i \(0.663877\pi\)
\(104\) 4.53294 0.152454i 0.444491 0.0149493i
\(105\) 0 0
\(106\) −0.310221 0.523677i −0.0301314 0.0508640i
\(107\) 2.90855 + 0.779344i 0.281180 + 0.0753420i 0.396653 0.917969i \(-0.370172\pi\)
−0.115473 + 0.993311i \(0.536838\pi\)
\(108\) −2.54832 + 10.4411i −0.245212 + 1.00470i
\(109\) 6.86536 1.83957i 0.657583 0.176199i 0.0854277 0.996344i \(-0.472774\pi\)
0.572155 + 0.820146i \(0.306108\pi\)
\(110\) 4.85769 + 17.3491i 0.463163 + 1.65417i
\(111\) 0.564250 0.0535562
\(112\) 0 0
\(113\) −5.96535 −0.561173 −0.280586 0.959829i \(-0.590529\pi\)
−0.280586 + 0.959829i \(0.590529\pi\)
\(114\) −4.00679 14.3101i −0.375270 1.34026i
\(115\) 2.08083 0.557557i 0.194039 0.0519925i
\(116\) 13.9844 + 3.41312i 1.29842 + 0.316900i
\(117\) 0.351795 + 0.0942631i 0.0325234 + 0.00871463i
\(118\) −6.47360 10.9279i −0.595944 1.00600i
\(119\) 0 0
\(120\) 6.49022 6.94198i 0.592473 0.633713i
\(121\) −24.9959 + 14.4314i −2.27235 + 1.31194i
\(122\) 0.166965 + 14.8982i 0.0151163 + 1.34882i
\(123\) 3.12976 + 11.6804i 0.282201 + 1.05319i
\(124\) −0.0177760 0.792973i −0.00159634 0.0712111i
\(125\) 8.45884 + 8.45884i 0.756582 + 0.756582i
\(126\) 0 0
\(127\) 6.41296 0.569058 0.284529 0.958667i \(-0.408163\pi\)
0.284529 + 0.958667i \(0.408163\pi\)
\(128\) 3.77560 + 10.6651i 0.333719 + 0.942673i
\(129\) 2.06723 3.58055i 0.182009 0.315250i
\(130\) −3.27160 3.19908i −0.286938 0.280578i
\(131\) 3.87298 14.4542i 0.338384 1.26287i −0.561769 0.827294i \(-0.689879\pi\)
0.900154 0.435573i \(-0.143454\pi\)
\(132\) 18.4410 + 10.1028i 1.60509 + 0.879335i
\(133\) 0 0
\(134\) −9.91913 + 5.87600i −0.856882 + 0.507609i
\(135\) 9.39029 5.42149i 0.808187 0.466607i
\(136\) 1.58236 + 5.19960i 0.135687 + 0.445862i
\(137\) 1.50928 + 0.871382i 0.128946 + 0.0744472i 0.563086 0.826399i \(-0.309614\pi\)
−0.434139 + 0.900846i \(0.642947\pi\)
\(138\) 1.23264 2.19134i 0.104929 0.186540i
\(139\) −2.84436 + 2.84436i −0.241256 + 0.241256i −0.817370 0.576114i \(-0.804569\pi\)
0.576114 + 0.817370i \(0.304569\pi\)
\(140\) 0 0
\(141\) 2.54611 + 2.54611i 0.214421 + 0.214421i
\(142\) −1.06379 3.79928i −0.0892710 0.318828i
\(143\) 5.06214 8.76788i 0.423317 0.733207i
\(144\) 0.0407112 + 0.907588i 0.00339260 + 0.0756324i
\(145\) −7.26132 12.5770i −0.603020 1.04446i
\(146\) 3.25463 + 0.833099i 0.269355 + 0.0689478i
\(147\) 0 0
\(148\) 0.650511 0.190028i 0.0534717 0.0156202i
\(149\) −17.7848 4.76543i −1.45699 0.390399i −0.558541 0.829477i \(-0.688639\pi\)
−0.898449 + 0.439077i \(0.855305\pi\)
\(150\) 2.18686 0.0245083i 0.178556 0.00200110i
\(151\) −5.52437 3.18949i −0.449567 0.259557i 0.258081 0.966123i \(-0.416910\pi\)
−0.707647 + 0.706566i \(0.750243\pi\)
\(152\) −9.43869 15.1484i −0.765579 1.22870i
\(153\) 0.436439i 0.0352840i
\(154\) 0 0
\(155\) −0.565835 + 0.565835i −0.0454490 + 0.0454490i
\(156\) −5.33908 + 0.119686i −0.427468 + 0.00958254i
\(157\) −17.6177 + 4.72065i −1.40605 + 0.376749i −0.880512 0.474024i \(-0.842801\pi\)
−0.525534 + 0.850773i \(0.676134\pi\)
\(158\) −10.3304 10.1014i −0.821845 0.803628i
\(159\) 0.358344 + 0.620669i 0.0284185 + 0.0492223i
\(160\) 5.14451 10.1890i 0.406709 0.805513i
\(161\) 0 0
\(162\) 2.89920 11.3262i 0.227783 0.889869i
\(163\) 2.97338 11.0968i 0.232893 0.869170i −0.746194 0.665729i \(-0.768121\pi\)
0.979087 0.203441i \(-0.0652125\pi\)
\(164\) 7.54196 + 12.4121i 0.588928 + 0.969219i
\(165\) −5.49051 20.4909i −0.427435 1.59521i
\(166\) 2.05605 + 1.15654i 0.159581 + 0.0897647i
\(167\) 21.6693i 1.67682i −0.545040 0.838410i \(-0.683486\pi\)
0.545040 0.838410i \(-0.316514\pi\)
\(168\) 0 0
\(169\) 10.4287i 0.802204i
\(170\) 2.68825 4.77909i 0.206180 0.366539i
\(171\) −0.370949 1.38440i −0.0283672 0.105868i
\(172\) 1.17741 4.82413i 0.0897765 0.367837i
\(173\) −3.31175 + 12.3596i −0.251788 + 0.939684i 0.718062 + 0.695979i \(0.245030\pi\)
−0.969849 + 0.243705i \(0.921637\pi\)
\(174\) −16.4201 4.20312i −1.24481 0.318638i
\(175\) 0 0
\(176\) 24.6627 + 5.43671i 1.85902 + 0.409808i
\(177\) 7.47780 + 12.9519i 0.562066 + 0.973527i
\(178\) 12.6122 12.8981i 0.945328 0.966757i
\(179\) 3.05939 0.819762i 0.228670 0.0612719i −0.142665 0.989771i \(-0.545567\pi\)
0.371334 + 0.928499i \(0.378900\pi\)
\(180\) 0.633421 0.662471i 0.0472124 0.0493777i
\(181\) 14.3765 14.3765i 1.06860 1.06860i 0.0711279 0.997467i \(-0.477340\pi\)
0.997467 0.0711279i \(-0.0226598\pi\)
\(182\) 0 0
\(183\) 17.5433i 1.29684i
\(184\) 0.683082 2.94148i 0.0503574 0.216849i
\(185\) −0.592113 0.341857i −0.0435330 0.0251338i
\(186\) 0.0104660 + 0.933878i 0.000767408 + 0.0684753i
\(187\) 11.7189 + 3.14006i 0.856969 + 0.229624i
\(188\) 3.79283 + 2.07787i 0.276620 + 0.151545i
\(189\) 0 0
\(190\) −4.46528 + 17.4443i −0.323945 + 1.26554i
\(191\) −6.12089 10.6017i −0.442892 0.767111i 0.555011 0.831843i \(-0.312714\pi\)
−0.997903 + 0.0647319i \(0.979381\pi\)
\(192\) −4.30465 12.6069i −0.310661 0.909825i
\(193\) 1.08900 1.88620i 0.0783877 0.135771i −0.824167 0.566347i \(-0.808356\pi\)
0.902554 + 0.430576i \(0.141689\pi\)
\(194\) −3.01168 + 0.843263i −0.216226 + 0.0605427i
\(195\) 3.80976 + 3.80976i 0.272823 + 0.272823i
\(196\) 0 0
\(197\) 9.97878 9.97878i 0.710959 0.710959i −0.255777 0.966736i \(-0.582331\pi\)
0.966736 + 0.255777i \(0.0823313\pi\)
\(198\) 1.76754 + 0.994246i 0.125613 + 0.0706580i
\(199\) 9.14271 + 5.27854i 0.648109 + 0.374186i 0.787731 0.616019i \(-0.211255\pi\)
−0.139622 + 0.990205i \(0.544589\pi\)
\(200\) 2.51293 0.764745i 0.177691 0.0540756i
\(201\) 11.7563 6.78749i 0.829224 0.478753i
\(202\) 5.18637 + 8.75499i 0.364912 + 0.615999i
\(203\) 0 0
\(204\) −1.79446 6.14287i −0.125637 0.430087i
\(205\) 3.79239 14.1534i 0.264872 0.988516i
\(206\) 17.2917 17.6836i 1.20477 1.23208i
\(207\) 0.121244 0.210001i 0.00842706 0.0145961i
\(208\) −6.11499 + 1.93607i −0.423998 + 0.134243i
\(209\) −39.8416 −2.75590
\(210\) 0 0
\(211\) 5.20378 + 5.20378i 0.358243 + 0.358243i 0.863165 0.504922i \(-0.168479\pi\)
−0.504922 + 0.863165i \(0.668479\pi\)
\(212\) 0.622155 + 0.594873i 0.0427298 + 0.0408560i
\(213\) 1.20237 + 4.48730i 0.0823849 + 0.307464i
\(214\) −4.25815 + 0.0477214i −0.291081 + 0.00326217i
\(215\) −4.33862 + 2.50490i −0.295891 + 0.170833i
\(216\) −0.510904 15.1908i −0.0347626 1.03360i
\(217\) 0 0
\(218\) −8.64806 + 5.12303i −0.585721 + 0.346975i
\(219\) −3.82100 1.02383i −0.258199 0.0691843i
\(220\) −13.2308 21.7743i −0.892019 1.46803i
\(221\) −2.97634 + 0.797507i −0.200210 + 0.0536461i
\(222\) −0.768417 + 0.215155i −0.0515728 + 0.0144402i
\(223\) 22.3888 1.49926 0.749632 0.661855i \(-0.230230\pi\)
0.749632 + 0.661855i \(0.230230\pi\)
\(224\) 0 0
\(225\) 0.210928 0.0140619
\(226\) 8.12384 2.27465i 0.540390 0.151307i
\(227\) 17.9753 4.81647i 1.19306 0.319680i 0.392967 0.919552i \(-0.371448\pi\)
0.800096 + 0.599872i \(0.204782\pi\)
\(228\) 10.9132 + 17.9602i 0.722744 + 1.18944i
\(229\) −8.12426 2.17689i −0.536866 0.143853i −0.0198093 0.999804i \(-0.506306\pi\)
−0.517057 + 0.855951i \(0.672973\pi\)
\(230\) −2.62115 + 1.55275i −0.172834 + 0.102385i
\(231\) 0 0
\(232\) −20.3459 + 0.684284i −1.33578 + 0.0449255i
\(233\) 14.9278 8.61859i 0.977955 0.564623i 0.0763032 0.997085i \(-0.475688\pi\)
0.901652 + 0.432462i \(0.142355\pi\)
\(234\) −0.515031 + 0.00577199i −0.0336686 + 0.000377327i
\(235\) −1.12925 4.21442i −0.0736642 0.274919i
\(236\) 12.9829 + 12.4136i 0.845117 + 0.808058i
\(237\) 12.0297 + 12.0297i 0.781414 + 0.781414i
\(238\) 0 0
\(239\) −0.572679 −0.0370435 −0.0185218 0.999828i \(-0.505896\pi\)
−0.0185218 + 0.999828i \(0.505896\pi\)
\(240\) −6.19158 + 11.9286i −0.399664 + 0.769990i
\(241\) −5.89318 + 10.2073i −0.379613 + 0.657510i −0.991006 0.133818i \(-0.957276\pi\)
0.611393 + 0.791327i \(0.290610\pi\)
\(242\) 28.5375 29.1844i 1.83446 1.87605i
\(243\) 0.609557 2.27490i 0.0391031 0.145935i
\(244\) −5.90822 20.2252i −0.378235 1.29479i
\(245\) 0 0
\(246\) −8.71610 14.7134i −0.555718 0.938094i
\(247\) 8.76321 5.05944i 0.557590 0.321925i
\(248\) 0.326577 + 1.07312i 0.0207377 + 0.0681433i
\(249\) −2.40553 1.38883i −0.152444 0.0880137i
\(250\) −14.7450 8.29412i −0.932556 0.524566i
\(251\) 5.57539 5.57539i 0.351916 0.351916i −0.508906 0.860822i \(-0.669950\pi\)
0.860822 + 0.508906i \(0.169950\pi\)
\(252\) 0 0
\(253\) −4.76645 4.76645i −0.299664 0.299664i
\(254\) −8.73341 + 2.44533i −0.547983 + 0.153434i
\(255\) −3.22820 + 5.59141i −0.202158 + 0.350148i
\(256\) −9.20847 13.0845i −0.575530 0.817781i
\(257\) 14.5328 + 25.1715i 0.906528 + 1.57015i 0.818853 + 0.574004i \(0.194610\pi\)
0.0876753 + 0.996149i \(0.472056\pi\)
\(258\) −1.44993 + 5.66438i −0.0902688 + 0.352649i
\(259\) 0 0
\(260\) 5.67523 + 3.10914i 0.351963 + 0.192820i
\(261\) −1.57902 0.423097i −0.0977388 0.0261890i
\(262\) 0.237153 + 21.1610i 0.0146514 + 1.30733i
\(263\) −15.3142 8.84163i −0.944311 0.545198i −0.0530021 0.998594i \(-0.516879\pi\)
−0.891309 + 0.453396i \(0.850212\pi\)
\(264\) −28.9660 6.72660i −1.78273 0.413993i
\(265\) 0.868424i 0.0533469i
\(266\) 0 0
\(267\) −15.0198 + 15.0198i −0.919198 + 0.919198i
\(268\) 11.2677 11.7844i 0.688282 0.719848i
\(269\) −14.4268 + 3.86566i −0.879620 + 0.235693i −0.670243 0.742142i \(-0.733810\pi\)
−0.209377 + 0.977835i \(0.567144\pi\)
\(270\) −10.7208 + 10.9638i −0.652446 + 0.667236i
\(271\) −6.93172 12.0061i −0.421072 0.729319i 0.574972 0.818173i \(-0.305013\pi\)
−0.996045 + 0.0888543i \(0.971679\pi\)
\(272\) −4.13759 6.47764i −0.250878 0.392765i
\(273\) 0 0
\(274\) −2.38766 0.611177i −0.144244 0.0369226i
\(275\) 1.51757 5.66364i 0.0915128 0.341531i
\(276\) −0.843071 + 3.45427i −0.0507469 + 0.207923i
\(277\) −0.597472 2.22980i −0.0358986 0.133975i 0.945651 0.325184i \(-0.105426\pi\)
−0.981550 + 0.191208i \(0.938759\pi\)
\(278\) 2.78898 4.95815i 0.167272 0.297370i
\(279\) 0.0900747i 0.00539263i
\(280\) 0 0
\(281\) 0.680351i 0.0405863i 0.999794 + 0.0202932i \(0.00645996\pi\)
−0.999794 + 0.0202932i \(0.993540\pi\)
\(282\) −4.43825 2.49653i −0.264294 0.148666i
\(283\) −0.0985120 0.367652i −0.00585593 0.0218546i 0.962936 0.269730i \(-0.0869344\pi\)
−0.968792 + 0.247875i \(0.920268\pi\)
\(284\) 2.89741 + 4.76837i 0.171930 + 0.282951i
\(285\) 5.48759 20.4799i 0.325056 1.21313i
\(286\) −3.55053 + 13.8707i −0.209947 + 0.820190i
\(287\) 0 0
\(288\) −0.401515 1.22046i −0.0236595 0.0719166i
\(289\) 6.65377 + 11.5247i 0.391398 + 0.677921i
\(290\) 14.6845 + 14.3590i 0.862302 + 0.843188i
\(291\) 3.55707 0.953115i 0.208519 0.0558726i
\(292\) −4.74995 + 0.106479i −0.277970 + 0.00623124i
\(293\) −7.49220 + 7.49220i −0.437699 + 0.437699i −0.891237 0.453538i \(-0.850162\pi\)
0.453538 + 0.891237i \(0.350162\pi\)
\(294\) 0 0
\(295\) 18.1220i 1.05510i
\(296\) −0.813431 + 0.506834i −0.0472797 + 0.0294591i
\(297\) −29.3829 16.9643i −1.70497 0.984366i
\(298\) 26.0372 0.291801i 1.50829 0.0169036i
\(299\) 1.65367 + 0.443101i 0.0956345 + 0.0256252i
\(300\) −2.96880 + 0.867250i −0.171404 + 0.0500707i
\(301\) 0 0
\(302\) 8.73948 + 2.23707i 0.502901 + 0.128729i
\(303\) −5.99089 10.3765i −0.344168 0.596116i
\(304\) 18.6302 + 17.0306i 1.06852 + 0.976771i
\(305\) −10.6288 + 18.4096i −0.608602 + 1.05413i
\(306\) −0.166419 0.594359i −0.00951353 0.0339773i
\(307\) 6.27988 + 6.27988i 0.358412 + 0.358412i 0.863227 0.504816i \(-0.168439\pi\)
−0.504816 + 0.863227i \(0.668439\pi\)
\(308\) 0 0
\(309\) −20.5925 + 20.5925i −1.17147 + 1.17147i
\(310\) 0.554817 0.986334i 0.0315115 0.0560200i
\(311\) −8.55685 4.94030i −0.485215 0.280139i 0.237372 0.971419i \(-0.423714\pi\)
−0.722587 + 0.691280i \(0.757047\pi\)
\(312\) 7.22532 2.19884i 0.409053 0.124485i
\(313\) 14.8734 8.58714i 0.840692 0.485374i −0.0168075 0.999859i \(-0.505350\pi\)
0.857499 + 0.514485i \(0.172017\pi\)
\(314\) 22.1924 13.1466i 1.25239 0.741904i
\(315\) 0 0
\(316\) 17.9202 + 9.81743i 1.00809 + 0.552274i
\(317\) −5.49870 + 20.5214i −0.308838 + 1.15260i 0.620754 + 0.784006i \(0.286827\pi\)
−0.929591 + 0.368592i \(0.879840\pi\)
\(318\) −0.724674 0.708611i −0.0406377 0.0397369i
\(319\) −22.7212 + 39.3543i −1.27214 + 2.20342i
\(320\) −3.12081 + 15.8374i −0.174458 + 0.885340i
\(321\) 5.01416 0.279863
\(322\) 0 0
\(323\) 8.57424 + 8.57424i 0.477084 + 0.477084i
\(324\) 0.370551 + 16.5299i 0.0205862 + 0.918329i
\(325\) 0.385429 + 1.43844i 0.0213798 + 0.0797904i
\(326\) 0.182068 + 16.2458i 0.0100838 + 0.899774i
\(327\) 10.2498 5.91773i 0.566815 0.327251i
\(328\) −15.0038 14.0274i −0.828445 0.774532i
\(329\) 0 0
\(330\) 15.2906 + 25.8116i 0.841718 + 1.42088i
\(331\) 23.3748 + 6.26326i 1.28479 + 0.344260i 0.835681 0.549215i \(-0.185073\pi\)
0.449113 + 0.893475i \(0.351740\pi\)
\(332\) −3.24101 0.791021i −0.177874 0.0434129i
\(333\) −0.0743388 + 0.0199190i −0.00407374 + 0.00109156i
\(334\) 8.26273 + 29.5101i 0.452116 + 1.61472i
\(335\) −16.4491 −0.898709
\(336\) 0 0
\(337\) −4.26739 −0.232460 −0.116230 0.993222i \(-0.537081\pi\)
−0.116230 + 0.993222i \(0.537081\pi\)
\(338\) 3.97656 + 14.2021i 0.216296 + 0.772494i
\(339\) −9.59499 + 2.57097i −0.521128 + 0.139636i
\(340\) −1.83865 + 7.53340i −0.0997147 + 0.408556i
\(341\) 2.41861 + 0.648063i 0.130975 + 0.0350946i
\(342\) 1.03306 + 1.74388i 0.0558614 + 0.0942983i
\(343\) 0 0
\(344\) 0.236054 + 7.01864i 0.0127272 + 0.378420i
\(345\) 3.10663 1.79361i 0.167255 0.0965648i
\(346\) −0.202788 18.0946i −0.0109019 0.972772i
\(347\) −0.0139833 0.0521865i −0.000750664 0.00280152i 0.965549 0.260220i \(-0.0837949\pi\)
−0.966300 + 0.257418i \(0.917128\pi\)
\(348\) 23.9643 0.537206i 1.28462 0.0287973i
\(349\) 15.4928 + 15.4928i 0.829309 + 0.829309i 0.987421 0.158112i \(-0.0505407\pi\)
−0.158112 + 0.987421i \(0.550541\pi\)
\(350\) 0 0
\(351\) 8.61710 0.459947
\(352\) −35.6596 + 2.00021i −1.90066 + 0.106612i
\(353\) 8.38161 14.5174i 0.446108 0.772682i −0.552020 0.833831i \(-0.686143\pi\)
0.998129 + 0.0611484i \(0.0194763\pi\)
\(354\) −15.1223 14.7871i −0.803740 0.785924i
\(355\) 1.45693 5.43735i 0.0773259 0.288584i
\(356\) −12.2576 + 22.3744i −0.649653 + 1.18584i
\(357\) 0 0
\(358\) −3.85381 + 2.28296i −0.203680 + 0.120658i
\(359\) −29.8777 + 17.2499i −1.57689 + 0.910415i −0.581595 + 0.813479i \(0.697571\pi\)
−0.995291 + 0.0969365i \(0.969096\pi\)
\(360\) −0.610009 + 1.14371i −0.0321503 + 0.0602787i
\(361\) −18.0310 10.4102i −0.948998 0.547904i
\(362\) −14.0965 + 25.0603i −0.740897 + 1.31714i
\(363\) −33.9851 + 33.9851i −1.78375 + 1.78375i
\(364\) 0 0
\(365\) 3.38938 + 3.38938i 0.177408 + 0.177408i
\(366\) 6.68944 + 23.8911i 0.349663 + 1.24881i
\(367\) −10.2644 + 17.7785i −0.535799 + 0.928032i 0.463325 + 0.886189i \(0.346656\pi\)
−0.999124 + 0.0418433i \(0.986677\pi\)
\(368\) 0.191370 + 4.26628i 0.00997587 + 0.222395i
\(369\) −0.824679 1.42839i −0.0429311 0.0743588i
\(370\) 0.936715 + 0.239774i 0.0486975 + 0.0124653i
\(371\) 0 0
\(372\) −0.370351 1.26780i −0.0192018 0.0657324i
\(373\) 15.2773 + 4.09353i 0.791027 + 0.211955i 0.631641 0.775261i \(-0.282382\pi\)
0.159386 + 0.987216i \(0.449049\pi\)
\(374\) −17.1565 + 0.192275i −0.887144 + 0.00994228i
\(375\) 17.2513 + 9.96003i 0.890853 + 0.514334i
\(376\) −5.95753 1.38348i −0.307236 0.0713476i
\(377\) 11.5414i 0.594412i
\(378\) 0 0
\(379\) 11.2717 11.2717i 0.578987 0.578987i −0.355637 0.934624i \(-0.615736\pi\)
0.934624 + 0.355637i \(0.115736\pi\)
\(380\) −0.570713 25.4590i −0.0292770 1.30602i
\(381\) 10.3150 2.76388i 0.528451 0.141598i
\(382\) 12.3782 + 12.1038i 0.633323 + 0.619285i
\(383\) 5.14594 + 8.91303i 0.262945 + 0.455434i 0.967023 0.254688i \(-0.0819728\pi\)
−0.704078 + 0.710123i \(0.748640\pi\)
\(384\) 10.6694 + 15.5272i 0.544469 + 0.792367i
\(385\) 0 0
\(386\) −0.763809 + 2.98394i −0.0388769 + 0.151879i
\(387\) −0.145954 + 0.544707i −0.00741925 + 0.0276890i
\(388\) 3.77988 2.29677i 0.191894 0.116601i
\(389\) 5.30513 + 19.7990i 0.268981 + 1.00385i 0.959769 + 0.280792i \(0.0905972\pi\)
−0.690788 + 0.723058i \(0.742736\pi\)
\(390\) −6.64098 3.73557i −0.336279 0.189158i
\(391\) 2.05156i 0.103752i
\(392\) 0 0
\(393\) 24.9181i 1.25695i
\(394\) −9.78447 + 17.3945i −0.492934 + 0.876322i
\(395\) −5.33543 19.9121i −0.268454 1.00189i
\(396\) −2.78622 0.680021i −0.140013 0.0341723i
\(397\) 2.02632 7.56231i 0.101698 0.379542i −0.896252 0.443546i \(-0.853720\pi\)
0.997950 + 0.0640041i \(0.0203871\pi\)
\(398\) −14.4636 3.70231i −0.724997 0.185580i
\(399\) 0 0
\(400\) −3.13060 + 1.99966i −0.156530 + 0.0999832i
\(401\) −7.09985 12.2973i −0.354549 0.614098i 0.632491 0.774567i \(-0.282032\pi\)
−0.987041 + 0.160470i \(0.948699\pi\)
\(402\) −13.4220 + 13.7263i −0.669429 + 0.684604i
\(403\) −0.614273 + 0.164594i −0.0305991 + 0.00819901i
\(404\) −10.4014 9.94525i −0.517487 0.494795i
\(405\) 11.7951 11.7951i 0.586104 0.586104i
\(406\) 0 0
\(407\) 2.13939i 0.106046i
\(408\) 4.78611 + 7.68135i 0.236948 + 0.380283i
\(409\) 22.8759 + 13.2074i 1.13114 + 0.653065i 0.944222 0.329310i \(-0.106816\pi\)
0.186920 + 0.982375i \(0.440149\pi\)
\(410\) 0.232219 + 20.7207i 0.0114685 + 1.02332i
\(411\) 2.80316 + 0.751104i 0.138270 + 0.0370492i
\(412\) −16.8055 + 30.6758i −0.827947 + 1.51129i
\(413\) 0 0
\(414\) −0.0850394 + 0.332220i −0.00417946 + 0.0163277i
\(415\) 1.68288 + 2.91483i 0.0826092 + 0.143083i
\(416\) 7.58938 4.96833i 0.372100 0.243592i
\(417\) −3.34915 + 5.80091i −0.164009 + 0.284072i
\(418\) 54.2577 15.1920i 2.65383 0.743065i
\(419\) 15.6893 + 15.6893i 0.766471 + 0.766471i 0.977483 0.211012i \(-0.0676759\pi\)
−0.211012 + 0.977483i \(0.567676\pi\)
\(420\) 0 0
\(421\) 25.7068 25.7068i 1.25287 1.25287i 0.298444 0.954427i \(-0.403532\pi\)
0.954427 0.298444i \(-0.0964675\pi\)
\(422\) −9.07096 5.10245i −0.441568 0.248383i
\(423\) −0.425327 0.245563i −0.0206801 0.0119397i
\(424\) −1.07411 0.572886i −0.0521632 0.0278218i
\(425\) −1.54546 + 0.892270i −0.0749657 + 0.0432815i
\(426\) −3.34848 5.65249i −0.162235 0.273864i
\(427\) 0 0
\(428\) 5.78071 1.68867i 0.279421 0.0816247i
\(429\) 4.36340 16.2844i 0.210667 0.786220i
\(430\) 4.95335 5.06563i 0.238872 0.244287i
\(431\) 12.3981 21.4741i 0.597194 1.03437i −0.396039 0.918234i \(-0.629616\pi\)
0.993233 0.116137i \(-0.0370510\pi\)
\(432\) 6.48818 + 20.4926i 0.312163 + 0.985950i
\(433\) −5.22863 −0.251272 −0.125636 0.992076i \(-0.540097\pi\)
−0.125636 + 0.992076i \(0.540097\pi\)
\(434\) 0 0
\(435\) −17.1000 17.1000i −0.819881 0.819881i
\(436\) 9.82380 10.2743i 0.470474 0.492051i
\(437\) −1.74371 6.50762i −0.0834131 0.311302i
\(438\) 5.59398 0.0626921i 0.267291 0.00299555i
\(439\) 19.1771 11.0719i 0.915273 0.528433i 0.0331491 0.999450i \(-0.489446\pi\)
0.882124 + 0.471017i \(0.156113\pi\)
\(440\) 26.3210 + 24.6081i 1.25480 + 1.17314i
\(441\) 0 0
\(442\) 3.74919 2.22098i 0.178331 0.105641i
\(443\) 21.8067 + 5.84309i 1.03607 + 0.277614i 0.736483 0.676456i \(-0.236485\pi\)
0.299585 + 0.954070i \(0.403152\pi\)
\(444\) 0.964419 0.586011i 0.0457693 0.0278109i
\(445\) 24.8614 6.66159i 1.17854 0.315790i
\(446\) −30.4899 + 8.53708i −1.44374 + 0.404243i
\(447\) −30.6599 −1.45017
\(448\) 0 0
\(449\) −36.3678 −1.71630 −0.858152 0.513396i \(-0.828387\pi\)
−0.858152 + 0.513396i \(0.828387\pi\)
\(450\) −0.287249 + 0.0804290i −0.0135411 + 0.00379146i
\(451\) −44.2871 + 11.8667i −2.08540 + 0.558781i
\(452\) −10.1960 + 6.19541i −0.479579 + 0.291408i
\(453\) −10.2603 2.74924i −0.482072 0.129171i
\(454\) −22.6429 + 13.4134i −1.06268 + 0.629523i
\(455\) 0 0
\(456\) −21.7104 20.2976i −1.01668 0.950522i
\(457\) 21.5807 12.4596i 1.00950 0.582837i 0.0984570 0.995141i \(-0.468609\pi\)
0.911046 + 0.412304i \(0.135276\pi\)
\(458\) 11.8940 0.133297i 0.555770 0.00622856i
\(459\) 2.67261 + 9.97431i 0.124747 + 0.465561i
\(460\) 2.97751 3.11406i 0.138827 0.145194i
\(461\) 1.60588 + 1.60588i 0.0747933 + 0.0747933i 0.743514 0.668721i \(-0.233158\pi\)
−0.668721 + 0.743514i \(0.733158\pi\)
\(462\) 0 0
\(463\) −14.8176 −0.688634 −0.344317 0.938853i \(-0.611890\pi\)
−0.344317 + 0.938853i \(0.611890\pi\)
\(464\) 27.4469 8.69000i 1.27419 0.403423i
\(465\) −0.666254 + 1.15399i −0.0308968 + 0.0535148i
\(466\) −17.0429 + 17.4293i −0.789499 + 0.807395i
\(467\) 3.21315 11.9916i 0.148687 0.554907i −0.850877 0.525365i \(-0.823929\pi\)
0.999564 0.0295414i \(-0.00940469\pi\)
\(468\) 0.699188 0.204247i 0.0323200 0.00944133i
\(469\) 0 0
\(470\) 3.14486 + 5.30876i 0.145062 + 0.244875i
\(471\) −26.3028 + 15.1859i −1.21197 + 0.699730i
\(472\) −22.4141 11.9548i −1.03169 0.550265i
\(473\) 13.5759 + 7.83804i 0.624220 + 0.360393i
\(474\) −20.9696 11.7955i −0.963165 0.541784i
\(475\) 4.14387 4.14387i 0.190134 0.190134i
\(476\) 0 0
\(477\) −0.0691218 0.0691218i −0.00316487 0.00316487i
\(478\) 0.779896 0.218369i 0.0356716 0.00998795i
\(479\) −1.02709 + 1.77897i −0.0469288 + 0.0812831i −0.888536 0.458808i \(-0.848277\pi\)
0.841607 + 0.540091i \(0.181610\pi\)
\(480\) 3.88341 18.6058i 0.177252 0.849234i
\(481\) −0.271679 0.470563i −0.0123875 0.0214558i
\(482\) 4.13341 16.1478i 0.188272 0.735513i
\(483\) 0 0
\(484\) −27.7351 + 50.6261i −1.26069 + 2.30119i
\(485\) −4.31018 1.15491i −0.195715 0.0524417i
\(486\) 0.0373249 + 3.33047i 0.00169309 + 0.151073i
\(487\) −35.4045 20.4408i −1.60433 0.926261i −0.990607 0.136740i \(-0.956338\pi\)
−0.613724 0.789521i \(-0.710329\pi\)
\(488\) 15.7581 + 25.2906i 0.713337 + 1.14485i
\(489\) 19.1302i 0.865098i
\(490\) 0 0
\(491\) −0.278015 + 0.278015i −0.0125466 + 0.0125466i −0.713352 0.700806i \(-0.752824\pi\)
0.700806 + 0.713352i \(0.252824\pi\)
\(492\) 17.4803 + 16.7138i 0.788073 + 0.753515i
\(493\) 13.3592 3.57958i 0.601667 0.161216i
\(494\) −10.0049 + 10.2316i −0.450140 + 0.460344i
\(495\) 1.44673 + 2.50580i 0.0650255 + 0.112628i
\(496\) −0.853938 1.33689i −0.0383429 0.0600282i
\(497\) 0 0
\(498\) 3.80552 + 0.974112i 0.170529 + 0.0436510i
\(499\) −3.19039 + 11.9067i −0.142822 + 0.533018i 0.857021 + 0.515281i \(0.172313\pi\)
−0.999843 + 0.0177363i \(0.994354\pi\)
\(500\) 23.2429 + 5.67282i 1.03946 + 0.253696i
\(501\) −9.33912 34.8541i −0.417241 1.55717i
\(502\) −5.46682 + 9.71874i −0.243996 + 0.433768i
\(503\) 0.367839i 0.0164011i −0.999966 0.00820057i \(-0.997390\pi\)
0.999966 0.00820057i \(-0.00261035\pi\)
\(504\) 0 0
\(505\) 14.5186i 0.646068i
\(506\) 8.30862 + 4.67363i 0.369363 + 0.207768i
\(507\) −4.49459 16.7740i −0.199612 0.744960i
\(508\) 10.9611 6.66028i 0.486318 0.295502i
\(509\) 2.09820 7.83060i 0.0930012 0.347085i −0.903708 0.428150i \(-0.859165\pi\)
0.996709 + 0.0810649i \(0.0258321\pi\)
\(510\) 2.26422 8.84554i 0.100262 0.391687i
\(511\) 0 0
\(512\) 17.5297 + 14.3077i 0.774711 + 0.632316i
\(513\) −16.9552 29.3673i −0.748591 1.29660i
\(514\) −29.3894 28.7380i −1.29631 1.26758i
\(515\) 34.0855 9.13319i 1.50199 0.402457i
\(516\) −0.185317 8.26684i −0.00815815 0.363927i
\(517\) −9.65374 + 9.65374i −0.424571 + 0.424571i
\(518\) 0 0
\(519\) 21.3072i 0.935282i
\(520\) −8.91430 2.07011i −0.390918 0.0907805i
\(521\) 11.5215 + 6.65193i 0.504766 + 0.291427i 0.730679 0.682721i \(-0.239203\pi\)
−0.225914 + 0.974147i \(0.572537\pi\)
\(522\) 2.31170 0.0259074i 0.101180 0.00113394i
\(523\) 27.4536 + 7.35616i 1.20046 + 0.321663i 0.803013 0.595962i \(-0.203229\pi\)
0.397448 + 0.917625i \(0.369896\pi\)
\(524\) −8.39189 28.7275i −0.366602 1.25497i
\(525\) 0 0
\(526\) 24.2268 + 6.20142i 1.05634 + 0.270395i
\(527\) −0.381036 0.659973i −0.0165982 0.0287489i
\(528\) 42.0119 1.88451i 1.82833 0.0820126i
\(529\) −10.9301 + 18.9314i −0.475220 + 0.823106i
\(530\) 0.331139 + 1.18265i 0.0143838 + 0.0513712i
\(531\) −1.44241 1.44241i −0.0625954 0.0625954i
\(532\) 0 0
\(533\) 8.23408 8.23408i 0.356657 0.356657i
\(534\) 14.7273 26.1818i 0.637314 1.13300i
\(535\) −5.26176 3.03788i −0.227486 0.131339i
\(536\) −10.8512 + 20.3449i −0.468701 + 0.878768i
\(537\) 4.56759 2.63710i 0.197106 0.113799i
\(538\) 18.1730 10.7655i 0.783494 0.464134i
\(539\) 0 0
\(540\) 10.4194 19.0189i 0.448377 0.818442i
\(541\) −4.75802 + 17.7572i −0.204563 + 0.763441i 0.785019 + 0.619472i \(0.212653\pi\)
−0.989582 + 0.143969i \(0.954013\pi\)
\(542\) 14.0179 + 13.7072i 0.602122 + 0.588775i
\(543\) 16.9279 29.3199i 0.726445 1.25824i
\(544\) 8.10471 + 7.24379i 0.347487 + 0.310575i
\(545\) −14.3413 −0.614312
\(546\) 0 0
\(547\) −22.9801 22.9801i −0.982558 0.982558i 0.0172930 0.999850i \(-0.494495\pi\)
−0.999850 + 0.0172930i \(0.994495\pi\)
\(548\) 3.48465 0.0781153i 0.148857 0.00333692i
\(549\) 0.619309 + 2.31129i 0.0264315 + 0.0986436i
\(550\) 0.0929249 + 8.29163i 0.00396233 + 0.353556i
\(551\) −39.3334 + 22.7091i −1.67566 + 0.967442i
\(552\) −0.169024 5.02563i −0.00719416 0.213905i
\(553\) 0 0
\(554\) 1.66390 + 2.80880i 0.0706925 + 0.119334i
\(555\) −1.09972 0.294670i −0.0466806 0.0125080i
\(556\) −1.90754 + 7.81566i −0.0808976 + 0.331458i
\(557\) 4.50327 1.20665i 0.190810 0.0511273i −0.162149 0.986766i \(-0.551842\pi\)
0.352958 + 0.935639i \(0.385176\pi\)
\(558\) −0.0343464 0.122667i −0.00145400 0.00519291i
\(559\) −3.98138 −0.168394
\(560\) 0 0
\(561\) 20.2026 0.852954
\(562\) −0.259425 0.926527i −0.0109432 0.0390832i
\(563\) 4.04301 1.08332i 0.170393 0.0456566i −0.172614 0.984990i \(-0.555221\pi\)
0.343007 + 0.939333i \(0.388555\pi\)
\(564\) 6.99613 + 1.70752i 0.294590 + 0.0718995i
\(565\) 11.6264 + 3.11530i 0.489128 + 0.131061i
\(566\) 0.274347 + 0.463118i 0.0115317 + 0.0194663i
\(567\) 0 0
\(568\) −5.76403 5.38893i −0.241853 0.226115i
\(569\) 3.88173 2.24111i 0.162730 0.0939524i −0.416423 0.909171i \(-0.636717\pi\)
0.579154 + 0.815218i \(0.303383\pi\)
\(570\) 0.336020 + 29.9828i 0.0140743 + 1.25584i
\(571\) −0.126176 0.470896i −0.00528031 0.0197064i 0.963235 0.268659i \(-0.0865804\pi\)
−0.968516 + 0.248952i \(0.919914\pi\)
\(572\) −0.453797 20.2435i −0.0189742 0.846422i
\(573\) −14.4143 14.4143i −0.602167 0.602167i
\(574\) 0 0
\(575\) 0.991504 0.0413486
\(576\) 1.01217 + 1.50897i 0.0421739 + 0.0628739i
\(577\) −5.31982 + 9.21420i −0.221467 + 0.383592i −0.955254 0.295788i \(-0.904418\pi\)
0.733787 + 0.679380i \(0.237751\pi\)
\(578\) −13.4558 13.1576i −0.559689 0.547283i
\(579\) 0.938680 3.50320i 0.0390102 0.145588i
\(580\) −25.4731 13.9553i −1.05771 0.579460i
\(581\) 0 0
\(582\) −4.48072 + 2.65434i −0.185732 + 0.110026i
\(583\) −2.35331 + 1.35868i −0.0974641 + 0.0562709i
\(584\) 6.42806 1.95621i 0.265995 0.0809487i
\(585\) −0.636420 0.367437i −0.0263127 0.0151917i
\(586\) 7.34631 13.0600i 0.303473 0.539505i
\(587\) 13.2861 13.2861i 0.548376 0.548376i −0.377595 0.925971i \(-0.623249\pi\)
0.925971 + 0.377595i \(0.123249\pi\)
\(588\) 0 0
\(589\) 1.76960 + 1.76960i 0.0729151 + 0.0729151i
\(590\) 6.91011 + 24.6792i 0.284485 + 1.01603i
\(591\) 11.7497 20.3511i 0.483319 0.837133i
\(592\) 0.914500 1.00040i 0.0375857 0.0411160i
\(593\) −0.198497 0.343806i −0.00815128 0.0141184i 0.861921 0.507043i \(-0.169261\pi\)
−0.870072 + 0.492924i \(0.835928\pi\)
\(594\) 46.4835 + 11.8985i 1.90724 + 0.488203i
\(595\) 0 0
\(596\) −35.3471 + 10.3256i −1.44788 + 0.422954i
\(597\) 16.9806 + 4.54994i 0.694970 + 0.186217i
\(598\) −2.42100 + 0.0271323i −0.0990019 + 0.00110952i
\(599\) 11.9718 + 6.91190i 0.489153 + 0.282412i 0.724223 0.689566i \(-0.242199\pi\)
−0.235070 + 0.971978i \(0.575532\pi\)
\(600\) 3.71234 2.31309i 0.151556 0.0944315i
\(601\) 8.73396i 0.356266i 0.984006 + 0.178133i \(0.0570057\pi\)
−0.984006 + 0.178133i \(0.942994\pi\)
\(602\) 0 0
\(603\) −1.30926 + 1.30926i −0.0533170 + 0.0533170i
\(604\) −12.7548 + 0.285923i −0.518984 + 0.0116341i
\(605\) 56.2535 15.0731i 2.28703 0.612807i
\(606\) 12.1153 + 11.8468i 0.492150 + 0.481242i
\(607\) −14.3937 24.9305i −0.584220 1.01190i −0.994972 0.100152i \(-0.968067\pi\)
0.410752 0.911747i \(-0.365266\pi\)
\(608\) −31.8653 16.0890i −1.29231 0.652495i
\(609\) 0 0
\(610\) 7.45490 29.1237i 0.301840 1.17918i
\(611\) 0.897436 3.34928i 0.0363064 0.135497i
\(612\) 0.453271 + 0.745964i 0.0183224 + 0.0301538i
\(613\) 9.13486 + 34.0918i 0.368954 + 1.37695i 0.861981 + 0.506940i \(0.169223\pi\)
−0.493028 + 0.870014i \(0.664110\pi\)
\(614\) −10.9468 6.15759i −0.441775 0.248500i
\(615\) 24.3996i 0.983886i
\(616\) 0 0
\(617\) 33.4612i 1.34710i 0.739143 + 0.673548i \(0.235231\pi\)
−0.739143 + 0.673548i \(0.764769\pi\)
\(618\) 20.1915 35.8958i 0.812222 1.44394i
\(619\) 2.41362 + 9.00777i 0.0970118 + 0.362053i 0.997317 0.0732067i \(-0.0233233\pi\)
−0.900305 + 0.435260i \(0.856657\pi\)
\(620\) −0.379470 + 1.55478i −0.0152399 + 0.0624417i
\(621\) 1.48492 5.54180i 0.0595878 0.222385i
\(622\) 13.5368 + 3.46507i 0.542778 + 0.138937i
\(623\) 0 0
\(624\) −9.00127 + 5.74955i −0.360339 + 0.230166i
\(625\) −9.74706 16.8824i −0.389882 0.675296i
\(626\) −16.9807 + 17.3657i −0.678687 + 0.694071i
\(627\) −64.0834 + 17.1711i −2.55924 + 0.685747i
\(628\) −25.2096 + 26.3657i −1.00597 + 1.05211i
\(629\) 0.460415 0.460415i 0.0183580 0.0183580i
\(630\) 0 0
\(631\) 22.2587i 0.886105i 0.896496 + 0.443053i \(0.146104\pi\)
−0.896496 + 0.443053i \(0.853896\pi\)
\(632\) −28.1478 6.53660i −1.11966 0.260012i
\(633\) 10.6128 + 6.12730i 0.421821 + 0.243538i
\(634\) −0.336700 30.0436i −0.0133721 1.19318i
\(635\) −12.4988 3.34905i −0.496001 0.132903i
\(636\) 1.25709 + 0.688687i 0.0498468 + 0.0273082i
\(637\) 0 0
\(638\) 15.9364 62.2580i 0.630928 2.46482i
\(639\) −0.316819 0.548747i −0.0125332 0.0217081i
\(640\) −1.78895 22.7580i −0.0707146 0.899590i
\(641\) 4.13758 7.16649i 0.163424 0.283059i −0.772670 0.634808i \(-0.781079\pi\)
0.936095 + 0.351748i \(0.114413\pi\)
\(642\) −6.82847 + 1.91195i −0.269498 + 0.0754587i
\(643\) −4.19175 4.19175i −0.165307 0.165307i 0.619606 0.784913i \(-0.287292\pi\)
−0.784913 + 0.619606i \(0.787292\pi\)
\(644\) 0 0
\(645\) −5.89890 + 5.89890i −0.232269 + 0.232269i
\(646\) −14.9462 8.40728i −0.588049 0.330780i
\(647\) −18.2428 10.5325i −0.717199 0.414075i 0.0965221 0.995331i \(-0.469228\pi\)
−0.813721 + 0.581256i \(0.802561\pi\)
\(648\) −6.80767 22.3698i −0.267430 0.878768i
\(649\) −49.1081 + 28.3526i −1.92766 + 1.11294i
\(650\) −1.07339 1.81196i −0.0421016 0.0710708i
\(651\) 0 0
\(652\) −6.44266 22.0548i −0.252314 0.863732i
\(653\) 4.43173 16.5394i 0.173427 0.647239i −0.823387 0.567480i \(-0.807918\pi\)
0.996814 0.0797585i \(-0.0254149\pi\)
\(654\) −11.7021 + 11.9673i −0.457587 + 0.467960i
\(655\) −15.0969 + 26.1485i −0.589883 + 1.02171i
\(656\) 25.7815 + 13.3819i 1.00660 + 0.522476i
\(657\) 0.539552 0.0210499
\(658\) 0 0
\(659\) 19.9513 + 19.9513i 0.777192 + 0.777192i 0.979352 0.202161i \(-0.0647964\pi\)
−0.202161 + 0.979352i \(0.564796\pi\)
\(660\) −30.6655 29.3208i −1.19365 1.14131i
\(661\) 5.55822 + 20.7436i 0.216190 + 0.806831i 0.985744 + 0.168250i \(0.0538117\pi\)
−0.769555 + 0.638581i \(0.779522\pi\)
\(662\) −34.2209 + 0.383516i −1.33003 + 0.0149058i
\(663\) −4.44359 + 2.56551i −0.172575 + 0.0996361i
\(664\) 4.71536 0.158589i 0.182991 0.00615445i
\(665\) 0 0
\(666\) 0.0936421 0.0554727i 0.00362856 0.00214952i
\(667\) −7.42246 1.98884i −0.287399 0.0770083i
\(668\) −22.5050 37.0372i −0.870744 1.43301i
\(669\) 36.0114 9.64922i 1.39228 0.373060i
\(670\) 22.4010 6.27221i 0.865425 0.242317i
\(671\) 66.5165 2.56784
\(672\) 0 0
\(673\) 21.0339 0.810796 0.405398 0.914140i \(-0.367133\pi\)
0.405398 + 0.914140i \(0.367133\pi\)
\(674\) 5.81150 1.62720i 0.223851 0.0626775i
\(675\) 4.82051 1.29165i 0.185542 0.0497157i
\(676\) −10.8309 17.8247i −0.416571 0.685566i
\(677\) −6.02033 1.61314i −0.231380 0.0619982i 0.141266 0.989972i \(-0.454883\pi\)
−0.372646 + 0.927974i \(0.621549\pi\)
\(678\) 12.0865 7.15992i 0.464179 0.274975i
\(679\) 0 0
\(680\) −0.368624 10.9604i −0.0141361 0.420311i
\(681\) 26.8367 15.4942i 1.02838 0.593737i
\(682\) −3.54086 + 0.0396827i −0.135587 + 0.00151953i
\(683\) −5.78001 21.5713i −0.221166 0.825402i −0.983904 0.178695i \(-0.942812\pi\)
0.762739 0.646707i \(-0.223854\pi\)
\(684\) −2.07182 1.98097i −0.0792180 0.0757442i
\(685\) −2.48651 2.48651i −0.0950048 0.0950048i
\(686\) 0 0
\(687\) −14.0057 −0.534351
\(688\) −2.99775 9.46824i −0.114288 0.360973i
\(689\) 0.345076 0.597689i 0.0131463 0.0227701i
\(690\) −3.54680 + 3.62720i −0.135024 + 0.138085i
\(691\) −9.94413 + 37.1120i −0.378292 + 1.41181i 0.470182 + 0.882570i \(0.344188\pi\)
−0.848474 + 0.529237i \(0.822478\pi\)
\(692\) 7.17583 + 24.5646i 0.272784 + 0.933805i
\(693\) 0 0
\(694\) 0.0389423 + 0.0657375i 0.00147823 + 0.00249536i
\(695\) 7.02907 4.05824i 0.266628 0.153938i
\(696\) −32.4306 + 9.86941i −1.22928 + 0.374099i
\(697\) 12.0848 + 6.97715i 0.457743 + 0.264278i
\(698\) −27.0062 15.1911i −1.02220 0.574991i
\(699\) 20.2963 20.2963i 0.767676 0.767676i
\(700\) 0 0
\(701\) 1.40129 + 1.40129i 0.0529259 + 0.0529259i 0.733074 0.680148i \(-0.238085\pi\)
−0.680148 + 0.733074i \(0.738085\pi\)
\(702\) −11.7351 + 3.28579i −0.442913 + 0.124014i
\(703\) −1.06913 + 1.85178i −0.0403229 + 0.0698413i
\(704\) 47.7999 16.3214i 1.80153 0.615134i
\(705\) −3.63270 6.29202i −0.136815 0.236971i
\(706\) −5.87877 + 22.9663i −0.221250 + 0.864349i
\(707\) 0 0
\(708\) 26.2325 + 14.3713i 0.985879 + 0.540107i
\(709\) −8.42034 2.25622i −0.316232 0.0847342i 0.0972117 0.995264i \(-0.469008\pi\)
−0.413444 + 0.910530i \(0.635674\pi\)
\(710\) 0.0892120 + 7.96033i 0.00334807 + 0.298746i
\(711\) −2.00956 1.16022i −0.0753645 0.0435117i
\(712\) 8.16133 35.1442i 0.305859 1.31709i
\(713\) 0.423412i 0.0158569i
\(714\) 0 0
\(715\) −14.4450 + 14.4450i −0.540211 + 0.540211i
\(716\) 4.37775 4.57852i 0.163604 0.171107i
\(717\) −0.921129 + 0.246816i −0.0344002 + 0.00921750i
\(718\) 34.1110 34.8843i 1.27301 1.30187i
\(719\) 13.3330 + 23.0934i 0.497236 + 0.861239i 0.999995 0.00318810i \(-0.00101481\pi\)
−0.502758 + 0.864427i \(0.667681\pi\)
\(720\) 0.394626 1.79015i 0.0147068 0.0667149i
\(721\) 0 0
\(722\) 28.5247 + 7.30158i 1.06158 + 0.271737i
\(723\) −5.07974 + 18.9578i −0.188917 + 0.705050i
\(724\) 9.64141 39.5033i 0.358320 1.46813i
\(725\) −1.72999 6.45640i −0.0642501 0.239785i
\(726\) 33.3233 59.2410i 1.23674 2.19864i
\(727\) 37.7224i 1.39905i 0.714610 + 0.699523i \(0.246604\pi\)
−0.714610 + 0.699523i \(0.753396\pi\)
\(728\) 0 0
\(729\) 28.7229i 1.06381i
\(730\) −5.90819 3.32338i −0.218672 0.123004i
\(731\) −1.23483 4.60846i −0.0456719 0.170450i
\(732\) −18.2199 29.9851i −0.673425 1.10828i
\(733\) −5.88050 + 21.9463i −0.217201 + 0.810606i 0.768179 + 0.640235i \(0.221163\pi\)
−0.985380 + 0.170371i \(0.945504\pi\)
\(734\) 7.19936 28.1254i 0.265733 1.03813i
\(735\) 0 0
\(736\) −1.88739 5.73701i −0.0695703 0.211469i
\(737\) 25.7352 + 44.5747i 0.947969 + 1.64193i
\(738\) 1.66774 + 1.63077i 0.0613903 + 0.0600295i
\(739\) 25.3304 6.78727i 0.931795 0.249674i 0.239175 0.970977i \(-0.423123\pi\)
0.692620 + 0.721303i \(0.256456\pi\)
\(740\) −1.36708 + 0.0306458i −0.0502550 + 0.00112656i
\(741\) 11.9147 11.9147i 0.437697 0.437697i
\(742\) 0 0
\(743\) 20.7110i 0.759812i −0.925025 0.379906i \(-0.875956\pi\)
0.925025 0.379906i \(-0.124044\pi\)
\(744\) 0.987783 + 1.58532i 0.0362139 + 0.0581206i
\(745\) 32.1739 + 18.5756i 1.17876 + 0.680558i
\(746\) −22.3661 + 0.250658i −0.818880 + 0.00917724i
\(747\) 0.365952 + 0.0980566i 0.0133895 + 0.00358770i
\(748\) 23.2911 6.80382i 0.851607 0.248772i
\(749\) 0 0
\(750\) −27.2913 6.98585i −0.996538 0.255087i
\(751\) 7.73865 + 13.4037i 0.282387 + 0.489109i 0.971972 0.235096i \(-0.0755403\pi\)
−0.689585 + 0.724205i \(0.742207\pi\)
\(752\) 8.64073 0.387593i 0.315095 0.0141341i
\(753\) 6.56486 11.3707i 0.239237 0.414370i
\(754\) 4.40086 + 15.7175i 0.160270 + 0.572398i
\(755\) 9.10132 + 9.10132i 0.331231 + 0.331231i
\(756\) 0 0
\(757\) 18.4631 18.4631i 0.671051 0.671051i −0.286907 0.957958i \(-0.592627\pi\)
0.957958 + 0.286907i \(0.0926272\pi\)
\(758\) −11.0522 + 19.6482i −0.401434 + 0.713655i
\(759\) −9.72088 5.61235i −0.352846 0.203715i
\(760\) 10.4850 + 34.4534i 0.380331 + 1.24976i
\(761\) 11.1420 6.43283i 0.403897 0.233190i −0.284267 0.958745i \(-0.591750\pi\)
0.688164 + 0.725555i \(0.258417\pi\)
\(762\) −12.9934 + 7.69716i −0.470701 + 0.278839i
\(763\) 0 0
\(764\) −21.4724 11.7635i −0.776844 0.425589i
\(765\) 0.227923 0.850618i 0.00824056 0.0307542i
\(766\) −10.4066 10.1759i −0.376004 0.367670i
\(767\) 7.20094 12.4724i 0.260011 0.450352i
\(768\) −20.4506 17.0771i −0.737948 0.616217i
\(769\) 16.5676 0.597443 0.298722 0.954340i \(-0.403440\pi\)
0.298722 + 0.954340i \(0.403440\pi\)
\(770\) 0 0
\(771\) 34.2238 + 34.2238i 1.23254 + 1.23254i
\(772\) −0.0976234 4.35489i −0.00351354 0.156736i
\(773\) 12.6807 + 47.3250i 0.456093 + 1.70216i 0.684856 + 0.728679i \(0.259865\pi\)
−0.228763 + 0.973482i \(0.573468\pi\)
\(774\) −0.00893715 0.797456i −0.000321239 0.0286640i
\(775\) −0.318960 + 0.184152i −0.0114574 + 0.00661492i
\(776\) −4.27180 + 4.56914i −0.153349 + 0.164023i
\(777\) 0 0
\(778\) −14.7743 24.9401i −0.529684 0.894147i
\(779\) −44.2635 11.8604i −1.58591 0.424942i
\(780\) 10.4683 + 2.55497i 0.374827 + 0.0914826i
\(781\) −17.0139 + 4.55886i −0.608805 + 0.163129i
\(782\) −0.782282 2.79389i −0.0279743 0.0999094i
\(783\) −38.6776 −1.38222
\(784\) 0 0
\(785\) 36.8021 1.31352
\(786\) 9.50153 + 33.9344i 0.338908 + 1.21040i
\(787\) 5.05999 1.35582i 0.180369 0.0483298i −0.167504 0.985871i \(-0.553571\pi\)
0.347873 + 0.937542i \(0.386904\pi\)
\(788\) 6.69215 27.4194i 0.238398 0.976776i
\(789\) −28.4427 7.62121i −1.01259 0.271322i
\(790\) 14.8587 + 25.0826i 0.528648 + 0.892398i
\(791\) 0 0
\(792\) 4.05367 0.136335i 0.144041 0.00484446i
\(793\) −14.6304 + 8.44687i −0.519541 + 0.299957i
\(794\) 0.124077 + 11.0713i 0.00440332 + 0.392906i
\(795\) −0.374277 1.39682i −0.0132742 0.0495401i
\(796\) 21.1089 0.473197i 0.748184 0.0167720i
\(797\) −20.4204 20.4204i −0.723329 0.723329i 0.245953 0.969282i \(-0.420899\pi\)
−0.969282 + 0.245953i \(0.920899\pi\)
\(798\) 0 0
\(799\) 4.15514 0.146998
\(800\) 3.50087 3.91695i 0.123774 0.138485i
\(801\) 1.44860 2.50906i 0.0511839 0.0886532i
\(802\) 14.3579 + 14.0397i 0.506996 + 0.495758i
\(803\) 3.88193 14.4876i 0.136990 0.511255i
\(804\) 13.0446 23.8109i 0.460049 0.839746i
\(805\) 0 0
\(806\) 0.773779 0.458379i 0.0272552 0.0161457i
\(807\) −21.5389 + 12.4355i −0.758205 + 0.437750i
\(808\) 17.9572 + 9.57767i 0.631732 + 0.336941i
\(809\) −33.6734 19.4413i −1.18389 0.683521i −0.226981 0.973899i \(-0.572886\pi\)
−0.956912 + 0.290378i \(0.906219\pi\)
\(810\) −11.5654 + 20.5606i −0.406368 + 0.722427i
\(811\) −12.4718 + 12.4718i −0.437945 + 0.437945i −0.891320 0.453375i \(-0.850220\pi\)
0.453375 + 0.891320i \(0.350220\pi\)
\(812\) 0 0
\(813\) −16.3238 16.3238i −0.572501 0.572501i
\(814\) −0.815773 2.91350i −0.0285928 0.102118i
\(815\) −11.5902 + 20.0749i −0.405988 + 0.703192i
\(816\) −9.44688 8.63576i −0.330707 0.302312i
\(817\) 7.83387 + 13.5687i 0.274072 + 0.474707i
\(818\) −36.1894 9.26354i −1.26533 0.323892i
\(819\) 0 0
\(820\) −8.21727 28.1297i −0.286960 0.982332i
\(821\) −18.4979 4.95650i −0.645581 0.172983i −0.0788511 0.996886i \(-0.525125\pi\)
−0.566730 + 0.823903i \(0.691792\pi\)
\(822\) −4.10385 + 0.0459921i −0.143138 + 0.00160416i
\(823\) 8.96748 + 5.17738i 0.312587 + 0.180472i 0.648083 0.761569i \(-0.275571\pi\)
−0.335497 + 0.942041i \(0.608904\pi\)
\(824\) 11.1894 48.1835i 0.389800 1.67855i
\(825\) 9.76376i 0.339931i
\(826\) 0 0
\(827\) −9.65786 + 9.65786i −0.335837 + 0.335837i −0.854798 0.518961i \(-0.826319\pi\)
0.518961 + 0.854798i \(0.326319\pi\)
\(828\) −0.0108690 0.484856i −0.000377723 0.0168499i
\(829\) −25.6983 + 6.88583i −0.892538 + 0.239155i −0.675809 0.737077i \(-0.736205\pi\)
−0.216729 + 0.976232i \(0.569539\pi\)
\(830\) −3.40326 3.32783i −0.118129 0.115511i
\(831\) −1.92201 3.32902i −0.0666739 0.115483i
\(832\) −8.44103 + 9.65997i −0.292640 + 0.334899i
\(833\) 0 0
\(834\) 2.34906 9.17696i 0.0813412 0.317772i
\(835\) −11.3164 + 42.2334i −0.391620 + 1.46155i
\(836\) −68.0974 + 41.3781i −2.35520 + 1.43109i
\(837\) 0.551588 + 2.05855i 0.0190657 + 0.0711540i
\(838\) −27.3487 15.3838i −0.944747 0.531423i
\(839\) 46.4429i 1.60339i 0.597736 + 0.801693i \(0.296067\pi\)
−0.597736 + 0.801693i \(0.703933\pi\)
\(840\) 0 0
\(841\) 22.8031i 0.786315i
\(842\) −25.2062 + 44.8107i −0.868662 + 1.54428i
\(843\) 0.293220 + 1.09431i 0.0100990 + 0.0376902i
\(844\) 14.2988 + 3.48985i 0.492185 + 0.120126i
\(845\) −5.44618 + 20.3254i −0.187354 + 0.699216i
\(846\) 0.672862 + 0.172235i 0.0231335 + 0.00592156i
\(847\) 0 0
\(848\) 1.68120 + 0.370610i 0.0577328 + 0.0127268i
\(849\) −0.316904 0.548894i −0.0108761 0.0188380i
\(850\) 1.76443 1.80443i 0.0605195 0.0618913i
\(851\) −0.349443 + 0.0936330i −0.0119788 + 0.00320970i
\(852\) 6.71545 + 6.42097i 0.230067 + 0.219979i
\(853\) 31.3013 31.3013i 1.07174 1.07174i 0.0745177 0.997220i \(-0.476258\pi\)
0.997220 0.0745177i \(-0.0237417\pi\)
\(854\) 0 0
\(855\) 2.89191i 0.0989014i
\(856\) −7.22848 + 4.50393i −0.247064 + 0.153941i
\(857\) −22.8393 13.1863i −0.780175 0.450434i 0.0563171 0.998413i \(-0.482064\pi\)
−0.836492 + 0.547979i \(0.815398\pi\)
\(858\) 0.267183 + 23.8406i 0.00912148 + 0.813904i
\(859\) 2.91867 + 0.782055i 0.0995837 + 0.0266834i 0.308267 0.951300i \(-0.400251\pi\)
−0.208683 + 0.977983i \(0.566918\pi\)
\(860\) −4.81408 + 8.78734i −0.164159 + 0.299646i
\(861\) 0 0
\(862\) −8.69586 + 33.9717i −0.296182 + 1.15708i
\(863\) −3.50456 6.07008i −0.119297 0.206628i 0.800192 0.599743i \(-0.204731\pi\)
−0.919489 + 0.393115i \(0.871397\pi\)
\(864\) −16.6499 25.4336i −0.566441 0.865267i
\(865\) 12.9092 22.3594i 0.438925 0.760241i
\(866\) 7.12055 1.99373i 0.241966 0.0677498i
\(867\) 15.6692 + 15.6692i 0.532155 + 0.532155i
\(868\) 0 0
\(869\) −45.6115 + 45.6115i −1.54726 + 1.54726i
\(870\) 29.8078 + 16.7670i 1.01058 + 0.568454i
\(871\) −11.3210 6.53619i −0.383598 0.221470i
\(872\) −9.46070 + 17.7379i −0.320380 + 0.600681i
\(873\) −0.434991 + 0.251142i −0.0147222 + 0.00849987i
\(874\) 4.85608 + 8.19743i 0.164259 + 0.277282i
\(875\) 0 0
\(876\) −7.59419 + 2.21842i −0.256584 + 0.0749535i
\(877\) 10.6267 39.6594i 0.358838 1.33920i −0.516748 0.856138i \(-0.672857\pi\)
0.875585 0.483063i \(-0.160476\pi\)
\(878\) −21.8943 + 22.3906i −0.738896 + 0.755645i
\(879\) −8.82185 + 15.2799i −0.297554 + 0.515378i
\(880\) −45.2282 23.4758i −1.52464 0.791368i
\(881\) 13.6166 0.458755 0.229377 0.973338i \(-0.426331\pi\)
0.229377 + 0.973338i \(0.426331\pi\)
\(882\) 0 0
\(883\) 35.2238 + 35.2238i 1.18537 + 1.18537i 0.978332 + 0.207042i \(0.0663836\pi\)
0.207042 + 0.978332i \(0.433616\pi\)
\(884\) −4.25890 + 4.45423i −0.143242 + 0.149812i
\(885\) −7.81030 29.1484i −0.262540 0.979814i
\(886\) −31.9252 + 0.357789i −1.07255 + 0.0120201i
\(887\) 5.44911 3.14604i 0.182963 0.105634i −0.405721 0.913997i \(-0.632980\pi\)
0.588684 + 0.808363i \(0.299646\pi\)
\(888\) −1.08993 + 1.16580i −0.0365756 + 0.0391215i
\(889\) 0 0
\(890\) −31.3171 + 18.5519i −1.04975 + 0.621862i
\(891\) −50.4171 13.5092i −1.68904 0.452576i
\(892\) 38.2670 23.2522i 1.28127 0.778543i
\(893\) −13.1802 + 3.53163i −0.441060 + 0.118182i
\(894\) 41.7539 11.6910i 1.39646 0.391004i
\(895\) −6.39085 −0.213623
\(896\) 0 0
\(897\) 2.85083 0.0951864
\(898\) 49.5271 13.8674i 1.65274 0.462762i
\(899\) 2.75714 0.738774i 0.0919559 0.0246395i
\(900\) 0.360519 0.219062i 0.0120173 0.00730208i
\(901\) 0.798852 + 0.214052i 0.0266136 + 0.00713110i
\(902\) 55.7870 33.0477i 1.85750 1.10037i
\(903\) 0 0
\(904\) 11.5229 12.3250i 0.383247 0.409923i
\(905\) −35.5276 + 20.5118i −1.18098 + 0.681837i
\(906\) 15.0212 0.168344i 0.499046 0.00559285i
\(907\) 11.6035 + 43.3049i 0.385289 + 1.43792i 0.837711 + 0.546113i \(0.183893\pi\)
−0.452423 + 0.891804i \(0.649440\pi\)
\(908\) 25.7213 26.9009i 0.853590 0.892737i
\(909\) 1.15560 + 1.15560i 0.0383288 + 0.0383288i
\(910\) 0 0
\(911\) 42.8973 1.42125 0.710625 0.703571i \(-0.248412\pi\)
0.710625 + 0.703571i \(0.248412\pi\)
\(912\) 37.3058 + 19.3636i 1.23532 + 0.641193i
\(913\) 5.26585 9.12073i 0.174274 0.301852i
\(914\) −24.6384 + 25.1970i −0.814967 + 0.833441i
\(915\) −9.16166 + 34.1918i −0.302875 + 1.13035i
\(916\) −16.1469 + 4.71684i −0.533508 + 0.155849i
\(917\) 0 0
\(918\) −7.44297 12.5643i −0.245655 0.414684i
\(919\) 26.2242 15.1405i 0.865056 0.499440i −0.000646343 1.00000i \(-0.500206\pi\)
0.865702 + 0.500560i \(0.166872\pi\)
\(920\) −2.86746 + 5.37620i −0.0945373 + 0.177248i
\(921\) 12.8074 + 7.39438i 0.422019 + 0.243653i
\(922\) −2.79929 1.57461i −0.0921896 0.0518570i
\(923\) 3.16330 3.16330i 0.104121 0.104121i
\(924\) 0 0
\(925\) −0.222515 0.222515i −0.00731626 0.00731626i
\(926\) 20.1792 5.65012i 0.663130 0.185675i
\(927\) 1.98607 3.43997i 0.0652311 0.112984i
\(928\) −34.0647 + 22.3002i −1.11823 + 0.732039i
\(929\) −6.93334 12.0089i −0.227475 0.393999i 0.729584 0.683891i \(-0.239714\pi\)
−0.957059 + 0.289892i \(0.906380\pi\)
\(930\) 0.467303 1.82559i 0.0153235 0.0598635i
\(931\) 0 0
\(932\) 16.5638 30.2345i 0.542564 0.990364i
\(933\) −15.8925 4.25838i −0.520297 0.139413i
\(934\) 0.196750 + 17.5559i 0.00643786 + 0.574446i
\(935\) −21.2002 12.2399i −0.693321 0.400289i
\(936\) −0.874299 + 0.544759i −0.0285773 + 0.0178060i
\(937\) 46.7544i 1.52740i −0.645572 0.763699i \(-0.723381\pi\)
0.645572 0.763699i \(-0.276619\pi\)
\(938\) 0 0
\(939\) 20.2222 20.2222i 0.659927 0.659927i
\(940\) −6.30708 6.03051i −0.205714 0.196693i
\(941\) −8.04407 + 2.15540i −0.262229 + 0.0702641i −0.387538 0.921854i \(-0.626674\pi\)
0.125309 + 0.992118i \(0.460008\pi\)
\(942\) 30.0295 30.7103i 0.978416 1.00059i
\(943\) −3.87655 6.71439i −0.126238 0.218651i
\(944\) 35.0829 + 7.73378i 1.14185 + 0.251713i
\(945\) 0 0
\(946\) −21.4769 5.49751i −0.698273 0.178739i
\(947\) 1.89988 7.09044i 0.0617378 0.230408i −0.928162 0.372176i \(-0.878612\pi\)
0.989900 + 0.141767i \(0.0452785\pi\)
\(948\) 33.0549 + 8.06759i 1.07357 + 0.262023i
\(949\) 0.985926 + 3.67953i 0.0320045 + 0.119442i
\(950\) −4.06317 + 7.22338i −0.131827 + 0.234357i
\(951\) 35.3776i 1.14720i
\(952\) 0 0
\(953\) 41.3553i 1.33963i −0.742528 0.669815i \(-0.766373\pi\)
0.742528 0.669815i \(-0.233627\pi\)
\(954\) 0.120490 + 0.0677758i 0.00390099 + 0.00219432i
\(955\) 6.39305 + 23.8592i 0.206874 + 0.772065i
\(956\) −0.978826 + 0.594765i −0.0316575 + 0.0192361i
\(957\) −19.5850 + 73.0921i −0.633093 + 2.36273i
\(958\) 0.720387 2.81430i 0.0232746 0.0909260i
\(959\) 0 0
\(960\) 1.80601 + 26.8188i 0.0582888 + 0.865574i
\(961\) 15.4214 + 26.7106i 0.497463 + 0.861632i
\(962\) 0.549414 + 0.537236i 0.0177138 + 0.0173212i
\(963\) −0.660606 + 0.177009i −0.0212877 + 0.00570403i
\(964\) 0.528296 + 23.5668i 0.0170153 + 0.759036i
\(965\) −3.10748 + 3.10748i −0.100033 + 0.100033i
\(966\) 0 0
\(967\) 40.5984i 1.30556i 0.757549 + 0.652778i \(0.226397\pi\)
−0.757549 + 0.652778i \(0.773603\pi\)
\(968\) 18.4665 79.5202i 0.593536 2.55588i
\(969\) 17.4866 + 10.0959i 0.561752 + 0.324328i
\(970\) 6.31014 0.0707182i 0.202606 0.00227062i
\(971\) −31.4132 8.41714i −1.00810 0.270119i −0.283263 0.959042i \(-0.591417\pi\)
−0.724834 + 0.688924i \(0.758084\pi\)
\(972\) −1.32077 4.52133i −0.0423639 0.145022i
\(973\) 0 0
\(974\) 56.0095 + 14.3369i 1.79466 + 0.459385i
\(975\) 1.23989 + 2.14755i 0.0397083 + 0.0687768i
\(976\) −31.1036 28.4330i −0.995602 0.910118i
\(977\) 8.34286 14.4503i 0.266912 0.462305i −0.701151 0.713013i \(-0.747330\pi\)
0.968063 + 0.250708i \(0.0806635\pi\)
\(978\) 7.29455 + 26.0522i 0.233254 + 0.833059i
\(979\) −56.9486 56.9486i −1.82009 1.82009i
\(980\) 0 0
\(981\) −1.14148 + 1.14148i −0.0364448 + 0.0364448i
\(982\) 0.272601 0.484621i 0.00869904 0.0154649i
\(983\) 10.1999 + 5.88892i 0.325326 + 0.187827i 0.653764 0.756698i \(-0.273189\pi\)
−0.328438 + 0.944526i \(0.606522\pi\)
\(984\) −30.1785 16.0960i −0.962054 0.513122i
\(985\) −24.6599 + 14.2374i −0.785728 + 0.453640i
\(986\) −16.8281 + 9.96881i −0.535916 + 0.317472i
\(987\) 0 0
\(988\) 9.72355 17.7488i 0.309347 0.564665i
\(989\) −0.686082 + 2.56049i −0.0218161 + 0.0814189i
\(990\) −2.92570 2.86085i −0.0929848 0.0909237i
\(991\) 15.8872 27.5175i 0.504675 0.874122i −0.495311 0.868716i \(-0.664946\pi\)
0.999985 0.00540613i \(-0.00172083\pi\)
\(992\) 1.67270 + 1.49501i 0.0531081 + 0.0474667i
\(993\) 40.2967 1.27878
\(994\) 0 0
\(995\) −15.0625 15.0625i −0.477513 0.477513i
\(996\) −5.55394 + 0.124502i −0.175983 + 0.00394501i
\(997\) 0.309461 + 1.15492i 0.00980073 + 0.0365768i 0.970653 0.240484i \(-0.0773062\pi\)
−0.960852 + 0.277061i \(0.910640\pi\)
\(998\) −0.195357 17.4315i −0.00618391 0.551786i
\(999\) −1.57695 + 0.910453i −0.0498925 + 0.0288055i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.o.557.2 48
7.2 even 3 inner 784.2.x.o.765.10 48
7.3 odd 6 784.2.m.j.589.6 24
7.4 even 3 784.2.m.k.589.6 24
7.5 odd 6 112.2.w.c.93.10 yes 48
7.6 odd 2 112.2.w.c.109.2 yes 48
16.5 even 4 inner 784.2.x.o.165.10 48
28.19 even 6 448.2.ba.c.401.4 48
28.27 even 2 448.2.ba.c.81.9 48
56.5 odd 6 896.2.ba.f.289.4 48
56.13 odd 2 896.2.ba.f.417.9 48
56.19 even 6 896.2.ba.e.289.9 48
56.27 even 2 896.2.ba.e.417.4 48
112.5 odd 12 112.2.w.c.37.2 48
112.13 odd 4 896.2.ba.f.865.4 48
112.19 even 12 896.2.ba.e.737.4 48
112.27 even 4 448.2.ba.c.305.4 48
112.37 even 12 inner 784.2.x.o.373.2 48
112.53 even 12 784.2.m.k.197.6 24
112.61 odd 12 896.2.ba.f.737.9 48
112.69 odd 4 112.2.w.c.53.10 yes 48
112.75 even 12 448.2.ba.c.177.9 48
112.83 even 4 896.2.ba.e.865.9 48
112.101 odd 12 784.2.m.j.197.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.2 48 112.5 odd 12
112.2.w.c.53.10 yes 48 112.69 odd 4
112.2.w.c.93.10 yes 48 7.5 odd 6
112.2.w.c.109.2 yes 48 7.6 odd 2
448.2.ba.c.81.9 48 28.27 even 2
448.2.ba.c.177.9 48 112.75 even 12
448.2.ba.c.305.4 48 112.27 even 4
448.2.ba.c.401.4 48 28.19 even 6
784.2.m.j.197.6 24 112.101 odd 12
784.2.m.j.589.6 24 7.3 odd 6
784.2.m.k.197.6 24 112.53 even 12
784.2.m.k.589.6 24 7.4 even 3
784.2.x.o.165.10 48 16.5 even 4 inner
784.2.x.o.373.2 48 112.37 even 12 inner
784.2.x.o.557.2 48 1.1 even 1 trivial
784.2.x.o.765.10 48 7.2 even 3 inner
896.2.ba.e.289.9 48 56.19 even 6
896.2.ba.e.417.4 48 56.27 even 2
896.2.ba.e.737.4 48 112.19 even 12
896.2.ba.e.865.9 48 112.83 even 4
896.2.ba.f.289.4 48 56.5 odd 6
896.2.ba.f.417.9 48 56.13 odd 2
896.2.ba.f.737.9 48 112.61 odd 12
896.2.ba.f.865.4 48 112.13 odd 4