Properties

Label 7942.2.a.bn.1.5
Level $7942$
Weight $2$
Character 7942.1
Self dual yes
Analytic conductor $63.417$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 19x^{6} + 14x^{5} + 116x^{4} - 65x^{3} - 235x^{2} + 120x + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.405236\) of defining polynomial
Character \(\chi\) \(=\) 7942.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.405236 q^{3} +1.00000 q^{4} -2.02327 q^{5} -0.405236 q^{6} -4.23745 q^{7} -1.00000 q^{8} -2.83578 q^{9} +2.02327 q^{10} +1.00000 q^{11} +0.405236 q^{12} +3.21775 q^{13} +4.23745 q^{14} -0.819901 q^{15} +1.00000 q^{16} -2.00085 q^{17} +2.83578 q^{18} -2.02327 q^{20} -1.71717 q^{21} -1.00000 q^{22} -2.37064 q^{23} -0.405236 q^{24} -0.906380 q^{25} -3.21775 q^{26} -2.36487 q^{27} -4.23745 q^{28} +2.15785 q^{29} +0.819901 q^{30} +6.20065 q^{31} -1.00000 q^{32} +0.405236 q^{33} +2.00085 q^{34} +8.57350 q^{35} -2.83578 q^{36} +11.1129 q^{37} +1.30395 q^{39} +2.02327 q^{40} +3.97211 q^{41} +1.71717 q^{42} +5.64641 q^{43} +1.00000 q^{44} +5.73756 q^{45} +2.37064 q^{46} -2.21586 q^{47} +0.405236 q^{48} +10.9560 q^{49} +0.906380 q^{50} -0.810818 q^{51} +3.21775 q^{52} -11.1217 q^{53} +2.36487 q^{54} -2.02327 q^{55} +4.23745 q^{56} -2.15785 q^{58} +1.13939 q^{59} -0.819901 q^{60} +2.99123 q^{61} -6.20065 q^{62} +12.0165 q^{63} +1.00000 q^{64} -6.51038 q^{65} -0.405236 q^{66} +1.86919 q^{67} -2.00085 q^{68} -0.960670 q^{69} -8.57350 q^{70} +4.23524 q^{71} +2.83578 q^{72} -5.29840 q^{73} -11.1129 q^{74} -0.367297 q^{75} -4.23745 q^{77} -1.30395 q^{78} +5.14495 q^{79} -2.02327 q^{80} +7.54902 q^{81} -3.97211 q^{82} -6.45404 q^{83} -1.71717 q^{84} +4.04827 q^{85} -5.64641 q^{86} +0.874437 q^{87} -1.00000 q^{88} +12.4620 q^{89} -5.73756 q^{90} -13.6351 q^{91} -2.37064 q^{92} +2.51273 q^{93} +2.21586 q^{94} -0.405236 q^{96} -18.9049 q^{97} -10.9560 q^{98} -2.83578 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - q^{3} + 8 q^{4} - 3 q^{5} + q^{6} - 8 q^{8} + 15 q^{9} + 3 q^{10} + 8 q^{11} - q^{12} - 3 q^{13} - 36 q^{15} + 8 q^{16} - 4 q^{17} - 15 q^{18} - 3 q^{20} - 3 q^{21} - 8 q^{22} - q^{23}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.405236 0.233963 0.116981 0.993134i \(-0.462678\pi\)
0.116981 + 0.993134i \(0.462678\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.02327 −0.904834 −0.452417 0.891807i \(-0.649438\pi\)
−0.452417 + 0.891807i \(0.649438\pi\)
\(6\) −0.405236 −0.165437
\(7\) −4.23745 −1.60161 −0.800803 0.598928i \(-0.795593\pi\)
−0.800803 + 0.598928i \(0.795593\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.83578 −0.945261
\(10\) 2.02327 0.639814
\(11\) 1.00000 0.301511
\(12\) 0.405236 0.116981
\(13\) 3.21775 0.892443 0.446222 0.894922i \(-0.352769\pi\)
0.446222 + 0.894922i \(0.352769\pi\)
\(14\) 4.23745 1.13251
\(15\) −0.819901 −0.211698
\(16\) 1.00000 0.250000
\(17\) −2.00085 −0.485278 −0.242639 0.970117i \(-0.578013\pi\)
−0.242639 + 0.970117i \(0.578013\pi\)
\(18\) 2.83578 0.668401
\(19\) 0 0
\(20\) −2.02327 −0.452417
\(21\) −1.71717 −0.374716
\(22\) −1.00000 −0.213201
\(23\) −2.37064 −0.494314 −0.247157 0.968975i \(-0.579496\pi\)
−0.247157 + 0.968975i \(0.579496\pi\)
\(24\) −0.405236 −0.0827184
\(25\) −0.906380 −0.181276
\(26\) −3.21775 −0.631053
\(27\) −2.36487 −0.455119
\(28\) −4.23745 −0.800803
\(29\) 2.15785 0.400702 0.200351 0.979724i \(-0.435792\pi\)
0.200351 + 0.979724i \(0.435792\pi\)
\(30\) 0.819901 0.149693
\(31\) 6.20065 1.11367 0.556835 0.830623i \(-0.312016\pi\)
0.556835 + 0.830623i \(0.312016\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.405236 0.0705425
\(34\) 2.00085 0.343144
\(35\) 8.57350 1.44919
\(36\) −2.83578 −0.472631
\(37\) 11.1129 1.82695 0.913477 0.406890i \(-0.133387\pi\)
0.913477 + 0.406890i \(0.133387\pi\)
\(38\) 0 0
\(39\) 1.30395 0.208799
\(40\) 2.02327 0.319907
\(41\) 3.97211 0.620339 0.310170 0.950681i \(-0.399614\pi\)
0.310170 + 0.950681i \(0.399614\pi\)
\(42\) 1.71717 0.264964
\(43\) 5.64641 0.861069 0.430534 0.902574i \(-0.358325\pi\)
0.430534 + 0.902574i \(0.358325\pi\)
\(44\) 1.00000 0.150756
\(45\) 5.73756 0.855304
\(46\) 2.37064 0.349533
\(47\) −2.21586 −0.323216 −0.161608 0.986855i \(-0.551668\pi\)
−0.161608 + 0.986855i \(0.551668\pi\)
\(48\) 0.405236 0.0584907
\(49\) 10.9560 1.56514
\(50\) 0.906380 0.128181
\(51\) −0.810818 −0.113537
\(52\) 3.21775 0.446222
\(53\) −11.1217 −1.52768 −0.763840 0.645406i \(-0.776688\pi\)
−0.763840 + 0.645406i \(0.776688\pi\)
\(54\) 2.36487 0.321818
\(55\) −2.02327 −0.272818
\(56\) 4.23745 0.566253
\(57\) 0 0
\(58\) −2.15785 −0.283339
\(59\) 1.13939 0.148335 0.0741677 0.997246i \(-0.476370\pi\)
0.0741677 + 0.997246i \(0.476370\pi\)
\(60\) −0.819901 −0.105849
\(61\) 2.99123 0.382988 0.191494 0.981494i \(-0.438667\pi\)
0.191494 + 0.981494i \(0.438667\pi\)
\(62\) −6.20065 −0.787484
\(63\) 12.0165 1.51394
\(64\) 1.00000 0.125000
\(65\) −6.51038 −0.807513
\(66\) −0.405236 −0.0498811
\(67\) 1.86919 0.228357 0.114179 0.993460i \(-0.463576\pi\)
0.114179 + 0.993460i \(0.463576\pi\)
\(68\) −2.00085 −0.242639
\(69\) −0.960670 −0.115651
\(70\) −8.57350 −1.02473
\(71\) 4.23524 0.502631 0.251315 0.967905i \(-0.419137\pi\)
0.251315 + 0.967905i \(0.419137\pi\)
\(72\) 2.83578 0.334200
\(73\) −5.29840 −0.620131 −0.310066 0.950715i \(-0.600351\pi\)
−0.310066 + 0.950715i \(0.600351\pi\)
\(74\) −11.1129 −1.29185
\(75\) −0.367297 −0.0424119
\(76\) 0 0
\(77\) −4.23745 −0.482902
\(78\) −1.30395 −0.147643
\(79\) 5.14495 0.578852 0.289426 0.957200i \(-0.406536\pi\)
0.289426 + 0.957200i \(0.406536\pi\)
\(80\) −2.02327 −0.226208
\(81\) 7.54902 0.838780
\(82\) −3.97211 −0.438646
\(83\) −6.45404 −0.708423 −0.354212 0.935165i \(-0.615251\pi\)
−0.354212 + 0.935165i \(0.615251\pi\)
\(84\) −1.71717 −0.187358
\(85\) 4.04827 0.439096
\(86\) −5.64641 −0.608868
\(87\) 0.874437 0.0937494
\(88\) −1.00000 −0.106600
\(89\) 12.4620 1.32097 0.660485 0.750839i \(-0.270351\pi\)
0.660485 + 0.750839i \(0.270351\pi\)
\(90\) −5.73756 −0.604791
\(91\) −13.6351 −1.42934
\(92\) −2.37064 −0.247157
\(93\) 2.51273 0.260558
\(94\) 2.21586 0.228548
\(95\) 0 0
\(96\) −0.405236 −0.0413592
\(97\) −18.9049 −1.91950 −0.959752 0.280849i \(-0.909384\pi\)
−0.959752 + 0.280849i \(0.909384\pi\)
\(98\) −10.9560 −1.10672
\(99\) −2.83578 −0.285007
\(100\) −0.906380 −0.0906380
\(101\) 16.0297 1.59501 0.797505 0.603312i \(-0.206153\pi\)
0.797505 + 0.603312i \(0.206153\pi\)
\(102\) 0.810818 0.0802829
\(103\) 2.67008 0.263091 0.131546 0.991310i \(-0.458006\pi\)
0.131546 + 0.991310i \(0.458006\pi\)
\(104\) −3.21775 −0.315526
\(105\) 3.47429 0.339056
\(106\) 11.1217 1.08023
\(107\) −2.42394 −0.234331 −0.117166 0.993112i \(-0.537381\pi\)
−0.117166 + 0.993112i \(0.537381\pi\)
\(108\) −2.36487 −0.227560
\(109\) −11.3556 −1.08767 −0.543833 0.839194i \(-0.683027\pi\)
−0.543833 + 0.839194i \(0.683027\pi\)
\(110\) 2.02327 0.192911
\(111\) 4.50336 0.427440
\(112\) −4.23745 −0.400401
\(113\) −3.22715 −0.303584 −0.151792 0.988412i \(-0.548504\pi\)
−0.151792 + 0.988412i \(0.548504\pi\)
\(114\) 0 0
\(115\) 4.79645 0.447272
\(116\) 2.15785 0.200351
\(117\) −9.12484 −0.843592
\(118\) −1.13939 −0.104889
\(119\) 8.47852 0.777224
\(120\) 0.819901 0.0748464
\(121\) 1.00000 0.0909091
\(122\) −2.99123 −0.270813
\(123\) 1.60964 0.145136
\(124\) 6.20065 0.556835
\(125\) 11.9502 1.06886
\(126\) −12.0165 −1.07051
\(127\) 1.27045 0.112734 0.0563669 0.998410i \(-0.482048\pi\)
0.0563669 + 0.998410i \(0.482048\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.28813 0.201458
\(130\) 6.51038 0.570998
\(131\) −15.3191 −1.33844 −0.669219 0.743066i \(-0.733371\pi\)
−0.669219 + 0.743066i \(0.733371\pi\)
\(132\) 0.405236 0.0352712
\(133\) 0 0
\(134\) −1.86919 −0.161473
\(135\) 4.78477 0.411807
\(136\) 2.00085 0.171572
\(137\) −10.3502 −0.884281 −0.442140 0.896946i \(-0.645781\pi\)
−0.442140 + 0.896946i \(0.645781\pi\)
\(138\) 0.960670 0.0817777
\(139\) 9.86425 0.836675 0.418337 0.908292i \(-0.362613\pi\)
0.418337 + 0.908292i \(0.362613\pi\)
\(140\) 8.57350 0.724593
\(141\) −0.897945 −0.0756206
\(142\) −4.23524 −0.355414
\(143\) 3.21775 0.269082
\(144\) −2.83578 −0.236315
\(145\) −4.36591 −0.362569
\(146\) 5.29840 0.438499
\(147\) 4.43975 0.366185
\(148\) 11.1129 0.913477
\(149\) −17.3586 −1.42207 −0.711034 0.703157i \(-0.751773\pi\)
−0.711034 + 0.703157i \(0.751773\pi\)
\(150\) 0.367297 0.0299897
\(151\) 19.9018 1.61958 0.809791 0.586718i \(-0.199580\pi\)
0.809791 + 0.586718i \(0.199580\pi\)
\(152\) 0 0
\(153\) 5.67399 0.458715
\(154\) 4.23745 0.341463
\(155\) −12.5456 −1.00769
\(156\) 1.30395 0.104399
\(157\) 18.1197 1.44611 0.723055 0.690790i \(-0.242737\pi\)
0.723055 + 0.690790i \(0.242737\pi\)
\(158\) −5.14495 −0.409310
\(159\) −4.50690 −0.357421
\(160\) 2.02327 0.159954
\(161\) 10.0455 0.791695
\(162\) −7.54902 −0.593107
\(163\) −5.12549 −0.401459 −0.200730 0.979647i \(-0.564331\pi\)
−0.200730 + 0.979647i \(0.564331\pi\)
\(164\) 3.97211 0.310170
\(165\) −0.819901 −0.0638292
\(166\) 6.45404 0.500931
\(167\) −15.6892 −1.21406 −0.607032 0.794678i \(-0.707640\pi\)
−0.607032 + 0.794678i \(0.707640\pi\)
\(168\) 1.71717 0.132482
\(169\) −2.64608 −0.203545
\(170\) −4.04827 −0.310488
\(171\) 0 0
\(172\) 5.64641 0.430534
\(173\) 12.9086 0.981423 0.490712 0.871322i \(-0.336737\pi\)
0.490712 + 0.871322i \(0.336737\pi\)
\(174\) −0.874437 −0.0662909
\(175\) 3.84074 0.290332
\(176\) 1.00000 0.0753778
\(177\) 0.461720 0.0347050
\(178\) −12.4620 −0.934066
\(179\) 14.1628 1.05858 0.529288 0.848442i \(-0.322459\pi\)
0.529288 + 0.848442i \(0.322459\pi\)
\(180\) 5.73756 0.427652
\(181\) −9.47135 −0.704000 −0.352000 0.936000i \(-0.614498\pi\)
−0.352000 + 0.936000i \(0.614498\pi\)
\(182\) 13.6351 1.01070
\(183\) 1.21215 0.0896050
\(184\) 2.37064 0.174766
\(185\) −22.4845 −1.65309
\(186\) −2.51273 −0.184242
\(187\) −2.00085 −0.146317
\(188\) −2.21586 −0.161608
\(189\) 10.0210 0.728921
\(190\) 0 0
\(191\) −0.976211 −0.0706361 −0.0353181 0.999376i \(-0.511244\pi\)
−0.0353181 + 0.999376i \(0.511244\pi\)
\(192\) 0.405236 0.0292454
\(193\) −0.765511 −0.0551027 −0.0275514 0.999620i \(-0.508771\pi\)
−0.0275514 + 0.999620i \(0.508771\pi\)
\(194\) 18.9049 1.35729
\(195\) −2.63824 −0.188928
\(196\) 10.9560 0.782570
\(197\) 20.4736 1.45868 0.729341 0.684150i \(-0.239827\pi\)
0.729341 + 0.684150i \(0.239827\pi\)
\(198\) 2.83578 0.201530
\(199\) 7.97061 0.565021 0.282511 0.959264i \(-0.408833\pi\)
0.282511 + 0.959264i \(0.408833\pi\)
\(200\) 0.906380 0.0640907
\(201\) 0.757461 0.0534272
\(202\) −16.0297 −1.12784
\(203\) −9.14377 −0.641767
\(204\) −0.810818 −0.0567686
\(205\) −8.03665 −0.561304
\(206\) −2.67008 −0.186034
\(207\) 6.72264 0.467256
\(208\) 3.21775 0.223111
\(209\) 0 0
\(210\) −3.47429 −0.239749
\(211\) −25.0656 −1.72559 −0.862794 0.505556i \(-0.831287\pi\)
−0.862794 + 0.505556i \(0.831287\pi\)
\(212\) −11.1217 −0.763840
\(213\) 1.71627 0.117597
\(214\) 2.42394 0.165697
\(215\) −11.4242 −0.779124
\(216\) 2.36487 0.160909
\(217\) −26.2750 −1.78366
\(218\) 11.3556 0.769095
\(219\) −2.14710 −0.145088
\(220\) −2.02327 −0.136409
\(221\) −6.43825 −0.433083
\(222\) −4.50336 −0.302246
\(223\) −24.0247 −1.60881 −0.804407 0.594078i \(-0.797517\pi\)
−0.804407 + 0.594078i \(0.797517\pi\)
\(224\) 4.23745 0.283127
\(225\) 2.57030 0.171353
\(226\) 3.22715 0.214667
\(227\) 6.55830 0.435290 0.217645 0.976028i \(-0.430163\pi\)
0.217645 + 0.976028i \(0.430163\pi\)
\(228\) 0 0
\(229\) 4.93753 0.326281 0.163141 0.986603i \(-0.447838\pi\)
0.163141 + 0.986603i \(0.447838\pi\)
\(230\) −4.79645 −0.316269
\(231\) −1.71717 −0.112981
\(232\) −2.15785 −0.141670
\(233\) −28.4901 −1.86645 −0.933223 0.359297i \(-0.883017\pi\)
−0.933223 + 0.359297i \(0.883017\pi\)
\(234\) 9.12484 0.596510
\(235\) 4.48328 0.292457
\(236\) 1.13939 0.0741677
\(237\) 2.08492 0.135430
\(238\) −8.47852 −0.549581
\(239\) −11.8669 −0.767603 −0.383801 0.923416i \(-0.625385\pi\)
−0.383801 + 0.923416i \(0.625385\pi\)
\(240\) −0.819901 −0.0529244
\(241\) −8.61238 −0.554772 −0.277386 0.960759i \(-0.589468\pi\)
−0.277386 + 0.960759i \(0.589468\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 10.1537 0.651363
\(244\) 2.99123 0.191494
\(245\) −22.1669 −1.41619
\(246\) −1.60964 −0.102627
\(247\) 0 0
\(248\) −6.20065 −0.393742
\(249\) −2.61541 −0.165745
\(250\) −11.9502 −0.755797
\(251\) 25.1783 1.58924 0.794621 0.607106i \(-0.207670\pi\)
0.794621 + 0.607106i \(0.207670\pi\)
\(252\) 12.0165 0.756968
\(253\) −2.37064 −0.149041
\(254\) −1.27045 −0.0797149
\(255\) 1.64050 0.102732
\(256\) 1.00000 0.0625000
\(257\) 0.345739 0.0215666 0.0107833 0.999942i \(-0.496567\pi\)
0.0107833 + 0.999942i \(0.496567\pi\)
\(258\) −2.28813 −0.142452
\(259\) −47.0905 −2.92606
\(260\) −6.51038 −0.403756
\(261\) −6.11919 −0.378768
\(262\) 15.3191 0.946418
\(263\) −5.21616 −0.321642 −0.160821 0.986984i \(-0.551414\pi\)
−0.160821 + 0.986984i \(0.551414\pi\)
\(264\) −0.405236 −0.0249405
\(265\) 22.5022 1.38230
\(266\) 0 0
\(267\) 5.05005 0.309058
\(268\) 1.86919 0.114179
\(269\) −22.7443 −1.38675 −0.693373 0.720579i \(-0.743876\pi\)
−0.693373 + 0.720579i \(0.743876\pi\)
\(270\) −4.78477 −0.291192
\(271\) −3.77208 −0.229138 −0.114569 0.993415i \(-0.536549\pi\)
−0.114569 + 0.993415i \(0.536549\pi\)
\(272\) −2.00085 −0.121320
\(273\) −5.52541 −0.334413
\(274\) 10.3502 0.625281
\(275\) −0.906380 −0.0546567
\(276\) −0.960670 −0.0578255
\(277\) −24.8242 −1.49154 −0.745770 0.666204i \(-0.767918\pi\)
−0.745770 + 0.666204i \(0.767918\pi\)
\(278\) −9.86425 −0.591619
\(279\) −17.5837 −1.05271
\(280\) −8.57350 −0.512365
\(281\) −5.69332 −0.339635 −0.169817 0.985476i \(-0.554318\pi\)
−0.169817 + 0.985476i \(0.554318\pi\)
\(282\) 0.897945 0.0534719
\(283\) 23.7525 1.41194 0.705970 0.708241i \(-0.250511\pi\)
0.705970 + 0.708241i \(0.250511\pi\)
\(284\) 4.23524 0.251315
\(285\) 0 0
\(286\) −3.21775 −0.190270
\(287\) −16.8316 −0.993539
\(288\) 2.83578 0.167100
\(289\) −12.9966 −0.764505
\(290\) 4.36591 0.256375
\(291\) −7.66095 −0.449093
\(292\) −5.29840 −0.310066
\(293\) −5.88842 −0.344005 −0.172003 0.985096i \(-0.555024\pi\)
−0.172003 + 0.985096i \(0.555024\pi\)
\(294\) −4.43975 −0.258932
\(295\) −2.30528 −0.134219
\(296\) −11.1129 −0.645926
\(297\) −2.36487 −0.137224
\(298\) 17.3586 1.00555
\(299\) −7.62814 −0.441147
\(300\) −0.367297 −0.0212059
\(301\) −23.9264 −1.37909
\(302\) −19.9018 −1.14522
\(303\) 6.49579 0.373173
\(304\) 0 0
\(305\) −6.05207 −0.346540
\(306\) −5.67399 −0.324360
\(307\) −8.36781 −0.477576 −0.238788 0.971072i \(-0.576750\pi\)
−0.238788 + 0.971072i \(0.576750\pi\)
\(308\) −4.23745 −0.241451
\(309\) 1.08201 0.0615536
\(310\) 12.5456 0.712542
\(311\) −33.2576 −1.88586 −0.942931 0.332987i \(-0.891943\pi\)
−0.942931 + 0.332987i \(0.891943\pi\)
\(312\) −1.30395 −0.0738215
\(313\) 13.6874 0.773657 0.386828 0.922152i \(-0.373571\pi\)
0.386828 + 0.922152i \(0.373571\pi\)
\(314\) −18.1197 −1.02255
\(315\) −24.3126 −1.36986
\(316\) 5.14495 0.289426
\(317\) −3.03012 −0.170188 −0.0850942 0.996373i \(-0.527119\pi\)
−0.0850942 + 0.996373i \(0.527119\pi\)
\(318\) 4.50690 0.252734
\(319\) 2.15785 0.120816
\(320\) −2.02327 −0.113104
\(321\) −0.982267 −0.0548248
\(322\) −10.0455 −0.559813
\(323\) 0 0
\(324\) 7.54902 0.419390
\(325\) −2.91650 −0.161778
\(326\) 5.12549 0.283875
\(327\) −4.60168 −0.254473
\(328\) −3.97211 −0.219323
\(329\) 9.38959 0.517665
\(330\) 0.819901 0.0451341
\(331\) −11.4410 −0.628855 −0.314428 0.949281i \(-0.601813\pi\)
−0.314428 + 0.949281i \(0.601813\pi\)
\(332\) −6.45404 −0.354212
\(333\) −31.5139 −1.72695
\(334\) 15.6892 0.858473
\(335\) −3.78187 −0.206625
\(336\) −1.71717 −0.0936791
\(337\) −18.8740 −1.02813 −0.514067 0.857750i \(-0.671862\pi\)
−0.514067 + 0.857750i \(0.671862\pi\)
\(338\) 2.64608 0.143928
\(339\) −1.30775 −0.0710275
\(340\) 4.04827 0.219548
\(341\) 6.20065 0.335784
\(342\) 0 0
\(343\) −16.7633 −0.905131
\(344\) −5.64641 −0.304434
\(345\) 1.94369 0.104645
\(346\) −12.9086 −0.693971
\(347\) 36.1443 1.94033 0.970164 0.242451i \(-0.0779515\pi\)
0.970164 + 0.242451i \(0.0779515\pi\)
\(348\) 0.874437 0.0468747
\(349\) −26.9542 −1.44283 −0.721413 0.692505i \(-0.756507\pi\)
−0.721413 + 0.692505i \(0.756507\pi\)
\(350\) −3.84074 −0.205296
\(351\) −7.60956 −0.406168
\(352\) −1.00000 −0.0533002
\(353\) 29.3403 1.56162 0.780812 0.624766i \(-0.214806\pi\)
0.780812 + 0.624766i \(0.214806\pi\)
\(354\) −0.461720 −0.0245401
\(355\) −8.56904 −0.454797
\(356\) 12.4620 0.660485
\(357\) 3.43580 0.181842
\(358\) −14.1628 −0.748526
\(359\) −14.6477 −0.773076 −0.386538 0.922273i \(-0.626329\pi\)
−0.386538 + 0.922273i \(0.626329\pi\)
\(360\) −5.73756 −0.302396
\(361\) 0 0
\(362\) 9.47135 0.497803
\(363\) 0.405236 0.0212694
\(364\) −13.6351 −0.714671
\(365\) 10.7201 0.561116
\(366\) −1.21215 −0.0633603
\(367\) −32.1003 −1.67562 −0.837811 0.545961i \(-0.816165\pi\)
−0.837811 + 0.545961i \(0.816165\pi\)
\(368\) −2.37064 −0.123578
\(369\) −11.2640 −0.586383
\(370\) 22.4845 1.16891
\(371\) 47.1276 2.44674
\(372\) 2.51273 0.130279
\(373\) 35.7170 1.84936 0.924678 0.380751i \(-0.124334\pi\)
0.924678 + 0.380751i \(0.124334\pi\)
\(374\) 2.00085 0.103462
\(375\) 4.84265 0.250073
\(376\) 2.21586 0.114274
\(377\) 6.94341 0.357604
\(378\) −10.0210 −0.515425
\(379\) 35.1473 1.80540 0.902699 0.430273i \(-0.141583\pi\)
0.902699 + 0.430273i \(0.141583\pi\)
\(380\) 0 0
\(381\) 0.514830 0.0263756
\(382\) 0.976211 0.0499473
\(383\) −22.9790 −1.17417 −0.587085 0.809525i \(-0.699725\pi\)
−0.587085 + 0.809525i \(0.699725\pi\)
\(384\) −0.405236 −0.0206796
\(385\) 8.57350 0.436946
\(386\) 0.765511 0.0389635
\(387\) −16.0120 −0.813935
\(388\) −18.9049 −0.959752
\(389\) −16.9298 −0.858376 −0.429188 0.903215i \(-0.641200\pi\)
−0.429188 + 0.903215i \(0.641200\pi\)
\(390\) 2.63824 0.133592
\(391\) 4.74331 0.239880
\(392\) −10.9560 −0.553361
\(393\) −6.20785 −0.313145
\(394\) −20.4736 −1.03144
\(395\) −10.4096 −0.523765
\(396\) −2.83578 −0.142504
\(397\) 14.8799 0.746803 0.373402 0.927670i \(-0.378191\pi\)
0.373402 + 0.927670i \(0.378191\pi\)
\(398\) −7.97061 −0.399530
\(399\) 0 0
\(400\) −0.906380 −0.0453190
\(401\) −27.9982 −1.39816 −0.699081 0.715042i \(-0.746408\pi\)
−0.699081 + 0.715042i \(0.746408\pi\)
\(402\) −0.757461 −0.0377787
\(403\) 19.9521 0.993887
\(404\) 16.0297 0.797505
\(405\) −15.2737 −0.758957
\(406\) 9.14377 0.453798
\(407\) 11.1129 0.550847
\(408\) 0.810818 0.0401414
\(409\) 17.1697 0.848986 0.424493 0.905431i \(-0.360452\pi\)
0.424493 + 0.905431i \(0.360452\pi\)
\(410\) 8.03665 0.396902
\(411\) −4.19429 −0.206889
\(412\) 2.67008 0.131546
\(413\) −4.82809 −0.237575
\(414\) −6.72264 −0.330400
\(415\) 13.0583 0.641005
\(416\) −3.21775 −0.157763
\(417\) 3.99735 0.195751
\(418\) 0 0
\(419\) −9.55038 −0.466566 −0.233283 0.972409i \(-0.574947\pi\)
−0.233283 + 0.972409i \(0.574947\pi\)
\(420\) 3.47429 0.169528
\(421\) 26.0989 1.27198 0.635992 0.771696i \(-0.280591\pi\)
0.635992 + 0.771696i \(0.280591\pi\)
\(422\) 25.0656 1.22017
\(423\) 6.28370 0.305524
\(424\) 11.1217 0.540116
\(425\) 1.81353 0.0879693
\(426\) −1.71627 −0.0831536
\(427\) −12.6752 −0.613396
\(428\) −2.42394 −0.117166
\(429\) 1.30395 0.0629552
\(430\) 11.4242 0.550924
\(431\) −24.2576 −1.16845 −0.584224 0.811592i \(-0.698601\pi\)
−0.584224 + 0.811592i \(0.698601\pi\)
\(432\) −2.36487 −0.113780
\(433\) 35.3246 1.69759 0.848797 0.528719i \(-0.177327\pi\)
0.848797 + 0.528719i \(0.177327\pi\)
\(434\) 26.2750 1.26124
\(435\) −1.76922 −0.0848277
\(436\) −11.3556 −0.543833
\(437\) 0 0
\(438\) 2.14710 0.102593
\(439\) −16.6205 −0.793254 −0.396627 0.917980i \(-0.629819\pi\)
−0.396627 + 0.917980i \(0.629819\pi\)
\(440\) 2.02327 0.0964556
\(441\) −31.0688 −1.47947
\(442\) 6.43825 0.306236
\(443\) 20.5710 0.977357 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(444\) 4.50336 0.213720
\(445\) −25.2140 −1.19526
\(446\) 24.0247 1.13760
\(447\) −7.03431 −0.332711
\(448\) −4.23745 −0.200201
\(449\) 33.5618 1.58388 0.791939 0.610600i \(-0.209072\pi\)
0.791939 + 0.610600i \(0.209072\pi\)
\(450\) −2.57030 −0.121165
\(451\) 3.97211 0.187039
\(452\) −3.22715 −0.151792
\(453\) 8.06491 0.378922
\(454\) −6.55830 −0.307796
\(455\) 27.5874 1.29332
\(456\) 0 0
\(457\) −25.4237 −1.18927 −0.594636 0.803995i \(-0.702704\pi\)
−0.594636 + 0.803995i \(0.702704\pi\)
\(458\) −4.93753 −0.230716
\(459\) 4.73176 0.220859
\(460\) 4.79645 0.223636
\(461\) −24.9356 −1.16137 −0.580684 0.814129i \(-0.697215\pi\)
−0.580684 + 0.814129i \(0.697215\pi\)
\(462\) 1.71717 0.0798898
\(463\) −35.0253 −1.62776 −0.813881 0.581032i \(-0.802649\pi\)
−0.813881 + 0.581032i \(0.802649\pi\)
\(464\) 2.15785 0.100176
\(465\) −5.08392 −0.235761
\(466\) 28.4901 1.31978
\(467\) 15.0345 0.695715 0.347857 0.937547i \(-0.386909\pi\)
0.347857 + 0.937547i \(0.386909\pi\)
\(468\) −9.12484 −0.421796
\(469\) −7.92058 −0.365738
\(470\) −4.48328 −0.206798
\(471\) 7.34275 0.338336
\(472\) −1.13939 −0.0524445
\(473\) 5.64641 0.259622
\(474\) −2.08492 −0.0957634
\(475\) 0 0
\(476\) 8.47852 0.388612
\(477\) 31.5387 1.44406
\(478\) 11.8669 0.542777
\(479\) −28.0302 −1.28073 −0.640367 0.768069i \(-0.721218\pi\)
−0.640367 + 0.768069i \(0.721218\pi\)
\(480\) 0.819901 0.0374232
\(481\) 35.7586 1.63045
\(482\) 8.61238 0.392283
\(483\) 4.07079 0.185227
\(484\) 1.00000 0.0454545
\(485\) 38.2498 1.73683
\(486\) −10.1537 −0.460583
\(487\) 31.1365 1.41093 0.705464 0.708746i \(-0.250739\pi\)
0.705464 + 0.708746i \(0.250739\pi\)
\(488\) −2.99123 −0.135407
\(489\) −2.07703 −0.0939266
\(490\) 22.1669 1.00140
\(491\) 35.4580 1.60020 0.800100 0.599867i \(-0.204780\pi\)
0.800100 + 0.599867i \(0.204780\pi\)
\(492\) 1.60964 0.0725682
\(493\) −4.31754 −0.194452
\(494\) 0 0
\(495\) 5.73756 0.257884
\(496\) 6.20065 0.278418
\(497\) −17.9466 −0.805016
\(498\) 2.61541 0.117199
\(499\) 33.3097 1.49115 0.745574 0.666423i \(-0.232176\pi\)
0.745574 + 0.666423i \(0.232176\pi\)
\(500\) 11.9502 0.534429
\(501\) −6.35781 −0.284046
\(502\) −25.1783 −1.12376
\(503\) 14.1546 0.631124 0.315562 0.948905i \(-0.397807\pi\)
0.315562 + 0.948905i \(0.397807\pi\)
\(504\) −12.0165 −0.535257
\(505\) −32.4323 −1.44322
\(506\) 2.37064 0.105388
\(507\) −1.07229 −0.0476220
\(508\) 1.27045 0.0563669
\(509\) 3.10819 0.137768 0.0688841 0.997625i \(-0.478056\pi\)
0.0688841 + 0.997625i \(0.478056\pi\)
\(510\) −1.64050 −0.0726427
\(511\) 22.4517 0.993205
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −0.345739 −0.0152499
\(515\) −5.40230 −0.238054
\(516\) 2.28813 0.100729
\(517\) −2.21586 −0.0974533
\(518\) 47.0905 2.06904
\(519\) 5.23103 0.229617
\(520\) 6.51038 0.285499
\(521\) −20.5080 −0.898473 −0.449236 0.893413i \(-0.648304\pi\)
−0.449236 + 0.893413i \(0.648304\pi\)
\(522\) 6.11919 0.267830
\(523\) −11.7677 −0.514567 −0.257284 0.966336i \(-0.582827\pi\)
−0.257284 + 0.966336i \(0.582827\pi\)
\(524\) −15.3191 −0.669219
\(525\) 1.55640 0.0679270
\(526\) 5.21616 0.227435
\(527\) −12.4066 −0.540440
\(528\) 0.405236 0.0176356
\(529\) −17.3800 −0.755654
\(530\) −22.5022 −0.977431
\(531\) −3.23105 −0.140216
\(532\) 0 0
\(533\) 12.7813 0.553618
\(534\) −5.05005 −0.218537
\(535\) 4.90428 0.212031
\(536\) −1.86919 −0.0807365
\(537\) 5.73927 0.247668
\(538\) 22.7443 0.980577
\(539\) 10.9560 0.471907
\(540\) 4.78477 0.205904
\(541\) −12.6284 −0.542939 −0.271470 0.962447i \(-0.587510\pi\)
−0.271470 + 0.962447i \(0.587510\pi\)
\(542\) 3.77208 0.162025
\(543\) −3.83813 −0.164710
\(544\) 2.00085 0.0857859
\(545\) 22.9754 0.984156
\(546\) 5.52541 0.236466
\(547\) −19.7404 −0.844039 −0.422020 0.906587i \(-0.638679\pi\)
−0.422020 + 0.906587i \(0.638679\pi\)
\(548\) −10.3502 −0.442140
\(549\) −8.48249 −0.362024
\(550\) 0.906380 0.0386482
\(551\) 0 0
\(552\) 0.960670 0.0408888
\(553\) −21.8015 −0.927092
\(554\) 24.8242 1.05468
\(555\) −9.11151 −0.386762
\(556\) 9.86425 0.418337
\(557\) −34.6068 −1.46634 −0.733168 0.680047i \(-0.761959\pi\)
−0.733168 + 0.680047i \(0.761959\pi\)
\(558\) 17.5837 0.744378
\(559\) 18.1687 0.768455
\(560\) 8.57350 0.362297
\(561\) −0.810818 −0.0342327
\(562\) 5.69332 0.240158
\(563\) 23.7811 1.00225 0.501127 0.865374i \(-0.332919\pi\)
0.501127 + 0.865374i \(0.332919\pi\)
\(564\) −0.897945 −0.0378103
\(565\) 6.52939 0.274693
\(566\) −23.7525 −0.998393
\(567\) −31.9886 −1.34340
\(568\) −4.23524 −0.177707
\(569\) 10.9111 0.457415 0.228708 0.973495i \(-0.426550\pi\)
0.228708 + 0.973495i \(0.426550\pi\)
\(570\) 0 0
\(571\) 30.1936 1.26356 0.631781 0.775147i \(-0.282324\pi\)
0.631781 + 0.775147i \(0.282324\pi\)
\(572\) 3.21775 0.134541
\(573\) −0.395595 −0.0165262
\(574\) 16.8316 0.702538
\(575\) 2.14870 0.0896072
\(576\) −2.83578 −0.118158
\(577\) −9.07937 −0.377979 −0.188990 0.981979i \(-0.560521\pi\)
−0.188990 + 0.981979i \(0.560521\pi\)
\(578\) 12.9966 0.540587
\(579\) −0.310213 −0.0128920
\(580\) −4.36591 −0.181284
\(581\) 27.3487 1.13461
\(582\) 7.66095 0.317557
\(583\) −11.1217 −0.460613
\(584\) 5.29840 0.219249
\(585\) 18.4620 0.763311
\(586\) 5.88842 0.243248
\(587\) −44.5960 −1.84067 −0.920337 0.391127i \(-0.872085\pi\)
−0.920337 + 0.391127i \(0.872085\pi\)
\(588\) 4.43975 0.183092
\(589\) 0 0
\(590\) 2.30528 0.0949070
\(591\) 8.29663 0.341278
\(592\) 11.1129 0.456739
\(593\) −21.8531 −0.897398 −0.448699 0.893683i \(-0.648112\pi\)
−0.448699 + 0.893683i \(0.648112\pi\)
\(594\) 2.36487 0.0970317
\(595\) −17.1543 −0.703259
\(596\) −17.3586 −0.711034
\(597\) 3.22997 0.132194
\(598\) 7.62814 0.311938
\(599\) −19.5950 −0.800631 −0.400316 0.916377i \(-0.631100\pi\)
−0.400316 + 0.916377i \(0.631100\pi\)
\(600\) 0.367297 0.0149949
\(601\) −9.78831 −0.399274 −0.199637 0.979870i \(-0.563976\pi\)
−0.199637 + 0.979870i \(0.563976\pi\)
\(602\) 23.9264 0.975166
\(603\) −5.30061 −0.215857
\(604\) 19.9018 0.809791
\(605\) −2.02327 −0.0822576
\(606\) −6.49579 −0.263873
\(607\) −20.7831 −0.843560 −0.421780 0.906698i \(-0.638595\pi\)
−0.421780 + 0.906698i \(0.638595\pi\)
\(608\) 0 0
\(609\) −3.70538 −0.150150
\(610\) 6.05207 0.245041
\(611\) −7.13008 −0.288452
\(612\) 5.67399 0.229357
\(613\) 0.783957 0.0316637 0.0158319 0.999875i \(-0.494960\pi\)
0.0158319 + 0.999875i \(0.494960\pi\)
\(614\) 8.36781 0.337697
\(615\) −3.25674 −0.131324
\(616\) 4.23745 0.170732
\(617\) 21.8237 0.878591 0.439295 0.898343i \(-0.355228\pi\)
0.439295 + 0.898343i \(0.355228\pi\)
\(618\) −1.08201 −0.0435250
\(619\) 34.1019 1.37067 0.685335 0.728228i \(-0.259656\pi\)
0.685335 + 0.728228i \(0.259656\pi\)
\(620\) −12.5456 −0.503843
\(621\) 5.60626 0.224972
\(622\) 33.2576 1.33351
\(623\) −52.8071 −2.11567
\(624\) 1.30395 0.0521997
\(625\) −19.6466 −0.785863
\(626\) −13.6874 −0.547058
\(627\) 0 0
\(628\) 18.1197 0.723055
\(629\) −22.2353 −0.886581
\(630\) 24.3126 0.968637
\(631\) −33.1428 −1.31940 −0.659698 0.751531i \(-0.729316\pi\)
−0.659698 + 0.751531i \(0.729316\pi\)
\(632\) −5.14495 −0.204655
\(633\) −10.1575 −0.403724
\(634\) 3.03012 0.120341
\(635\) −2.57046 −0.102005
\(636\) −4.50690 −0.178710
\(637\) 35.2536 1.39680
\(638\) −2.15785 −0.0854300
\(639\) −12.0102 −0.475118
\(640\) 2.02327 0.0799768
\(641\) 1.65951 0.0655467 0.0327733 0.999463i \(-0.489566\pi\)
0.0327733 + 0.999463i \(0.489566\pi\)
\(642\) 0.982267 0.0387670
\(643\) 41.1209 1.62165 0.810825 0.585289i \(-0.199019\pi\)
0.810825 + 0.585289i \(0.199019\pi\)
\(644\) 10.0455 0.395848
\(645\) −4.62950 −0.182286
\(646\) 0 0
\(647\) −36.3298 −1.42827 −0.714135 0.700008i \(-0.753180\pi\)
−0.714135 + 0.700008i \(0.753180\pi\)
\(648\) −7.54902 −0.296554
\(649\) 1.13939 0.0447248
\(650\) 2.91650 0.114395
\(651\) −10.6475 −0.417310
\(652\) −5.12549 −0.200730
\(653\) 5.76318 0.225531 0.112765 0.993622i \(-0.464029\pi\)
0.112765 + 0.993622i \(0.464029\pi\)
\(654\) 4.60168 0.179940
\(655\) 30.9947 1.21106
\(656\) 3.97211 0.155085
\(657\) 15.0251 0.586186
\(658\) −9.38959 −0.366044
\(659\) −4.73210 −0.184337 −0.0921683 0.995743i \(-0.529380\pi\)
−0.0921683 + 0.995743i \(0.529380\pi\)
\(660\) −0.819901 −0.0319146
\(661\) 26.8507 1.04437 0.522186 0.852832i \(-0.325117\pi\)
0.522186 + 0.852832i \(0.325117\pi\)
\(662\) 11.4410 0.444668
\(663\) −2.60901 −0.101325
\(664\) 6.45404 0.250465
\(665\) 0 0
\(666\) 31.5139 1.22114
\(667\) −5.11549 −0.198072
\(668\) −15.6892 −0.607032
\(669\) −9.73568 −0.376403
\(670\) 3.78187 0.146106
\(671\) 2.99123 0.115475
\(672\) 1.71717 0.0662411
\(673\) −47.7268 −1.83973 −0.919866 0.392233i \(-0.871703\pi\)
−0.919866 + 0.392233i \(0.871703\pi\)
\(674\) 18.8740 0.727000
\(675\) 2.14347 0.0825021
\(676\) −2.64608 −0.101772
\(677\) −12.2652 −0.471391 −0.235695 0.971827i \(-0.575737\pi\)
−0.235695 + 0.971827i \(0.575737\pi\)
\(678\) 1.30775 0.0502240
\(679\) 80.1086 3.07429
\(680\) −4.04827 −0.155244
\(681\) 2.65766 0.101842
\(682\) −6.20065 −0.237435
\(683\) 5.34681 0.204590 0.102295 0.994754i \(-0.467381\pi\)
0.102295 + 0.994754i \(0.467381\pi\)
\(684\) 0 0
\(685\) 20.9413 0.800127
\(686\) 16.7633 0.640024
\(687\) 2.00086 0.0763377
\(688\) 5.64641 0.215267
\(689\) −35.7868 −1.36337
\(690\) −1.94369 −0.0739952
\(691\) −12.0130 −0.456996 −0.228498 0.973544i \(-0.573381\pi\)
−0.228498 + 0.973544i \(0.573381\pi\)
\(692\) 12.9086 0.490712
\(693\) 12.0165 0.456469
\(694\) −36.1443 −1.37202
\(695\) −19.9580 −0.757052
\(696\) −0.874437 −0.0331454
\(697\) −7.94761 −0.301037
\(698\) 26.9542 1.02023
\(699\) −11.5452 −0.436679
\(700\) 3.84074 0.145166
\(701\) −15.0463 −0.568291 −0.284146 0.958781i \(-0.591710\pi\)
−0.284146 + 0.958781i \(0.591710\pi\)
\(702\) 7.60956 0.287204
\(703\) 0 0
\(704\) 1.00000 0.0376889
\(705\) 1.81679 0.0684241
\(706\) −29.3403 −1.10424
\(707\) −67.9249 −2.55458
\(708\) 0.461720 0.0173525
\(709\) −8.24255 −0.309556 −0.154778 0.987949i \(-0.549466\pi\)
−0.154778 + 0.987949i \(0.549466\pi\)
\(710\) 8.56904 0.321590
\(711\) −14.5900 −0.547166
\(712\) −12.4620 −0.467033
\(713\) −14.6995 −0.550502
\(714\) −3.43580 −0.128582
\(715\) −6.51038 −0.243474
\(716\) 14.1628 0.529288
\(717\) −4.80887 −0.179591
\(718\) 14.6477 0.546648
\(719\) −46.4425 −1.73201 −0.866007 0.500031i \(-0.833322\pi\)
−0.866007 + 0.500031i \(0.833322\pi\)
\(720\) 5.73756 0.213826
\(721\) −11.3143 −0.421368
\(722\) 0 0
\(723\) −3.49004 −0.129796
\(724\) −9.47135 −0.352000
\(725\) −1.95583 −0.0726376
\(726\) −0.405236 −0.0150397
\(727\) −14.3843 −0.533483 −0.266742 0.963768i \(-0.585947\pi\)
−0.266742 + 0.963768i \(0.585947\pi\)
\(728\) 13.6351 0.505349
\(729\) −18.5324 −0.686386
\(730\) −10.7201 −0.396769
\(731\) −11.2976 −0.417858
\(732\) 1.21215 0.0448025
\(733\) 2.26250 0.0835672 0.0417836 0.999127i \(-0.486696\pi\)
0.0417836 + 0.999127i \(0.486696\pi\)
\(734\) 32.1003 1.18484
\(735\) −8.98282 −0.331336
\(736\) 2.37064 0.0873831
\(737\) 1.86919 0.0688524
\(738\) 11.2640 0.414635
\(739\) 12.9882 0.477777 0.238888 0.971047i \(-0.423217\pi\)
0.238888 + 0.971047i \(0.423217\pi\)
\(740\) −22.4845 −0.826545
\(741\) 0 0
\(742\) −47.1276 −1.73011
\(743\) 12.4356 0.456216 0.228108 0.973636i \(-0.426746\pi\)
0.228108 + 0.973636i \(0.426746\pi\)
\(744\) −2.51273 −0.0921210
\(745\) 35.1210 1.28674
\(746\) −35.7170 −1.30769
\(747\) 18.3023 0.669645
\(748\) −2.00085 −0.0731585
\(749\) 10.2713 0.375306
\(750\) −4.84265 −0.176829
\(751\) 22.9170 0.836253 0.418126 0.908389i \(-0.362687\pi\)
0.418126 + 0.908389i \(0.362687\pi\)
\(752\) −2.21586 −0.0808040
\(753\) 10.2032 0.371824
\(754\) −6.94341 −0.252864
\(755\) −40.2666 −1.46545
\(756\) 10.0210 0.364461
\(757\) −14.0288 −0.509886 −0.254943 0.966956i \(-0.582057\pi\)
−0.254943 + 0.966956i \(0.582057\pi\)
\(758\) −35.1473 −1.27661
\(759\) −0.960670 −0.0348701
\(760\) 0 0
\(761\) −20.9226 −0.758443 −0.379222 0.925306i \(-0.623808\pi\)
−0.379222 + 0.925306i \(0.623808\pi\)
\(762\) −0.514830 −0.0186503
\(763\) 48.1186 1.74201
\(764\) −0.976211 −0.0353181
\(765\) −11.4800 −0.415061
\(766\) 22.9790 0.830264
\(767\) 3.66626 0.132381
\(768\) 0.405236 0.0146227
\(769\) 23.4730 0.846459 0.423229 0.906023i \(-0.360896\pi\)
0.423229 + 0.906023i \(0.360896\pi\)
\(770\) −8.57350 −0.308968
\(771\) 0.140106 0.00504579
\(772\) −0.765511 −0.0275514
\(773\) 29.0521 1.04493 0.522465 0.852661i \(-0.325012\pi\)
0.522465 + 0.852661i \(0.325012\pi\)
\(774\) 16.0120 0.575539
\(775\) −5.62014 −0.201882
\(776\) 18.9049 0.678647
\(777\) −19.0827 −0.684590
\(778\) 16.9298 0.606964
\(779\) 0 0
\(780\) −2.63824 −0.0944640
\(781\) 4.23524 0.151549
\(782\) −4.74331 −0.169621
\(783\) −5.10302 −0.182367
\(784\) 10.9560 0.391285
\(785\) −36.6611 −1.30849
\(786\) 6.20785 0.221427
\(787\) 25.6558 0.914530 0.457265 0.889330i \(-0.348829\pi\)
0.457265 + 0.889330i \(0.348829\pi\)
\(788\) 20.4736 0.729341
\(789\) −2.11378 −0.0752524
\(790\) 10.4096 0.370358
\(791\) 13.6749 0.486222
\(792\) 2.83578 0.100765
\(793\) 9.62503 0.341795
\(794\) −14.8799 −0.528070
\(795\) 9.11868 0.323406
\(796\) 7.97061 0.282511
\(797\) −30.7576 −1.08949 −0.544746 0.838601i \(-0.683374\pi\)
−0.544746 + 0.838601i \(0.683374\pi\)
\(798\) 0 0
\(799\) 4.43361 0.156850
\(800\) 0.906380 0.0320454
\(801\) −35.3395 −1.24866
\(802\) 27.9982 0.988650
\(803\) −5.29840 −0.186977
\(804\) 0.757461 0.0267136
\(805\) −20.3247 −0.716353
\(806\) −19.9521 −0.702784
\(807\) −9.21681 −0.324447
\(808\) −16.0297 −0.563921
\(809\) 10.6369 0.373972 0.186986 0.982363i \(-0.440128\pi\)
0.186986 + 0.982363i \(0.440128\pi\)
\(810\) 15.2737 0.536663
\(811\) −19.9177 −0.699405 −0.349703 0.936861i \(-0.613717\pi\)
−0.349703 + 0.936861i \(0.613717\pi\)
\(812\) −9.14377 −0.320883
\(813\) −1.52858 −0.0536098
\(814\) −11.1129 −0.389508
\(815\) 10.3703 0.363254
\(816\) −0.810818 −0.0283843
\(817\) 0 0
\(818\) −17.1697 −0.600324
\(819\) 38.6661 1.35110
\(820\) −8.03665 −0.280652
\(821\) −2.44878 −0.0854631 −0.0427315 0.999087i \(-0.513606\pi\)
−0.0427315 + 0.999087i \(0.513606\pi\)
\(822\) 4.19429 0.146293
\(823\) 30.7341 1.07132 0.535662 0.844433i \(-0.320062\pi\)
0.535662 + 0.844433i \(0.320062\pi\)
\(824\) −2.67008 −0.0930168
\(825\) −0.367297 −0.0127877
\(826\) 4.82809 0.167991
\(827\) −18.8819 −0.656588 −0.328294 0.944576i \(-0.606474\pi\)
−0.328294 + 0.944576i \(0.606474\pi\)
\(828\) 6.72264 0.233628
\(829\) 35.1837 1.22198 0.610989 0.791639i \(-0.290772\pi\)
0.610989 + 0.791639i \(0.290772\pi\)
\(830\) −13.0583 −0.453259
\(831\) −10.0596 −0.348965
\(832\) 3.21775 0.111555
\(833\) −21.9213 −0.759529
\(834\) −3.99735 −0.138417
\(835\) 31.7434 1.09853
\(836\) 0 0
\(837\) −14.6637 −0.506853
\(838\) 9.55038 0.329912
\(839\) 20.8157 0.718637 0.359319 0.933215i \(-0.383009\pi\)
0.359319 + 0.933215i \(0.383009\pi\)
\(840\) −3.47429 −0.119874
\(841\) −24.3437 −0.839438
\(842\) −26.0989 −0.899428
\(843\) −2.30714 −0.0794620
\(844\) −25.0656 −0.862794
\(845\) 5.35374 0.184174
\(846\) −6.28370 −0.216038
\(847\) −4.23745 −0.145600
\(848\) −11.1217 −0.381920
\(849\) 9.62537 0.330342
\(850\) −1.81353 −0.0622037
\(851\) −26.3448 −0.903088
\(852\) 1.71627 0.0587985
\(853\) 42.1522 1.44326 0.721632 0.692277i \(-0.243392\pi\)
0.721632 + 0.692277i \(0.243392\pi\)
\(854\) 12.6752 0.433736
\(855\) 0 0
\(856\) 2.42394 0.0828486
\(857\) 3.06453 0.104682 0.0523412 0.998629i \(-0.483332\pi\)
0.0523412 + 0.998629i \(0.483332\pi\)
\(858\) −1.30395 −0.0445160
\(859\) 36.3872 1.24151 0.620757 0.784003i \(-0.286825\pi\)
0.620757 + 0.784003i \(0.286825\pi\)
\(860\) −11.4242 −0.389562
\(861\) −6.82077 −0.232451
\(862\) 24.2576 0.826218
\(863\) −19.3750 −0.659531 −0.329766 0.944063i \(-0.606970\pi\)
−0.329766 + 0.944063i \(0.606970\pi\)
\(864\) 2.36487 0.0804545
\(865\) −26.1176 −0.888025
\(866\) −35.3246 −1.20038
\(867\) −5.26668 −0.178866
\(868\) −26.2750 −0.891830
\(869\) 5.14495 0.174530
\(870\) 1.76922 0.0599822
\(871\) 6.01457 0.203796
\(872\) 11.3556 0.384548
\(873\) 53.6103 1.81443
\(874\) 0 0
\(875\) −50.6384 −1.71189
\(876\) −2.14710 −0.0725439
\(877\) −7.06281 −0.238494 −0.119247 0.992865i \(-0.538048\pi\)
−0.119247 + 0.992865i \(0.538048\pi\)
\(878\) 16.6205 0.560915
\(879\) −2.38620 −0.0804845
\(880\) −2.02327 −0.0682044
\(881\) 21.6102 0.728067 0.364033 0.931386i \(-0.381399\pi\)
0.364033 + 0.931386i \(0.381399\pi\)
\(882\) 31.0688 1.04614
\(883\) −12.1597 −0.409206 −0.204603 0.978845i \(-0.565590\pi\)
−0.204603 + 0.978845i \(0.565590\pi\)
\(884\) −6.43825 −0.216542
\(885\) −0.934183 −0.0314022
\(886\) −20.5710 −0.691096
\(887\) −47.3042 −1.58832 −0.794160 0.607709i \(-0.792089\pi\)
−0.794160 + 0.607709i \(0.792089\pi\)
\(888\) −4.50336 −0.151123
\(889\) −5.38345 −0.180555
\(890\) 25.2140 0.845175
\(891\) 7.54902 0.252902
\(892\) −24.0247 −0.804407
\(893\) 0 0
\(894\) 7.03431 0.235262
\(895\) −28.6551 −0.957835
\(896\) 4.23745 0.141563
\(897\) −3.09120 −0.103212
\(898\) −33.5618 −1.11997
\(899\) 13.3801 0.446250
\(900\) 2.57030 0.0856766
\(901\) 22.2529 0.741350
\(902\) −3.97211 −0.132257
\(903\) −9.69582 −0.322657
\(904\) 3.22715 0.107333
\(905\) 19.1631 0.637003
\(906\) −8.06491 −0.267939
\(907\) 15.5394 0.515977 0.257988 0.966148i \(-0.416940\pi\)
0.257988 + 0.966148i \(0.416940\pi\)
\(908\) 6.55830 0.217645
\(909\) −45.4566 −1.50770
\(910\) −27.5874 −0.914513
\(911\) −52.4184 −1.73670 −0.868349 0.495954i \(-0.834818\pi\)
−0.868349 + 0.495954i \(0.834818\pi\)
\(912\) 0 0
\(913\) −6.45404 −0.213598
\(914\) 25.4237 0.840942
\(915\) −2.45251 −0.0810776
\(916\) 4.93753 0.163141
\(917\) 64.9140 2.14365
\(918\) −4.73176 −0.156171
\(919\) 35.8907 1.18392 0.591962 0.805966i \(-0.298354\pi\)
0.591962 + 0.805966i \(0.298354\pi\)
\(920\) −4.79645 −0.158134
\(921\) −3.39093 −0.111735
\(922\) 24.9356 0.821211
\(923\) 13.6280 0.448570
\(924\) −1.71717 −0.0564906
\(925\) −10.0725 −0.331183
\(926\) 35.0253 1.15100
\(927\) −7.57178 −0.248690
\(928\) −2.15785 −0.0708348
\(929\) −10.4081 −0.341477 −0.170739 0.985316i \(-0.554615\pi\)
−0.170739 + 0.985316i \(0.554615\pi\)
\(930\) 5.08392 0.166708
\(931\) 0 0
\(932\) −28.4901 −0.933223
\(933\) −13.4771 −0.441222
\(934\) −15.0345 −0.491945
\(935\) 4.04827 0.132392
\(936\) 9.12484 0.298255
\(937\) −53.1072 −1.73494 −0.867469 0.497492i \(-0.834254\pi\)
−0.867469 + 0.497492i \(0.834254\pi\)
\(938\) 7.92058 0.258616
\(939\) 5.54662 0.181007
\(940\) 4.48328 0.146228
\(941\) −6.13305 −0.199932 −0.0999658 0.994991i \(-0.531873\pi\)
−0.0999658 + 0.994991i \(0.531873\pi\)
\(942\) −7.34275 −0.239240
\(943\) −9.41646 −0.306642
\(944\) 1.13939 0.0370838
\(945\) −20.2752 −0.659553
\(946\) −5.64641 −0.183581
\(947\) 22.1095 0.718463 0.359231 0.933249i \(-0.383039\pi\)
0.359231 + 0.933249i \(0.383039\pi\)
\(948\) 2.08492 0.0677150
\(949\) −17.0489 −0.553432
\(950\) 0 0
\(951\) −1.22791 −0.0398178
\(952\) −8.47852 −0.274790
\(953\) −47.0512 −1.52414 −0.762069 0.647496i \(-0.775816\pi\)
−0.762069 + 0.647496i \(0.775816\pi\)
\(954\) −31.5387 −1.02110
\(955\) 1.97514 0.0639139
\(956\) −11.8669 −0.383801
\(957\) 0.874437 0.0282665
\(958\) 28.0302 0.905616
\(959\) 43.8586 1.41627
\(960\) −0.819901 −0.0264622
\(961\) 7.44809 0.240261
\(962\) −35.7586 −1.15290
\(963\) 6.87377 0.221504
\(964\) −8.61238 −0.277386
\(965\) 1.54884 0.0498588
\(966\) −4.07079 −0.130976
\(967\) −23.4958 −0.755574 −0.377787 0.925893i \(-0.623315\pi\)
−0.377787 + 0.925893i \(0.623315\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −38.2498 −1.22813
\(971\) −20.8584 −0.669379 −0.334689 0.942329i \(-0.608631\pi\)
−0.334689 + 0.942329i \(0.608631\pi\)
\(972\) 10.1537 0.325681
\(973\) −41.7993 −1.34002
\(974\) −31.1365 −0.997677
\(975\) −1.18187 −0.0378502
\(976\) 2.99123 0.0957470
\(977\) 27.5388 0.881043 0.440522 0.897742i \(-0.354794\pi\)
0.440522 + 0.897742i \(0.354794\pi\)
\(978\) 2.07703 0.0664162
\(979\) 12.4620 0.398287
\(980\) −22.1669 −0.708096
\(981\) 32.2019 1.02813
\(982\) −35.4580 −1.13151
\(983\) 49.0052 1.56302 0.781511 0.623892i \(-0.214449\pi\)
0.781511 + 0.623892i \(0.214449\pi\)
\(984\) −1.60964 −0.0513135
\(985\) −41.4236 −1.31987
\(986\) 4.31754 0.137498
\(987\) 3.80500 0.121114
\(988\) 0 0
\(989\) −13.3856 −0.425638
\(990\) −5.73756 −0.182351
\(991\) 41.5666 1.32041 0.660203 0.751088i \(-0.270470\pi\)
0.660203 + 0.751088i \(0.270470\pi\)
\(992\) −6.20065 −0.196871
\(993\) −4.63631 −0.147129
\(994\) 17.9466 0.569233
\(995\) −16.1267 −0.511250
\(996\) −2.61541 −0.0828724
\(997\) −35.3686 −1.12013 −0.560067 0.828447i \(-0.689225\pi\)
−0.560067 + 0.828447i \(0.689225\pi\)
\(998\) −33.3097 −1.05440
\(999\) −26.2806 −0.831482
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.bn.1.5 8
19.18 odd 2 7942.2.a.bq.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7942.2.a.bn.1.5 8 1.1 even 1 trivial
7942.2.a.bq.1.4 yes 8 19.18 odd 2