Properties

Label 7942.2.a.bn.1.5
Level 79427942
Weight 22
Character 7942.1
Self dual yes
Analytic conductor 63.41763.417
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7942=211192 7942 = 2 \cdot 11 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.417189285363.4171892853
Analytic rank: 11
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x719x6+14x5+116x465x3235x2+120x+80 x^{8} - x^{7} - 19x^{6} + 14x^{5} + 116x^{4} - 65x^{3} - 235x^{2} + 120x + 80 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 5 5
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 0.405236-0.405236 of defining polynomial
Character χ\chi == 7942.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+0.405236q3+1.00000q42.02327q50.405236q64.23745q71.00000q82.83578q9+2.02327q10+1.00000q11+0.405236q12+3.21775q13+4.23745q140.819901q15+1.00000q162.00085q17+2.83578q182.02327q201.71717q211.00000q222.37064q230.405236q240.906380q253.21775q262.36487q274.23745q28+2.15785q29+0.819901q30+6.20065q311.00000q32+0.405236q33+2.00085q34+8.57350q352.83578q36+11.1129q37+1.30395q39+2.02327q40+3.97211q41+1.71717q42+5.64641q43+1.00000q44+5.73756q45+2.37064q462.21586q47+0.405236q48+10.9560q49+0.906380q500.810818q51+3.21775q5211.1217q53+2.36487q542.02327q55+4.23745q562.15785q58+1.13939q590.819901q60+2.99123q616.20065q62+12.0165q63+1.00000q646.51038q650.405236q66+1.86919q672.00085q680.960670q698.57350q70+4.23524q71+2.83578q725.29840q7311.1129q740.367297q754.23745q771.30395q78+5.14495q792.02327q80+7.54902q813.97211q826.45404q831.71717q84+4.04827q855.64641q86+0.874437q871.00000q88+12.4620q895.73756q9013.6351q912.37064q92+2.51273q93+2.21586q940.405236q9618.9049q9710.9560q982.83578q99+O(q100)q-1.00000 q^{2} +0.405236 q^{3} +1.00000 q^{4} -2.02327 q^{5} -0.405236 q^{6} -4.23745 q^{7} -1.00000 q^{8} -2.83578 q^{9} +2.02327 q^{10} +1.00000 q^{11} +0.405236 q^{12} +3.21775 q^{13} +4.23745 q^{14} -0.819901 q^{15} +1.00000 q^{16} -2.00085 q^{17} +2.83578 q^{18} -2.02327 q^{20} -1.71717 q^{21} -1.00000 q^{22} -2.37064 q^{23} -0.405236 q^{24} -0.906380 q^{25} -3.21775 q^{26} -2.36487 q^{27} -4.23745 q^{28} +2.15785 q^{29} +0.819901 q^{30} +6.20065 q^{31} -1.00000 q^{32} +0.405236 q^{33} +2.00085 q^{34} +8.57350 q^{35} -2.83578 q^{36} +11.1129 q^{37} +1.30395 q^{39} +2.02327 q^{40} +3.97211 q^{41} +1.71717 q^{42} +5.64641 q^{43} +1.00000 q^{44} +5.73756 q^{45} +2.37064 q^{46} -2.21586 q^{47} +0.405236 q^{48} +10.9560 q^{49} +0.906380 q^{50} -0.810818 q^{51} +3.21775 q^{52} -11.1217 q^{53} +2.36487 q^{54} -2.02327 q^{55} +4.23745 q^{56} -2.15785 q^{58} +1.13939 q^{59} -0.819901 q^{60} +2.99123 q^{61} -6.20065 q^{62} +12.0165 q^{63} +1.00000 q^{64} -6.51038 q^{65} -0.405236 q^{66} +1.86919 q^{67} -2.00085 q^{68} -0.960670 q^{69} -8.57350 q^{70} +4.23524 q^{71} +2.83578 q^{72} -5.29840 q^{73} -11.1129 q^{74} -0.367297 q^{75} -4.23745 q^{77} -1.30395 q^{78} +5.14495 q^{79} -2.02327 q^{80} +7.54902 q^{81} -3.97211 q^{82} -6.45404 q^{83} -1.71717 q^{84} +4.04827 q^{85} -5.64641 q^{86} +0.874437 q^{87} -1.00000 q^{88} +12.4620 q^{89} -5.73756 q^{90} -13.6351 q^{91} -2.37064 q^{92} +2.51273 q^{93} +2.21586 q^{94} -0.405236 q^{96} -18.9049 q^{97} -10.9560 q^{98} -2.83578 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q2q3+8q43q5+q68q8+15q9+3q10+8q11q123q1336q15+8q164q1715q183q203q218q22q23++15q99+O(q100) 8 q - 8 q^{2} - q^{3} + 8 q^{4} - 3 q^{5} + q^{6} - 8 q^{8} + 15 q^{9} + 3 q^{10} + 8 q^{11} - q^{12} - 3 q^{13} - 36 q^{15} + 8 q^{16} - 4 q^{17} - 15 q^{18} - 3 q^{20} - 3 q^{21} - 8 q^{22} - q^{23}+ \cdots + 15 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 0.405236 0.233963 0.116981 0.993134i 0.462678π-0.462678\pi
0.116981 + 0.993134i 0.462678π0.462678\pi
44 1.00000 0.500000
55 −2.02327 −0.904834 −0.452417 0.891807i 0.649438π-0.649438\pi
−0.452417 + 0.891807i 0.649438π0.649438\pi
66 −0.405236 −0.165437
77 −4.23745 −1.60161 −0.800803 0.598928i 0.795593π-0.795593\pi
−0.800803 + 0.598928i 0.795593π0.795593\pi
88 −1.00000 −0.353553
99 −2.83578 −0.945261
1010 2.02327 0.639814
1111 1.00000 0.301511
1212 0.405236 0.116981
1313 3.21775 0.892443 0.446222 0.894922i 0.352769π-0.352769\pi
0.446222 + 0.894922i 0.352769π0.352769\pi
1414 4.23745 1.13251
1515 −0.819901 −0.211698
1616 1.00000 0.250000
1717 −2.00085 −0.485278 −0.242639 0.970117i 0.578013π-0.578013\pi
−0.242639 + 0.970117i 0.578013π0.578013\pi
1818 2.83578 0.668401
1919 0 0
2020 −2.02327 −0.452417
2121 −1.71717 −0.374716
2222 −1.00000 −0.213201
2323 −2.37064 −0.494314 −0.247157 0.968975i 0.579496π-0.579496\pi
−0.247157 + 0.968975i 0.579496π0.579496\pi
2424 −0.405236 −0.0827184
2525 −0.906380 −0.181276
2626 −3.21775 −0.631053
2727 −2.36487 −0.455119
2828 −4.23745 −0.800803
2929 2.15785 0.400702 0.200351 0.979724i 0.435792π-0.435792\pi
0.200351 + 0.979724i 0.435792π0.435792\pi
3030 0.819901 0.149693
3131 6.20065 1.11367 0.556835 0.830623i 0.312016π-0.312016\pi
0.556835 + 0.830623i 0.312016π0.312016\pi
3232 −1.00000 −0.176777
3333 0.405236 0.0705425
3434 2.00085 0.343144
3535 8.57350 1.44919
3636 −2.83578 −0.472631
3737 11.1129 1.82695 0.913477 0.406890i 0.133387π-0.133387\pi
0.913477 + 0.406890i 0.133387π0.133387\pi
3838 0 0
3939 1.30395 0.208799
4040 2.02327 0.319907
4141 3.97211 0.620339 0.310170 0.950681i 0.399614π-0.399614\pi
0.310170 + 0.950681i 0.399614π0.399614\pi
4242 1.71717 0.264964
4343 5.64641 0.861069 0.430534 0.902574i 0.358325π-0.358325\pi
0.430534 + 0.902574i 0.358325π0.358325\pi
4444 1.00000 0.150756
4545 5.73756 0.855304
4646 2.37064 0.349533
4747 −2.21586 −0.323216 −0.161608 0.986855i 0.551668π-0.551668\pi
−0.161608 + 0.986855i 0.551668π0.551668\pi
4848 0.405236 0.0584907
4949 10.9560 1.56514
5050 0.906380 0.128181
5151 −0.810818 −0.113537
5252 3.21775 0.446222
5353 −11.1217 −1.52768 −0.763840 0.645406i 0.776688π-0.776688\pi
−0.763840 + 0.645406i 0.776688π0.776688\pi
5454 2.36487 0.321818
5555 −2.02327 −0.272818
5656 4.23745 0.566253
5757 0 0
5858 −2.15785 −0.283339
5959 1.13939 0.148335 0.0741677 0.997246i 0.476370π-0.476370\pi
0.0741677 + 0.997246i 0.476370π0.476370\pi
6060 −0.819901 −0.105849
6161 2.99123 0.382988 0.191494 0.981494i 0.438667π-0.438667\pi
0.191494 + 0.981494i 0.438667π0.438667\pi
6262 −6.20065 −0.787484
6363 12.0165 1.51394
6464 1.00000 0.125000
6565 −6.51038 −0.807513
6666 −0.405236 −0.0498811
6767 1.86919 0.228357 0.114179 0.993460i 0.463576π-0.463576\pi
0.114179 + 0.993460i 0.463576π0.463576\pi
6868 −2.00085 −0.242639
6969 −0.960670 −0.115651
7070 −8.57350 −1.02473
7171 4.23524 0.502631 0.251315 0.967905i 0.419137π-0.419137\pi
0.251315 + 0.967905i 0.419137π0.419137\pi
7272 2.83578 0.334200
7373 −5.29840 −0.620131 −0.310066 0.950715i 0.600351π-0.600351\pi
−0.310066 + 0.950715i 0.600351π0.600351\pi
7474 −11.1129 −1.29185
7575 −0.367297 −0.0424119
7676 0 0
7777 −4.23745 −0.482902
7878 −1.30395 −0.147643
7979 5.14495 0.578852 0.289426 0.957200i 0.406536π-0.406536\pi
0.289426 + 0.957200i 0.406536π0.406536\pi
8080 −2.02327 −0.226208
8181 7.54902 0.838780
8282 −3.97211 −0.438646
8383 −6.45404 −0.708423 −0.354212 0.935165i 0.615251π-0.615251\pi
−0.354212 + 0.935165i 0.615251π0.615251\pi
8484 −1.71717 −0.187358
8585 4.04827 0.439096
8686 −5.64641 −0.608868
8787 0.874437 0.0937494
8888 −1.00000 −0.106600
8989 12.4620 1.32097 0.660485 0.750839i 0.270351π-0.270351\pi
0.660485 + 0.750839i 0.270351π0.270351\pi
9090 −5.73756 −0.604791
9191 −13.6351 −1.42934
9292 −2.37064 −0.247157
9393 2.51273 0.260558
9494 2.21586 0.228548
9595 0 0
9696 −0.405236 −0.0413592
9797 −18.9049 −1.91950 −0.959752 0.280849i 0.909384π-0.909384\pi
−0.959752 + 0.280849i 0.909384π0.909384\pi
9898 −10.9560 −1.10672
9999 −2.83578 −0.285007
100100 −0.906380 −0.0906380
101101 16.0297 1.59501 0.797505 0.603312i 0.206153π-0.206153\pi
0.797505 + 0.603312i 0.206153π0.206153\pi
102102 0.810818 0.0802829
103103 2.67008 0.263091 0.131546 0.991310i 0.458006π-0.458006\pi
0.131546 + 0.991310i 0.458006π0.458006\pi
104104 −3.21775 −0.315526
105105 3.47429 0.339056
106106 11.1217 1.08023
107107 −2.42394 −0.234331 −0.117166 0.993112i 0.537381π-0.537381\pi
−0.117166 + 0.993112i 0.537381π0.537381\pi
108108 −2.36487 −0.227560
109109 −11.3556 −1.08767 −0.543833 0.839194i 0.683027π-0.683027\pi
−0.543833 + 0.839194i 0.683027π0.683027\pi
110110 2.02327 0.192911
111111 4.50336 0.427440
112112 −4.23745 −0.400401
113113 −3.22715 −0.303584 −0.151792 0.988412i 0.548504π-0.548504\pi
−0.151792 + 0.988412i 0.548504π0.548504\pi
114114 0 0
115115 4.79645 0.447272
116116 2.15785 0.200351
117117 −9.12484 −0.843592
118118 −1.13939 −0.104889
119119 8.47852 0.777224
120120 0.819901 0.0748464
121121 1.00000 0.0909091
122122 −2.99123 −0.270813
123123 1.60964 0.145136
124124 6.20065 0.556835
125125 11.9502 1.06886
126126 −12.0165 −1.07051
127127 1.27045 0.112734 0.0563669 0.998410i 0.482048π-0.482048\pi
0.0563669 + 0.998410i 0.482048π0.482048\pi
128128 −1.00000 −0.0883883
129129 2.28813 0.201458
130130 6.51038 0.570998
131131 −15.3191 −1.33844 −0.669219 0.743066i 0.733371π-0.733371\pi
−0.669219 + 0.743066i 0.733371π0.733371\pi
132132 0.405236 0.0352712
133133 0 0
134134 −1.86919 −0.161473
135135 4.78477 0.411807
136136 2.00085 0.171572
137137 −10.3502 −0.884281 −0.442140 0.896946i 0.645781π-0.645781\pi
−0.442140 + 0.896946i 0.645781π0.645781\pi
138138 0.960670 0.0817777
139139 9.86425 0.836675 0.418337 0.908292i 0.362613π-0.362613\pi
0.418337 + 0.908292i 0.362613π0.362613\pi
140140 8.57350 0.724593
141141 −0.897945 −0.0756206
142142 −4.23524 −0.355414
143143 3.21775 0.269082
144144 −2.83578 −0.236315
145145 −4.36591 −0.362569
146146 5.29840 0.438499
147147 4.43975 0.366185
148148 11.1129 0.913477
149149 −17.3586 −1.42207 −0.711034 0.703157i 0.751773π-0.751773\pi
−0.711034 + 0.703157i 0.751773π0.751773\pi
150150 0.367297 0.0299897
151151 19.9018 1.61958 0.809791 0.586718i 0.199580π-0.199580\pi
0.809791 + 0.586718i 0.199580π0.199580\pi
152152 0 0
153153 5.67399 0.458715
154154 4.23745 0.341463
155155 −12.5456 −1.00769
156156 1.30395 0.104399
157157 18.1197 1.44611 0.723055 0.690790i 0.242737π-0.242737\pi
0.723055 + 0.690790i 0.242737π0.242737\pi
158158 −5.14495 −0.409310
159159 −4.50690 −0.357421
160160 2.02327 0.159954
161161 10.0455 0.791695
162162 −7.54902 −0.593107
163163 −5.12549 −0.401459 −0.200730 0.979647i 0.564331π-0.564331\pi
−0.200730 + 0.979647i 0.564331π0.564331\pi
164164 3.97211 0.310170
165165 −0.819901 −0.0638292
166166 6.45404 0.500931
167167 −15.6892 −1.21406 −0.607032 0.794678i 0.707640π-0.707640\pi
−0.607032 + 0.794678i 0.707640π0.707640\pi
168168 1.71717 0.132482
169169 −2.64608 −0.203545
170170 −4.04827 −0.310488
171171 0 0
172172 5.64641 0.430534
173173 12.9086 0.981423 0.490712 0.871322i 0.336737π-0.336737\pi
0.490712 + 0.871322i 0.336737π0.336737\pi
174174 −0.874437 −0.0662909
175175 3.84074 0.290332
176176 1.00000 0.0753778
177177 0.461720 0.0347050
178178 −12.4620 −0.934066
179179 14.1628 1.05858 0.529288 0.848442i 0.322459π-0.322459\pi
0.529288 + 0.848442i 0.322459π0.322459\pi
180180 5.73756 0.427652
181181 −9.47135 −0.704000 −0.352000 0.936000i 0.614498π-0.614498\pi
−0.352000 + 0.936000i 0.614498π0.614498\pi
182182 13.6351 1.01070
183183 1.21215 0.0896050
184184 2.37064 0.174766
185185 −22.4845 −1.65309
186186 −2.51273 −0.184242
187187 −2.00085 −0.146317
188188 −2.21586 −0.161608
189189 10.0210 0.728921
190190 0 0
191191 −0.976211 −0.0706361 −0.0353181 0.999376i 0.511244π-0.511244\pi
−0.0353181 + 0.999376i 0.511244π0.511244\pi
192192 0.405236 0.0292454
193193 −0.765511 −0.0551027 −0.0275514 0.999620i 0.508771π-0.508771\pi
−0.0275514 + 0.999620i 0.508771π0.508771\pi
194194 18.9049 1.35729
195195 −2.63824 −0.188928
196196 10.9560 0.782570
197197 20.4736 1.45868 0.729341 0.684150i 0.239827π-0.239827\pi
0.729341 + 0.684150i 0.239827π0.239827\pi
198198 2.83578 0.201530
199199 7.97061 0.565021 0.282511 0.959264i 0.408833π-0.408833\pi
0.282511 + 0.959264i 0.408833π0.408833\pi
200200 0.906380 0.0640907
201201 0.757461 0.0534272
202202 −16.0297 −1.12784
203203 −9.14377 −0.641767
204204 −0.810818 −0.0567686
205205 −8.03665 −0.561304
206206 −2.67008 −0.186034
207207 6.72264 0.467256
208208 3.21775 0.223111
209209 0 0
210210 −3.47429 −0.239749
211211 −25.0656 −1.72559 −0.862794 0.505556i 0.831287π-0.831287\pi
−0.862794 + 0.505556i 0.831287π0.831287\pi
212212 −11.1217 −0.763840
213213 1.71627 0.117597
214214 2.42394 0.165697
215215 −11.4242 −0.779124
216216 2.36487 0.160909
217217 −26.2750 −1.78366
218218 11.3556 0.769095
219219 −2.14710 −0.145088
220220 −2.02327 −0.136409
221221 −6.43825 −0.433083
222222 −4.50336 −0.302246
223223 −24.0247 −1.60881 −0.804407 0.594078i 0.797517π-0.797517\pi
−0.804407 + 0.594078i 0.797517π0.797517\pi
224224 4.23745 0.283127
225225 2.57030 0.171353
226226 3.22715 0.214667
227227 6.55830 0.435290 0.217645 0.976028i 0.430163π-0.430163\pi
0.217645 + 0.976028i 0.430163π0.430163\pi
228228 0 0
229229 4.93753 0.326281 0.163141 0.986603i 0.447838π-0.447838\pi
0.163141 + 0.986603i 0.447838π0.447838\pi
230230 −4.79645 −0.316269
231231 −1.71717 −0.112981
232232 −2.15785 −0.141670
233233 −28.4901 −1.86645 −0.933223 0.359297i 0.883017π-0.883017\pi
−0.933223 + 0.359297i 0.883017π0.883017\pi
234234 9.12484 0.596510
235235 4.48328 0.292457
236236 1.13939 0.0741677
237237 2.08492 0.135430
238238 −8.47852 −0.549581
239239 −11.8669 −0.767603 −0.383801 0.923416i 0.625385π-0.625385\pi
−0.383801 + 0.923416i 0.625385π0.625385\pi
240240 −0.819901 −0.0529244
241241 −8.61238 −0.554772 −0.277386 0.960759i 0.589468π-0.589468\pi
−0.277386 + 0.960759i 0.589468π0.589468\pi
242242 −1.00000 −0.0642824
243243 10.1537 0.651363
244244 2.99123 0.191494
245245 −22.1669 −1.41619
246246 −1.60964 −0.102627
247247 0 0
248248 −6.20065 −0.393742
249249 −2.61541 −0.165745
250250 −11.9502 −0.755797
251251 25.1783 1.58924 0.794621 0.607106i 0.207670π-0.207670\pi
0.794621 + 0.607106i 0.207670π0.207670\pi
252252 12.0165 0.756968
253253 −2.37064 −0.149041
254254 −1.27045 −0.0797149
255255 1.64050 0.102732
256256 1.00000 0.0625000
257257 0.345739 0.0215666 0.0107833 0.999942i 0.496567π-0.496567\pi
0.0107833 + 0.999942i 0.496567π0.496567\pi
258258 −2.28813 −0.142452
259259 −47.0905 −2.92606
260260 −6.51038 −0.403756
261261 −6.11919 −0.378768
262262 15.3191 0.946418
263263 −5.21616 −0.321642 −0.160821 0.986984i 0.551414π-0.551414\pi
−0.160821 + 0.986984i 0.551414π0.551414\pi
264264 −0.405236 −0.0249405
265265 22.5022 1.38230
266266 0 0
267267 5.05005 0.309058
268268 1.86919 0.114179
269269 −22.7443 −1.38675 −0.693373 0.720579i 0.743876π-0.743876\pi
−0.693373 + 0.720579i 0.743876π0.743876\pi
270270 −4.78477 −0.291192
271271 −3.77208 −0.229138 −0.114569 0.993415i 0.536549π-0.536549\pi
−0.114569 + 0.993415i 0.536549π0.536549\pi
272272 −2.00085 −0.121320
273273 −5.52541 −0.334413
274274 10.3502 0.625281
275275 −0.906380 −0.0546567
276276 −0.960670 −0.0578255
277277 −24.8242 −1.49154 −0.745770 0.666204i 0.767918π-0.767918\pi
−0.745770 + 0.666204i 0.767918π0.767918\pi
278278 −9.86425 −0.591619
279279 −17.5837 −1.05271
280280 −8.57350 −0.512365
281281 −5.69332 −0.339635 −0.169817 0.985476i 0.554318π-0.554318\pi
−0.169817 + 0.985476i 0.554318π0.554318\pi
282282 0.897945 0.0534719
283283 23.7525 1.41194 0.705970 0.708241i 0.250511π-0.250511\pi
0.705970 + 0.708241i 0.250511π0.250511\pi
284284 4.23524 0.251315
285285 0 0
286286 −3.21775 −0.190270
287287 −16.8316 −0.993539
288288 2.83578 0.167100
289289 −12.9966 −0.764505
290290 4.36591 0.256375
291291 −7.66095 −0.449093
292292 −5.29840 −0.310066
293293 −5.88842 −0.344005 −0.172003 0.985096i 0.555024π-0.555024\pi
−0.172003 + 0.985096i 0.555024π0.555024\pi
294294 −4.43975 −0.258932
295295 −2.30528 −0.134219
296296 −11.1129 −0.645926
297297 −2.36487 −0.137224
298298 17.3586 1.00555
299299 −7.62814 −0.441147
300300 −0.367297 −0.0212059
301301 −23.9264 −1.37909
302302 −19.9018 −1.14522
303303 6.49579 0.373173
304304 0 0
305305 −6.05207 −0.346540
306306 −5.67399 −0.324360
307307 −8.36781 −0.477576 −0.238788 0.971072i 0.576750π-0.576750\pi
−0.238788 + 0.971072i 0.576750π0.576750\pi
308308 −4.23745 −0.241451
309309 1.08201 0.0615536
310310 12.5456 0.712542
311311 −33.2576 −1.88586 −0.942931 0.332987i 0.891943π-0.891943\pi
−0.942931 + 0.332987i 0.891943π0.891943\pi
312312 −1.30395 −0.0738215
313313 13.6874 0.773657 0.386828 0.922152i 0.373571π-0.373571\pi
0.386828 + 0.922152i 0.373571π0.373571\pi
314314 −18.1197 −1.02255
315315 −24.3126 −1.36986
316316 5.14495 0.289426
317317 −3.03012 −0.170188 −0.0850942 0.996373i 0.527119π-0.527119\pi
−0.0850942 + 0.996373i 0.527119π0.527119\pi
318318 4.50690 0.252734
319319 2.15785 0.120816
320320 −2.02327 −0.113104
321321 −0.982267 −0.0548248
322322 −10.0455 −0.559813
323323 0 0
324324 7.54902 0.419390
325325 −2.91650 −0.161778
326326 5.12549 0.283875
327327 −4.60168 −0.254473
328328 −3.97211 −0.219323
329329 9.38959 0.517665
330330 0.819901 0.0451341
331331 −11.4410 −0.628855 −0.314428 0.949281i 0.601813π-0.601813\pi
−0.314428 + 0.949281i 0.601813π0.601813\pi
332332 −6.45404 −0.354212
333333 −31.5139 −1.72695
334334 15.6892 0.858473
335335 −3.78187 −0.206625
336336 −1.71717 −0.0936791
337337 −18.8740 −1.02813 −0.514067 0.857750i 0.671862π-0.671862\pi
−0.514067 + 0.857750i 0.671862π0.671862\pi
338338 2.64608 0.143928
339339 −1.30775 −0.0710275
340340 4.04827 0.219548
341341 6.20065 0.335784
342342 0 0
343343 −16.7633 −0.905131
344344 −5.64641 −0.304434
345345 1.94369 0.104645
346346 −12.9086 −0.693971
347347 36.1443 1.94033 0.970164 0.242451i 0.0779515π-0.0779515\pi
0.970164 + 0.242451i 0.0779515π0.0779515\pi
348348 0.874437 0.0468747
349349 −26.9542 −1.44283 −0.721413 0.692505i 0.756507π-0.756507\pi
−0.721413 + 0.692505i 0.756507π0.756507\pi
350350 −3.84074 −0.205296
351351 −7.60956 −0.406168
352352 −1.00000 −0.0533002
353353 29.3403 1.56162 0.780812 0.624766i 0.214806π-0.214806\pi
0.780812 + 0.624766i 0.214806π0.214806\pi
354354 −0.461720 −0.0245401
355355 −8.56904 −0.454797
356356 12.4620 0.660485
357357 3.43580 0.181842
358358 −14.1628 −0.748526
359359 −14.6477 −0.773076 −0.386538 0.922273i 0.626329π-0.626329\pi
−0.386538 + 0.922273i 0.626329π0.626329\pi
360360 −5.73756 −0.302396
361361 0 0
362362 9.47135 0.497803
363363 0.405236 0.0212694
364364 −13.6351 −0.714671
365365 10.7201 0.561116
366366 −1.21215 −0.0633603
367367 −32.1003 −1.67562 −0.837811 0.545961i 0.816165π-0.816165\pi
−0.837811 + 0.545961i 0.816165π0.816165\pi
368368 −2.37064 −0.123578
369369 −11.2640 −0.586383
370370 22.4845 1.16891
371371 47.1276 2.44674
372372 2.51273 0.130279
373373 35.7170 1.84936 0.924678 0.380751i 0.124334π-0.124334\pi
0.924678 + 0.380751i 0.124334π0.124334\pi
374374 2.00085 0.103462
375375 4.84265 0.250073
376376 2.21586 0.114274
377377 6.94341 0.357604
378378 −10.0210 −0.515425
379379 35.1473 1.80540 0.902699 0.430273i 0.141583π-0.141583\pi
0.902699 + 0.430273i 0.141583π0.141583\pi
380380 0 0
381381 0.514830 0.0263756
382382 0.976211 0.0499473
383383 −22.9790 −1.17417 −0.587085 0.809525i 0.699725π-0.699725\pi
−0.587085 + 0.809525i 0.699725π0.699725\pi
384384 −0.405236 −0.0206796
385385 8.57350 0.436946
386386 0.765511 0.0389635
387387 −16.0120 −0.813935
388388 −18.9049 −0.959752
389389 −16.9298 −0.858376 −0.429188 0.903215i 0.641200π-0.641200\pi
−0.429188 + 0.903215i 0.641200π0.641200\pi
390390 2.63824 0.133592
391391 4.74331 0.239880
392392 −10.9560 −0.553361
393393 −6.20785 −0.313145
394394 −20.4736 −1.03144
395395 −10.4096 −0.523765
396396 −2.83578 −0.142504
397397 14.8799 0.746803 0.373402 0.927670i 0.378191π-0.378191\pi
0.373402 + 0.927670i 0.378191π0.378191\pi
398398 −7.97061 −0.399530
399399 0 0
400400 −0.906380 −0.0453190
401401 −27.9982 −1.39816 −0.699081 0.715042i 0.746408π-0.746408\pi
−0.699081 + 0.715042i 0.746408π0.746408\pi
402402 −0.757461 −0.0377787
403403 19.9521 0.993887
404404 16.0297 0.797505
405405 −15.2737 −0.758957
406406 9.14377 0.453798
407407 11.1129 0.550847
408408 0.810818 0.0401414
409409 17.1697 0.848986 0.424493 0.905431i 0.360452π-0.360452\pi
0.424493 + 0.905431i 0.360452π0.360452\pi
410410 8.03665 0.396902
411411 −4.19429 −0.206889
412412 2.67008 0.131546
413413 −4.82809 −0.237575
414414 −6.72264 −0.330400
415415 13.0583 0.641005
416416 −3.21775 −0.157763
417417 3.99735 0.195751
418418 0 0
419419 −9.55038 −0.466566 −0.233283 0.972409i 0.574947π-0.574947\pi
−0.233283 + 0.972409i 0.574947π0.574947\pi
420420 3.47429 0.169528
421421 26.0989 1.27198 0.635992 0.771696i 0.280591π-0.280591\pi
0.635992 + 0.771696i 0.280591π0.280591\pi
422422 25.0656 1.22017
423423 6.28370 0.305524
424424 11.1217 0.540116
425425 1.81353 0.0879693
426426 −1.71627 −0.0831536
427427 −12.6752 −0.613396
428428 −2.42394 −0.117166
429429 1.30395 0.0629552
430430 11.4242 0.550924
431431 −24.2576 −1.16845 −0.584224 0.811592i 0.698601π-0.698601\pi
−0.584224 + 0.811592i 0.698601π0.698601\pi
432432 −2.36487 −0.113780
433433 35.3246 1.69759 0.848797 0.528719i 0.177327π-0.177327\pi
0.848797 + 0.528719i 0.177327π0.177327\pi
434434 26.2750 1.26124
435435 −1.76922 −0.0848277
436436 −11.3556 −0.543833
437437 0 0
438438 2.14710 0.102593
439439 −16.6205 −0.793254 −0.396627 0.917980i 0.629819π-0.629819\pi
−0.396627 + 0.917980i 0.629819π0.629819\pi
440440 2.02327 0.0964556
441441 −31.0688 −1.47947
442442 6.43825 0.306236
443443 20.5710 0.977357 0.488678 0.872464i 0.337479π-0.337479\pi
0.488678 + 0.872464i 0.337479π0.337479\pi
444444 4.50336 0.213720
445445 −25.2140 −1.19526
446446 24.0247 1.13760
447447 −7.03431 −0.332711
448448 −4.23745 −0.200201
449449 33.5618 1.58388 0.791939 0.610600i 0.209072π-0.209072\pi
0.791939 + 0.610600i 0.209072π0.209072\pi
450450 −2.57030 −0.121165
451451 3.97211 0.187039
452452 −3.22715 −0.151792
453453 8.06491 0.378922
454454 −6.55830 −0.307796
455455 27.5874 1.29332
456456 0 0
457457 −25.4237 −1.18927 −0.594636 0.803995i 0.702704π-0.702704\pi
−0.594636 + 0.803995i 0.702704π0.702704\pi
458458 −4.93753 −0.230716
459459 4.73176 0.220859
460460 4.79645 0.223636
461461 −24.9356 −1.16137 −0.580684 0.814129i 0.697215π-0.697215\pi
−0.580684 + 0.814129i 0.697215π0.697215\pi
462462 1.71717 0.0798898
463463 −35.0253 −1.62776 −0.813881 0.581032i 0.802649π-0.802649\pi
−0.813881 + 0.581032i 0.802649π0.802649\pi
464464 2.15785 0.100176
465465 −5.08392 −0.235761
466466 28.4901 1.31978
467467 15.0345 0.695715 0.347857 0.937547i 0.386909π-0.386909\pi
0.347857 + 0.937547i 0.386909π0.386909\pi
468468 −9.12484 −0.421796
469469 −7.92058 −0.365738
470470 −4.48328 −0.206798
471471 7.34275 0.338336
472472 −1.13939 −0.0524445
473473 5.64641 0.259622
474474 −2.08492 −0.0957634
475475 0 0
476476 8.47852 0.388612
477477 31.5387 1.44406
478478 11.8669 0.542777
479479 −28.0302 −1.28073 −0.640367 0.768069i 0.721218π-0.721218\pi
−0.640367 + 0.768069i 0.721218π0.721218\pi
480480 0.819901 0.0374232
481481 35.7586 1.63045
482482 8.61238 0.392283
483483 4.07079 0.185227
484484 1.00000 0.0454545
485485 38.2498 1.73683
486486 −10.1537 −0.460583
487487 31.1365 1.41093 0.705464 0.708746i 0.250739π-0.250739\pi
0.705464 + 0.708746i 0.250739π0.250739\pi
488488 −2.99123 −0.135407
489489 −2.07703 −0.0939266
490490 22.1669 1.00140
491491 35.4580 1.60020 0.800100 0.599867i 0.204780π-0.204780\pi
0.800100 + 0.599867i 0.204780π0.204780\pi
492492 1.60964 0.0725682
493493 −4.31754 −0.194452
494494 0 0
495495 5.73756 0.257884
496496 6.20065 0.278418
497497 −17.9466 −0.805016
498498 2.61541 0.117199
499499 33.3097 1.49115 0.745574 0.666423i 0.232176π-0.232176\pi
0.745574 + 0.666423i 0.232176π0.232176\pi
500500 11.9502 0.534429
501501 −6.35781 −0.284046
502502 −25.1783 −1.12376
503503 14.1546 0.631124 0.315562 0.948905i 0.397807π-0.397807\pi
0.315562 + 0.948905i 0.397807π0.397807\pi
504504 −12.0165 −0.535257
505505 −32.4323 −1.44322
506506 2.37064 0.105388
507507 −1.07229 −0.0476220
508508 1.27045 0.0563669
509509 3.10819 0.137768 0.0688841 0.997625i 0.478056π-0.478056\pi
0.0688841 + 0.997625i 0.478056π0.478056\pi
510510 −1.64050 −0.0726427
511511 22.4517 0.993205
512512 −1.00000 −0.0441942
513513 0 0
514514 −0.345739 −0.0152499
515515 −5.40230 −0.238054
516516 2.28813 0.100729
517517 −2.21586 −0.0974533
518518 47.0905 2.06904
519519 5.23103 0.229617
520520 6.51038 0.285499
521521 −20.5080 −0.898473 −0.449236 0.893413i 0.648304π-0.648304\pi
−0.449236 + 0.893413i 0.648304π0.648304\pi
522522 6.11919 0.267830
523523 −11.7677 −0.514567 −0.257284 0.966336i 0.582827π-0.582827\pi
−0.257284 + 0.966336i 0.582827π0.582827\pi
524524 −15.3191 −0.669219
525525 1.55640 0.0679270
526526 5.21616 0.227435
527527 −12.4066 −0.540440
528528 0.405236 0.0176356
529529 −17.3800 −0.755654
530530 −22.5022 −0.977431
531531 −3.23105 −0.140216
532532 0 0
533533 12.7813 0.553618
534534 −5.05005 −0.218537
535535 4.90428 0.212031
536536 −1.86919 −0.0807365
537537 5.73927 0.247668
538538 22.7443 0.980577
539539 10.9560 0.471907
540540 4.78477 0.205904
541541 −12.6284 −0.542939 −0.271470 0.962447i 0.587510π-0.587510\pi
−0.271470 + 0.962447i 0.587510π0.587510\pi
542542 3.77208 0.162025
543543 −3.83813 −0.164710
544544 2.00085 0.0857859
545545 22.9754 0.984156
546546 5.52541 0.236466
547547 −19.7404 −0.844039 −0.422020 0.906587i 0.638679π-0.638679\pi
−0.422020 + 0.906587i 0.638679π0.638679\pi
548548 −10.3502 −0.442140
549549 −8.48249 −0.362024
550550 0.906380 0.0386482
551551 0 0
552552 0.960670 0.0408888
553553 −21.8015 −0.927092
554554 24.8242 1.05468
555555 −9.11151 −0.386762
556556 9.86425 0.418337
557557 −34.6068 −1.46634 −0.733168 0.680047i 0.761959π-0.761959\pi
−0.733168 + 0.680047i 0.761959π0.761959\pi
558558 17.5837 0.744378
559559 18.1687 0.768455
560560 8.57350 0.362297
561561 −0.810818 −0.0342327
562562 5.69332 0.240158
563563 23.7811 1.00225 0.501127 0.865374i 0.332919π-0.332919\pi
0.501127 + 0.865374i 0.332919π0.332919\pi
564564 −0.897945 −0.0378103
565565 6.52939 0.274693
566566 −23.7525 −0.998393
567567 −31.9886 −1.34340
568568 −4.23524 −0.177707
569569 10.9111 0.457415 0.228708 0.973495i 0.426550π-0.426550\pi
0.228708 + 0.973495i 0.426550π0.426550\pi
570570 0 0
571571 30.1936 1.26356 0.631781 0.775147i 0.282324π-0.282324\pi
0.631781 + 0.775147i 0.282324π0.282324\pi
572572 3.21775 0.134541
573573 −0.395595 −0.0165262
574574 16.8316 0.702538
575575 2.14870 0.0896072
576576 −2.83578 −0.118158
577577 −9.07937 −0.377979 −0.188990 0.981979i 0.560521π-0.560521\pi
−0.188990 + 0.981979i 0.560521π0.560521\pi
578578 12.9966 0.540587
579579 −0.310213 −0.0128920
580580 −4.36591 −0.181284
581581 27.3487 1.13461
582582 7.66095 0.317557
583583 −11.1217 −0.460613
584584 5.29840 0.219249
585585 18.4620 0.763311
586586 5.88842 0.243248
587587 −44.5960 −1.84067 −0.920337 0.391127i 0.872085π-0.872085\pi
−0.920337 + 0.391127i 0.872085π0.872085\pi
588588 4.43975 0.183092
589589 0 0
590590 2.30528 0.0949070
591591 8.29663 0.341278
592592 11.1129 0.456739
593593 −21.8531 −0.897398 −0.448699 0.893683i 0.648112π-0.648112\pi
−0.448699 + 0.893683i 0.648112π0.648112\pi
594594 2.36487 0.0970317
595595 −17.1543 −0.703259
596596 −17.3586 −0.711034
597597 3.22997 0.132194
598598 7.62814 0.311938
599599 −19.5950 −0.800631 −0.400316 0.916377i 0.631100π-0.631100\pi
−0.400316 + 0.916377i 0.631100π0.631100\pi
600600 0.367297 0.0149949
601601 −9.78831 −0.399274 −0.199637 0.979870i 0.563976π-0.563976\pi
−0.199637 + 0.979870i 0.563976π0.563976\pi
602602 23.9264 0.975166
603603 −5.30061 −0.215857
604604 19.9018 0.809791
605605 −2.02327 −0.0822576
606606 −6.49579 −0.263873
607607 −20.7831 −0.843560 −0.421780 0.906698i 0.638595π-0.638595\pi
−0.421780 + 0.906698i 0.638595π0.638595\pi
608608 0 0
609609 −3.70538 −0.150150
610610 6.05207 0.245041
611611 −7.13008 −0.288452
612612 5.67399 0.229357
613613 0.783957 0.0316637 0.0158319 0.999875i 0.494960π-0.494960\pi
0.0158319 + 0.999875i 0.494960π0.494960\pi
614614 8.36781 0.337697
615615 −3.25674 −0.131324
616616 4.23745 0.170732
617617 21.8237 0.878591 0.439295 0.898343i 0.355228π-0.355228\pi
0.439295 + 0.898343i 0.355228π0.355228\pi
618618 −1.08201 −0.0435250
619619 34.1019 1.37067 0.685335 0.728228i 0.259656π-0.259656\pi
0.685335 + 0.728228i 0.259656π0.259656\pi
620620 −12.5456 −0.503843
621621 5.60626 0.224972
622622 33.2576 1.33351
623623 −52.8071 −2.11567
624624 1.30395 0.0521997
625625 −19.6466 −0.785863
626626 −13.6874 −0.547058
627627 0 0
628628 18.1197 0.723055
629629 −22.2353 −0.886581
630630 24.3126 0.968637
631631 −33.1428 −1.31940 −0.659698 0.751531i 0.729316π-0.729316\pi
−0.659698 + 0.751531i 0.729316π0.729316\pi
632632 −5.14495 −0.204655
633633 −10.1575 −0.403724
634634 3.03012 0.120341
635635 −2.57046 −0.102005
636636 −4.50690 −0.178710
637637 35.2536 1.39680
638638 −2.15785 −0.0854300
639639 −12.0102 −0.475118
640640 2.02327 0.0799768
641641 1.65951 0.0655467 0.0327733 0.999463i 0.489566π-0.489566\pi
0.0327733 + 0.999463i 0.489566π0.489566\pi
642642 0.982267 0.0387670
643643 41.1209 1.62165 0.810825 0.585289i 0.199019π-0.199019\pi
0.810825 + 0.585289i 0.199019π0.199019\pi
644644 10.0455 0.395848
645645 −4.62950 −0.182286
646646 0 0
647647 −36.3298 −1.42827 −0.714135 0.700008i 0.753180π-0.753180\pi
−0.714135 + 0.700008i 0.753180π0.753180\pi
648648 −7.54902 −0.296554
649649 1.13939 0.0447248
650650 2.91650 0.114395
651651 −10.6475 −0.417310
652652 −5.12549 −0.200730
653653 5.76318 0.225531 0.112765 0.993622i 0.464029π-0.464029\pi
0.112765 + 0.993622i 0.464029π0.464029\pi
654654 4.60168 0.179940
655655 30.9947 1.21106
656656 3.97211 0.155085
657657 15.0251 0.586186
658658 −9.38959 −0.366044
659659 −4.73210 −0.184337 −0.0921683 0.995743i 0.529380π-0.529380\pi
−0.0921683 + 0.995743i 0.529380π0.529380\pi
660660 −0.819901 −0.0319146
661661 26.8507 1.04437 0.522186 0.852832i 0.325117π-0.325117\pi
0.522186 + 0.852832i 0.325117π0.325117\pi
662662 11.4410 0.444668
663663 −2.60901 −0.101325
664664 6.45404 0.250465
665665 0 0
666666 31.5139 1.22114
667667 −5.11549 −0.198072
668668 −15.6892 −0.607032
669669 −9.73568 −0.376403
670670 3.78187 0.146106
671671 2.99123 0.115475
672672 1.71717 0.0662411
673673 −47.7268 −1.83973 −0.919866 0.392233i 0.871703π-0.871703\pi
−0.919866 + 0.392233i 0.871703π0.871703\pi
674674 18.8740 0.727000
675675 2.14347 0.0825021
676676 −2.64608 −0.101772
677677 −12.2652 −0.471391 −0.235695 0.971827i 0.575737π-0.575737\pi
−0.235695 + 0.971827i 0.575737π0.575737\pi
678678 1.30775 0.0502240
679679 80.1086 3.07429
680680 −4.04827 −0.155244
681681 2.65766 0.101842
682682 −6.20065 −0.237435
683683 5.34681 0.204590 0.102295 0.994754i 0.467381π-0.467381\pi
0.102295 + 0.994754i 0.467381π0.467381\pi
684684 0 0
685685 20.9413 0.800127
686686 16.7633 0.640024
687687 2.00086 0.0763377
688688 5.64641 0.215267
689689 −35.7868 −1.36337
690690 −1.94369 −0.0739952
691691 −12.0130 −0.456996 −0.228498 0.973544i 0.573381π-0.573381\pi
−0.228498 + 0.973544i 0.573381π0.573381\pi
692692 12.9086 0.490712
693693 12.0165 0.456469
694694 −36.1443 −1.37202
695695 −19.9580 −0.757052
696696 −0.874437 −0.0331454
697697 −7.94761 −0.301037
698698 26.9542 1.02023
699699 −11.5452 −0.436679
700700 3.84074 0.145166
701701 −15.0463 −0.568291 −0.284146 0.958781i 0.591710π-0.591710\pi
−0.284146 + 0.958781i 0.591710π0.591710\pi
702702 7.60956 0.287204
703703 0 0
704704 1.00000 0.0376889
705705 1.81679 0.0684241
706706 −29.3403 −1.10424
707707 −67.9249 −2.55458
708708 0.461720 0.0173525
709709 −8.24255 −0.309556 −0.154778 0.987949i 0.549466π-0.549466\pi
−0.154778 + 0.987949i 0.549466π0.549466\pi
710710 8.56904 0.321590
711711 −14.5900 −0.547166
712712 −12.4620 −0.467033
713713 −14.6995 −0.550502
714714 −3.43580 −0.128582
715715 −6.51038 −0.243474
716716 14.1628 0.529288
717717 −4.80887 −0.179591
718718 14.6477 0.546648
719719 −46.4425 −1.73201 −0.866007 0.500031i 0.833322π-0.833322\pi
−0.866007 + 0.500031i 0.833322π0.833322\pi
720720 5.73756 0.213826
721721 −11.3143 −0.421368
722722 0 0
723723 −3.49004 −0.129796
724724 −9.47135 −0.352000
725725 −1.95583 −0.0726376
726726 −0.405236 −0.0150397
727727 −14.3843 −0.533483 −0.266742 0.963768i 0.585947π-0.585947\pi
−0.266742 + 0.963768i 0.585947π0.585947\pi
728728 13.6351 0.505349
729729 −18.5324 −0.686386
730730 −10.7201 −0.396769
731731 −11.2976 −0.417858
732732 1.21215 0.0448025
733733 2.26250 0.0835672 0.0417836 0.999127i 0.486696π-0.486696\pi
0.0417836 + 0.999127i 0.486696π0.486696\pi
734734 32.1003 1.18484
735735 −8.98282 −0.331336
736736 2.37064 0.0873831
737737 1.86919 0.0688524
738738 11.2640 0.414635
739739 12.9882 0.477777 0.238888 0.971047i 0.423217π-0.423217\pi
0.238888 + 0.971047i 0.423217π0.423217\pi
740740 −22.4845 −0.826545
741741 0 0
742742 −47.1276 −1.73011
743743 12.4356 0.456216 0.228108 0.973636i 0.426746π-0.426746\pi
0.228108 + 0.973636i 0.426746π0.426746\pi
744744 −2.51273 −0.0921210
745745 35.1210 1.28674
746746 −35.7170 −1.30769
747747 18.3023 0.669645
748748 −2.00085 −0.0731585
749749 10.2713 0.375306
750750 −4.84265 −0.176829
751751 22.9170 0.836253 0.418126 0.908389i 0.362687π-0.362687\pi
0.418126 + 0.908389i 0.362687π0.362687\pi
752752 −2.21586 −0.0808040
753753 10.2032 0.371824
754754 −6.94341 −0.252864
755755 −40.2666 −1.46545
756756 10.0210 0.364461
757757 −14.0288 −0.509886 −0.254943 0.966956i 0.582057π-0.582057\pi
−0.254943 + 0.966956i 0.582057π0.582057\pi
758758 −35.1473 −1.27661
759759 −0.960670 −0.0348701
760760 0 0
761761 −20.9226 −0.758443 −0.379222 0.925306i 0.623808π-0.623808\pi
−0.379222 + 0.925306i 0.623808π0.623808\pi
762762 −0.514830 −0.0186503
763763 48.1186 1.74201
764764 −0.976211 −0.0353181
765765 −11.4800 −0.415061
766766 22.9790 0.830264
767767 3.66626 0.132381
768768 0.405236 0.0146227
769769 23.4730 0.846459 0.423229 0.906023i 0.360896π-0.360896\pi
0.423229 + 0.906023i 0.360896π0.360896\pi
770770 −8.57350 −0.308968
771771 0.140106 0.00504579
772772 −0.765511 −0.0275514
773773 29.0521 1.04493 0.522465 0.852661i 0.325012π-0.325012\pi
0.522465 + 0.852661i 0.325012π0.325012\pi
774774 16.0120 0.575539
775775 −5.62014 −0.201882
776776 18.9049 0.678647
777777 −19.0827 −0.684590
778778 16.9298 0.606964
779779 0 0
780780 −2.63824 −0.0944640
781781 4.23524 0.151549
782782 −4.74331 −0.169621
783783 −5.10302 −0.182367
784784 10.9560 0.391285
785785 −36.6611 −1.30849
786786 6.20785 0.221427
787787 25.6558 0.914530 0.457265 0.889330i 0.348829π-0.348829\pi
0.457265 + 0.889330i 0.348829π0.348829\pi
788788 20.4736 0.729341
789789 −2.11378 −0.0752524
790790 10.4096 0.370358
791791 13.6749 0.486222
792792 2.83578 0.100765
793793 9.62503 0.341795
794794 −14.8799 −0.528070
795795 9.11868 0.323406
796796 7.97061 0.282511
797797 −30.7576 −1.08949 −0.544746 0.838601i 0.683374π-0.683374\pi
−0.544746 + 0.838601i 0.683374π0.683374\pi
798798 0 0
799799 4.43361 0.156850
800800 0.906380 0.0320454
801801 −35.3395 −1.24866
802802 27.9982 0.988650
803803 −5.29840 −0.186977
804804 0.757461 0.0267136
805805 −20.3247 −0.716353
806806 −19.9521 −0.702784
807807 −9.21681 −0.324447
808808 −16.0297 −0.563921
809809 10.6369 0.373972 0.186986 0.982363i 0.440128π-0.440128\pi
0.186986 + 0.982363i 0.440128π0.440128\pi
810810 15.2737 0.536663
811811 −19.9177 −0.699405 −0.349703 0.936861i 0.613717π-0.613717\pi
−0.349703 + 0.936861i 0.613717π0.613717\pi
812812 −9.14377 −0.320883
813813 −1.52858 −0.0536098
814814 −11.1129 −0.389508
815815 10.3703 0.363254
816816 −0.810818 −0.0283843
817817 0 0
818818 −17.1697 −0.600324
819819 38.6661 1.35110
820820 −8.03665 −0.280652
821821 −2.44878 −0.0854631 −0.0427315 0.999087i 0.513606π-0.513606\pi
−0.0427315 + 0.999087i 0.513606π0.513606\pi
822822 4.19429 0.146293
823823 30.7341 1.07132 0.535662 0.844433i 0.320062π-0.320062\pi
0.535662 + 0.844433i 0.320062π0.320062\pi
824824 −2.67008 −0.0930168
825825 −0.367297 −0.0127877
826826 4.82809 0.167991
827827 −18.8819 −0.656588 −0.328294 0.944576i 0.606474π-0.606474\pi
−0.328294 + 0.944576i 0.606474π0.606474\pi
828828 6.72264 0.233628
829829 35.1837 1.22198 0.610989 0.791639i 0.290772π-0.290772\pi
0.610989 + 0.791639i 0.290772π0.290772\pi
830830 −13.0583 −0.453259
831831 −10.0596 −0.348965
832832 3.21775 0.111555
833833 −21.9213 −0.759529
834834 −3.99735 −0.138417
835835 31.7434 1.09853
836836 0 0
837837 −14.6637 −0.506853
838838 9.55038 0.329912
839839 20.8157 0.718637 0.359319 0.933215i 0.383009π-0.383009\pi
0.359319 + 0.933215i 0.383009π0.383009\pi
840840 −3.47429 −0.119874
841841 −24.3437 −0.839438
842842 −26.0989 −0.899428
843843 −2.30714 −0.0794620
844844 −25.0656 −0.862794
845845 5.35374 0.184174
846846 −6.28370 −0.216038
847847 −4.23745 −0.145600
848848 −11.1217 −0.381920
849849 9.62537 0.330342
850850 −1.81353 −0.0622037
851851 −26.3448 −0.903088
852852 1.71627 0.0587985
853853 42.1522 1.44326 0.721632 0.692277i 0.243392π-0.243392\pi
0.721632 + 0.692277i 0.243392π0.243392\pi
854854 12.6752 0.433736
855855 0 0
856856 2.42394 0.0828486
857857 3.06453 0.104682 0.0523412 0.998629i 0.483332π-0.483332\pi
0.0523412 + 0.998629i 0.483332π0.483332\pi
858858 −1.30395 −0.0445160
859859 36.3872 1.24151 0.620757 0.784003i 0.286825π-0.286825\pi
0.620757 + 0.784003i 0.286825π0.286825\pi
860860 −11.4242 −0.389562
861861 −6.82077 −0.232451
862862 24.2576 0.826218
863863 −19.3750 −0.659531 −0.329766 0.944063i 0.606970π-0.606970\pi
−0.329766 + 0.944063i 0.606970π0.606970\pi
864864 2.36487 0.0804545
865865 −26.1176 −0.888025
866866 −35.3246 −1.20038
867867 −5.26668 −0.178866
868868 −26.2750 −0.891830
869869 5.14495 0.174530
870870 1.76922 0.0599822
871871 6.01457 0.203796
872872 11.3556 0.384548
873873 53.6103 1.81443
874874 0 0
875875 −50.6384 −1.71189
876876 −2.14710 −0.0725439
877877 −7.06281 −0.238494 −0.119247 0.992865i 0.538048π-0.538048\pi
−0.119247 + 0.992865i 0.538048π0.538048\pi
878878 16.6205 0.560915
879879 −2.38620 −0.0804845
880880 −2.02327 −0.0682044
881881 21.6102 0.728067 0.364033 0.931386i 0.381399π-0.381399\pi
0.364033 + 0.931386i 0.381399π0.381399\pi
882882 31.0688 1.04614
883883 −12.1597 −0.409206 −0.204603 0.978845i 0.565590π-0.565590\pi
−0.204603 + 0.978845i 0.565590π0.565590\pi
884884 −6.43825 −0.216542
885885 −0.934183 −0.0314022
886886 −20.5710 −0.691096
887887 −47.3042 −1.58832 −0.794160 0.607709i 0.792089π-0.792089\pi
−0.794160 + 0.607709i 0.792089π0.792089\pi
888888 −4.50336 −0.151123
889889 −5.38345 −0.180555
890890 25.2140 0.845175
891891 7.54902 0.252902
892892 −24.0247 −0.804407
893893 0 0
894894 7.03431 0.235262
895895 −28.6551 −0.957835
896896 4.23745 0.141563
897897 −3.09120 −0.103212
898898 −33.5618 −1.11997
899899 13.3801 0.446250
900900 2.57030 0.0856766
901901 22.2529 0.741350
902902 −3.97211 −0.132257
903903 −9.69582 −0.322657
904904 3.22715 0.107333
905905 19.1631 0.637003
906906 −8.06491 −0.267939
907907 15.5394 0.515977 0.257988 0.966148i 0.416940π-0.416940\pi
0.257988 + 0.966148i 0.416940π0.416940\pi
908908 6.55830 0.217645
909909 −45.4566 −1.50770
910910 −27.5874 −0.914513
911911 −52.4184 −1.73670 −0.868349 0.495954i 0.834818π-0.834818\pi
−0.868349 + 0.495954i 0.834818π0.834818\pi
912912 0 0
913913 −6.45404 −0.213598
914914 25.4237 0.840942
915915 −2.45251 −0.0810776
916916 4.93753 0.163141
917917 64.9140 2.14365
918918 −4.73176 −0.156171
919919 35.8907 1.18392 0.591962 0.805966i 0.298354π-0.298354\pi
0.591962 + 0.805966i 0.298354π0.298354\pi
920920 −4.79645 −0.158134
921921 −3.39093 −0.111735
922922 24.9356 0.821211
923923 13.6280 0.448570
924924 −1.71717 −0.0564906
925925 −10.0725 −0.331183
926926 35.0253 1.15100
927927 −7.57178 −0.248690
928928 −2.15785 −0.0708348
929929 −10.4081 −0.341477 −0.170739 0.985316i 0.554615π-0.554615\pi
−0.170739 + 0.985316i 0.554615π0.554615\pi
930930 5.08392 0.166708
931931 0 0
932932 −28.4901 −0.933223
933933 −13.4771 −0.441222
934934 −15.0345 −0.491945
935935 4.04827 0.132392
936936 9.12484 0.298255
937937 −53.1072 −1.73494 −0.867469 0.497492i 0.834254π-0.834254\pi
−0.867469 + 0.497492i 0.834254π0.834254\pi
938938 7.92058 0.258616
939939 5.54662 0.181007
940940 4.48328 0.146228
941941 −6.13305 −0.199932 −0.0999658 0.994991i 0.531873π-0.531873\pi
−0.0999658 + 0.994991i 0.531873π0.531873\pi
942942 −7.34275 −0.239240
943943 −9.41646 −0.306642
944944 1.13939 0.0370838
945945 −20.2752 −0.659553
946946 −5.64641 −0.183581
947947 22.1095 0.718463 0.359231 0.933249i 0.383039π-0.383039\pi
0.359231 + 0.933249i 0.383039π0.383039\pi
948948 2.08492 0.0677150
949949 −17.0489 −0.553432
950950 0 0
951951 −1.22791 −0.0398178
952952 −8.47852 −0.274790
953953 −47.0512 −1.52414 −0.762069 0.647496i 0.775816π-0.775816\pi
−0.762069 + 0.647496i 0.775816π0.775816\pi
954954 −31.5387 −1.02110
955955 1.97514 0.0639139
956956 −11.8669 −0.383801
957957 0.874437 0.0282665
958958 28.0302 0.905616
959959 43.8586 1.41627
960960 −0.819901 −0.0264622
961961 7.44809 0.240261
962962 −35.7586 −1.15290
963963 6.87377 0.221504
964964 −8.61238 −0.277386
965965 1.54884 0.0498588
966966 −4.07079 −0.130976
967967 −23.4958 −0.755574 −0.377787 0.925893i 0.623315π-0.623315\pi
−0.377787 + 0.925893i 0.623315π0.623315\pi
968968 −1.00000 −0.0321412
969969 0 0
970970 −38.2498 −1.22813
971971 −20.8584 −0.669379 −0.334689 0.942329i 0.608631π-0.608631\pi
−0.334689 + 0.942329i 0.608631π0.608631\pi
972972 10.1537 0.325681
973973 −41.7993 −1.34002
974974 −31.1365 −0.997677
975975 −1.18187 −0.0378502
976976 2.99123 0.0957470
977977 27.5388 0.881043 0.440522 0.897742i 0.354794π-0.354794\pi
0.440522 + 0.897742i 0.354794π0.354794\pi
978978 2.07703 0.0664162
979979 12.4620 0.398287
980980 −22.1669 −0.708096
981981 32.2019 1.02813
982982 −35.4580 −1.13151
983983 49.0052 1.56302 0.781511 0.623892i 0.214449π-0.214449\pi
0.781511 + 0.623892i 0.214449π0.214449\pi
984984 −1.60964 −0.0513135
985985 −41.4236 −1.31987
986986 4.31754 0.137498
987987 3.80500 0.121114
988988 0 0
989989 −13.3856 −0.425638
990990 −5.73756 −0.182351
991991 41.5666 1.32041 0.660203 0.751088i 0.270470π-0.270470\pi
0.660203 + 0.751088i 0.270470π0.270470\pi
992992 −6.20065 −0.196871
993993 −4.63631 −0.147129
994994 17.9466 0.569233
995995 −16.1267 −0.511250
996996 −2.61541 −0.0828724
997997 −35.3686 −1.12013 −0.560067 0.828447i 0.689225π-0.689225\pi
−0.560067 + 0.828447i 0.689225π0.689225\pi
998998 −33.3097 −1.05440
999999 −26.2806 −0.831482
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.bn.1.5 8
19.18 odd 2 7942.2.a.bq.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7942.2.a.bn.1.5 8 1.1 even 1 trivial
7942.2.a.bq.1.4 yes 8 19.18 odd 2