Properties

Label 80.12.a.b.1.1
Level $80$
Weight $12$
Character 80.1
Self dual yes
Analytic conductor $61.467$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,12,Mod(1,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.4674544448\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 80.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-520.000 q^{3} +3125.00 q^{5} -15148.0 q^{7} +93253.0 q^{9} -369324. q^{11} +877926. q^{13} -1.62500e6 q^{15} +3.28871e6 q^{17} -1.56080e6 q^{19} +7.87696e6 q^{21} +1.28994e7 q^{23} +9.76562e6 q^{25} +4.36249e7 q^{27} +4.63225e7 q^{29} +5.94275e7 q^{31} +1.92048e8 q^{33} -4.73375e7 q^{35} +6.66072e8 q^{37} -4.56522e8 q^{39} +6.74573e8 q^{41} -1.18838e9 q^{43} +2.91416e8 q^{45} -2.26148e9 q^{47} -1.74786e9 q^{49} -1.71013e9 q^{51} -3.09924e9 q^{53} -1.15414e9 q^{55} +8.11614e8 q^{57} +1.38382e9 q^{59} -1.23091e9 q^{61} -1.41260e9 q^{63} +2.74352e9 q^{65} -1.75593e10 q^{67} -6.70767e9 q^{69} +2.78727e9 q^{71} -2.12373e10 q^{73} -5.07812e9 q^{75} +5.59452e9 q^{77} +4.30659e10 q^{79} -3.92044e10 q^{81} +2.15524e10 q^{83} +1.02772e10 q^{85} -2.40877e10 q^{87} -9.21446e10 q^{89} -1.32988e10 q^{91} -3.09023e10 q^{93} -4.87749e9 q^{95} -8.04846e10 q^{97} -3.44406e10 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −520.000 −1.23548 −0.617741 0.786382i \(-0.711952\pi\)
−0.617741 + 0.786382i \(0.711952\pi\)
\(4\) 0 0
\(5\) 3125.00 0.447214
\(6\) 0 0
\(7\) −15148.0 −0.340656 −0.170328 0.985387i \(-0.554483\pi\)
−0.170328 + 0.985387i \(0.554483\pi\)
\(8\) 0 0
\(9\) 93253.0 0.526416
\(10\) 0 0
\(11\) −369324. −0.691429 −0.345715 0.938340i \(-0.612363\pi\)
−0.345715 + 0.938340i \(0.612363\pi\)
\(12\) 0 0
\(13\) 877926. 0.655797 0.327899 0.944713i \(-0.393660\pi\)
0.327899 + 0.944713i \(0.393660\pi\)
\(14\) 0 0
\(15\) −1.62500e6 −0.552524
\(16\) 0 0
\(17\) 3.28871e6 0.561767 0.280883 0.959742i \(-0.409373\pi\)
0.280883 + 0.959742i \(0.409373\pi\)
\(18\) 0 0
\(19\) −1.56080e6 −0.144611 −0.0723055 0.997383i \(-0.523036\pi\)
−0.0723055 + 0.997383i \(0.523036\pi\)
\(20\) 0 0
\(21\) 7.87696e6 0.420874
\(22\) 0 0
\(23\) 1.28994e7 0.417893 0.208947 0.977927i \(-0.432996\pi\)
0.208947 + 0.977927i \(0.432996\pi\)
\(24\) 0 0
\(25\) 9.76562e6 0.200000
\(26\) 0 0
\(27\) 4.36249e7 0.585105
\(28\) 0 0
\(29\) 4.63225e7 0.419375 0.209688 0.977768i \(-0.432755\pi\)
0.209688 + 0.977768i \(0.432755\pi\)
\(30\) 0 0
\(31\) 5.94275e7 0.372819 0.186410 0.982472i \(-0.440315\pi\)
0.186410 + 0.982472i \(0.440315\pi\)
\(32\) 0 0
\(33\) 1.92048e8 0.854248
\(34\) 0 0
\(35\) −4.73375e7 −0.152346
\(36\) 0 0
\(37\) 6.66072e8 1.57911 0.789554 0.613681i \(-0.210312\pi\)
0.789554 + 0.613681i \(0.210312\pi\)
\(38\) 0 0
\(39\) −4.56522e8 −0.810226
\(40\) 0 0
\(41\) 6.74573e8 0.909322 0.454661 0.890664i \(-0.349760\pi\)
0.454661 + 0.890664i \(0.349760\pi\)
\(42\) 0 0
\(43\) −1.18838e9 −1.23276 −0.616381 0.787448i \(-0.711402\pi\)
−0.616381 + 0.787448i \(0.711402\pi\)
\(44\) 0 0
\(45\) 2.91416e8 0.235420
\(46\) 0 0
\(47\) −2.26148e9 −1.43832 −0.719159 0.694846i \(-0.755473\pi\)
−0.719159 + 0.694846i \(0.755473\pi\)
\(48\) 0 0
\(49\) −1.74786e9 −0.883953
\(50\) 0 0
\(51\) −1.71013e9 −0.694053
\(52\) 0 0
\(53\) −3.09924e9 −1.01798 −0.508988 0.860773i \(-0.669980\pi\)
−0.508988 + 0.860773i \(0.669980\pi\)
\(54\) 0 0
\(55\) −1.15414e9 −0.309217
\(56\) 0 0
\(57\) 8.11614e8 0.178664
\(58\) 0 0
\(59\) 1.38382e9 0.251996 0.125998 0.992030i \(-0.459787\pi\)
0.125998 + 0.992030i \(0.459787\pi\)
\(60\) 0 0
\(61\) −1.23091e9 −0.186600 −0.0932999 0.995638i \(-0.529742\pi\)
−0.0932999 + 0.995638i \(0.529742\pi\)
\(62\) 0 0
\(63\) −1.41260e9 −0.179327
\(64\) 0 0
\(65\) 2.74352e9 0.293281
\(66\) 0 0
\(67\) −1.75593e10 −1.58890 −0.794448 0.607332i \(-0.792240\pi\)
−0.794448 + 0.607332i \(0.792240\pi\)
\(68\) 0 0
\(69\) −6.70767e9 −0.516300
\(70\) 0 0
\(71\) 2.78727e9 0.183341 0.0916703 0.995789i \(-0.470779\pi\)
0.0916703 + 0.995789i \(0.470779\pi\)
\(72\) 0 0
\(73\) −2.12373e10 −1.19901 −0.599506 0.800370i \(-0.704636\pi\)
−0.599506 + 0.800370i \(0.704636\pi\)
\(74\) 0 0
\(75\) −5.07812e9 −0.247096
\(76\) 0 0
\(77\) 5.59452e9 0.235540
\(78\) 0 0
\(79\) 4.30659e10 1.57465 0.787326 0.616537i \(-0.211465\pi\)
0.787326 + 0.616537i \(0.211465\pi\)
\(80\) 0 0
\(81\) −3.92044e10 −1.24930
\(82\) 0 0
\(83\) 2.15524e10 0.600574 0.300287 0.953849i \(-0.402918\pi\)
0.300287 + 0.953849i \(0.402918\pi\)
\(84\) 0 0
\(85\) 1.02772e10 0.251230
\(86\) 0 0
\(87\) −2.40877e10 −0.518131
\(88\) 0 0
\(89\) −9.21446e10 −1.74914 −0.874570 0.484899i \(-0.838856\pi\)
−0.874570 + 0.484899i \(0.838856\pi\)
\(90\) 0 0
\(91\) −1.32988e10 −0.223401
\(92\) 0 0
\(93\) −3.09023e10 −0.460612
\(94\) 0 0
\(95\) −4.87749e9 −0.0646720
\(96\) 0 0
\(97\) −8.04846e10 −0.951630 −0.475815 0.879545i \(-0.657847\pi\)
−0.475815 + 0.879545i \(0.657847\pi\)
\(98\) 0 0
\(99\) −3.44406e10 −0.363979
\(100\) 0 0
\(101\) −2.70977e9 −0.0256545 −0.0128273 0.999918i \(-0.504083\pi\)
−0.0128273 + 0.999918i \(0.504083\pi\)
\(102\) 0 0
\(103\) −1.46761e11 −1.24740 −0.623700 0.781664i \(-0.714371\pi\)
−0.623700 + 0.781664i \(0.714371\pi\)
\(104\) 0 0
\(105\) 2.46155e10 0.188221
\(106\) 0 0
\(107\) −8.43362e10 −0.581304 −0.290652 0.956829i \(-0.593872\pi\)
−0.290652 + 0.956829i \(0.593872\pi\)
\(108\) 0 0
\(109\) 1.78870e11 1.11351 0.556754 0.830678i \(-0.312047\pi\)
0.556754 + 0.830678i \(0.312047\pi\)
\(110\) 0 0
\(111\) −3.46358e11 −1.95096
\(112\) 0 0
\(113\) −1.97874e11 −1.01032 −0.505159 0.863026i \(-0.668566\pi\)
−0.505159 + 0.863026i \(0.668566\pi\)
\(114\) 0 0
\(115\) 4.03105e10 0.186888
\(116\) 0 0
\(117\) 8.18692e10 0.345222
\(118\) 0 0
\(119\) −4.98173e10 −0.191369
\(120\) 0 0
\(121\) −1.48911e11 −0.521926
\(122\) 0 0
\(123\) −3.50778e11 −1.12345
\(124\) 0 0
\(125\) 3.05176e10 0.0894427
\(126\) 0 0
\(127\) 4.77982e11 1.28378 0.641891 0.766796i \(-0.278150\pi\)
0.641891 + 0.766796i \(0.278150\pi\)
\(128\) 0 0
\(129\) 6.17959e11 1.52306
\(130\) 0 0
\(131\) −8.74294e10 −0.198000 −0.0990001 0.995087i \(-0.531564\pi\)
−0.0990001 + 0.995087i \(0.531564\pi\)
\(132\) 0 0
\(133\) 2.36429e10 0.0492626
\(134\) 0 0
\(135\) 1.36328e11 0.261667
\(136\) 0 0
\(137\) −7.55489e11 −1.33741 −0.668705 0.743527i \(-0.733151\pi\)
−0.668705 + 0.743527i \(0.733151\pi\)
\(138\) 0 0
\(139\) 7.97051e11 1.30288 0.651440 0.758700i \(-0.274165\pi\)
0.651440 + 0.758700i \(0.274165\pi\)
\(140\) 0 0
\(141\) 1.17597e12 1.77702
\(142\) 0 0
\(143\) −3.24239e11 −0.453437
\(144\) 0 0
\(145\) 1.44758e11 0.187550
\(146\) 0 0
\(147\) 9.08890e11 1.09211
\(148\) 0 0
\(149\) 1.28254e12 1.43069 0.715347 0.698770i \(-0.246269\pi\)
0.715347 + 0.698770i \(0.246269\pi\)
\(150\) 0 0
\(151\) −2.19927e11 −0.227985 −0.113992 0.993482i \(-0.536364\pi\)
−0.113992 + 0.993482i \(0.536364\pi\)
\(152\) 0 0
\(153\) 3.06682e11 0.295723
\(154\) 0 0
\(155\) 1.85711e11 0.166730
\(156\) 0 0
\(157\) −1.16452e12 −0.974316 −0.487158 0.873314i \(-0.661966\pi\)
−0.487158 + 0.873314i \(0.661966\pi\)
\(158\) 0 0
\(159\) 1.61160e12 1.25769
\(160\) 0 0
\(161\) −1.95400e11 −0.142358
\(162\) 0 0
\(163\) 7.69042e11 0.523502 0.261751 0.965135i \(-0.415700\pi\)
0.261751 + 0.965135i \(0.415700\pi\)
\(164\) 0 0
\(165\) 6.00151e11 0.382032
\(166\) 0 0
\(167\) 1.29682e12 0.772572 0.386286 0.922379i \(-0.373758\pi\)
0.386286 + 0.922379i \(0.373758\pi\)
\(168\) 0 0
\(169\) −1.02141e12 −0.569930
\(170\) 0 0
\(171\) −1.45549e11 −0.0761255
\(172\) 0 0
\(173\) −3.03670e12 −1.48987 −0.744935 0.667138i \(-0.767519\pi\)
−0.744935 + 0.667138i \(0.767519\pi\)
\(174\) 0 0
\(175\) −1.47930e11 −0.0681312
\(176\) 0 0
\(177\) −7.19586e11 −0.311336
\(178\) 0 0
\(179\) 2.78170e12 1.13141 0.565704 0.824608i \(-0.308604\pi\)
0.565704 + 0.824608i \(0.308604\pi\)
\(180\) 0 0
\(181\) 4.29653e11 0.164394 0.0821970 0.996616i \(-0.473806\pi\)
0.0821970 + 0.996616i \(0.473806\pi\)
\(182\) 0 0
\(183\) 6.40071e11 0.230541
\(184\) 0 0
\(185\) 2.08148e12 0.706199
\(186\) 0 0
\(187\) −1.21460e12 −0.388422
\(188\) 0 0
\(189\) −6.60830e11 −0.199319
\(190\) 0 0
\(191\) −5.79538e12 −1.64967 −0.824837 0.565370i \(-0.808733\pi\)
−0.824837 + 0.565370i \(0.808733\pi\)
\(192\) 0 0
\(193\) 1.38281e12 0.371705 0.185853 0.982578i \(-0.440495\pi\)
0.185853 + 0.982578i \(0.440495\pi\)
\(194\) 0 0
\(195\) −1.42663e12 −0.362344
\(196\) 0 0
\(197\) 1.44241e12 0.346358 0.173179 0.984890i \(-0.444596\pi\)
0.173179 + 0.984890i \(0.444596\pi\)
\(198\) 0 0
\(199\) 1.39119e12 0.316006 0.158003 0.987439i \(-0.449494\pi\)
0.158003 + 0.987439i \(0.449494\pi\)
\(200\) 0 0
\(201\) 9.13083e12 1.96305
\(202\) 0 0
\(203\) −7.01693e11 −0.142863
\(204\) 0 0
\(205\) 2.10804e12 0.406661
\(206\) 0 0
\(207\) 1.20291e12 0.219986
\(208\) 0 0
\(209\) 5.76439e11 0.0999883
\(210\) 0 0
\(211\) −6.37749e12 −1.04978 −0.524888 0.851172i \(-0.675893\pi\)
−0.524888 + 0.851172i \(0.675893\pi\)
\(212\) 0 0
\(213\) −1.44938e12 −0.226514
\(214\) 0 0
\(215\) −3.71369e12 −0.551308
\(216\) 0 0
\(217\) −9.00208e11 −0.127003
\(218\) 0 0
\(219\) 1.10434e13 1.48136
\(220\) 0 0
\(221\) 2.88724e12 0.368405
\(222\) 0 0
\(223\) −2.78487e12 −0.338165 −0.169082 0.985602i \(-0.554080\pi\)
−0.169082 + 0.985602i \(0.554080\pi\)
\(224\) 0 0
\(225\) 9.10674e11 0.105283
\(226\) 0 0
\(227\) 1.98933e11 0.0219061 0.0109530 0.999940i \(-0.496513\pi\)
0.0109530 + 0.999940i \(0.496513\pi\)
\(228\) 0 0
\(229\) −1.08817e13 −1.14183 −0.570917 0.821008i \(-0.693412\pi\)
−0.570917 + 0.821008i \(0.693412\pi\)
\(230\) 0 0
\(231\) −2.90915e12 −0.291005
\(232\) 0 0
\(233\) 3.07714e12 0.293555 0.146777 0.989170i \(-0.453110\pi\)
0.146777 + 0.989170i \(0.453110\pi\)
\(234\) 0 0
\(235\) −7.06713e12 −0.643235
\(236\) 0 0
\(237\) −2.23943e13 −1.94545
\(238\) 0 0
\(239\) −1.87849e13 −1.55819 −0.779096 0.626905i \(-0.784321\pi\)
−0.779096 + 0.626905i \(0.784321\pi\)
\(240\) 0 0
\(241\) 5.78763e12 0.458571 0.229286 0.973359i \(-0.426361\pi\)
0.229286 + 0.973359i \(0.426361\pi\)
\(242\) 0 0
\(243\) 1.26583e13 0.958386
\(244\) 0 0
\(245\) −5.46208e12 −0.395316
\(246\) 0 0
\(247\) −1.37026e12 −0.0948355
\(248\) 0 0
\(249\) −1.12073e13 −0.741998
\(250\) 0 0
\(251\) −1.41941e13 −0.899297 −0.449649 0.893206i \(-0.648451\pi\)
−0.449649 + 0.893206i \(0.648451\pi\)
\(252\) 0 0
\(253\) −4.76405e12 −0.288944
\(254\) 0 0
\(255\) −5.34415e12 −0.310390
\(256\) 0 0
\(257\) −2.78713e13 −1.55069 −0.775345 0.631538i \(-0.782424\pi\)
−0.775345 + 0.631538i \(0.782424\pi\)
\(258\) 0 0
\(259\) −1.00897e13 −0.537933
\(260\) 0 0
\(261\) 4.31971e12 0.220766
\(262\) 0 0
\(263\) −7.67167e12 −0.375953 −0.187976 0.982174i \(-0.560193\pi\)
−0.187976 + 0.982174i \(0.560193\pi\)
\(264\) 0 0
\(265\) −9.68512e12 −0.455253
\(266\) 0 0
\(267\) 4.79152e13 2.16103
\(268\) 0 0
\(269\) 1.49027e12 0.0645100 0.0322550 0.999480i \(-0.489731\pi\)
0.0322550 + 0.999480i \(0.489731\pi\)
\(270\) 0 0
\(271\) −1.92607e13 −0.800461 −0.400231 0.916414i \(-0.631070\pi\)
−0.400231 + 0.916414i \(0.631070\pi\)
\(272\) 0 0
\(273\) 6.91539e12 0.276008
\(274\) 0 0
\(275\) −3.60668e12 −0.138286
\(276\) 0 0
\(277\) −3.27599e13 −1.20699 −0.603496 0.797366i \(-0.706226\pi\)
−0.603496 + 0.797366i \(0.706226\pi\)
\(278\) 0 0
\(279\) 5.54180e12 0.196258
\(280\) 0 0
\(281\) 2.97179e13 1.01189 0.505945 0.862566i \(-0.331144\pi\)
0.505945 + 0.862566i \(0.331144\pi\)
\(282\) 0 0
\(283\) 4.71296e13 1.54336 0.771681 0.636009i \(-0.219416\pi\)
0.771681 + 0.636009i \(0.219416\pi\)
\(284\) 0 0
\(285\) 2.53629e12 0.0799011
\(286\) 0 0
\(287\) −1.02184e13 −0.309766
\(288\) 0 0
\(289\) −2.34563e13 −0.684418
\(290\) 0 0
\(291\) 4.18520e13 1.17572
\(292\) 0 0
\(293\) 5.66352e13 1.53220 0.766099 0.642723i \(-0.222195\pi\)
0.766099 + 0.642723i \(0.222195\pi\)
\(294\) 0 0
\(295\) 4.32444e12 0.112696
\(296\) 0 0
\(297\) −1.61117e13 −0.404558
\(298\) 0 0
\(299\) 1.13247e13 0.274053
\(300\) 0 0
\(301\) 1.80016e13 0.419948
\(302\) 0 0
\(303\) 1.40908e12 0.0316957
\(304\) 0 0
\(305\) −3.84658e12 −0.0834499
\(306\) 0 0
\(307\) −1.69885e13 −0.355545 −0.177773 0.984072i \(-0.556889\pi\)
−0.177773 + 0.984072i \(0.556889\pi\)
\(308\) 0 0
\(309\) 7.63157e13 1.54114
\(310\) 0 0
\(311\) −3.16551e13 −0.616967 −0.308483 0.951230i \(-0.599821\pi\)
−0.308483 + 0.951230i \(0.599821\pi\)
\(312\) 0 0
\(313\) 1.68954e13 0.317889 0.158944 0.987288i \(-0.449191\pi\)
0.158944 + 0.987288i \(0.449191\pi\)
\(314\) 0 0
\(315\) −4.41436e12 −0.0801974
\(316\) 0 0
\(317\) 8.33034e13 1.46163 0.730814 0.682577i \(-0.239141\pi\)
0.730814 + 0.682577i \(0.239141\pi\)
\(318\) 0 0
\(319\) −1.71080e13 −0.289968
\(320\) 0 0
\(321\) 4.38548e13 0.718191
\(322\) 0 0
\(323\) −5.13300e12 −0.0812376
\(324\) 0 0
\(325\) 8.57350e12 0.131159
\(326\) 0 0
\(327\) −9.30127e13 −1.37572
\(328\) 0 0
\(329\) 3.42569e13 0.489972
\(330\) 0 0
\(331\) 8.02352e13 1.10997 0.554984 0.831861i \(-0.312724\pi\)
0.554984 + 0.831861i \(0.312724\pi\)
\(332\) 0 0
\(333\) 6.21132e13 0.831268
\(334\) 0 0
\(335\) −5.48728e13 −0.710576
\(336\) 0 0
\(337\) −4.75182e13 −0.595518 −0.297759 0.954641i \(-0.596239\pi\)
−0.297759 + 0.954641i \(0.596239\pi\)
\(338\) 0 0
\(339\) 1.02895e14 1.24823
\(340\) 0 0
\(341\) −2.19480e13 −0.257778
\(342\) 0 0
\(343\) 5.64292e13 0.641780
\(344\) 0 0
\(345\) −2.09615e13 −0.230896
\(346\) 0 0
\(347\) −6.60009e13 −0.704268 −0.352134 0.935950i \(-0.614544\pi\)
−0.352134 + 0.935950i \(0.614544\pi\)
\(348\) 0 0
\(349\) −2.58510e12 −0.0267262 −0.0133631 0.999911i \(-0.504254\pi\)
−0.0133631 + 0.999911i \(0.504254\pi\)
\(350\) 0 0
\(351\) 3.82994e13 0.383710
\(352\) 0 0
\(353\) −7.12598e13 −0.691965 −0.345982 0.938241i \(-0.612454\pi\)
−0.345982 + 0.938241i \(0.612454\pi\)
\(354\) 0 0
\(355\) 8.71023e12 0.0819924
\(356\) 0 0
\(357\) 2.59050e13 0.236433
\(358\) 0 0
\(359\) 1.14430e14 1.01279 0.506394 0.862302i \(-0.330978\pi\)
0.506394 + 0.862302i \(0.330978\pi\)
\(360\) 0 0
\(361\) −1.14054e14 −0.979088
\(362\) 0 0
\(363\) 7.74340e13 0.644830
\(364\) 0 0
\(365\) −6.63666e13 −0.536214
\(366\) 0 0
\(367\) −2.25740e14 −1.76988 −0.884942 0.465701i \(-0.845802\pi\)
−0.884942 + 0.465701i \(0.845802\pi\)
\(368\) 0 0
\(369\) 6.29060e13 0.478682
\(370\) 0 0
\(371\) 4.69473e13 0.346780
\(372\) 0 0
\(373\) −1.32058e14 −0.947037 −0.473519 0.880784i \(-0.657016\pi\)
−0.473519 + 0.880784i \(0.657016\pi\)
\(374\) 0 0
\(375\) −1.58691e13 −0.110505
\(376\) 0 0
\(377\) 4.06677e13 0.275025
\(378\) 0 0
\(379\) 2.71021e14 1.78028 0.890139 0.455689i \(-0.150607\pi\)
0.890139 + 0.455689i \(0.150607\pi\)
\(380\) 0 0
\(381\) −2.48551e14 −1.58609
\(382\) 0 0
\(383\) −1.84806e14 −1.14584 −0.572918 0.819612i \(-0.694189\pi\)
−0.572918 + 0.819612i \(0.694189\pi\)
\(384\) 0 0
\(385\) 1.74829e13 0.105336
\(386\) 0 0
\(387\) −1.10820e14 −0.648946
\(388\) 0 0
\(389\) 2.84280e14 1.61817 0.809085 0.587692i \(-0.199963\pi\)
0.809085 + 0.587692i \(0.199963\pi\)
\(390\) 0 0
\(391\) 4.24222e13 0.234759
\(392\) 0 0
\(393\) 4.54633e13 0.244626
\(394\) 0 0
\(395\) 1.34581e14 0.704206
\(396\) 0 0
\(397\) −8.03668e13 −0.409005 −0.204503 0.978866i \(-0.565558\pi\)
−0.204503 + 0.978866i \(0.565558\pi\)
\(398\) 0 0
\(399\) −1.22943e13 −0.0608631
\(400\) 0 0
\(401\) 5.04840e13 0.243142 0.121571 0.992583i \(-0.461207\pi\)
0.121571 + 0.992583i \(0.461207\pi\)
\(402\) 0 0
\(403\) 5.21730e13 0.244494
\(404\) 0 0
\(405\) −1.22514e14 −0.558705
\(406\) 0 0
\(407\) −2.45996e14 −1.09184
\(408\) 0 0
\(409\) 2.45253e14 1.05959 0.529793 0.848127i \(-0.322270\pi\)
0.529793 + 0.848127i \(0.322270\pi\)
\(410\) 0 0
\(411\) 3.92854e14 1.65235
\(412\) 0 0
\(413\) −2.09621e13 −0.0858439
\(414\) 0 0
\(415\) 6.73513e13 0.268585
\(416\) 0 0
\(417\) −4.14466e14 −1.60969
\(418\) 0 0
\(419\) −1.18961e14 −0.450015 −0.225007 0.974357i \(-0.572241\pi\)
−0.225007 + 0.974357i \(0.572241\pi\)
\(420\) 0 0
\(421\) −4.75617e14 −1.75269 −0.876346 0.481682i \(-0.840026\pi\)
−0.876346 + 0.481682i \(0.840026\pi\)
\(422\) 0 0
\(423\) −2.10890e14 −0.757153
\(424\) 0 0
\(425\) 3.21163e13 0.112353
\(426\) 0 0
\(427\) 1.86458e13 0.0635663
\(428\) 0 0
\(429\) 1.68604e14 0.560214
\(430\) 0 0
\(431\) −3.79194e14 −1.22811 −0.614054 0.789264i \(-0.710462\pi\)
−0.614054 + 0.789264i \(0.710462\pi\)
\(432\) 0 0
\(433\) 1.03919e14 0.328104 0.164052 0.986452i \(-0.447543\pi\)
0.164052 + 0.986452i \(0.447543\pi\)
\(434\) 0 0
\(435\) −7.52741e13 −0.231715
\(436\) 0 0
\(437\) −2.01333e13 −0.0604320
\(438\) 0 0
\(439\) −1.28892e14 −0.377286 −0.188643 0.982046i \(-0.560409\pi\)
−0.188643 + 0.982046i \(0.560409\pi\)
\(440\) 0 0
\(441\) −1.62994e14 −0.465327
\(442\) 0 0
\(443\) −1.09197e14 −0.304081 −0.152040 0.988374i \(-0.548584\pi\)
−0.152040 + 0.988374i \(0.548584\pi\)
\(444\) 0 0
\(445\) −2.87952e14 −0.782239
\(446\) 0 0
\(447\) −6.66921e14 −1.76760
\(448\) 0 0
\(449\) 6.90500e14 1.78570 0.892851 0.450353i \(-0.148702\pi\)
0.892851 + 0.450353i \(0.148702\pi\)
\(450\) 0 0
\(451\) −2.49136e14 −0.628732
\(452\) 0 0
\(453\) 1.14362e14 0.281671
\(454\) 0 0
\(455\) −4.15588e13 −0.0999081
\(456\) 0 0
\(457\) −4.26165e14 −1.00009 −0.500045 0.865999i \(-0.666683\pi\)
−0.500045 + 0.865999i \(0.666683\pi\)
\(458\) 0 0
\(459\) 1.43469e14 0.328692
\(460\) 0 0
\(461\) 2.05565e14 0.459827 0.229914 0.973211i \(-0.426156\pi\)
0.229914 + 0.973211i \(0.426156\pi\)
\(462\) 0 0
\(463\) −1.75036e14 −0.382323 −0.191162 0.981559i \(-0.561225\pi\)
−0.191162 + 0.981559i \(0.561225\pi\)
\(464\) 0 0
\(465\) −9.65697e13 −0.205992
\(466\) 0 0
\(467\) −7.90745e14 −1.64738 −0.823690 0.567040i \(-0.808088\pi\)
−0.823690 + 0.567040i \(0.808088\pi\)
\(468\) 0 0
\(469\) 2.65988e14 0.541267
\(470\) 0 0
\(471\) 6.05552e14 1.20375
\(472\) 0 0
\(473\) 4.38898e14 0.852368
\(474\) 0 0
\(475\) −1.52421e13 −0.0289222
\(476\) 0 0
\(477\) −2.89013e14 −0.535879
\(478\) 0 0
\(479\) −1.46975e14 −0.266317 −0.133158 0.991095i \(-0.542512\pi\)
−0.133158 + 0.991095i \(0.542512\pi\)
\(480\) 0 0
\(481\) 5.84762e14 1.03557
\(482\) 0 0
\(483\) 1.01608e14 0.175881
\(484\) 0 0
\(485\) −2.51514e14 −0.425582
\(486\) 0 0
\(487\) 3.93392e12 0.00650754 0.00325377 0.999995i \(-0.498964\pi\)
0.00325377 + 0.999995i \(0.498964\pi\)
\(488\) 0 0
\(489\) −3.99902e14 −0.646777
\(490\) 0 0
\(491\) 5.17934e14 0.819079 0.409540 0.912292i \(-0.365689\pi\)
0.409540 + 0.912292i \(0.365689\pi\)
\(492\) 0 0
\(493\) 1.52341e14 0.235591
\(494\) 0 0
\(495\) −1.07627e14 −0.162777
\(496\) 0 0
\(497\) −4.22216e13 −0.0624561
\(498\) 0 0
\(499\) 6.73314e14 0.974237 0.487118 0.873336i \(-0.338048\pi\)
0.487118 + 0.873336i \(0.338048\pi\)
\(500\) 0 0
\(501\) −6.74347e14 −0.954499
\(502\) 0 0
\(503\) 1.36762e15 1.89383 0.946917 0.321477i \(-0.104179\pi\)
0.946917 + 0.321477i \(0.104179\pi\)
\(504\) 0 0
\(505\) −8.46802e12 −0.0114731
\(506\) 0 0
\(507\) 5.31131e14 0.704139
\(508\) 0 0
\(509\) 3.36149e14 0.436098 0.218049 0.975938i \(-0.430031\pi\)
0.218049 + 0.975938i \(0.430031\pi\)
\(510\) 0 0
\(511\) 3.21703e14 0.408451
\(512\) 0 0
\(513\) −6.80895e13 −0.0846126
\(514\) 0 0
\(515\) −4.58628e14 −0.557855
\(516\) 0 0
\(517\) 8.35219e14 0.994495
\(518\) 0 0
\(519\) 1.57908e15 1.84071
\(520\) 0 0
\(521\) 1.44444e15 1.64851 0.824255 0.566218i \(-0.191594\pi\)
0.824255 + 0.566218i \(0.191594\pi\)
\(522\) 0 0
\(523\) 1.49597e15 1.67172 0.835858 0.548946i \(-0.184971\pi\)
0.835858 + 0.548946i \(0.184971\pi\)
\(524\) 0 0
\(525\) 7.69234e13 0.0841749
\(526\) 0 0
\(527\) 1.95440e14 0.209437
\(528\) 0 0
\(529\) −7.86416e14 −0.825365
\(530\) 0 0
\(531\) 1.29045e14 0.132655
\(532\) 0 0
\(533\) 5.92225e14 0.596331
\(534\) 0 0
\(535\) −2.63551e14 −0.259967
\(536\) 0 0
\(537\) −1.44649e15 −1.39783
\(538\) 0 0
\(539\) 6.45528e14 0.611191
\(540\) 0 0
\(541\) 1.04365e14 0.0968214 0.0484107 0.998828i \(-0.484584\pi\)
0.0484107 + 0.998828i \(0.484584\pi\)
\(542\) 0 0
\(543\) −2.23420e14 −0.203106
\(544\) 0 0
\(545\) 5.58970e14 0.497975
\(546\) 0 0
\(547\) −1.03877e15 −0.906963 −0.453482 0.891266i \(-0.649818\pi\)
−0.453482 + 0.891266i \(0.649818\pi\)
\(548\) 0 0
\(549\) −1.14786e14 −0.0982291
\(550\) 0 0
\(551\) −7.23000e13 −0.0606463
\(552\) 0 0
\(553\) −6.52362e14 −0.536415
\(554\) 0 0
\(555\) −1.08237e15 −0.872496
\(556\) 0 0
\(557\) 1.35863e15 1.07374 0.536868 0.843666i \(-0.319607\pi\)
0.536868 + 0.843666i \(0.319607\pi\)
\(558\) 0 0
\(559\) −1.04331e15 −0.808442
\(560\) 0 0
\(561\) 6.31591e14 0.479888
\(562\) 0 0
\(563\) 1.65689e14 0.123452 0.0617258 0.998093i \(-0.480340\pi\)
0.0617258 + 0.998093i \(0.480340\pi\)
\(564\) 0 0
\(565\) −6.18358e14 −0.451828
\(566\) 0 0
\(567\) 5.93869e14 0.425582
\(568\) 0 0
\(569\) −1.40376e15 −0.986675 −0.493338 0.869838i \(-0.664223\pi\)
−0.493338 + 0.869838i \(0.664223\pi\)
\(570\) 0 0
\(571\) −2.03413e15 −1.40243 −0.701213 0.712952i \(-0.747358\pi\)
−0.701213 + 0.712952i \(0.747358\pi\)
\(572\) 0 0
\(573\) 3.01360e15 2.03814
\(574\) 0 0
\(575\) 1.25970e14 0.0835787
\(576\) 0 0
\(577\) −2.30956e15 −1.50336 −0.751680 0.659528i \(-0.770756\pi\)
−0.751680 + 0.659528i \(0.770756\pi\)
\(578\) 0 0
\(579\) −7.19063e14 −0.459235
\(580\) 0 0
\(581\) −3.26476e14 −0.204589
\(582\) 0 0
\(583\) 1.14462e15 0.703859
\(584\) 0 0
\(585\) 2.55841e14 0.154388
\(586\) 0 0
\(587\) 3.72490e13 0.0220600 0.0110300 0.999939i \(-0.496489\pi\)
0.0110300 + 0.999939i \(0.496489\pi\)
\(588\) 0 0
\(589\) −9.27542e13 −0.0539138
\(590\) 0 0
\(591\) −7.50054e14 −0.427919
\(592\) 0 0
\(593\) −1.15171e15 −0.644973 −0.322487 0.946574i \(-0.604519\pi\)
−0.322487 + 0.946574i \(0.604519\pi\)
\(594\) 0 0
\(595\) −1.55679e14 −0.0855829
\(596\) 0 0
\(597\) −7.23421e14 −0.390420
\(598\) 0 0
\(599\) 1.08569e15 0.575254 0.287627 0.957743i \(-0.407134\pi\)
0.287627 + 0.957743i \(0.407134\pi\)
\(600\) 0 0
\(601\) 3.16442e15 1.64621 0.823103 0.567891i \(-0.192241\pi\)
0.823103 + 0.567891i \(0.192241\pi\)
\(602\) 0 0
\(603\) −1.63746e15 −0.836420
\(604\) 0 0
\(605\) −4.65348e14 −0.233412
\(606\) 0 0
\(607\) 9.07115e14 0.446812 0.223406 0.974726i \(-0.428282\pi\)
0.223406 + 0.974726i \(0.428282\pi\)
\(608\) 0 0
\(609\) 3.64880e14 0.176504
\(610\) 0 0
\(611\) −1.98541e15 −0.943245
\(612\) 0 0
\(613\) −6.98859e14 −0.326105 −0.163052 0.986617i \(-0.552134\pi\)
−0.163052 + 0.986617i \(0.552134\pi\)
\(614\) 0 0
\(615\) −1.09618e15 −0.502423
\(616\) 0 0
\(617\) −2.96416e15 −1.33455 −0.667273 0.744813i \(-0.732538\pi\)
−0.667273 + 0.744813i \(0.732538\pi\)
\(618\) 0 0
\(619\) −2.55190e15 −1.12867 −0.564333 0.825547i \(-0.690867\pi\)
−0.564333 + 0.825547i \(0.690867\pi\)
\(620\) 0 0
\(621\) 5.62734e14 0.244511
\(622\) 0 0
\(623\) 1.39581e15 0.595855
\(624\) 0 0
\(625\) 9.53674e13 0.0400000
\(626\) 0 0
\(627\) −2.99748e14 −0.123534
\(628\) 0 0
\(629\) 2.19052e15 0.887090
\(630\) 0 0
\(631\) −2.01160e15 −0.800533 −0.400266 0.916399i \(-0.631082\pi\)
−0.400266 + 0.916399i \(0.631082\pi\)
\(632\) 0 0
\(633\) 3.31629e15 1.29698
\(634\) 0 0
\(635\) 1.49369e15 0.574125
\(636\) 0 0
\(637\) −1.53450e15 −0.579694
\(638\) 0 0
\(639\) 2.59922e14 0.0965134
\(640\) 0 0
\(641\) 3.63571e15 1.32700 0.663498 0.748178i \(-0.269071\pi\)
0.663498 + 0.748178i \(0.269071\pi\)
\(642\) 0 0
\(643\) −3.75494e15 −1.34723 −0.673617 0.739081i \(-0.735260\pi\)
−0.673617 + 0.739081i \(0.735260\pi\)
\(644\) 0 0
\(645\) 1.93112e15 0.681132
\(646\) 0 0
\(647\) 3.24138e15 1.12397 0.561987 0.827146i \(-0.310037\pi\)
0.561987 + 0.827146i \(0.310037\pi\)
\(648\) 0 0
\(649\) −5.11078e14 −0.174237
\(650\) 0 0
\(651\) 4.68108e14 0.156910
\(652\) 0 0
\(653\) −5.23724e15 −1.72616 −0.863078 0.505071i \(-0.831466\pi\)
−0.863078 + 0.505071i \(0.831466\pi\)
\(654\) 0 0
\(655\) −2.73217e14 −0.0885484
\(656\) 0 0
\(657\) −1.98044e15 −0.631179
\(658\) 0 0
\(659\) 1.83448e15 0.574969 0.287484 0.957785i \(-0.407181\pi\)
0.287484 + 0.957785i \(0.407181\pi\)
\(660\) 0 0
\(661\) −4.91377e15 −1.51463 −0.757315 0.653050i \(-0.773489\pi\)
−0.757315 + 0.653050i \(0.773489\pi\)
\(662\) 0 0
\(663\) −1.50137e15 −0.455158
\(664\) 0 0
\(665\) 7.38842e13 0.0220309
\(666\) 0 0
\(667\) 5.97531e14 0.175254
\(668\) 0 0
\(669\) 1.44813e15 0.417796
\(670\) 0 0
\(671\) 4.54603e14 0.129021
\(672\) 0 0
\(673\) −6.37904e15 −1.78103 −0.890517 0.454950i \(-0.849657\pi\)
−0.890517 + 0.454950i \(0.849657\pi\)
\(674\) 0 0
\(675\) 4.26024e14 0.117021
\(676\) 0 0
\(677\) −2.49224e15 −0.673521 −0.336761 0.941590i \(-0.609331\pi\)
−0.336761 + 0.941590i \(0.609331\pi\)
\(678\) 0 0
\(679\) 1.21918e15 0.324179
\(680\) 0 0
\(681\) −1.03445e14 −0.0270646
\(682\) 0 0
\(683\) −1.44353e15 −0.371630 −0.185815 0.982585i \(-0.559493\pi\)
−0.185815 + 0.982585i \(0.559493\pi\)
\(684\) 0 0
\(685\) −2.36090e15 −0.598108
\(686\) 0 0
\(687\) 5.65850e15 1.41071
\(688\) 0 0
\(689\) −2.72090e15 −0.667586
\(690\) 0 0
\(691\) −2.66415e15 −0.643322 −0.321661 0.946855i \(-0.604241\pi\)
−0.321661 + 0.946855i \(0.604241\pi\)
\(692\) 0 0
\(693\) 5.21706e14 0.123992
\(694\) 0 0
\(695\) 2.49078e15 0.582666
\(696\) 0 0
\(697\) 2.21847e15 0.510827
\(698\) 0 0
\(699\) −1.60011e15 −0.362682
\(700\) 0 0
\(701\) −6.99888e15 −1.56163 −0.780817 0.624760i \(-0.785197\pi\)
−0.780817 + 0.624760i \(0.785197\pi\)
\(702\) 0 0
\(703\) −1.03960e15 −0.228356
\(704\) 0 0
\(705\) 3.67491e15 0.794706
\(706\) 0 0
\(707\) 4.10475e13 0.00873937
\(708\) 0 0
\(709\) −3.20041e15 −0.670889 −0.335445 0.942060i \(-0.608887\pi\)
−0.335445 + 0.942060i \(0.608887\pi\)
\(710\) 0 0
\(711\) 4.01602e15 0.828922
\(712\) 0 0
\(713\) 7.66578e14 0.155799
\(714\) 0 0
\(715\) −1.01325e15 −0.202783
\(716\) 0 0
\(717\) 9.76816e15 1.92512
\(718\) 0 0
\(719\) 5.98965e15 1.16250 0.581250 0.813725i \(-0.302564\pi\)
0.581250 + 0.813725i \(0.302564\pi\)
\(720\) 0 0
\(721\) 2.22314e15 0.424935
\(722\) 0 0
\(723\) −3.00957e15 −0.566557
\(724\) 0 0
\(725\) 4.52368e14 0.0838751
\(726\) 0 0
\(727\) −8.51869e15 −1.55573 −0.777864 0.628432i \(-0.783697\pi\)
−0.777864 + 0.628432i \(0.783697\pi\)
\(728\) 0 0
\(729\) 3.62638e14 0.0652337
\(730\) 0 0
\(731\) −3.90824e15 −0.692525
\(732\) 0 0
\(733\) −4.77143e15 −0.832868 −0.416434 0.909166i \(-0.636720\pi\)
−0.416434 + 0.909166i \(0.636720\pi\)
\(734\) 0 0
\(735\) 2.84028e15 0.488406
\(736\) 0 0
\(737\) 6.48507e15 1.09861
\(738\) 0 0
\(739\) −5.43737e15 −0.907496 −0.453748 0.891130i \(-0.649913\pi\)
−0.453748 + 0.891130i \(0.649913\pi\)
\(740\) 0 0
\(741\) 7.12537e14 0.117168
\(742\) 0 0
\(743\) 5.35180e15 0.867084 0.433542 0.901133i \(-0.357264\pi\)
0.433542 + 0.901133i \(0.357264\pi\)
\(744\) 0 0
\(745\) 4.00794e15 0.639826
\(746\) 0 0
\(747\) 2.00983e15 0.316152
\(748\) 0 0
\(749\) 1.27753e15 0.198025
\(750\) 0 0
\(751\) −1.75117e15 −0.267490 −0.133745 0.991016i \(-0.542700\pi\)
−0.133745 + 0.991016i \(0.542700\pi\)
\(752\) 0 0
\(753\) 7.38095e15 1.11107
\(754\) 0 0
\(755\) −6.87273e14 −0.101958
\(756\) 0 0
\(757\) 1.12765e16 1.64872 0.824361 0.566065i \(-0.191535\pi\)
0.824361 + 0.566065i \(0.191535\pi\)
\(758\) 0 0
\(759\) 2.47730e15 0.356985
\(760\) 0 0
\(761\) 2.83502e14 0.0402662 0.0201331 0.999797i \(-0.493591\pi\)
0.0201331 + 0.999797i \(0.493591\pi\)
\(762\) 0 0
\(763\) −2.70953e15 −0.379323
\(764\) 0 0
\(765\) 9.58380e14 0.132251
\(766\) 0 0
\(767\) 1.21489e15 0.165258
\(768\) 0 0
\(769\) 1.53743e15 0.206158 0.103079 0.994673i \(-0.467131\pi\)
0.103079 + 0.994673i \(0.467131\pi\)
\(770\) 0 0
\(771\) 1.44931e16 1.91585
\(772\) 0 0
\(773\) −2.13194e15 −0.277835 −0.138917 0.990304i \(-0.544362\pi\)
−0.138917 + 0.990304i \(0.544362\pi\)
\(774\) 0 0
\(775\) 5.80347e14 0.0745639
\(776\) 0 0
\(777\) 5.24663e15 0.664606
\(778\) 0 0
\(779\) −1.05287e15 −0.131498
\(780\) 0 0
\(781\) −1.02941e15 −0.126767
\(782\) 0 0
\(783\) 2.02081e15 0.245379
\(784\) 0 0
\(785\) −3.63913e15 −0.435727
\(786\) 0 0
\(787\) −2.42829e15 −0.286707 −0.143354 0.989672i \(-0.545789\pi\)
−0.143354 + 0.989672i \(0.545789\pi\)
\(788\) 0 0
\(789\) 3.98927e15 0.464483
\(790\) 0 0
\(791\) 2.99740e15 0.344171
\(792\) 0 0
\(793\) −1.08064e15 −0.122372
\(794\) 0 0
\(795\) 5.03626e15 0.562457
\(796\) 0 0
\(797\) 1.44628e16 1.59305 0.796527 0.604603i \(-0.206668\pi\)
0.796527 + 0.604603i \(0.206668\pi\)
\(798\) 0 0
\(799\) −7.43735e15 −0.807999
\(800\) 0 0
\(801\) −8.59276e15 −0.920775
\(802\) 0 0
\(803\) 7.84344e15 0.829032
\(804\) 0 0
\(805\) −6.10624e14 −0.0636644
\(806\) 0 0
\(807\) −7.74939e14 −0.0797009
\(808\) 0 0
\(809\) 2.77511e14 0.0281555 0.0140777 0.999901i \(-0.495519\pi\)
0.0140777 + 0.999901i \(0.495519\pi\)
\(810\) 0 0
\(811\) −3.50430e15 −0.350741 −0.175370 0.984503i \(-0.556112\pi\)
−0.175370 + 0.984503i \(0.556112\pi\)
\(812\) 0 0
\(813\) 1.00155e16 0.988955
\(814\) 0 0
\(815\) 2.40326e15 0.234117
\(816\) 0 0
\(817\) 1.85482e15 0.178271
\(818\) 0 0
\(819\) −1.24016e15 −0.117602
\(820\) 0 0
\(821\) −5.16560e15 −0.483318 −0.241659 0.970361i \(-0.577692\pi\)
−0.241659 + 0.970361i \(0.577692\pi\)
\(822\) 0 0
\(823\) −1.18043e16 −1.08978 −0.544891 0.838507i \(-0.683429\pi\)
−0.544891 + 0.838507i \(0.683429\pi\)
\(824\) 0 0
\(825\) 1.87547e15 0.170850
\(826\) 0 0
\(827\) 1.09512e16 0.984419 0.492210 0.870477i \(-0.336189\pi\)
0.492210 + 0.870477i \(0.336189\pi\)
\(828\) 0 0
\(829\) −3.27381e15 −0.290404 −0.145202 0.989402i \(-0.546383\pi\)
−0.145202 + 0.989402i \(0.546383\pi\)
\(830\) 0 0
\(831\) 1.70352e16 1.49122
\(832\) 0 0
\(833\) −5.74821e15 −0.496576
\(834\) 0 0
\(835\) 4.05256e15 0.345505
\(836\) 0 0
\(837\) 2.59252e15 0.218138
\(838\) 0 0
\(839\) −2.15644e16 −1.79080 −0.895399 0.445266i \(-0.853109\pi\)
−0.895399 + 0.445266i \(0.853109\pi\)
\(840\) 0 0
\(841\) −1.00547e16 −0.824124
\(842\) 0 0
\(843\) −1.54533e16 −1.25017
\(844\) 0 0
\(845\) −3.19189e15 −0.254881
\(846\) 0 0
\(847\) 2.25571e15 0.177797
\(848\) 0 0
\(849\) −2.45074e16 −1.90680
\(850\) 0 0
\(851\) 8.59191e15 0.659899
\(852\) 0 0
\(853\) −2.56475e15 −0.194458 −0.0972290 0.995262i \(-0.530998\pi\)
−0.0972290 + 0.995262i \(0.530998\pi\)
\(854\) 0 0
\(855\) −4.54840e14 −0.0340444
\(856\) 0 0
\(857\) 1.87155e15 0.138295 0.0691476 0.997606i \(-0.477972\pi\)
0.0691476 + 0.997606i \(0.477972\pi\)
\(858\) 0 0
\(859\) −1.62278e16 −1.18385 −0.591924 0.805994i \(-0.701631\pi\)
−0.591924 + 0.805994i \(0.701631\pi\)
\(860\) 0 0
\(861\) 5.31359e15 0.382711
\(862\) 0 0
\(863\) 4.59848e15 0.327005 0.163503 0.986543i \(-0.447721\pi\)
0.163503 + 0.986543i \(0.447721\pi\)
\(864\) 0 0
\(865\) −9.48968e15 −0.666290
\(866\) 0 0
\(867\) 1.21973e16 0.845586
\(868\) 0 0
\(869\) −1.59053e16 −1.08876
\(870\) 0 0
\(871\) −1.54158e16 −1.04199
\(872\) 0 0
\(873\) −7.50543e15 −0.500953
\(874\) 0 0
\(875\) −4.62280e14 −0.0304692
\(876\) 0 0
\(877\) −1.16270e16 −0.756778 −0.378389 0.925647i \(-0.623522\pi\)
−0.378389 + 0.925647i \(0.623522\pi\)
\(878\) 0 0
\(879\) −2.94503e16 −1.89300
\(880\) 0 0
\(881\) −7.39605e15 −0.469497 −0.234748 0.972056i \(-0.575427\pi\)
−0.234748 + 0.972056i \(0.575427\pi\)
\(882\) 0 0
\(883\) 1.37331e16 0.860961 0.430480 0.902600i \(-0.358344\pi\)
0.430480 + 0.902600i \(0.358344\pi\)
\(884\) 0 0
\(885\) −2.24871e15 −0.139234
\(886\) 0 0
\(887\) 1.05140e16 0.642966 0.321483 0.946915i \(-0.395819\pi\)
0.321483 + 0.946915i \(0.395819\pi\)
\(888\) 0 0
\(889\) −7.24047e15 −0.437328
\(890\) 0 0
\(891\) 1.44791e16 0.863804
\(892\) 0 0
\(893\) 3.52971e15 0.207997
\(894\) 0 0
\(895\) 8.69282e15 0.505981
\(896\) 0 0
\(897\) −5.88884e15 −0.338588
\(898\) 0 0
\(899\) 2.75283e15 0.156351
\(900\) 0 0
\(901\) −1.01925e16 −0.571865
\(902\) 0 0
\(903\) −9.36084e15 −0.518838
\(904\) 0 0
\(905\) 1.34267e15 0.0735192
\(906\) 0 0
\(907\) 1.03279e15 0.0558691 0.0279346 0.999610i \(-0.491107\pi\)
0.0279346 + 0.999610i \(0.491107\pi\)
\(908\) 0 0
\(909\) −2.52694e14 −0.0135050
\(910\) 0 0
\(911\) 3.30501e15 0.174510 0.0872552 0.996186i \(-0.472190\pi\)
0.0872552 + 0.996186i \(0.472190\pi\)
\(912\) 0 0
\(913\) −7.95982e15 −0.415254
\(914\) 0 0
\(915\) 2.00022e15 0.103101
\(916\) 0 0
\(917\) 1.32438e15 0.0674499
\(918\) 0 0
\(919\) −1.60824e16 −0.809313 −0.404657 0.914469i \(-0.632609\pi\)
−0.404657 + 0.914469i \(0.632609\pi\)
\(920\) 0 0
\(921\) 8.83403e15 0.439269
\(922\) 0 0
\(923\) 2.44702e15 0.120234
\(924\) 0 0
\(925\) 6.50461e15 0.315822
\(926\) 0 0
\(927\) −1.36859e16 −0.656652
\(928\) 0 0
\(929\) 2.02897e16 0.962031 0.481016 0.876712i \(-0.340268\pi\)
0.481016 + 0.876712i \(0.340268\pi\)
\(930\) 0 0
\(931\) 2.72806e15 0.127829
\(932\) 0 0
\(933\) 1.64607e16 0.762251
\(934\) 0 0
\(935\) −3.79562e15 −0.173708
\(936\) 0 0
\(937\) 2.85837e16 1.29286 0.646428 0.762975i \(-0.276262\pi\)
0.646428 + 0.762975i \(0.276262\pi\)
\(938\) 0 0
\(939\) −8.78562e15 −0.392746
\(940\) 0 0
\(941\) 2.69594e16 1.19115 0.595577 0.803298i \(-0.296923\pi\)
0.595577 + 0.803298i \(0.296923\pi\)
\(942\) 0 0
\(943\) 8.70157e15 0.380000
\(944\) 0 0
\(945\) −2.06509e15 −0.0891384
\(946\) 0 0
\(947\) 5.57448e15 0.237837 0.118918 0.992904i \(-0.462057\pi\)
0.118918 + 0.992904i \(0.462057\pi\)
\(948\) 0 0
\(949\) −1.86448e16 −0.786309
\(950\) 0 0
\(951\) −4.33178e16 −1.80581
\(952\) 0 0
\(953\) 3.11592e16 1.28403 0.642016 0.766691i \(-0.278098\pi\)
0.642016 + 0.766691i \(0.278098\pi\)
\(954\) 0 0
\(955\) −1.81106e16 −0.737757
\(956\) 0 0
\(957\) 8.89617e15 0.358251
\(958\) 0 0
\(959\) 1.14441e16 0.455597
\(960\) 0 0
\(961\) −2.18768e16 −0.861006
\(962\) 0 0
\(963\) −7.86461e15 −0.306008
\(964\) 0 0
\(965\) 4.32129e15 0.166232
\(966\) 0 0
\(967\) −5.46769e15 −0.207950 −0.103975 0.994580i \(-0.533156\pi\)
−0.103975 + 0.994580i \(0.533156\pi\)
\(968\) 0 0
\(969\) 2.66916e15 0.100368
\(970\) 0 0
\(971\) −8.64934e15 −0.321571 −0.160786 0.986989i \(-0.551403\pi\)
−0.160786 + 0.986989i \(0.551403\pi\)
\(972\) 0 0
\(973\) −1.20737e16 −0.443834
\(974\) 0 0
\(975\) −4.45822e15 −0.162045
\(976\) 0 0
\(977\) 3.43815e16 1.23568 0.617839 0.786305i \(-0.288009\pi\)
0.617839 + 0.786305i \(0.288009\pi\)
\(978\) 0 0
\(979\) 3.40312e16 1.20941
\(980\) 0 0
\(981\) 1.66802e16 0.586168
\(982\) 0 0
\(983\) −8.23928e15 −0.286315 −0.143158 0.989700i \(-0.545726\pi\)
−0.143158 + 0.989700i \(0.545726\pi\)
\(984\) 0 0
\(985\) 4.50753e15 0.154896
\(986\) 0 0
\(987\) −1.78136e16 −0.605351
\(988\) 0 0
\(989\) −1.53294e16 −0.515163
\(990\) 0 0
\(991\) −2.66218e16 −0.884775 −0.442387 0.896824i \(-0.645868\pi\)
−0.442387 + 0.896824i \(0.645868\pi\)
\(992\) 0 0
\(993\) −4.17223e16 −1.37135
\(994\) 0 0
\(995\) 4.34748e15 0.141322
\(996\) 0 0
\(997\) −5.72816e16 −1.84158 −0.920792 0.390055i \(-0.872456\pi\)
−0.920792 + 0.390055i \(0.872456\pi\)
\(998\) 0 0
\(999\) 2.90573e16 0.923944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.12.a.b.1.1 1
4.3 odd 2 40.12.a.a.1.1 1
20.3 even 4 200.12.c.a.49.2 2
20.7 even 4 200.12.c.a.49.1 2
20.19 odd 2 200.12.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.12.a.a.1.1 1 4.3 odd 2
80.12.a.b.1.1 1 1.1 even 1 trivial
200.12.a.a.1.1 1 20.19 odd 2
200.12.c.a.49.1 2 20.7 even 4
200.12.c.a.49.2 2 20.3 even 4