Properties

Label 200.12.c.a.49.2
Level $200$
Weight $12$
Character 200.49
Analytic conductor $153.669$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,12,Mod(49,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.49");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(153.668636112\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.12.c.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+520.000i q^{3} -15148.0i q^{7} -93253.0 q^{9} +369324. q^{11} +877926. i q^{13} -3.28871e6i q^{17} -1.56080e6 q^{19} +7.87696e6 q^{21} -1.28994e7i q^{23} +4.36249e7i q^{27} -4.63225e7 q^{29} -5.94275e7 q^{31} +1.92048e8i q^{33} -6.66072e8i q^{37} -4.56522e8 q^{39} +6.74573e8 q^{41} +1.18838e9i q^{43} -2.26148e9i q^{47} +1.74786e9 q^{49} +1.71013e9 q^{51} -3.09924e9i q^{53} -8.11614e8i q^{57} +1.38382e9 q^{59} -1.23091e9 q^{61} +1.41260e9i q^{63} -1.75593e10i q^{67} +6.70767e9 q^{69} -2.78727e9 q^{71} -2.12373e10i q^{73} -5.59452e9i q^{77} +4.30659e10 q^{79} -3.92044e10 q^{81} -2.15524e10i q^{83} -2.40877e10i q^{87} +9.21446e10 q^{89} +1.32988e10 q^{91} -3.09023e10i q^{93} +8.04846e10i q^{97} -3.44406e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 186506 q^{9} + 738648 q^{11} - 3121592 q^{19} + 15753920 q^{21} - 92645004 q^{29} - 118855056 q^{31} - 913043040 q^{39} + 1349146388 q^{41} + 3495729678 q^{49} + 3420254240 q^{51} + 2767639992 q^{59}+ \cdots - 68881141944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 520.000i 1.23548i 0.786382 + 0.617741i \(0.211952\pi\)
−0.786382 + 0.617741i \(0.788048\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 15148.0i − 0.340656i −0.985387 0.170328i \(-0.945517\pi\)
0.985387 0.170328i \(-0.0544827\pi\)
\(8\) 0 0
\(9\) −93253.0 −0.526416
\(10\) 0 0
\(11\) 369324. 0.691429 0.345715 0.938340i \(-0.387637\pi\)
0.345715 + 0.938340i \(0.387637\pi\)
\(12\) 0 0
\(13\) 877926.i 0.655797i 0.944713 + 0.327899i \(0.106340\pi\)
−0.944713 + 0.327899i \(0.893660\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.28871e6i − 0.561767i −0.959742 0.280883i \(-0.909373\pi\)
0.959742 0.280883i \(-0.0906274\pi\)
\(18\) 0 0
\(19\) −1.56080e6 −0.144611 −0.0723055 0.997383i \(-0.523036\pi\)
−0.0723055 + 0.997383i \(0.523036\pi\)
\(20\) 0 0
\(21\) 7.87696e6 0.420874
\(22\) 0 0
\(23\) − 1.28994e7i − 0.417893i −0.977927 0.208947i \(-0.932996\pi\)
0.977927 0.208947i \(-0.0670035\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.36249e7i 0.585105i
\(28\) 0 0
\(29\) −4.63225e7 −0.419375 −0.209688 0.977768i \(-0.567245\pi\)
−0.209688 + 0.977768i \(0.567245\pi\)
\(30\) 0 0
\(31\) −5.94275e7 −0.372819 −0.186410 0.982472i \(-0.559685\pi\)
−0.186410 + 0.982472i \(0.559685\pi\)
\(32\) 0 0
\(33\) 1.92048e8i 0.854248i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.66072e8i − 1.57911i −0.613681 0.789554i \(-0.710312\pi\)
0.613681 0.789554i \(-0.289688\pi\)
\(38\) 0 0
\(39\) −4.56522e8 −0.810226
\(40\) 0 0
\(41\) 6.74573e8 0.909322 0.454661 0.890664i \(-0.349760\pi\)
0.454661 + 0.890664i \(0.349760\pi\)
\(42\) 0 0
\(43\) 1.18838e9i 1.23276i 0.787448 + 0.616381i \(0.211402\pi\)
−0.787448 + 0.616381i \(0.788598\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2.26148e9i − 1.43832i −0.694846 0.719159i \(-0.744527\pi\)
0.694846 0.719159i \(-0.255473\pi\)
\(48\) 0 0
\(49\) 1.74786e9 0.883953
\(50\) 0 0
\(51\) 1.71013e9 0.694053
\(52\) 0 0
\(53\) − 3.09924e9i − 1.01798i −0.860773 0.508988i \(-0.830020\pi\)
0.860773 0.508988i \(-0.169980\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 8.11614e8i − 0.178664i
\(58\) 0 0
\(59\) 1.38382e9 0.251996 0.125998 0.992030i \(-0.459787\pi\)
0.125998 + 0.992030i \(0.459787\pi\)
\(60\) 0 0
\(61\) −1.23091e9 −0.186600 −0.0932999 0.995638i \(-0.529742\pi\)
−0.0932999 + 0.995638i \(0.529742\pi\)
\(62\) 0 0
\(63\) 1.41260e9i 0.179327i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.75593e10i − 1.58890i −0.607332 0.794448i \(-0.707760\pi\)
0.607332 0.794448i \(-0.292240\pi\)
\(68\) 0 0
\(69\) 6.70767e9 0.516300
\(70\) 0 0
\(71\) −2.78727e9 −0.183341 −0.0916703 0.995789i \(-0.529221\pi\)
−0.0916703 + 0.995789i \(0.529221\pi\)
\(72\) 0 0
\(73\) − 2.12373e10i − 1.19901i −0.800370 0.599506i \(-0.795364\pi\)
0.800370 0.599506i \(-0.204636\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 5.59452e9i − 0.235540i
\(78\) 0 0
\(79\) 4.30659e10 1.57465 0.787326 0.616537i \(-0.211465\pi\)
0.787326 + 0.616537i \(0.211465\pi\)
\(80\) 0 0
\(81\) −3.92044e10 −1.24930
\(82\) 0 0
\(83\) − 2.15524e10i − 0.600574i −0.953849 0.300287i \(-0.902918\pi\)
0.953849 0.300287i \(-0.0970824\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 2.40877e10i − 0.518131i
\(88\) 0 0
\(89\) 9.21446e10 1.74914 0.874570 0.484899i \(-0.161144\pi\)
0.874570 + 0.484899i \(0.161144\pi\)
\(90\) 0 0
\(91\) 1.32988e10 0.223401
\(92\) 0 0
\(93\) − 3.09023e10i − 0.460612i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.04846e10i 0.951630i 0.879545 + 0.475815i \(0.157847\pi\)
−0.879545 + 0.475815i \(0.842153\pi\)
\(98\) 0 0
\(99\) −3.44406e10 −0.363979
\(100\) 0 0
\(101\) −2.70977e9 −0.0256545 −0.0128273 0.999918i \(-0.504083\pi\)
−0.0128273 + 0.999918i \(0.504083\pi\)
\(102\) 0 0
\(103\) 1.46761e11i 1.24740i 0.781664 + 0.623700i \(0.214371\pi\)
−0.781664 + 0.623700i \(0.785629\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 8.43362e10i − 0.581304i −0.956829 0.290652i \(-0.906128\pi\)
0.956829 0.290652i \(-0.0938722\pi\)
\(108\) 0 0
\(109\) −1.78870e11 −1.11351 −0.556754 0.830678i \(-0.687953\pi\)
−0.556754 + 0.830678i \(0.687953\pi\)
\(110\) 0 0
\(111\) 3.46358e11 1.95096
\(112\) 0 0
\(113\) − 1.97874e11i − 1.01032i −0.863026 0.505159i \(-0.831434\pi\)
0.863026 0.505159i \(-0.168566\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 8.18692e10i − 0.345222i
\(118\) 0 0
\(119\) −4.98173e10 −0.191369
\(120\) 0 0
\(121\) −1.48911e11 −0.521926
\(122\) 0 0
\(123\) 3.50778e11i 1.12345i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.77982e11i 1.28378i 0.766796 + 0.641891i \(0.221850\pi\)
−0.766796 + 0.641891i \(0.778150\pi\)
\(128\) 0 0
\(129\) −6.17959e11 −1.52306
\(130\) 0 0
\(131\) 8.74294e10 0.198000 0.0990001 0.995087i \(-0.468436\pi\)
0.0990001 + 0.995087i \(0.468436\pi\)
\(132\) 0 0
\(133\) 2.36429e10i 0.0492626i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.55489e11i 1.33741i 0.743527 + 0.668705i \(0.233151\pi\)
−0.743527 + 0.668705i \(0.766849\pi\)
\(138\) 0 0
\(139\) 7.97051e11 1.30288 0.651440 0.758700i \(-0.274165\pi\)
0.651440 + 0.758700i \(0.274165\pi\)
\(140\) 0 0
\(141\) 1.17597e12 1.77702
\(142\) 0 0
\(143\) 3.24239e11i 0.453437i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 9.08890e11i 1.09211i
\(148\) 0 0
\(149\) −1.28254e12 −1.43069 −0.715347 0.698770i \(-0.753731\pi\)
−0.715347 + 0.698770i \(0.753731\pi\)
\(150\) 0 0
\(151\) 2.19927e11 0.227985 0.113992 0.993482i \(-0.463636\pi\)
0.113992 + 0.993482i \(0.463636\pi\)
\(152\) 0 0
\(153\) 3.06682e11i 0.295723i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.16452e12i 0.974316i 0.873314 + 0.487158i \(0.161966\pi\)
−0.873314 + 0.487158i \(0.838034\pi\)
\(158\) 0 0
\(159\) 1.61160e12 1.25769
\(160\) 0 0
\(161\) −1.95400e11 −0.142358
\(162\) 0 0
\(163\) − 7.69042e11i − 0.523502i −0.965135 0.261751i \(-0.915700\pi\)
0.965135 0.261751i \(-0.0842999\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.29682e12i 0.772572i 0.922379 + 0.386286i \(0.126242\pi\)
−0.922379 + 0.386286i \(0.873758\pi\)
\(168\) 0 0
\(169\) 1.02141e12 0.569930
\(170\) 0 0
\(171\) 1.45549e11 0.0761255
\(172\) 0 0
\(173\) − 3.03670e12i − 1.48987i −0.667138 0.744935i \(-0.732481\pi\)
0.667138 0.744935i \(-0.267519\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.19586e11i 0.311336i
\(178\) 0 0
\(179\) 2.78170e12 1.13141 0.565704 0.824608i \(-0.308604\pi\)
0.565704 + 0.824608i \(0.308604\pi\)
\(180\) 0 0
\(181\) 4.29653e11 0.164394 0.0821970 0.996616i \(-0.473806\pi\)
0.0821970 + 0.996616i \(0.473806\pi\)
\(182\) 0 0
\(183\) − 6.40071e11i − 0.230541i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.21460e12i − 0.388422i
\(188\) 0 0
\(189\) 6.60830e11 0.199319
\(190\) 0 0
\(191\) 5.79538e12 1.64967 0.824837 0.565370i \(-0.191267\pi\)
0.824837 + 0.565370i \(0.191267\pi\)
\(192\) 0 0
\(193\) 1.38281e12i 0.371705i 0.982578 + 0.185853i \(0.0595047\pi\)
−0.982578 + 0.185853i \(0.940495\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.44241e12i − 0.346358i −0.984890 0.173179i \(-0.944596\pi\)
0.984890 0.173179i \(-0.0554039\pi\)
\(198\) 0 0
\(199\) 1.39119e12 0.316006 0.158003 0.987439i \(-0.449494\pi\)
0.158003 + 0.987439i \(0.449494\pi\)
\(200\) 0 0
\(201\) 9.13083e12 1.96305
\(202\) 0 0
\(203\) 7.01693e11i 0.142863i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.20291e12i 0.219986i
\(208\) 0 0
\(209\) −5.76439e11 −0.0999883
\(210\) 0 0
\(211\) 6.37749e12 1.04978 0.524888 0.851172i \(-0.324107\pi\)
0.524888 + 0.851172i \(0.324107\pi\)
\(212\) 0 0
\(213\) − 1.44938e12i − 0.226514i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.00208e11i 0.127003i
\(218\) 0 0
\(219\) 1.10434e13 1.48136
\(220\) 0 0
\(221\) 2.88724e12 0.368405
\(222\) 0 0
\(223\) 2.78487e12i 0.338165i 0.985602 + 0.169082i \(0.0540804\pi\)
−0.985602 + 0.169082i \(0.945920\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.98933e11i 0.0219061i 0.999940 + 0.0109530i \(0.00348653\pi\)
−0.999940 + 0.0109530i \(0.996513\pi\)
\(228\) 0 0
\(229\) 1.08817e13 1.14183 0.570917 0.821008i \(-0.306588\pi\)
0.570917 + 0.821008i \(0.306588\pi\)
\(230\) 0 0
\(231\) 2.90915e12 0.291005
\(232\) 0 0
\(233\) 3.07714e12i 0.293555i 0.989170 + 0.146777i \(0.0468901\pi\)
−0.989170 + 0.146777i \(0.953110\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.23943e13i 1.94545i
\(238\) 0 0
\(239\) −1.87849e13 −1.55819 −0.779096 0.626905i \(-0.784321\pi\)
−0.779096 + 0.626905i \(0.784321\pi\)
\(240\) 0 0
\(241\) 5.78763e12 0.458571 0.229286 0.973359i \(-0.426361\pi\)
0.229286 + 0.973359i \(0.426361\pi\)
\(242\) 0 0
\(243\) − 1.26583e13i − 0.958386i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.37026e12i − 0.0948355i
\(248\) 0 0
\(249\) 1.12073e13 0.741998
\(250\) 0 0
\(251\) 1.41941e13 0.899297 0.449649 0.893206i \(-0.351549\pi\)
0.449649 + 0.893206i \(0.351549\pi\)
\(252\) 0 0
\(253\) − 4.76405e12i − 0.288944i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.78713e13i 1.55069i 0.631538 + 0.775345i \(0.282424\pi\)
−0.631538 + 0.775345i \(0.717576\pi\)
\(258\) 0 0
\(259\) −1.00897e13 −0.537933
\(260\) 0 0
\(261\) 4.31971e12 0.220766
\(262\) 0 0
\(263\) 7.67167e12i 0.375953i 0.982174 + 0.187976i \(0.0601928\pi\)
−0.982174 + 0.187976i \(0.939807\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.79152e13i 2.16103i
\(268\) 0 0
\(269\) −1.49027e12 −0.0645100 −0.0322550 0.999480i \(-0.510269\pi\)
−0.0322550 + 0.999480i \(0.510269\pi\)
\(270\) 0 0
\(271\) 1.92607e13 0.800461 0.400231 0.916414i \(-0.368930\pi\)
0.400231 + 0.916414i \(0.368930\pi\)
\(272\) 0 0
\(273\) 6.91539e12i 0.276008i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.27599e13i 1.20699i 0.797366 + 0.603496i \(0.206226\pi\)
−0.797366 + 0.603496i \(0.793774\pi\)
\(278\) 0 0
\(279\) 5.54180e12 0.196258
\(280\) 0 0
\(281\) 2.97179e13 1.01189 0.505945 0.862566i \(-0.331144\pi\)
0.505945 + 0.862566i \(0.331144\pi\)
\(282\) 0 0
\(283\) − 4.71296e13i − 1.54336i −0.636009 0.771681i \(-0.719416\pi\)
0.636009 0.771681i \(-0.280584\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 1.02184e13i − 0.309766i
\(288\) 0 0
\(289\) 2.34563e13 0.684418
\(290\) 0 0
\(291\) −4.18520e13 −1.17572
\(292\) 0 0
\(293\) 5.66352e13i 1.53220i 0.642723 + 0.766099i \(0.277805\pi\)
−0.642723 + 0.766099i \(0.722195\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.61117e13i 0.404558i
\(298\) 0 0
\(299\) 1.13247e13 0.274053
\(300\) 0 0
\(301\) 1.80016e13 0.419948
\(302\) 0 0
\(303\) − 1.40908e12i − 0.0316957i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.69885e13i − 0.355545i −0.984072 0.177773i \(-0.943111\pi\)
0.984072 0.177773i \(-0.0568891\pi\)
\(308\) 0 0
\(309\) −7.63157e13 −1.54114
\(310\) 0 0
\(311\) 3.16551e13 0.616967 0.308483 0.951230i \(-0.400179\pi\)
0.308483 + 0.951230i \(0.400179\pi\)
\(312\) 0 0
\(313\) 1.68954e13i 0.317889i 0.987288 + 0.158944i \(0.0508091\pi\)
−0.987288 + 0.158944i \(0.949191\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 8.33034e13i − 1.46163i −0.682577 0.730814i \(-0.739141\pi\)
0.682577 0.730814i \(-0.260859\pi\)
\(318\) 0 0
\(319\) −1.71080e13 −0.289968
\(320\) 0 0
\(321\) 4.38548e13 0.718191
\(322\) 0 0
\(323\) 5.13300e12i 0.0812376i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 9.30127e13i − 1.37572i
\(328\) 0 0
\(329\) −3.42569e13 −0.489972
\(330\) 0 0
\(331\) −8.02352e13 −1.10997 −0.554984 0.831861i \(-0.687276\pi\)
−0.554984 + 0.831861i \(0.687276\pi\)
\(332\) 0 0
\(333\) 6.21132e13i 0.831268i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.75182e13i 0.595518i 0.954641 + 0.297759i \(0.0962392\pi\)
−0.954641 + 0.297759i \(0.903761\pi\)
\(338\) 0 0
\(339\) 1.02895e14 1.24823
\(340\) 0 0
\(341\) −2.19480e13 −0.257778
\(342\) 0 0
\(343\) − 5.64292e13i − 0.641780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 6.60009e13i − 0.704268i −0.935950 0.352134i \(-0.885456\pi\)
0.935950 0.352134i \(-0.114544\pi\)
\(348\) 0 0
\(349\) 2.58510e12 0.0267262 0.0133631 0.999911i \(-0.495746\pi\)
0.0133631 + 0.999911i \(0.495746\pi\)
\(350\) 0 0
\(351\) −3.82994e13 −0.383710
\(352\) 0 0
\(353\) − 7.12598e13i − 0.691965i −0.938241 0.345982i \(-0.887546\pi\)
0.938241 0.345982i \(-0.112454\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 2.59050e13i − 0.236433i
\(358\) 0 0
\(359\) 1.14430e14 1.01279 0.506394 0.862302i \(-0.330978\pi\)
0.506394 + 0.862302i \(0.330978\pi\)
\(360\) 0 0
\(361\) −1.14054e14 −0.979088
\(362\) 0 0
\(363\) − 7.74340e13i − 0.644830i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 2.25740e14i − 1.76988i −0.465701 0.884942i \(-0.654198\pi\)
0.465701 0.884942i \(-0.345802\pi\)
\(368\) 0 0
\(369\) −6.29060e13 −0.478682
\(370\) 0 0
\(371\) −4.69473e13 −0.346780
\(372\) 0 0
\(373\) − 1.32058e14i − 0.947037i −0.880784 0.473519i \(-0.842984\pi\)
0.880784 0.473519i \(-0.157016\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 4.06677e13i − 0.275025i
\(378\) 0 0
\(379\) 2.71021e14 1.78028 0.890139 0.455689i \(-0.150607\pi\)
0.890139 + 0.455689i \(0.150607\pi\)
\(380\) 0 0
\(381\) −2.48551e14 −1.58609
\(382\) 0 0
\(383\) 1.84806e14i 1.14584i 0.819612 + 0.572918i \(0.194189\pi\)
−0.819612 + 0.572918i \(0.805811\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.10820e14i − 0.648946i
\(388\) 0 0
\(389\) −2.84280e14 −1.61817 −0.809085 0.587692i \(-0.800037\pi\)
−0.809085 + 0.587692i \(0.800037\pi\)
\(390\) 0 0
\(391\) −4.24222e13 −0.234759
\(392\) 0 0
\(393\) 4.54633e13i 0.244626i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.03668e13i 0.409005i 0.978866 + 0.204503i \(0.0655577\pi\)
−0.978866 + 0.204503i \(0.934442\pi\)
\(398\) 0 0
\(399\) −1.22943e13 −0.0608631
\(400\) 0 0
\(401\) 5.04840e13 0.243142 0.121571 0.992583i \(-0.461207\pi\)
0.121571 + 0.992583i \(0.461207\pi\)
\(402\) 0 0
\(403\) − 5.21730e13i − 0.244494i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 2.45996e14i − 1.09184i
\(408\) 0 0
\(409\) −2.45253e14 −1.05959 −0.529793 0.848127i \(-0.677730\pi\)
−0.529793 + 0.848127i \(0.677730\pi\)
\(410\) 0 0
\(411\) −3.92854e14 −1.65235
\(412\) 0 0
\(413\) − 2.09621e13i − 0.0858439i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.14466e14i 1.60969i
\(418\) 0 0
\(419\) −1.18961e14 −0.450015 −0.225007 0.974357i \(-0.572241\pi\)
−0.225007 + 0.974357i \(0.572241\pi\)
\(420\) 0 0
\(421\) −4.75617e14 −1.75269 −0.876346 0.481682i \(-0.840026\pi\)
−0.876346 + 0.481682i \(0.840026\pi\)
\(422\) 0 0
\(423\) 2.10890e14i 0.757153i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.86458e13i 0.0635663i
\(428\) 0 0
\(429\) −1.68604e14 −0.560214
\(430\) 0 0
\(431\) 3.79194e14 1.22811 0.614054 0.789264i \(-0.289538\pi\)
0.614054 + 0.789264i \(0.289538\pi\)
\(432\) 0 0
\(433\) 1.03919e14i 0.328104i 0.986452 + 0.164052i \(0.0524565\pi\)
−0.986452 + 0.164052i \(0.947543\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.01333e13i 0.0604320i
\(438\) 0 0
\(439\) −1.28892e14 −0.377286 −0.188643 0.982046i \(-0.560409\pi\)
−0.188643 + 0.982046i \(0.560409\pi\)
\(440\) 0 0
\(441\) −1.62994e14 −0.465327
\(442\) 0 0
\(443\) 1.09197e14i 0.304081i 0.988374 + 0.152040i \(0.0485844\pi\)
−0.988374 + 0.152040i \(0.951416\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 6.66921e14i − 1.76760i
\(448\) 0 0
\(449\) −6.90500e14 −1.78570 −0.892851 0.450353i \(-0.851298\pi\)
−0.892851 + 0.450353i \(0.851298\pi\)
\(450\) 0 0
\(451\) 2.49136e14 0.628732
\(452\) 0 0
\(453\) 1.14362e14i 0.281671i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.26165e14i 1.00009i 0.865999 + 0.500045i \(0.166683\pi\)
−0.865999 + 0.500045i \(0.833317\pi\)
\(458\) 0 0
\(459\) 1.43469e14 0.328692
\(460\) 0 0
\(461\) 2.05565e14 0.459827 0.229914 0.973211i \(-0.426156\pi\)
0.229914 + 0.973211i \(0.426156\pi\)
\(462\) 0 0
\(463\) 1.75036e14i 0.382323i 0.981559 + 0.191162i \(0.0612255\pi\)
−0.981559 + 0.191162i \(0.938775\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 7.90745e14i − 1.64738i −0.567040 0.823690i \(-0.691912\pi\)
0.567040 0.823690i \(-0.308088\pi\)
\(468\) 0 0
\(469\) −2.65988e14 −0.541267
\(470\) 0 0
\(471\) −6.05552e14 −1.20375
\(472\) 0 0
\(473\) 4.38898e14i 0.852368i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.89013e14i 0.535879i
\(478\) 0 0
\(479\) −1.46975e14 −0.266317 −0.133158 0.991095i \(-0.542512\pi\)
−0.133158 + 0.991095i \(0.542512\pi\)
\(480\) 0 0
\(481\) 5.84762e14 1.03557
\(482\) 0 0
\(483\) − 1.01608e14i − 0.175881i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.93392e12i 0.00650754i 0.999995 + 0.00325377i \(0.00103571\pi\)
−0.999995 + 0.00325377i \(0.998964\pi\)
\(488\) 0 0
\(489\) 3.99902e14 0.646777
\(490\) 0 0
\(491\) −5.17934e14 −0.819079 −0.409540 0.912292i \(-0.634311\pi\)
−0.409540 + 0.912292i \(0.634311\pi\)
\(492\) 0 0
\(493\) 1.52341e14i 0.235591i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.22216e13i 0.0624561i
\(498\) 0 0
\(499\) 6.73314e14 0.974237 0.487118 0.873336i \(-0.338048\pi\)
0.487118 + 0.873336i \(0.338048\pi\)
\(500\) 0 0
\(501\) −6.74347e14 −0.954499
\(502\) 0 0
\(503\) − 1.36762e15i − 1.89383i −0.321477 0.946917i \(-0.604179\pi\)
0.321477 0.946917i \(-0.395821\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5.31131e14i 0.704139i
\(508\) 0 0
\(509\) −3.36149e14 −0.436098 −0.218049 0.975938i \(-0.569969\pi\)
−0.218049 + 0.975938i \(0.569969\pi\)
\(510\) 0 0
\(511\) −3.21703e14 −0.408451
\(512\) 0 0
\(513\) − 6.80895e13i − 0.0846126i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 8.35219e14i − 0.994495i
\(518\) 0 0
\(519\) 1.57908e15 1.84071
\(520\) 0 0
\(521\) 1.44444e15 1.64851 0.824255 0.566218i \(-0.191594\pi\)
0.824255 + 0.566218i \(0.191594\pi\)
\(522\) 0 0
\(523\) − 1.49597e15i − 1.67172i −0.548946 0.835858i \(-0.684971\pi\)
0.548946 0.835858i \(-0.315029\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.95440e14i 0.209437i
\(528\) 0 0
\(529\) 7.86416e14 0.825365
\(530\) 0 0
\(531\) −1.29045e14 −0.132655
\(532\) 0 0
\(533\) 5.92225e14i 0.596331i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.44649e15i 1.39783i
\(538\) 0 0
\(539\) 6.45528e14 0.611191
\(540\) 0 0
\(541\) 1.04365e14 0.0968214 0.0484107 0.998828i \(-0.484584\pi\)
0.0484107 + 0.998828i \(0.484584\pi\)
\(542\) 0 0
\(543\) 2.23420e14i 0.203106i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.03877e15i − 0.906963i −0.891266 0.453482i \(-0.850182\pi\)
0.891266 0.453482i \(-0.149818\pi\)
\(548\) 0 0
\(549\) 1.14786e14 0.0982291
\(550\) 0 0
\(551\) 7.23000e13 0.0606463
\(552\) 0 0
\(553\) − 6.52362e14i − 0.536415i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 1.35863e15i − 1.07374i −0.843666 0.536868i \(-0.819607\pi\)
0.843666 0.536868i \(-0.180393\pi\)
\(558\) 0 0
\(559\) −1.04331e15 −0.808442
\(560\) 0 0
\(561\) 6.31591e14 0.479888
\(562\) 0 0
\(563\) − 1.65689e14i − 0.123452i −0.998093 0.0617258i \(-0.980340\pi\)
0.998093 0.0617258i \(-0.0196604\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.93869e14i 0.425582i
\(568\) 0 0
\(569\) 1.40376e15 0.986675 0.493338 0.869838i \(-0.335777\pi\)
0.493338 + 0.869838i \(0.335777\pi\)
\(570\) 0 0
\(571\) 2.03413e15 1.40243 0.701213 0.712952i \(-0.252642\pi\)
0.701213 + 0.712952i \(0.252642\pi\)
\(572\) 0 0
\(573\) 3.01360e15i 2.03814i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.30956e15i 1.50336i 0.659528 + 0.751680i \(0.270756\pi\)
−0.659528 + 0.751680i \(0.729244\pi\)
\(578\) 0 0
\(579\) −7.19063e14 −0.459235
\(580\) 0 0
\(581\) −3.26476e14 −0.204589
\(582\) 0 0
\(583\) − 1.14462e15i − 0.703859i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.72490e13i 0.0220600i 0.999939 + 0.0110300i \(0.00351103\pi\)
−0.999939 + 0.0110300i \(0.996489\pi\)
\(588\) 0 0
\(589\) 9.27542e13 0.0539138
\(590\) 0 0
\(591\) 7.50054e14 0.427919
\(592\) 0 0
\(593\) − 1.15171e15i − 0.644973i −0.946574 0.322487i \(-0.895481\pi\)
0.946574 0.322487i \(-0.104519\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.23421e14i 0.390420i
\(598\) 0 0
\(599\) 1.08569e15 0.575254 0.287627 0.957743i \(-0.407134\pi\)
0.287627 + 0.957743i \(0.407134\pi\)
\(600\) 0 0
\(601\) 3.16442e15 1.64621 0.823103 0.567891i \(-0.192241\pi\)
0.823103 + 0.567891i \(0.192241\pi\)
\(602\) 0 0
\(603\) 1.63746e15i 0.836420i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.07115e14i 0.446812i 0.974726 + 0.223406i \(0.0717175\pi\)
−0.974726 + 0.223406i \(0.928282\pi\)
\(608\) 0 0
\(609\) −3.64880e14 −0.176504
\(610\) 0 0
\(611\) 1.98541e15 0.943245
\(612\) 0 0
\(613\) − 6.98859e14i − 0.326105i −0.986617 0.163052i \(-0.947866\pi\)
0.986617 0.163052i \(-0.0521339\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.96416e15i 1.33455i 0.744813 + 0.667273i \(0.232538\pi\)
−0.744813 + 0.667273i \(0.767462\pi\)
\(618\) 0 0
\(619\) −2.55190e15 −1.12867 −0.564333 0.825547i \(-0.690867\pi\)
−0.564333 + 0.825547i \(0.690867\pi\)
\(620\) 0 0
\(621\) 5.62734e14 0.244511
\(622\) 0 0
\(623\) − 1.39581e15i − 0.595855i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 2.99748e14i − 0.123534i
\(628\) 0 0
\(629\) −2.19052e15 −0.887090
\(630\) 0 0
\(631\) 2.01160e15 0.800533 0.400266 0.916399i \(-0.368918\pi\)
0.400266 + 0.916399i \(0.368918\pi\)
\(632\) 0 0
\(633\) 3.31629e15i 1.29698i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.53450e15i 0.579694i
\(638\) 0 0
\(639\) 2.59922e14 0.0965134
\(640\) 0 0
\(641\) 3.63571e15 1.32700 0.663498 0.748178i \(-0.269071\pi\)
0.663498 + 0.748178i \(0.269071\pi\)
\(642\) 0 0
\(643\) 3.75494e15i 1.34723i 0.739081 + 0.673617i \(0.235260\pi\)
−0.739081 + 0.673617i \(0.764740\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.24138e15i 1.12397i 0.827146 + 0.561987i \(0.189963\pi\)
−0.827146 + 0.561987i \(0.810037\pi\)
\(648\) 0 0
\(649\) 5.11078e14 0.174237
\(650\) 0 0
\(651\) −4.68108e14 −0.156910
\(652\) 0 0
\(653\) − 5.23724e15i − 1.72616i −0.505071 0.863078i \(-0.668534\pi\)
0.505071 0.863078i \(-0.331466\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.98044e15i 0.631179i
\(658\) 0 0
\(659\) 1.83448e15 0.574969 0.287484 0.957785i \(-0.407181\pi\)
0.287484 + 0.957785i \(0.407181\pi\)
\(660\) 0 0
\(661\) −4.91377e15 −1.51463 −0.757315 0.653050i \(-0.773489\pi\)
−0.757315 + 0.653050i \(0.773489\pi\)
\(662\) 0 0
\(663\) 1.50137e15i 0.455158i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.97531e14i 0.175254i
\(668\) 0 0
\(669\) −1.44813e15 −0.417796
\(670\) 0 0
\(671\) −4.54603e14 −0.129021
\(672\) 0 0
\(673\) − 6.37904e15i − 1.78103i −0.454950 0.890517i \(-0.650343\pi\)
0.454950 0.890517i \(-0.349657\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.49224e15i 0.673521i 0.941590 + 0.336761i \(0.109331\pi\)
−0.941590 + 0.336761i \(0.890669\pi\)
\(678\) 0 0
\(679\) 1.21918e15 0.324179
\(680\) 0 0
\(681\) −1.03445e14 −0.0270646
\(682\) 0 0
\(683\) 1.44353e15i 0.371630i 0.982585 + 0.185815i \(0.0594926\pi\)
−0.982585 + 0.185815i \(0.940507\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.65850e15i 1.41071i
\(688\) 0 0
\(689\) 2.72090e15 0.667586
\(690\) 0 0
\(691\) 2.66415e15 0.643322 0.321661 0.946855i \(-0.395759\pi\)
0.321661 + 0.946855i \(0.395759\pi\)
\(692\) 0 0
\(693\) 5.21706e14i 0.123992i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 2.21847e15i − 0.510827i
\(698\) 0 0
\(699\) −1.60011e15 −0.362682
\(700\) 0 0
\(701\) −6.99888e15 −1.56163 −0.780817 0.624760i \(-0.785197\pi\)
−0.780817 + 0.624760i \(0.785197\pi\)
\(702\) 0 0
\(703\) 1.03960e15i 0.228356i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.10475e13i 0.00873937i
\(708\) 0 0
\(709\) 3.20041e15 0.670889 0.335445 0.942060i \(-0.391113\pi\)
0.335445 + 0.942060i \(0.391113\pi\)
\(710\) 0 0
\(711\) −4.01602e15 −0.828922
\(712\) 0 0
\(713\) 7.66578e14i 0.155799i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 9.76816e15i − 1.92512i
\(718\) 0 0
\(719\) 5.98965e15 1.16250 0.581250 0.813725i \(-0.302564\pi\)
0.581250 + 0.813725i \(0.302564\pi\)
\(720\) 0 0
\(721\) 2.22314e15 0.424935
\(722\) 0 0
\(723\) 3.00957e15i 0.566557i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 8.51869e15i − 1.55573i −0.628432 0.777864i \(-0.716303\pi\)
0.628432 0.777864i \(-0.283697\pi\)
\(728\) 0 0
\(729\) −3.62638e14 −0.0652337
\(730\) 0 0
\(731\) 3.90824e15 0.692525
\(732\) 0 0
\(733\) − 4.77143e15i − 0.832868i −0.909166 0.416434i \(-0.863280\pi\)
0.909166 0.416434i \(-0.136720\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 6.48507e15i − 1.09861i
\(738\) 0 0
\(739\) −5.43737e15 −0.907496 −0.453748 0.891130i \(-0.649913\pi\)
−0.453748 + 0.891130i \(0.649913\pi\)
\(740\) 0 0
\(741\) 7.12537e14 0.117168
\(742\) 0 0
\(743\) − 5.35180e15i − 0.867084i −0.901133 0.433542i \(-0.857264\pi\)
0.901133 0.433542i \(-0.142736\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.00983e15i 0.316152i
\(748\) 0 0
\(749\) −1.27753e15 −0.198025
\(750\) 0 0
\(751\) 1.75117e15 0.267490 0.133745 0.991016i \(-0.457300\pi\)
0.133745 + 0.991016i \(0.457300\pi\)
\(752\) 0 0
\(753\) 7.38095e15i 1.11107i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.12765e16i − 1.64872i −0.566065 0.824361i \(-0.691535\pi\)
0.566065 0.824361i \(-0.308465\pi\)
\(758\) 0 0
\(759\) 2.47730e15 0.356985
\(760\) 0 0
\(761\) 2.83502e14 0.0402662 0.0201331 0.999797i \(-0.493591\pi\)
0.0201331 + 0.999797i \(0.493591\pi\)
\(762\) 0 0
\(763\) 2.70953e15i 0.379323i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.21489e15i 0.165258i
\(768\) 0 0
\(769\) −1.53743e15 −0.206158 −0.103079 0.994673i \(-0.532869\pi\)
−0.103079 + 0.994673i \(0.532869\pi\)
\(770\) 0 0
\(771\) −1.44931e16 −1.91585
\(772\) 0 0
\(773\) − 2.13194e15i − 0.277835i −0.990304 0.138917i \(-0.955638\pi\)
0.990304 0.138917i \(-0.0443623\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 5.24663e15i − 0.664606i
\(778\) 0 0
\(779\) −1.05287e15 −0.131498
\(780\) 0 0
\(781\) −1.02941e15 −0.126767
\(782\) 0 0
\(783\) − 2.02081e15i − 0.245379i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 2.42829e15i − 0.286707i −0.989672 0.143354i \(-0.954211\pi\)
0.989672 0.143354i \(-0.0457886\pi\)
\(788\) 0 0
\(789\) −3.98927e15 −0.464483
\(790\) 0 0
\(791\) −2.99740e15 −0.344171
\(792\) 0 0
\(793\) − 1.08064e15i − 0.122372i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1.44628e16i − 1.59305i −0.604603 0.796527i \(-0.706668\pi\)
0.604603 0.796527i \(-0.293332\pi\)
\(798\) 0 0
\(799\) −7.43735e15 −0.807999
\(800\) 0 0
\(801\) −8.59276e15 −0.920775
\(802\) 0 0
\(803\) − 7.84344e15i − 0.829032i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 7.74939e14i − 0.0797009i
\(808\) 0 0
\(809\) −2.77511e14 −0.0281555 −0.0140777 0.999901i \(-0.504481\pi\)
−0.0140777 + 0.999901i \(0.504481\pi\)
\(810\) 0 0
\(811\) 3.50430e15 0.350741 0.175370 0.984503i \(-0.443888\pi\)
0.175370 + 0.984503i \(0.443888\pi\)
\(812\) 0 0
\(813\) 1.00155e16i 0.988955i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1.85482e15i − 0.178271i
\(818\) 0 0
\(819\) −1.24016e15 −0.117602
\(820\) 0 0
\(821\) −5.16560e15 −0.483318 −0.241659 0.970361i \(-0.577692\pi\)
−0.241659 + 0.970361i \(0.577692\pi\)
\(822\) 0 0
\(823\) 1.18043e16i 1.08978i 0.838507 + 0.544891i \(0.183429\pi\)
−0.838507 + 0.544891i \(0.816571\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.09512e16i 0.984419i 0.870477 + 0.492210i \(0.163811\pi\)
−0.870477 + 0.492210i \(0.836189\pi\)
\(828\) 0 0
\(829\) 3.27381e15 0.290404 0.145202 0.989402i \(-0.453617\pi\)
0.145202 + 0.989402i \(0.453617\pi\)
\(830\) 0 0
\(831\) −1.70352e16 −1.49122
\(832\) 0 0
\(833\) − 5.74821e15i − 0.496576i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.59252e15i − 0.218138i
\(838\) 0 0
\(839\) −2.15644e16 −1.79080 −0.895399 0.445266i \(-0.853109\pi\)
−0.895399 + 0.445266i \(0.853109\pi\)
\(840\) 0 0
\(841\) −1.00547e16 −0.824124
\(842\) 0 0
\(843\) 1.54533e16i 1.25017i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.25571e15i 0.177797i
\(848\) 0 0
\(849\) 2.45074e16 1.90680
\(850\) 0 0
\(851\) −8.59191e15 −0.659899
\(852\) 0 0
\(853\) − 2.56475e15i − 0.194458i −0.995262 0.0972290i \(-0.969002\pi\)
0.995262 0.0972290i \(-0.0309979\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.87155e15i − 0.138295i −0.997606 0.0691476i \(-0.977972\pi\)
0.997606 0.0691476i \(-0.0220280\pi\)
\(858\) 0 0
\(859\) −1.62278e16 −1.18385 −0.591924 0.805994i \(-0.701631\pi\)
−0.591924 + 0.805994i \(0.701631\pi\)
\(860\) 0 0
\(861\) 5.31359e15 0.382711
\(862\) 0 0
\(863\) − 4.59848e15i − 0.327005i −0.986543 0.163503i \(-0.947721\pi\)
0.986543 0.163503i \(-0.0522792\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.21973e16i 0.845586i
\(868\) 0 0
\(869\) 1.59053e16 1.08876
\(870\) 0 0
\(871\) 1.54158e16 1.04199
\(872\) 0 0
\(873\) − 7.50543e15i − 0.500953i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.16270e16i 0.756778i 0.925647 + 0.378389i \(0.123522\pi\)
−0.925647 + 0.378389i \(0.876478\pi\)
\(878\) 0 0
\(879\) −2.94503e16 −1.89300
\(880\) 0 0
\(881\) −7.39605e15 −0.469497 −0.234748 0.972056i \(-0.575427\pi\)
−0.234748 + 0.972056i \(0.575427\pi\)
\(882\) 0 0
\(883\) − 1.37331e16i − 0.860961i −0.902600 0.430480i \(-0.858344\pi\)
0.902600 0.430480i \(-0.141656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.05140e16i 0.642966i 0.946915 + 0.321483i \(0.104181\pi\)
−0.946915 + 0.321483i \(0.895819\pi\)
\(888\) 0 0
\(889\) 7.24047e15 0.437328
\(890\) 0 0
\(891\) −1.44791e16 −0.863804
\(892\) 0 0
\(893\) 3.52971e15i 0.207997i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.88884e15i 0.338588i
\(898\) 0 0
\(899\) 2.75283e15 0.156351
\(900\) 0 0
\(901\) −1.01925e16 −0.571865
\(902\) 0 0
\(903\) 9.36084e15i 0.518838i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.03279e15i 0.0558691i 0.999610 + 0.0279346i \(0.00889300\pi\)
−0.999610 + 0.0279346i \(0.991107\pi\)
\(908\) 0 0
\(909\) 2.52694e14 0.0135050
\(910\) 0 0
\(911\) −3.30501e15 −0.174510 −0.0872552 0.996186i \(-0.527810\pi\)
−0.0872552 + 0.996186i \(0.527810\pi\)
\(912\) 0 0
\(913\) − 7.95982e15i − 0.415254i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.32438e15i − 0.0674499i
\(918\) 0 0
\(919\) −1.60824e16 −0.809313 −0.404657 0.914469i \(-0.632609\pi\)
−0.404657 + 0.914469i \(0.632609\pi\)
\(920\) 0 0
\(921\) 8.83403e15 0.439269
\(922\) 0 0
\(923\) − 2.44702e15i − 0.120234i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 1.36859e16i − 0.656652i
\(928\) 0 0
\(929\) −2.02897e16 −0.962031 −0.481016 0.876712i \(-0.659732\pi\)
−0.481016 + 0.876712i \(0.659732\pi\)
\(930\) 0 0
\(931\) −2.72806e15 −0.127829
\(932\) 0 0
\(933\) 1.64607e16i 0.762251i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 2.85837e16i − 1.29286i −0.762975 0.646428i \(-0.776262\pi\)
0.762975 0.646428i \(-0.223738\pi\)
\(938\) 0 0
\(939\) −8.78562e15 −0.392746
\(940\) 0 0
\(941\) 2.69594e16 1.19115 0.595577 0.803298i \(-0.296923\pi\)
0.595577 + 0.803298i \(0.296923\pi\)
\(942\) 0 0
\(943\) − 8.70157e15i − 0.380000i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.57448e15i 0.237837i 0.992904 + 0.118918i \(0.0379427\pi\)
−0.992904 + 0.118918i \(0.962057\pi\)
\(948\) 0 0
\(949\) 1.86448e16 0.786309
\(950\) 0 0
\(951\) 4.33178e16 1.80581
\(952\) 0 0
\(953\) 3.11592e16i 1.28403i 0.766691 + 0.642016i \(0.221902\pi\)
−0.766691 + 0.642016i \(0.778098\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 8.89617e15i − 0.358251i
\(958\) 0 0
\(959\) 1.14441e16 0.455597
\(960\) 0 0
\(961\) −2.18768e16 −0.861006
\(962\) 0 0
\(963\) 7.86461e15i 0.306008i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 5.46769e15i − 0.207950i −0.994580 0.103975i \(-0.966844\pi\)
0.994580 0.103975i \(-0.0331561\pi\)
\(968\) 0 0
\(969\) −2.66916e15 −0.100368
\(970\) 0 0
\(971\) 8.64934e15 0.321571 0.160786 0.986989i \(-0.448597\pi\)
0.160786 + 0.986989i \(0.448597\pi\)
\(972\) 0 0
\(973\) − 1.20737e16i − 0.443834i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 3.43815e16i − 1.23568i −0.786305 0.617839i \(-0.788009\pi\)
0.786305 0.617839i \(-0.211991\pi\)
\(978\) 0 0
\(979\) 3.40312e16 1.20941
\(980\) 0 0
\(981\) 1.66802e16 0.586168
\(982\) 0 0
\(983\) 8.23928e15i 0.286315i 0.989700 + 0.143158i \(0.0457256\pi\)
−0.989700 + 0.143158i \(0.954274\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1.78136e16i − 0.605351i
\(988\) 0 0
\(989\) 1.53294e16 0.515163
\(990\) 0 0
\(991\) 2.66218e16 0.884775 0.442387 0.896824i \(-0.354132\pi\)
0.442387 + 0.896824i \(0.354132\pi\)
\(992\) 0 0
\(993\) − 4.17223e16i − 1.37135i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.72816e16i 1.84158i 0.390055 + 0.920792i \(0.372456\pi\)
−0.390055 + 0.920792i \(0.627544\pi\)
\(998\) 0 0
\(999\) 2.90573e16 0.923944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.12.c.a.49.2 2
5.2 odd 4 40.12.a.a.1.1 1
5.3 odd 4 200.12.a.a.1.1 1
5.4 even 2 inner 200.12.c.a.49.1 2
20.7 even 4 80.12.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.12.a.a.1.1 1 5.2 odd 4
80.12.a.b.1.1 1 20.7 even 4
200.12.a.a.1.1 1 5.3 odd 4
200.12.c.a.49.1 2 5.4 even 2 inner
200.12.c.a.49.2 2 1.1 even 1 trivial