Properties

Label 800.1.g.b
Level 800800
Weight 11
Character orbit 800.g
Self dual yes
Analytic conductor 0.3990.399
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -8
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,1,Mod(751,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.751");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 800.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.3992520101060.399252010106
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 200)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.200.1
Artin image: D6D_6
Artin field: Galois closure of 6.0.640000.1
Stark unit: Root of x6386x51565x4152900x31565x2386x+1x^{6} - 386x^{5} - 1565x^{4} - 152900x^{3} - 1565x^{2} - 386x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q3+q11q17+q19q27+q33q412q43+q49q51+q572q59+q67q73q81+q83q89+2q97+O(q100) q + q^{3} + q^{11} - q^{17} + q^{19} - q^{27} + q^{33} - q^{41} - 2 q^{43} + q^{49} - q^{51} + q^{57} - 2 q^{59} + q^{67} - q^{73} - q^{81} + q^{83} - q^{89} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/800Z)×\left(\mathbb{Z}/800\mathbb{Z}\right)^\times.

nn 101101 351351 577577
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
751.1
0
0 1.00000 0 0 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.1.g.b 1
4.b odd 2 1 200.1.g.b yes 1
5.b even 2 1 800.1.g.a 1
5.c odd 4 2 800.1.e.a 2
8.b even 2 1 200.1.g.b yes 1
8.d odd 2 1 CM 800.1.g.b 1
12.b even 2 1 1800.1.g.a 1
20.d odd 2 1 200.1.g.a 1
20.e even 4 2 200.1.e.a 2
24.h odd 2 1 1800.1.g.a 1
40.e odd 2 1 800.1.g.a 1
40.f even 2 1 200.1.g.a 1
40.i odd 4 2 200.1.e.a 2
40.k even 4 2 800.1.e.a 2
60.h even 2 1 1800.1.g.b 1
60.l odd 4 2 1800.1.p.a 2
120.i odd 2 1 1800.1.g.b 1
120.w even 4 2 1800.1.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.1.e.a 2 20.e even 4 2
200.1.e.a 2 40.i odd 4 2
200.1.g.a 1 20.d odd 2 1
200.1.g.a 1 40.f even 2 1
200.1.g.b yes 1 4.b odd 2 1
200.1.g.b yes 1 8.b even 2 1
800.1.e.a 2 5.c odd 4 2
800.1.e.a 2 40.k even 4 2
800.1.g.a 1 5.b even 2 1
800.1.g.a 1 40.e odd 2 1
800.1.g.b 1 1.a even 1 1 trivial
800.1.g.b 1 8.d odd 2 1 CM
1800.1.g.a 1 12.b even 2 1
1800.1.g.a 1 24.h odd 2 1
1800.1.g.b 1 60.h even 2 1
1800.1.g.b 1 120.i odd 2 1
1800.1.p.a 2 60.l odd 4 2
1800.1.p.a 2 120.w even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T31 T_{3} - 1 acting on S1new(800,[χ])S_{1}^{\mathrm{new}}(800, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T1 T - 1 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T1 T - 1 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T+1 T + 1 Copy content Toggle raw display
1919 T1 T - 1 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T+1 T + 1 Copy content Toggle raw display
4343 T+2 T + 2 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T+2 T + 2 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T1 T - 1 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+1 T + 1 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T1 T - 1 Copy content Toggle raw display
8989 T+1 T + 1 Copy content Toggle raw display
9797 T2 T - 2 Copy content Toggle raw display
show more
show less