Properties

Label 200.1.g.a
Level $200$
Weight $1$
Character orbit 200.g
Self dual yes
Analytic conductor $0.100$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -8
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,1,Mod(51,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.51");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 200.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.0998130025266\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.200.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.200000.1
Stark unit: Root of $x^{6} - 11x^{5} + 40x^{4} - 65x^{3} + 40x^{2} - 11x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} - q^{11} + q^{12} + q^{16} + q^{17} - q^{19} + q^{22} - q^{24} - q^{27} - q^{32} - q^{33} - q^{34} + q^{38} - q^{41} - 2 q^{43} - q^{44} + q^{48} + q^{49} + q^{51} + q^{54} - q^{57} + 2 q^{59} + q^{64} + q^{66} + q^{67} + q^{68} + q^{73} - q^{76} - q^{81} + q^{82} + q^{83} + 2 q^{86} + q^{88} - q^{89} - q^{96} - 2 q^{97} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
0
−1.00000 1.00000 1.00000 0 −1.00000 0 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.1.g.a 1
3.b odd 2 1 1800.1.g.b 1
4.b odd 2 1 800.1.g.a 1
5.b even 2 1 200.1.g.b yes 1
5.c odd 4 2 200.1.e.a 2
8.b even 2 1 800.1.g.a 1
8.d odd 2 1 CM 200.1.g.a 1
15.d odd 2 1 1800.1.g.a 1
15.e even 4 2 1800.1.p.a 2
20.d odd 2 1 800.1.g.b 1
20.e even 4 2 800.1.e.a 2
24.f even 2 1 1800.1.g.b 1
40.e odd 2 1 200.1.g.b yes 1
40.f even 2 1 800.1.g.b 1
40.i odd 4 2 800.1.e.a 2
40.k even 4 2 200.1.e.a 2
120.m even 2 1 1800.1.g.a 1
120.q odd 4 2 1800.1.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.1.e.a 2 5.c odd 4 2
200.1.e.a 2 40.k even 4 2
200.1.g.a 1 1.a even 1 1 trivial
200.1.g.a 1 8.d odd 2 1 CM
200.1.g.b yes 1 5.b even 2 1
200.1.g.b yes 1 40.e odd 2 1
800.1.e.a 2 20.e even 4 2
800.1.e.a 2 40.i odd 4 2
800.1.g.a 1 4.b odd 2 1
800.1.g.a 1 8.b even 2 1
800.1.g.b 1 20.d odd 2 1
800.1.g.b 1 40.f even 2 1
1800.1.g.a 1 15.d odd 2 1
1800.1.g.a 1 120.m even 2 1
1800.1.g.b 1 3.b odd 2 1
1800.1.g.b 1 24.f even 2 1
1800.1.p.a 2 15.e even 4 2
1800.1.p.a 2 120.q odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 1 \) acting on \(S_{1}^{\mathrm{new}}(200, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T + 1 \) Copy content Toggle raw display
$43$ \( T + 2 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 2 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 1 \) Copy content Toggle raw display
$89$ \( T + 1 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less