Properties

Label 800.5.e.e.399.20
Level $800$
Weight $5$
Character 800.399
Analytic conductor $82.696$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(399,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.399");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.20
Character \(\chi\) \(=\) 800.399
Dual form 800.5.e.e.399.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.715641i q^{3} -25.0983 q^{7} +80.4879 q^{9} +156.704 q^{11} -301.788 q^{13} +123.427i q^{17} +322.113 q^{19} -17.9613i q^{21} -45.9062 q^{23} +115.567i q^{27} -1084.15i q^{29} +1624.75i q^{31} +112.144i q^{33} +895.053 q^{37} -215.972i q^{39} -1097.66 q^{41} -950.337i q^{43} +1343.83 q^{47} -1771.08 q^{49} -88.3294 q^{51} -709.918 q^{53} +230.517i q^{57} +4466.60 q^{59} -933.943i q^{61} -2020.10 q^{63} -4019.28i q^{67} -32.8523i q^{69} -3551.94i q^{71} +5298.05i q^{73} -3933.01 q^{77} +11461.9i q^{79} +6436.81 q^{81} +6588.95i q^{83} +775.861 q^{87} +6280.53 q^{89} +7574.35 q^{91} -1162.73 q^{93} +14960.7i q^{97} +12612.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 864 q^{9} - 384 q^{11} - 1408 q^{19} - 4416 q^{41} + 4960 q^{49} + 35584 q^{51} + 28032 q^{59} + 20768 q^{81} - 13632 q^{89} - 49152 q^{91} + 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.715641i 0.0795156i 0.999209 + 0.0397578i \(0.0126586\pi\)
−0.999209 + 0.0397578i \(0.987341\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −25.0983 −0.512209 −0.256105 0.966649i \(-0.582439\pi\)
−0.256105 + 0.966649i \(0.582439\pi\)
\(8\) 0 0
\(9\) 80.4879 0.993677
\(10\) 0 0
\(11\) 156.704 1.29508 0.647539 0.762033i \(-0.275798\pi\)
0.647539 + 0.762033i \(0.275798\pi\)
\(12\) 0 0
\(13\) −301.788 −1.78573 −0.892863 0.450328i \(-0.851307\pi\)
−0.892863 + 0.450328i \(0.851307\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 123.427i 0.427083i 0.976934 + 0.213542i \(0.0684999\pi\)
−0.976934 + 0.213542i \(0.931500\pi\)
\(18\) 0 0
\(19\) 322.113 0.892280 0.446140 0.894963i \(-0.352798\pi\)
0.446140 + 0.894963i \(0.352798\pi\)
\(20\) 0 0
\(21\) − 17.9613i − 0.0407286i
\(22\) 0 0
\(23\) −45.9062 −0.0867792 −0.0433896 0.999058i \(-0.513816\pi\)
−0.0433896 + 0.999058i \(0.513816\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 115.567i 0.158528i
\(28\) 0 0
\(29\) − 1084.15i − 1.28912i −0.764554 0.644560i \(-0.777041\pi\)
0.764554 0.644560i \(-0.222959\pi\)
\(30\) 0 0
\(31\) 1624.75i 1.69068i 0.534227 + 0.845341i \(0.320603\pi\)
−0.534227 + 0.845341i \(0.679397\pi\)
\(32\) 0 0
\(33\) 112.144i 0.102979i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 895.053 0.653801 0.326900 0.945059i \(-0.393996\pi\)
0.326900 + 0.945059i \(0.393996\pi\)
\(38\) 0 0
\(39\) − 215.972i − 0.141993i
\(40\) 0 0
\(41\) −1097.66 −0.652978 −0.326489 0.945201i \(-0.605866\pi\)
−0.326489 + 0.945201i \(0.605866\pi\)
\(42\) 0 0
\(43\) − 950.337i − 0.513974i −0.966415 0.256987i \(-0.917270\pi\)
0.966415 0.256987i \(-0.0827297\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1343.83 0.608341 0.304171 0.952618i \(-0.401621\pi\)
0.304171 + 0.952618i \(0.401621\pi\)
\(48\) 0 0
\(49\) −1771.08 −0.737642
\(50\) 0 0
\(51\) −88.3294 −0.0339598
\(52\) 0 0
\(53\) −709.918 −0.252730 −0.126365 0.991984i \(-0.540331\pi\)
−0.126365 + 0.991984i \(0.540331\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 230.517i 0.0709502i
\(58\) 0 0
\(59\) 4466.60 1.28314 0.641569 0.767065i \(-0.278284\pi\)
0.641569 + 0.767065i \(0.278284\pi\)
\(60\) 0 0
\(61\) − 933.943i − 0.250993i −0.992094 0.125496i \(-0.959948\pi\)
0.992094 0.125496i \(-0.0400523\pi\)
\(62\) 0 0
\(63\) −2020.10 −0.508971
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 4019.28i − 0.895362i −0.894193 0.447681i \(-0.852250\pi\)
0.894193 0.447681i \(-0.147750\pi\)
\(68\) 0 0
\(69\) − 32.8523i − 0.00690030i
\(70\) 0 0
\(71\) − 3551.94i − 0.704610i −0.935885 0.352305i \(-0.885398\pi\)
0.935885 0.352305i \(-0.114602\pi\)
\(72\) 0 0
\(73\) 5298.05i 0.994192i 0.867695 + 0.497096i \(0.165600\pi\)
−0.867695 + 0.497096i \(0.834400\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3933.01 −0.663351
\(78\) 0 0
\(79\) 11461.9i 1.83654i 0.395952 + 0.918271i \(0.370414\pi\)
−0.395952 + 0.918271i \(0.629586\pi\)
\(80\) 0 0
\(81\) 6436.81 0.981072
\(82\) 0 0
\(83\) 6588.95i 0.956445i 0.878239 + 0.478223i \(0.158719\pi\)
−0.878239 + 0.478223i \(0.841281\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 775.861 0.102505
\(88\) 0 0
\(89\) 6280.53 0.792896 0.396448 0.918057i \(-0.370243\pi\)
0.396448 + 0.918057i \(0.370243\pi\)
\(90\) 0 0
\(91\) 7574.35 0.914666
\(92\) 0 0
\(93\) −1162.73 −0.134436
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14960.7i 1.59004i 0.606580 + 0.795022i \(0.292541\pi\)
−0.606580 + 0.795022i \(0.707459\pi\)
\(98\) 0 0
\(99\) 12612.8 1.28689
\(100\) 0 0
\(101\) 4782.58i 0.468835i 0.972136 + 0.234417i \(0.0753182\pi\)
−0.972136 + 0.234417i \(0.924682\pi\)
\(102\) 0 0
\(103\) 18366.9 1.73126 0.865629 0.500686i \(-0.166919\pi\)
0.865629 + 0.500686i \(0.166919\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 14286.0i − 1.24779i −0.781507 0.623897i \(-0.785549\pi\)
0.781507 0.623897i \(-0.214451\pi\)
\(108\) 0 0
\(109\) 5247.94i 0.441709i 0.975307 + 0.220854i \(0.0708845\pi\)
−0.975307 + 0.220854i \(0.929115\pi\)
\(110\) 0 0
\(111\) 640.536i 0.0519874i
\(112\) 0 0
\(113\) 15287.0i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −24290.3 −1.77444
\(118\) 0 0
\(119\) − 3097.80i − 0.218756i
\(120\) 0 0
\(121\) 9915.25 0.677225
\(122\) 0 0
\(123\) − 785.527i − 0.0519219i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 18194.5 1.12806 0.564031 0.825754i \(-0.309250\pi\)
0.564031 + 0.825754i \(0.309250\pi\)
\(128\) 0 0
\(129\) 680.100 0.0408689
\(130\) 0 0
\(131\) −15447.1 −0.900127 −0.450063 0.892997i \(-0.648599\pi\)
−0.450063 + 0.892997i \(0.648599\pi\)
\(132\) 0 0
\(133\) −8084.48 −0.457034
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 13714.2i − 0.730683i −0.930874 0.365342i \(-0.880952\pi\)
0.930874 0.365342i \(-0.119048\pi\)
\(138\) 0 0
\(139\) 19270.4 0.997382 0.498691 0.866780i \(-0.333814\pi\)
0.498691 + 0.866780i \(0.333814\pi\)
\(140\) 0 0
\(141\) 961.696i 0.0483726i
\(142\) 0 0
\(143\) −47291.5 −2.31265
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1267.46i − 0.0586540i
\(148\) 0 0
\(149\) 2282.56i 0.102813i 0.998678 + 0.0514067i \(0.0163705\pi\)
−0.998678 + 0.0514067i \(0.983630\pi\)
\(150\) 0 0
\(151\) − 14813.2i − 0.649671i −0.945770 0.324836i \(-0.894691\pi\)
0.945770 0.324836i \(-0.105309\pi\)
\(152\) 0 0
\(153\) 9934.37i 0.424383i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 25139.3 1.01989 0.509945 0.860207i \(-0.329666\pi\)
0.509945 + 0.860207i \(0.329666\pi\)
\(158\) 0 0
\(159\) − 508.046i − 0.0200960i
\(160\) 0 0
\(161\) 1152.17 0.0444491
\(162\) 0 0
\(163\) 45411.2i 1.70918i 0.519304 + 0.854589i \(0.326191\pi\)
−0.519304 + 0.854589i \(0.673809\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12439.3 −0.446030 −0.223015 0.974815i \(-0.571590\pi\)
−0.223015 + 0.974815i \(0.571590\pi\)
\(168\) 0 0
\(169\) 62514.9 2.18882
\(170\) 0 0
\(171\) 25926.2 0.886639
\(172\) 0 0
\(173\) −14118.1 −0.471718 −0.235859 0.971787i \(-0.575790\pi\)
−0.235859 + 0.971787i \(0.575790\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3196.48i 0.102029i
\(178\) 0 0
\(179\) 40847.7 1.27486 0.637429 0.770509i \(-0.279998\pi\)
0.637429 + 0.770509i \(0.279998\pi\)
\(180\) 0 0
\(181\) 33131.0i 1.01129i 0.862741 + 0.505647i \(0.168746\pi\)
−0.862741 + 0.505647i \(0.831254\pi\)
\(182\) 0 0
\(183\) 668.368 0.0199578
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 19341.5i 0.553105i
\(188\) 0 0
\(189\) − 2900.54i − 0.0811998i
\(190\) 0 0
\(191\) 62084.2i 1.70182i 0.525310 + 0.850911i \(0.323949\pi\)
−0.525310 + 0.850911i \(0.676051\pi\)
\(192\) 0 0
\(193\) 37684.7i 1.01170i 0.862623 + 0.505848i \(0.168820\pi\)
−0.862623 + 0.505848i \(0.831180\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 65101.2 1.67748 0.838738 0.544535i \(-0.183294\pi\)
0.838738 + 0.544535i \(0.183294\pi\)
\(198\) 0 0
\(199\) 35595.6i 0.898857i 0.893316 + 0.449428i \(0.148372\pi\)
−0.893316 + 0.449428i \(0.851628\pi\)
\(200\) 0 0
\(201\) 2876.36 0.0711952
\(202\) 0 0
\(203\) 27210.3i 0.660299i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3694.89 −0.0862305
\(208\) 0 0
\(209\) 50476.5 1.15557
\(210\) 0 0
\(211\) 38176.8 0.857502 0.428751 0.903423i \(-0.358954\pi\)
0.428751 + 0.903423i \(0.358954\pi\)
\(212\) 0 0
\(213\) 2541.91 0.0560275
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 40778.3i − 0.865983i
\(218\) 0 0
\(219\) −3791.50 −0.0790538
\(220\) 0 0
\(221\) − 37248.8i − 0.762653i
\(222\) 0 0
\(223\) 26454.9 0.531981 0.265991 0.963976i \(-0.414301\pi\)
0.265991 + 0.963976i \(0.414301\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 64747.5i 1.25653i 0.778001 + 0.628263i \(0.216234\pi\)
−0.778001 + 0.628263i \(0.783766\pi\)
\(228\) 0 0
\(229\) 61366.2i 1.17020i 0.810963 + 0.585098i \(0.198944\pi\)
−0.810963 + 0.585098i \(0.801056\pi\)
\(230\) 0 0
\(231\) − 2814.62i − 0.0527467i
\(232\) 0 0
\(233\) − 9362.16i − 0.172450i −0.996276 0.0862252i \(-0.972520\pi\)
0.996276 0.0862252i \(-0.0274805\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8202.57 −0.146034
\(238\) 0 0
\(239\) − 78207.5i − 1.36915i −0.728940 0.684577i \(-0.759987\pi\)
0.728940 0.684577i \(-0.240013\pi\)
\(240\) 0 0
\(241\) −3956.80 −0.0681256 −0.0340628 0.999420i \(-0.510845\pi\)
−0.0340628 + 0.999420i \(0.510845\pi\)
\(242\) 0 0
\(243\) 13967.4i 0.236539i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −97209.8 −1.59337
\(248\) 0 0
\(249\) −4715.32 −0.0760524
\(250\) 0 0
\(251\) 23807.3 0.377888 0.188944 0.981988i \(-0.439494\pi\)
0.188944 + 0.981988i \(0.439494\pi\)
\(252\) 0 0
\(253\) −7193.70 −0.112386
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 80394.1i − 1.21719i −0.793482 0.608594i \(-0.791734\pi\)
0.793482 0.608594i \(-0.208266\pi\)
\(258\) 0 0
\(259\) −22464.3 −0.334883
\(260\) 0 0
\(261\) − 87260.9i − 1.28097i
\(262\) 0 0
\(263\) −45150.6 −0.652757 −0.326379 0.945239i \(-0.605828\pi\)
−0.326379 + 0.945239i \(0.605828\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4494.60i 0.0630476i
\(268\) 0 0
\(269\) 24807.6i 0.342831i 0.985199 + 0.171415i \(0.0548340\pi\)
−0.985199 + 0.171415i \(0.945166\pi\)
\(270\) 0 0
\(271\) − 10825.0i − 0.147398i −0.997281 0.0736989i \(-0.976520\pi\)
0.997281 0.0736989i \(-0.0234804\pi\)
\(272\) 0 0
\(273\) 5420.51i 0.0727302i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −89707.4 −1.16915 −0.584573 0.811341i \(-0.698738\pi\)
−0.584573 + 0.811341i \(0.698738\pi\)
\(278\) 0 0
\(279\) 130772.i 1.67999i
\(280\) 0 0
\(281\) 29909.4 0.378787 0.189393 0.981901i \(-0.439348\pi\)
0.189393 + 0.981901i \(0.439348\pi\)
\(282\) 0 0
\(283\) 10330.5i 0.128988i 0.997918 + 0.0644941i \(0.0205434\pi\)
−0.997918 + 0.0644941i \(0.979457\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 27549.2 0.334461
\(288\) 0 0
\(289\) 68286.8 0.817600
\(290\) 0 0
\(291\) −10706.5 −0.126433
\(292\) 0 0
\(293\) 40558.7 0.472443 0.236221 0.971699i \(-0.424091\pi\)
0.236221 + 0.971699i \(0.424091\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 18109.9i 0.205307i
\(298\) 0 0
\(299\) 13853.9 0.154964
\(300\) 0 0
\(301\) 23851.8i 0.263262i
\(302\) 0 0
\(303\) −3422.61 −0.0372797
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 111914.i − 1.18743i −0.804675 0.593716i \(-0.797660\pi\)
0.804675 0.593716i \(-0.202340\pi\)
\(308\) 0 0
\(309\) 13144.1i 0.137662i
\(310\) 0 0
\(311\) − 75585.9i − 0.781484i −0.920500 0.390742i \(-0.872218\pi\)
0.920500 0.390742i \(-0.127782\pi\)
\(312\) 0 0
\(313\) 84909.1i 0.866694i 0.901227 + 0.433347i \(0.142667\pi\)
−0.901227 + 0.433347i \(0.857333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 84609.1 0.841974 0.420987 0.907067i \(-0.361684\pi\)
0.420987 + 0.907067i \(0.361684\pi\)
\(318\) 0 0
\(319\) − 169891.i − 1.66951i
\(320\) 0 0
\(321\) 10223.6 0.0992191
\(322\) 0 0
\(323\) 39757.5i 0.381078i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3755.64 −0.0351227
\(328\) 0 0
\(329\) −33727.7 −0.311598
\(330\) 0 0
\(331\) −109784. −1.00203 −0.501017 0.865437i \(-0.667041\pi\)
−0.501017 + 0.865437i \(0.667041\pi\)
\(332\) 0 0
\(333\) 72040.9 0.649667
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 9734.87i − 0.0857177i −0.999081 0.0428588i \(-0.986353\pi\)
0.999081 0.0428588i \(-0.0136466\pi\)
\(338\) 0 0
\(339\) −10940.0 −0.0951956
\(340\) 0 0
\(341\) 254605.i 2.18956i
\(342\) 0 0
\(343\) 104712. 0.890036
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 74541.3i 0.619068i 0.950888 + 0.309534i \(0.100173\pi\)
−0.950888 + 0.309534i \(0.899827\pi\)
\(348\) 0 0
\(349\) − 10246.4i − 0.0841241i −0.999115 0.0420621i \(-0.986607\pi\)
0.999115 0.0420621i \(-0.0133927\pi\)
\(350\) 0 0
\(351\) − 34876.8i − 0.283089i
\(352\) 0 0
\(353\) − 238080.i − 1.91062i −0.295611 0.955308i \(-0.595523\pi\)
0.295611 0.955308i \(-0.404477\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2216.91 0.0173945
\(358\) 0 0
\(359\) 98659.7i 0.765510i 0.923850 + 0.382755i \(0.125025\pi\)
−0.923850 + 0.382755i \(0.874975\pi\)
\(360\) 0 0
\(361\) −26564.1 −0.203836
\(362\) 0 0
\(363\) 7095.75i 0.0538500i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 155343. 1.15335 0.576674 0.816974i \(-0.304350\pi\)
0.576674 + 0.816974i \(0.304350\pi\)
\(368\) 0 0
\(369\) −88348.0 −0.648849
\(370\) 0 0
\(371\) 17817.7 0.129451
\(372\) 0 0
\(373\) −91535.5 −0.657918 −0.328959 0.944344i \(-0.606698\pi\)
−0.328959 + 0.944344i \(0.606698\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 327183.i 2.30201i
\(378\) 0 0
\(379\) −155561. −1.08299 −0.541494 0.840705i \(-0.682141\pi\)
−0.541494 + 0.840705i \(0.682141\pi\)
\(380\) 0 0
\(381\) 13020.7i 0.0896985i
\(382\) 0 0
\(383\) −165482. −1.12811 −0.564057 0.825736i \(-0.690760\pi\)
−0.564057 + 0.825736i \(0.690760\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 76490.6i − 0.510724i
\(388\) 0 0
\(389\) − 246155.i − 1.62671i −0.581771 0.813353i \(-0.697640\pi\)
0.581771 0.813353i \(-0.302360\pi\)
\(390\) 0 0
\(391\) − 5666.06i − 0.0370619i
\(392\) 0 0
\(393\) − 11054.6i − 0.0715742i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −143019. −0.907429 −0.453715 0.891147i \(-0.649901\pi\)
−0.453715 + 0.891147i \(0.649901\pi\)
\(398\) 0 0
\(399\) − 5785.58i − 0.0363414i
\(400\) 0 0
\(401\) 43425.1 0.270055 0.135027 0.990842i \(-0.456888\pi\)
0.135027 + 0.990842i \(0.456888\pi\)
\(402\) 0 0
\(403\) − 490328.i − 3.01910i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 140259. 0.846722
\(408\) 0 0
\(409\) −289995. −1.73358 −0.866791 0.498671i \(-0.833822\pi\)
−0.866791 + 0.498671i \(0.833822\pi\)
\(410\) 0 0
\(411\) 9814.43 0.0581007
\(412\) 0 0
\(413\) −112104. −0.657235
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 13790.7i 0.0793075i
\(418\) 0 0
\(419\) 67134.3 0.382399 0.191199 0.981551i \(-0.438762\pi\)
0.191199 + 0.981551i \(0.438762\pi\)
\(420\) 0 0
\(421\) − 336530.i − 1.89872i −0.314197 0.949358i \(-0.601735\pi\)
0.314197 0.949358i \(-0.398265\pi\)
\(422\) 0 0
\(423\) 108162. 0.604495
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 23440.4i 0.128561i
\(428\) 0 0
\(429\) − 33843.7i − 0.183892i
\(430\) 0 0
\(431\) 204940.i 1.10325i 0.834094 + 0.551623i \(0.185991\pi\)
−0.834094 + 0.551623i \(0.814009\pi\)
\(432\) 0 0
\(433\) 59164.1i 0.315560i 0.987474 + 0.157780i \(0.0504337\pi\)
−0.987474 + 0.157780i \(0.949566\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −14787.0 −0.0774314
\(438\) 0 0
\(439\) − 234276.i − 1.21562i −0.794082 0.607811i \(-0.792048\pi\)
0.794082 0.607811i \(-0.207952\pi\)
\(440\) 0 0
\(441\) −142550. −0.732978
\(442\) 0 0
\(443\) 23778.7i 0.121166i 0.998163 + 0.0605830i \(0.0192960\pi\)
−0.998163 + 0.0605830i \(0.980704\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1633.49 −0.00817528
\(448\) 0 0
\(449\) −232928. −1.15539 −0.577695 0.816253i \(-0.696048\pi\)
−0.577695 + 0.816253i \(0.696048\pi\)
\(450\) 0 0
\(451\) −172007. −0.845657
\(452\) 0 0
\(453\) 10600.9 0.0516590
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 167826.i − 0.803576i −0.915733 0.401788i \(-0.868389\pi\)
0.915733 0.401788i \(-0.131611\pi\)
\(458\) 0 0
\(459\) −14264.1 −0.0677048
\(460\) 0 0
\(461\) 22126.3i 0.104113i 0.998644 + 0.0520567i \(0.0165776\pi\)
−0.998644 + 0.0520567i \(0.983422\pi\)
\(462\) 0 0
\(463\) 174200. 0.812618 0.406309 0.913736i \(-0.366816\pi\)
0.406309 + 0.913736i \(0.366816\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 174200.i − 0.798757i −0.916786 0.399379i \(-0.869226\pi\)
0.916786 0.399379i \(-0.130774\pi\)
\(468\) 0 0
\(469\) 100877.i 0.458613i
\(470\) 0 0
\(471\) 17990.7i 0.0810973i
\(472\) 0 0
\(473\) − 148922.i − 0.665635i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −57139.8 −0.251132
\(478\) 0 0
\(479\) 266904.i 1.16328i 0.813447 + 0.581640i \(0.197589\pi\)
−0.813447 + 0.581640i \(0.802411\pi\)
\(480\) 0 0
\(481\) −270116. −1.16751
\(482\) 0 0
\(483\) 824.536i 0.00353440i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −183710. −0.774596 −0.387298 0.921955i \(-0.626592\pi\)
−0.387298 + 0.921955i \(0.626592\pi\)
\(488\) 0 0
\(489\) −32498.1 −0.135906
\(490\) 0 0
\(491\) −154481. −0.640783 −0.320392 0.947285i \(-0.603814\pi\)
−0.320392 + 0.947285i \(0.603814\pi\)
\(492\) 0 0
\(493\) 133813. 0.550561
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 89147.5i 0.360908i
\(498\) 0 0
\(499\) −171039. −0.686899 −0.343449 0.939171i \(-0.611595\pi\)
−0.343449 + 0.939171i \(0.611595\pi\)
\(500\) 0 0
\(501\) − 8902.09i − 0.0354663i
\(502\) 0 0
\(503\) 165859. 0.655545 0.327772 0.944757i \(-0.393702\pi\)
0.327772 + 0.944757i \(0.393702\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 44738.2i 0.174045i
\(508\) 0 0
\(509\) − 369386.i − 1.42575i −0.701289 0.712877i \(-0.747392\pi\)
0.701289 0.712877i \(-0.252608\pi\)
\(510\) 0 0
\(511\) − 132972.i − 0.509235i
\(512\) 0 0
\(513\) 37225.7i 0.141452i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 210583. 0.787849
\(518\) 0 0
\(519\) − 10103.5i − 0.0375090i
\(520\) 0 0
\(521\) 61240.8 0.225613 0.112807 0.993617i \(-0.464016\pi\)
0.112807 + 0.993617i \(0.464016\pi\)
\(522\) 0 0
\(523\) − 12048.3i − 0.0440475i −0.999757 0.0220238i \(-0.992989\pi\)
0.999757 0.0220238i \(-0.00701095\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −200537. −0.722061
\(528\) 0 0
\(529\) −277734. −0.992469
\(530\) 0 0
\(531\) 359507. 1.27502
\(532\) 0 0
\(533\) 331259. 1.16604
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 29232.3i 0.101371i
\(538\) 0 0
\(539\) −277536. −0.955303
\(540\) 0 0
\(541\) − 15058.6i − 0.0514505i −0.999669 0.0257252i \(-0.991810\pi\)
0.999669 0.0257252i \(-0.00818950\pi\)
\(542\) 0 0
\(543\) −23709.9 −0.0804137
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 89318.5i − 0.298515i −0.988798 0.149258i \(-0.952312\pi\)
0.988798 0.149258i \(-0.0476884\pi\)
\(548\) 0 0
\(549\) − 75171.1i − 0.249406i
\(550\) 0 0
\(551\) − 349219.i − 1.15026i
\(552\) 0 0
\(553\) − 287673.i − 0.940694i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −323886. −1.04396 −0.521978 0.852959i \(-0.674806\pi\)
−0.521978 + 0.852959i \(0.674806\pi\)
\(558\) 0 0
\(559\) 286800.i 0.917816i
\(560\) 0 0
\(561\) −13841.6 −0.0439805
\(562\) 0 0
\(563\) − 174858.i − 0.551655i −0.961207 0.275827i \(-0.911048\pi\)
0.961207 0.275827i \(-0.0889518\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −161553. −0.502514
\(568\) 0 0
\(569\) −137244. −0.423906 −0.211953 0.977280i \(-0.567982\pi\)
−0.211953 + 0.977280i \(0.567982\pi\)
\(570\) 0 0
\(571\) 30212.9 0.0926661 0.0463331 0.998926i \(-0.485246\pi\)
0.0463331 + 0.998926i \(0.485246\pi\)
\(572\) 0 0
\(573\) −44429.9 −0.135321
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 157140.i 0.471991i 0.971754 + 0.235996i \(0.0758351\pi\)
−0.971754 + 0.235996i \(0.924165\pi\)
\(578\) 0 0
\(579\) −26968.7 −0.0804456
\(580\) 0 0
\(581\) − 165371.i − 0.489900i
\(582\) 0 0
\(583\) −111247. −0.327305
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 454782.i 1.31986i 0.751328 + 0.659929i \(0.229413\pi\)
−0.751328 + 0.659929i \(0.770587\pi\)
\(588\) 0 0
\(589\) 523352.i 1.50856i
\(590\) 0 0
\(591\) 46589.1i 0.133386i
\(592\) 0 0
\(593\) − 311501.i − 0.885830i −0.896564 0.442915i \(-0.853944\pi\)
0.896564 0.442915i \(-0.146056\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −25473.7 −0.0714732
\(598\) 0 0
\(599\) − 456248.i − 1.27159i −0.771858 0.635795i \(-0.780672\pi\)
0.771858 0.635795i \(-0.219328\pi\)
\(600\) 0 0
\(601\) 76983.7 0.213133 0.106566 0.994306i \(-0.466014\pi\)
0.106566 + 0.994306i \(0.466014\pi\)
\(602\) 0 0
\(603\) − 323503.i − 0.889700i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 114126. 0.309747 0.154873 0.987934i \(-0.450503\pi\)
0.154873 + 0.987934i \(0.450503\pi\)
\(608\) 0 0
\(609\) −19472.8 −0.0525041
\(610\) 0 0
\(611\) −405550. −1.08633
\(612\) 0 0
\(613\) −258067. −0.686770 −0.343385 0.939195i \(-0.611574\pi\)
−0.343385 + 0.939195i \(0.611574\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 622513.i − 1.63523i −0.575767 0.817614i \(-0.695296\pi\)
0.575767 0.817614i \(-0.304704\pi\)
\(618\) 0 0
\(619\) −490064. −1.27900 −0.639502 0.768790i \(-0.720859\pi\)
−0.639502 + 0.768790i \(0.720859\pi\)
\(620\) 0 0
\(621\) − 5305.25i − 0.0137570i
\(622\) 0 0
\(623\) −157630. −0.406129
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 36123.1i 0.0918860i
\(628\) 0 0
\(629\) 110474.i 0.279227i
\(630\) 0 0
\(631\) 260622.i 0.654565i 0.944927 + 0.327283i \(0.106133\pi\)
−0.944927 + 0.327283i \(0.893867\pi\)
\(632\) 0 0
\(633\) 27320.9i 0.0681848i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 534490. 1.31723
\(638\) 0 0
\(639\) − 285888.i − 0.700155i
\(640\) 0 0
\(641\) 309582. 0.753459 0.376730 0.926323i \(-0.377049\pi\)
0.376730 + 0.926323i \(0.377049\pi\)
\(642\) 0 0
\(643\) 227221.i 0.549575i 0.961505 + 0.274788i \(0.0886076\pi\)
−0.961505 + 0.274788i \(0.911392\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 464773. 1.11028 0.555140 0.831757i \(-0.312665\pi\)
0.555140 + 0.831757i \(0.312665\pi\)
\(648\) 0 0
\(649\) 699936. 1.66176
\(650\) 0 0
\(651\) 29182.6 0.0688592
\(652\) 0 0
\(653\) 413098. 0.968784 0.484392 0.874851i \(-0.339041\pi\)
0.484392 + 0.874851i \(0.339041\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 426429.i 0.987906i
\(658\) 0 0
\(659\) 336357. 0.774514 0.387257 0.921972i \(-0.373423\pi\)
0.387257 + 0.921972i \(0.373423\pi\)
\(660\) 0 0
\(661\) 345461.i 0.790673i 0.918536 + 0.395336i \(0.129372\pi\)
−0.918536 + 0.395336i \(0.870628\pi\)
\(662\) 0 0
\(663\) 26656.7 0.0606429
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 49769.2i 0.111869i
\(668\) 0 0
\(669\) 18932.2i 0.0423008i
\(670\) 0 0
\(671\) − 146353.i − 0.325055i
\(672\) 0 0
\(673\) 462062.i 1.02016i 0.860126 + 0.510082i \(0.170385\pi\)
−0.860126 + 0.510082i \(0.829615\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −38158.5 −0.0832556 −0.0416278 0.999133i \(-0.513254\pi\)
−0.0416278 + 0.999133i \(0.513254\pi\)
\(678\) 0 0
\(679\) − 375488.i − 0.814436i
\(680\) 0 0
\(681\) −46336.0 −0.0999134
\(682\) 0 0
\(683\) 653710.i 1.40134i 0.713486 + 0.700670i \(0.247115\pi\)
−0.713486 + 0.700670i \(0.752885\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −43916.2 −0.0930488
\(688\) 0 0
\(689\) 214245. 0.451306
\(690\) 0 0
\(691\) −55946.9 −0.117171 −0.0585854 0.998282i \(-0.518659\pi\)
−0.0585854 + 0.998282i \(0.518659\pi\)
\(692\) 0 0
\(693\) −316559. −0.659156
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 135480.i − 0.278876i
\(698\) 0 0
\(699\) 6699.94 0.0137125
\(700\) 0 0
\(701\) 604760.i 1.23069i 0.788260 + 0.615343i \(0.210982\pi\)
−0.788260 + 0.615343i \(0.789018\pi\)
\(702\) 0 0
\(703\) 288308. 0.583373
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 120035.i − 0.240142i
\(708\) 0 0
\(709\) − 188395.i − 0.374781i −0.982285 0.187391i \(-0.939997\pi\)
0.982285 0.187391i \(-0.0600030\pi\)
\(710\) 0 0
\(711\) 922540.i 1.82493i
\(712\) 0 0
\(713\) − 74585.9i − 0.146716i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 55968.4 0.108869
\(718\) 0 0
\(719\) 161045.i 0.311522i 0.987795 + 0.155761i \(0.0497830\pi\)
−0.987795 + 0.155761i \(0.950217\pi\)
\(720\) 0 0
\(721\) −460978. −0.886766
\(722\) 0 0
\(723\) − 2831.65i − 0.00541705i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 433372. 0.819960 0.409980 0.912095i \(-0.365536\pi\)
0.409980 + 0.912095i \(0.365536\pi\)
\(728\) 0 0
\(729\) 511386. 0.962263
\(730\) 0 0
\(731\) 117297. 0.219509
\(732\) 0 0
\(733\) −643138. −1.19701 −0.598503 0.801121i \(-0.704237\pi\)
−0.598503 + 0.801121i \(0.704237\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 629838.i − 1.15956i
\(738\) 0 0
\(739\) 412921. 0.756098 0.378049 0.925786i \(-0.376595\pi\)
0.378049 + 0.925786i \(0.376595\pi\)
\(740\) 0 0
\(741\) − 69567.3i − 0.126698i
\(742\) 0 0
\(743\) −969654. −1.75646 −0.878231 0.478236i \(-0.841276\pi\)
−0.878231 + 0.478236i \(0.841276\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 530331.i 0.950398i
\(748\) 0 0
\(749\) 358553.i 0.639131i
\(750\) 0 0
\(751\) − 858378.i − 1.52194i −0.648784 0.760972i \(-0.724722\pi\)
0.648784 0.760972i \(-0.275278\pi\)
\(752\) 0 0
\(753\) 17037.5i 0.0300480i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 155580. 0.271495 0.135747 0.990743i \(-0.456656\pi\)
0.135747 + 0.990743i \(0.456656\pi\)
\(758\) 0 0
\(759\) − 5148.10i − 0.00893642i
\(760\) 0 0
\(761\) 216729. 0.374237 0.187119 0.982337i \(-0.440085\pi\)
0.187119 + 0.982337i \(0.440085\pi\)
\(762\) 0 0
\(763\) − 131714.i − 0.226247i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.34797e6 −2.29133
\(768\) 0 0
\(769\) 413439. 0.699132 0.349566 0.936912i \(-0.386329\pi\)
0.349566 + 0.936912i \(0.386329\pi\)
\(770\) 0 0
\(771\) 57533.3 0.0967855
\(772\) 0 0
\(773\) 515813. 0.863244 0.431622 0.902055i \(-0.357942\pi\)
0.431622 + 0.902055i \(0.357942\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 16076.3i − 0.0266284i
\(778\) 0 0
\(779\) −353569. −0.582639
\(780\) 0 0
\(781\) − 556604.i − 0.912524i
\(782\) 0 0
\(783\) 125292. 0.204362
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 694926.i − 1.12199i −0.827819 0.560995i \(-0.810419\pi\)
0.827819 0.560995i \(-0.189581\pi\)
\(788\) 0 0
\(789\) − 32311.6i − 0.0519044i
\(790\) 0 0
\(791\) − 383676.i − 0.613214i
\(792\) 0 0
\(793\) 281853.i 0.448204i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 287395. 0.452442 0.226221 0.974076i \(-0.427363\pi\)
0.226221 + 0.974076i \(0.427363\pi\)
\(798\) 0 0
\(799\) 165864.i 0.259812i
\(800\) 0 0
\(801\) 505506. 0.787883
\(802\) 0 0
\(803\) 830228.i 1.28756i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −17753.3 −0.0272604
\(808\) 0 0
\(809\) 104931. 0.160328 0.0801638 0.996782i \(-0.474456\pi\)
0.0801638 + 0.996782i \(0.474456\pi\)
\(810\) 0 0
\(811\) 731396. 1.11202 0.556008 0.831177i \(-0.312332\pi\)
0.556008 + 0.831177i \(0.312332\pi\)
\(812\) 0 0
\(813\) 7746.84 0.0117204
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 306116.i − 0.458608i
\(818\) 0 0
\(819\) 609643. 0.908883
\(820\) 0 0
\(821\) − 160376.i − 0.237932i −0.992898 0.118966i \(-0.962042\pi\)
0.992898 0.118966i \(-0.0379579\pi\)
\(822\) 0 0
\(823\) −639468. −0.944103 −0.472052 0.881571i \(-0.656486\pi\)
−0.472052 + 0.881571i \(0.656486\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 392782.i 0.574302i 0.957885 + 0.287151i \(0.0927082\pi\)
−0.957885 + 0.287151i \(0.907292\pi\)
\(828\) 0 0
\(829\) − 749281.i − 1.09027i −0.838347 0.545137i \(-0.816478\pi\)
0.838347 0.545137i \(-0.183522\pi\)
\(830\) 0 0
\(831\) − 64198.3i − 0.0929654i
\(832\) 0 0
\(833\) − 218599.i − 0.315034i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −187767. −0.268021
\(838\) 0 0
\(839\) 1.05604e6i 1.50023i 0.661308 + 0.750115i \(0.270002\pi\)
−0.661308 + 0.750115i \(0.729998\pi\)
\(840\) 0 0
\(841\) −468099. −0.661829
\(842\) 0 0
\(843\) 21404.4i 0.0301195i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −248855. −0.346881
\(848\) 0 0
\(849\) −7392.95 −0.0102566
\(850\) 0 0
\(851\) −41088.5 −0.0567363
\(852\) 0 0
\(853\) −166621. −0.228999 −0.114499 0.993423i \(-0.536526\pi\)
−0.114499 + 0.993423i \(0.536526\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 834744.i 1.13656i 0.822836 + 0.568279i \(0.192391\pi\)
−0.822836 + 0.568279i \(0.807609\pi\)
\(858\) 0 0
\(859\) 639041. 0.866048 0.433024 0.901382i \(-0.357446\pi\)
0.433024 + 0.901382i \(0.357446\pi\)
\(860\) 0 0
\(861\) 19715.4i 0.0265949i
\(862\) 0 0
\(863\) 1.38716e6 1.86254 0.931268 0.364335i \(-0.118704\pi\)
0.931268 + 0.364335i \(0.118704\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 48868.8i 0.0650120i
\(868\) 0 0
\(869\) 1.79612e6i 2.37846i
\(870\) 0 0
\(871\) 1.21297e6i 1.59887i
\(872\) 0 0
\(873\) 1.20416e6i 1.57999i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −853159. −1.10925 −0.554627 0.832099i \(-0.687139\pi\)
−0.554627 + 0.832099i \(0.687139\pi\)
\(878\) 0 0
\(879\) 29025.5i 0.0375666i
\(880\) 0 0
\(881\) 1.26731e6 1.63279 0.816396 0.577493i \(-0.195969\pi\)
0.816396 + 0.577493i \(0.195969\pi\)
\(882\) 0 0
\(883\) 324445.i 0.416121i 0.978116 + 0.208061i \(0.0667152\pi\)
−0.978116 + 0.208061i \(0.933285\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −186805. −0.237433 −0.118716 0.992928i \(-0.537878\pi\)
−0.118716 + 0.992928i \(0.537878\pi\)
\(888\) 0 0
\(889\) −456650. −0.577803
\(890\) 0 0
\(891\) 1.00868e6 1.27056
\(892\) 0 0
\(893\) 432864. 0.542811
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9914.43i 0.0123221i
\(898\) 0 0
\(899\) 1.76147e6 2.17949
\(900\) 0 0
\(901\) − 87623.1i − 0.107937i
\(902\) 0 0
\(903\) −17069.3 −0.0209334
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 49214.0i 0.0598238i 0.999553 + 0.0299119i \(0.00952268\pi\)
−0.999553 + 0.0299119i \(0.990477\pi\)
\(908\) 0 0
\(909\) 384940.i 0.465870i
\(910\) 0 0
\(911\) 285157.i 0.343595i 0.985132 + 0.171797i \(0.0549574\pi\)
−0.985132 + 0.171797i \(0.945043\pi\)
\(912\) 0 0
\(913\) 1.03252e6i 1.23867i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 387695. 0.461053
\(918\) 0 0
\(919\) 698642.i 0.827225i 0.910453 + 0.413613i \(0.135733\pi\)
−0.910453 + 0.413613i \(0.864267\pi\)
\(920\) 0 0
\(921\) 80090.4 0.0944194
\(922\) 0 0
\(923\) 1.07193e6i 1.25824i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.47831e6 1.72031
\(928\) 0 0
\(929\) 1.24579e6 1.44349 0.721746 0.692158i \(-0.243340\pi\)
0.721746 + 0.692158i \(0.243340\pi\)
\(930\) 0 0
\(931\) −570487. −0.658183
\(932\) 0 0
\(933\) 54092.3 0.0621402
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 253678.i − 0.288937i −0.989509 0.144469i \(-0.953853\pi\)
0.989509 0.144469i \(-0.0461473\pi\)
\(938\) 0 0
\(939\) −60764.4 −0.0689157
\(940\) 0 0
\(941\) − 1.11582e6i − 1.26013i −0.776543 0.630064i \(-0.783029\pi\)
0.776543 0.630064i \(-0.216971\pi\)
\(942\) 0 0
\(943\) 50389.2 0.0566649
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 875095.i − 0.975787i −0.872903 0.487893i \(-0.837765\pi\)
0.872903 0.487893i \(-0.162235\pi\)
\(948\) 0 0
\(949\) − 1.59889e6i − 1.77536i
\(950\) 0 0
\(951\) 60549.7i 0.0669501i
\(952\) 0 0
\(953\) 1.16693e6i 1.28487i 0.766342 + 0.642433i \(0.222075\pi\)
−0.766342 + 0.642433i \(0.777925\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 121581. 0.132752
\(958\) 0 0
\(959\) 344202.i 0.374263i
\(960\) 0 0
\(961\) −1.71628e6 −1.85840
\(962\) 0 0
\(963\) − 1.14985e6i − 1.23990i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 764848. 0.817942 0.408971 0.912547i \(-0.365888\pi\)
0.408971 + 0.912547i \(0.365888\pi\)
\(968\) 0 0
\(969\) −28452.1 −0.0303016
\(970\) 0 0
\(971\) 148874. 0.157899 0.0789497 0.996879i \(-0.474843\pi\)
0.0789497 + 0.996879i \(0.474843\pi\)
\(972\) 0 0
\(973\) −483654. −0.510868
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 99829.5i − 0.104585i −0.998632 0.0522925i \(-0.983347\pi\)
0.998632 0.0522925i \(-0.0166528\pi\)
\(978\) 0 0
\(979\) 984186. 1.02686
\(980\) 0 0
\(981\) 422395.i 0.438916i
\(982\) 0 0
\(983\) −329283. −0.340771 −0.170385 0.985378i \(-0.554501\pi\)
−0.170385 + 0.985378i \(0.554501\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 24136.9i − 0.0247769i
\(988\) 0 0
\(989\) 43626.4i 0.0446022i
\(990\) 0 0
\(991\) − 40937.9i − 0.0416848i −0.999783 0.0208424i \(-0.993365\pi\)
0.999783 0.0208424i \(-0.00663483\pi\)
\(992\) 0 0
\(993\) − 78565.8i − 0.0796774i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.03701e6 −1.04326 −0.521630 0.853172i \(-0.674676\pi\)
−0.521630 + 0.853172i \(0.674676\pi\)
\(998\) 0 0
\(999\) 103439.i 0.103646i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.e.e.399.20 32
4.3 odd 2 200.5.e.e.99.18 32
5.2 odd 4 160.5.g.a.111.8 16
5.3 odd 4 800.5.g.h.751.10 16
5.4 even 2 inner 800.5.e.e.399.13 32
8.3 odd 2 inner 800.5.e.e.399.14 32
8.5 even 2 200.5.e.e.99.16 32
15.2 even 4 1440.5.g.a.271.4 16
20.3 even 4 200.5.g.h.51.15 16
20.7 even 4 40.5.g.a.11.2 yes 16
20.19 odd 2 200.5.e.e.99.15 32
40.3 even 4 800.5.g.h.751.9 16
40.13 odd 4 200.5.g.h.51.16 16
40.19 odd 2 inner 800.5.e.e.399.19 32
40.27 even 4 160.5.g.a.111.7 16
40.29 even 2 200.5.e.e.99.17 32
40.37 odd 4 40.5.g.a.11.1 16
60.47 odd 4 360.5.g.a.91.15 16
120.77 even 4 360.5.g.a.91.16 16
120.107 odd 4 1440.5.g.a.271.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.1 16 40.37 odd 4
40.5.g.a.11.2 yes 16 20.7 even 4
160.5.g.a.111.7 16 40.27 even 4
160.5.g.a.111.8 16 5.2 odd 4
200.5.e.e.99.15 32 20.19 odd 2
200.5.e.e.99.16 32 8.5 even 2
200.5.e.e.99.17 32 40.29 even 2
200.5.e.e.99.18 32 4.3 odd 2
200.5.g.h.51.15 16 20.3 even 4
200.5.g.h.51.16 16 40.13 odd 4
360.5.g.a.91.15 16 60.47 odd 4
360.5.g.a.91.16 16 120.77 even 4
800.5.e.e.399.13 32 5.4 even 2 inner
800.5.e.e.399.14 32 8.3 odd 2 inner
800.5.e.e.399.19 32 40.19 odd 2 inner
800.5.e.e.399.20 32 1.1 even 1 trivial
800.5.g.h.751.9 16 40.3 even 4
800.5.g.h.751.10 16 5.3 odd 4
1440.5.g.a.271.4 16 15.2 even 4
1440.5.g.a.271.13 16 120.107 odd 4