Properties

Label 800.5.e.e.399.8
Level $800$
Weight $5$
Character 800.399
Analytic conductor $82.696$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(399,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.399");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.8
Character \(\chi\) \(=\) 800.399
Dual form 800.5.e.e.399.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.2196i q^{3} +47.5956 q^{7} -150.635 q^{9} -84.0101 q^{11} -236.405 q^{13} -407.645i q^{17} +124.159 q^{19} +724.383i q^{21} -198.689 q^{23} -1059.81i q^{27} +1313.51i q^{29} -1243.21i q^{31} -1278.60i q^{33} +854.861 q^{37} -3597.98i q^{39} +3072.37 q^{41} -1108.03i q^{43} +284.880 q^{47} -135.663 q^{49} +6204.18 q^{51} -2964.13 q^{53} +1889.64i q^{57} +657.496 q^{59} -4209.41i q^{61} -7169.54 q^{63} -2607.14i q^{67} -3023.96i q^{69} -4545.99i q^{71} +822.870i q^{73} -3998.51 q^{77} +3047.75i q^{79} +3928.41 q^{81} -11276.1i q^{83} -19991.1 q^{87} +4387.83 q^{89} -11251.8 q^{91} +18921.0 q^{93} -4448.77i q^{97} +12654.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 864 q^{9} - 384 q^{11} - 1408 q^{19} - 4416 q^{41} + 4960 q^{49} + 35584 q^{51} + 28032 q^{59} + 20768 q^{81} - 13632 q^{89} - 49152 q^{91} + 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 15.2196i 1.69106i 0.533927 + 0.845531i \(0.320716\pi\)
−0.533927 + 0.845531i \(0.679284\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 47.5956 0.971338 0.485669 0.874143i \(-0.338576\pi\)
0.485669 + 0.874143i \(0.338576\pi\)
\(8\) 0 0
\(9\) −150.635 −1.85969
\(10\) 0 0
\(11\) −84.0101 −0.694299 −0.347149 0.937810i \(-0.612850\pi\)
−0.347149 + 0.937810i \(0.612850\pi\)
\(12\) 0 0
\(13\) −236.405 −1.39885 −0.699423 0.714708i \(-0.746560\pi\)
−0.699423 + 0.714708i \(0.746560\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 407.645i − 1.41054i −0.708940 0.705269i \(-0.750826\pi\)
0.708940 0.705269i \(-0.249174\pi\)
\(18\) 0 0
\(19\) 124.159 0.343930 0.171965 0.985103i \(-0.444988\pi\)
0.171965 + 0.985103i \(0.444988\pi\)
\(20\) 0 0
\(21\) 724.383i 1.64259i
\(22\) 0 0
\(23\) −198.689 −0.375594 −0.187797 0.982208i \(-0.560135\pi\)
−0.187797 + 0.982208i \(0.560135\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1059.81i − 1.45378i
\(28\) 0 0
\(29\) 1313.51i 1.56185i 0.624626 + 0.780924i \(0.285252\pi\)
−0.624626 + 0.780924i \(0.714748\pi\)
\(30\) 0 0
\(31\) − 1243.21i − 1.29366i −0.762635 0.646829i \(-0.776095\pi\)
0.762635 0.646829i \(-0.223905\pi\)
\(32\) 0 0
\(33\) − 1278.60i − 1.17410i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 854.861 0.624442 0.312221 0.950009i \(-0.398927\pi\)
0.312221 + 0.950009i \(0.398927\pi\)
\(38\) 0 0
\(39\) − 3597.98i − 2.36553i
\(40\) 0 0
\(41\) 3072.37 1.82771 0.913853 0.406045i \(-0.133092\pi\)
0.913853 + 0.406045i \(0.133092\pi\)
\(42\) 0 0
\(43\) − 1108.03i − 0.599259i −0.954056 0.299629i \(-0.903137\pi\)
0.954056 0.299629i \(-0.0968630\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 284.880 0.128963 0.0644816 0.997919i \(-0.479461\pi\)
0.0644816 + 0.997919i \(0.479461\pi\)
\(48\) 0 0
\(49\) −135.663 −0.0565029
\(50\) 0 0
\(51\) 6204.18 2.38530
\(52\) 0 0
\(53\) −2964.13 −1.05523 −0.527613 0.849485i \(-0.676913\pi\)
−0.527613 + 0.849485i \(0.676913\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1889.64i 0.581606i
\(58\) 0 0
\(59\) 657.496 0.188881 0.0944406 0.995530i \(-0.469894\pi\)
0.0944406 + 0.995530i \(0.469894\pi\)
\(60\) 0 0
\(61\) − 4209.41i − 1.13126i −0.824660 0.565629i \(-0.808633\pi\)
0.824660 0.565629i \(-0.191367\pi\)
\(62\) 0 0
\(63\) −7169.54 −1.80639
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 2607.14i − 0.580785i −0.956908 0.290393i \(-0.906214\pi\)
0.956908 0.290393i \(-0.0937859\pi\)
\(68\) 0 0
\(69\) − 3023.96i − 0.635152i
\(70\) 0 0
\(71\) − 4545.99i − 0.901804i −0.892574 0.450902i \(-0.851102\pi\)
0.892574 0.450902i \(-0.148898\pi\)
\(72\) 0 0
\(73\) 822.870i 0.154414i 0.997015 + 0.0772068i \(0.0246002\pi\)
−0.997015 + 0.0772068i \(0.975400\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3998.51 −0.674398
\(78\) 0 0
\(79\) 3047.75i 0.488343i 0.969732 + 0.244172i \(0.0785160\pi\)
−0.969732 + 0.244172i \(0.921484\pi\)
\(80\) 0 0
\(81\) 3928.41 0.598751
\(82\) 0 0
\(83\) − 11276.1i − 1.63683i −0.574627 0.818415i \(-0.694853\pi\)
0.574627 0.818415i \(-0.305147\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −19991.1 −2.64118
\(88\) 0 0
\(89\) 4387.83 0.553949 0.276974 0.960877i \(-0.410668\pi\)
0.276974 + 0.960877i \(0.410668\pi\)
\(90\) 0 0
\(91\) −11251.8 −1.35875
\(92\) 0 0
\(93\) 18921.0 2.18766
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 4448.77i − 0.472821i −0.971653 0.236410i \(-0.924029\pi\)
0.971653 0.236410i \(-0.0759710\pi\)
\(98\) 0 0
\(99\) 12654.8 1.29118
\(100\) 0 0
\(101\) − 9105.46i − 0.892605i −0.894882 0.446302i \(-0.852741\pi\)
0.894882 0.446302i \(-0.147259\pi\)
\(102\) 0 0
\(103\) 11234.1 1.05892 0.529459 0.848336i \(-0.322395\pi\)
0.529459 + 0.848336i \(0.322395\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1475.53i − 0.128878i −0.997922 0.0644391i \(-0.979474\pi\)
0.997922 0.0644391i \(-0.0205258\pi\)
\(108\) 0 0
\(109\) 11699.2i 0.984696i 0.870399 + 0.492348i \(0.163861\pi\)
−0.870399 + 0.492348i \(0.836139\pi\)
\(110\) 0 0
\(111\) 13010.6i 1.05597i
\(112\) 0 0
\(113\) 4107.55i 0.321681i 0.986980 + 0.160841i \(0.0514205\pi\)
−0.986980 + 0.160841i \(0.948580\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 35610.8 2.60142
\(118\) 0 0
\(119\) − 19402.1i − 1.37011i
\(120\) 0 0
\(121\) −7583.30 −0.517949
\(122\) 0 0
\(123\) 46760.2i 3.09076i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1191.31 −0.0738613 −0.0369307 0.999318i \(-0.511758\pi\)
−0.0369307 + 0.999318i \(0.511758\pi\)
\(128\) 0 0
\(129\) 16863.7 1.01338
\(130\) 0 0
\(131\) 23101.7 1.34617 0.673086 0.739564i \(-0.264968\pi\)
0.673086 + 0.739564i \(0.264968\pi\)
\(132\) 0 0
\(133\) 5909.40 0.334072
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12201.4i 0.650085i 0.945699 + 0.325042i \(0.105379\pi\)
−0.945699 + 0.325042i \(0.894621\pi\)
\(138\) 0 0
\(139\) 32137.7 1.66335 0.831677 0.555260i \(-0.187381\pi\)
0.831677 + 0.555260i \(0.187381\pi\)
\(140\) 0 0
\(141\) 4335.74i 0.218085i
\(142\) 0 0
\(143\) 19860.4 0.971217
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2064.74i − 0.0955498i
\(148\) 0 0
\(149\) − 22165.6i − 0.998407i −0.866485 0.499203i \(-0.833626\pi\)
0.866485 0.499203i \(-0.166374\pi\)
\(150\) 0 0
\(151\) − 11899.8i − 0.521898i −0.965353 0.260949i \(-0.915965\pi\)
0.965353 0.260949i \(-0.0840354\pi\)
\(152\) 0 0
\(153\) 61405.5i 2.62316i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13908.6 −0.564266 −0.282133 0.959375i \(-0.591042\pi\)
−0.282133 + 0.959375i \(0.591042\pi\)
\(158\) 0 0
\(159\) − 45112.7i − 1.78445i
\(160\) 0 0
\(161\) −9456.72 −0.364829
\(162\) 0 0
\(163\) 15868.2i 0.597247i 0.954371 + 0.298623i \(0.0965274\pi\)
−0.954371 + 0.298623i \(0.903473\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 34210.3 1.22666 0.613329 0.789828i \(-0.289830\pi\)
0.613329 + 0.789828i \(0.289830\pi\)
\(168\) 0 0
\(169\) 27326.3 0.956770
\(170\) 0 0
\(171\) −18702.6 −0.639602
\(172\) 0 0
\(173\) −11608.3 −0.387861 −0.193930 0.981015i \(-0.562124\pi\)
−0.193930 + 0.981015i \(0.562124\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10006.8i 0.319410i
\(178\) 0 0
\(179\) 6801.56 0.212277 0.106138 0.994351i \(-0.466151\pi\)
0.106138 + 0.994351i \(0.466151\pi\)
\(180\) 0 0
\(181\) 9082.98i 0.277250i 0.990345 + 0.138625i \(0.0442682\pi\)
−0.990345 + 0.138625i \(0.955732\pi\)
\(182\) 0 0
\(183\) 64065.4 1.91303
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 34246.3i 0.979334i
\(188\) 0 0
\(189\) − 50442.2i − 1.41212i
\(190\) 0 0
\(191\) 33432.5i 0.916435i 0.888840 + 0.458217i \(0.151512\pi\)
−0.888840 + 0.458217i \(0.848488\pi\)
\(192\) 0 0
\(193\) 29676.4i 0.796702i 0.917233 + 0.398351i \(0.130417\pi\)
−0.917233 + 0.398351i \(0.869583\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −44590.9 −1.14898 −0.574492 0.818510i \(-0.694800\pi\)
−0.574492 + 0.818510i \(0.694800\pi\)
\(198\) 0 0
\(199\) 38999.4i 0.984808i 0.870367 + 0.492404i \(0.163882\pi\)
−0.870367 + 0.492404i \(0.836118\pi\)
\(200\) 0 0
\(201\) 39679.6 0.982143
\(202\) 0 0
\(203\) 62517.5i 1.51708i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 29929.5 0.698487
\(208\) 0 0
\(209\) −10430.6 −0.238790
\(210\) 0 0
\(211\) −12374.7 −0.277952 −0.138976 0.990296i \(-0.544381\pi\)
−0.138976 + 0.990296i \(0.544381\pi\)
\(212\) 0 0
\(213\) 69188.0 1.52501
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 59171.1i − 1.25658i
\(218\) 0 0
\(219\) −12523.7 −0.261123
\(220\) 0 0
\(221\) 96369.4i 1.97312i
\(222\) 0 0
\(223\) −87223.5 −1.75398 −0.876989 0.480511i \(-0.840451\pi\)
−0.876989 + 0.480511i \(0.840451\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 61793.9i − 1.19921i −0.800298 0.599603i \(-0.795325\pi\)
0.800298 0.599603i \(-0.204675\pi\)
\(228\) 0 0
\(229\) − 65329.0i − 1.24576i −0.782316 0.622881i \(-0.785962\pi\)
0.782316 0.622881i \(-0.214038\pi\)
\(230\) 0 0
\(231\) − 60855.5i − 1.14045i
\(232\) 0 0
\(233\) 17377.5i 0.320093i 0.987110 + 0.160046i \(0.0511644\pi\)
−0.987110 + 0.160046i \(0.948836\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −46385.4 −0.825819
\(238\) 0 0
\(239\) − 30364.0i − 0.531573i −0.964032 0.265786i \(-0.914368\pi\)
0.964032 0.265786i \(-0.0856316\pi\)
\(240\) 0 0
\(241\) −27940.4 −0.481059 −0.240530 0.970642i \(-0.577321\pi\)
−0.240530 + 0.970642i \(0.577321\pi\)
\(242\) 0 0
\(243\) − 26056.0i − 0.441260i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −29351.7 −0.481105
\(248\) 0 0
\(249\) 171618. 2.76798
\(250\) 0 0
\(251\) 45124.9 0.716257 0.358128 0.933672i \(-0.383415\pi\)
0.358128 + 0.933672i \(0.383415\pi\)
\(252\) 0 0
\(253\) 16691.9 0.260774
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 30570.0i − 0.462838i −0.972854 0.231419i \(-0.925663\pi\)
0.972854 0.231419i \(-0.0743367\pi\)
\(258\) 0 0
\(259\) 40687.6 0.606544
\(260\) 0 0
\(261\) − 197861.i − 2.90455i
\(262\) 0 0
\(263\) 20426.5 0.295313 0.147656 0.989039i \(-0.452827\pi\)
0.147656 + 0.989039i \(0.452827\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 66780.8i 0.936761i
\(268\) 0 0
\(269\) − 18131.8i − 0.250574i −0.992121 0.125287i \(-0.960015\pi\)
0.992121 0.125287i \(-0.0399851\pi\)
\(270\) 0 0
\(271\) − 115432.i − 1.57177i −0.618375 0.785883i \(-0.712209\pi\)
0.618375 0.785883i \(-0.287791\pi\)
\(272\) 0 0
\(273\) − 171248.i − 2.29773i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −109401. −1.42581 −0.712904 0.701262i \(-0.752620\pi\)
−0.712904 + 0.701262i \(0.752620\pi\)
\(278\) 0 0
\(279\) 187270.i 2.40580i
\(280\) 0 0
\(281\) 115428. 1.46184 0.730918 0.682465i \(-0.239092\pi\)
0.730918 + 0.682465i \(0.239092\pi\)
\(282\) 0 0
\(283\) − 92630.1i − 1.15659i −0.815828 0.578295i \(-0.803718\pi\)
0.815828 0.578295i \(-0.196282\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 146231. 1.77532
\(288\) 0 0
\(289\) −82653.7 −0.989615
\(290\) 0 0
\(291\) 67708.3 0.799569
\(292\) 0 0
\(293\) −135366. −1.57679 −0.788396 0.615168i \(-0.789088\pi\)
−0.788396 + 0.615168i \(0.789088\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 89034.7i 1.00936i
\(298\) 0 0
\(299\) 46971.1 0.525398
\(300\) 0 0
\(301\) − 52737.3i − 0.582083i
\(302\) 0 0
\(303\) 138581. 1.50945
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 10701.4i − 0.113544i −0.998387 0.0567721i \(-0.981919\pi\)
0.998387 0.0567721i \(-0.0180809\pi\)
\(308\) 0 0
\(309\) 170977.i 1.79069i
\(310\) 0 0
\(311\) − 22690.1i − 0.234594i −0.993097 0.117297i \(-0.962577\pi\)
0.993097 0.117297i \(-0.0374229\pi\)
\(312\) 0 0
\(313\) − 12521.3i − 0.127808i −0.997956 0.0639042i \(-0.979645\pi\)
0.997956 0.0639042i \(-0.0203552\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 74285.6 0.739241 0.369621 0.929183i \(-0.379488\pi\)
0.369621 + 0.929183i \(0.379488\pi\)
\(318\) 0 0
\(319\) − 110349.i − 1.08439i
\(320\) 0 0
\(321\) 22456.8 0.217941
\(322\) 0 0
\(323\) − 50612.7i − 0.485126i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −178056. −1.66518
\(328\) 0 0
\(329\) 13559.0 0.125267
\(330\) 0 0
\(331\) 116833. 1.06637 0.533187 0.845998i \(-0.320994\pi\)
0.533187 + 0.845998i \(0.320994\pi\)
\(332\) 0 0
\(333\) −128772. −1.16127
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 32007.6i − 0.281834i −0.990021 0.140917i \(-0.954995\pi\)
0.990021 0.140917i \(-0.0450051\pi\)
\(338\) 0 0
\(339\) −62515.0 −0.543982
\(340\) 0 0
\(341\) 104442.i 0.898185i
\(342\) 0 0
\(343\) −120734. −1.02622
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 116131.i − 0.964474i −0.876041 0.482237i \(-0.839824\pi\)
0.876041 0.482237i \(-0.160176\pi\)
\(348\) 0 0
\(349\) − 45650.0i − 0.374792i −0.982284 0.187396i \(-0.939995\pi\)
0.982284 0.187396i \(-0.0600047\pi\)
\(350\) 0 0
\(351\) 250544.i 2.03362i
\(352\) 0 0
\(353\) − 68096.3i − 0.546479i −0.961946 0.273240i \(-0.911905\pi\)
0.961946 0.273240i \(-0.0880952\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 295291. 2.31694
\(358\) 0 0
\(359\) − 216133.i − 1.67700i −0.544904 0.838498i \(-0.683434\pi\)
0.544904 0.838498i \(-0.316566\pi\)
\(360\) 0 0
\(361\) −114906. −0.881712
\(362\) 0 0
\(363\) − 115414.i − 0.875884i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −167653. −1.24474 −0.622369 0.782724i \(-0.713830\pi\)
−0.622369 + 0.782724i \(0.713830\pi\)
\(368\) 0 0
\(369\) −462806. −3.39896
\(370\) 0 0
\(371\) −141079. −1.02498
\(372\) 0 0
\(373\) 67649.7 0.486237 0.243118 0.969997i \(-0.421830\pi\)
0.243118 + 0.969997i \(0.421830\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 310521.i − 2.18479i
\(378\) 0 0
\(379\) −133585. −0.929995 −0.464998 0.885312i \(-0.653945\pi\)
−0.464998 + 0.885312i \(0.653945\pi\)
\(380\) 0 0
\(381\) − 18131.2i − 0.124904i
\(382\) 0 0
\(383\) −155150. −1.05768 −0.528839 0.848722i \(-0.677372\pi\)
−0.528839 + 0.848722i \(0.677372\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 166908.i 1.11443i
\(388\) 0 0
\(389\) − 66829.6i − 0.441641i −0.975314 0.220820i \(-0.929127\pi\)
0.975314 0.220820i \(-0.0708735\pi\)
\(390\) 0 0
\(391\) 80994.7i 0.529789i
\(392\) 0 0
\(393\) 351597.i 2.27646i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −127027. −0.805961 −0.402981 0.915209i \(-0.632026\pi\)
−0.402981 + 0.915209i \(0.632026\pi\)
\(398\) 0 0
\(399\) 89938.4i 0.564936i
\(400\) 0 0
\(401\) −138416. −0.860791 −0.430396 0.902640i \(-0.641626\pi\)
−0.430396 + 0.902640i \(0.641626\pi\)
\(402\) 0 0
\(403\) 293900.i 1.80963i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −71817.0 −0.433549
\(408\) 0 0
\(409\) 328530. 1.96394 0.981971 0.189030i \(-0.0605344\pi\)
0.981971 + 0.189030i \(0.0605344\pi\)
\(410\) 0 0
\(411\) −185700. −1.09933
\(412\) 0 0
\(413\) 31293.9 0.183467
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 489121.i 2.81283i
\(418\) 0 0
\(419\) 2314.68 0.0131845 0.00659224 0.999978i \(-0.497902\pi\)
0.00659224 + 0.999978i \(0.497902\pi\)
\(420\) 0 0
\(421\) 220238.i 1.24259i 0.783576 + 0.621297i \(0.213394\pi\)
−0.783576 + 0.621297i \(0.786606\pi\)
\(422\) 0 0
\(423\) −42912.8 −0.239831
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 200349.i − 1.09883i
\(428\) 0 0
\(429\) 302267.i 1.64239i
\(430\) 0 0
\(431\) 105642.i 0.568696i 0.958721 + 0.284348i \(0.0917772\pi\)
−0.958721 + 0.284348i \(0.908223\pi\)
\(432\) 0 0
\(433\) − 300880.i − 1.60479i −0.596795 0.802394i \(-0.703559\pi\)
0.596795 0.802394i \(-0.296441\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −24669.0 −0.129178
\(438\) 0 0
\(439\) 322911.i 1.67554i 0.546027 + 0.837768i \(0.316140\pi\)
−0.546027 + 0.837768i \(0.683860\pi\)
\(440\) 0 0
\(441\) 20435.6 0.105078
\(442\) 0 0
\(443\) − 32565.1i − 0.165938i −0.996552 0.0829688i \(-0.973560\pi\)
0.996552 0.0829688i \(-0.0264402\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 337351. 1.68837
\(448\) 0 0
\(449\) −182782. −0.906651 −0.453325 0.891345i \(-0.649762\pi\)
−0.453325 + 0.891345i \(0.649762\pi\)
\(450\) 0 0
\(451\) −258111. −1.26897
\(452\) 0 0
\(453\) 181109. 0.882561
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 241527.i 1.15647i 0.815872 + 0.578233i \(0.196258\pi\)
−0.815872 + 0.578233i \(0.803742\pi\)
\(458\) 0 0
\(459\) −432026. −2.05062
\(460\) 0 0
\(461\) − 140223.i − 0.659808i −0.944015 0.329904i \(-0.892984\pi\)
0.944015 0.329904i \(-0.107016\pi\)
\(462\) 0 0
\(463\) −248909. −1.16112 −0.580561 0.814217i \(-0.697167\pi\)
−0.580561 + 0.814217i \(0.697167\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 59048.6i 0.270755i 0.990794 + 0.135377i \(0.0432247\pi\)
−0.990794 + 0.135377i \(0.956775\pi\)
\(468\) 0 0
\(469\) − 124088.i − 0.564139i
\(470\) 0 0
\(471\) − 211682.i − 0.954208i
\(472\) 0 0
\(473\) 93085.7i 0.416064i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 446501. 1.96239
\(478\) 0 0
\(479\) − 72996.3i − 0.318148i −0.987267 0.159074i \(-0.949149\pi\)
0.987267 0.159074i \(-0.0508509\pi\)
\(480\) 0 0
\(481\) −202093. −0.873498
\(482\) 0 0
\(483\) − 143927.i − 0.616947i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 192677. 0.812402 0.406201 0.913784i \(-0.366853\pi\)
0.406201 + 0.913784i \(0.366853\pi\)
\(488\) 0 0
\(489\) −241508. −1.00998
\(490\) 0 0
\(491\) 108537. 0.450210 0.225105 0.974335i \(-0.427728\pi\)
0.225105 + 0.974335i \(0.427728\pi\)
\(492\) 0 0
\(493\) 535448. 2.20305
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 216369.i − 0.875956i
\(498\) 0 0
\(499\) 382138. 1.53469 0.767343 0.641237i \(-0.221578\pi\)
0.767343 + 0.641237i \(0.221578\pi\)
\(500\) 0 0
\(501\) 520665.i 2.07435i
\(502\) 0 0
\(503\) 390847. 1.54480 0.772398 0.635139i \(-0.219057\pi\)
0.772398 + 0.635139i \(0.219057\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 415894.i 1.61796i
\(508\) 0 0
\(509\) 380507.i 1.46868i 0.678783 + 0.734339i \(0.262508\pi\)
−0.678783 + 0.734339i \(0.737492\pi\)
\(510\) 0 0
\(511\) 39165.0i 0.149988i
\(512\) 0 0
\(513\) − 131584.i − 0.500000i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −23932.8 −0.0895390
\(518\) 0 0
\(519\) − 176673.i − 0.655896i
\(520\) 0 0
\(521\) 225469. 0.830636 0.415318 0.909676i \(-0.363670\pi\)
0.415318 + 0.909676i \(0.363670\pi\)
\(522\) 0 0
\(523\) − 445823.i − 1.62989i −0.579537 0.814946i \(-0.696767\pi\)
0.579537 0.814946i \(-0.303233\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −506787. −1.82475
\(528\) 0 0
\(529\) −240364. −0.858929
\(530\) 0 0
\(531\) −99041.7 −0.351260
\(532\) 0 0
\(533\) −726325. −2.55668
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 103517.i 0.358973i
\(538\) 0 0
\(539\) 11397.1 0.0392299
\(540\) 0 0
\(541\) − 151646.i − 0.518129i −0.965860 0.259064i \(-0.916586\pi\)
0.965860 0.259064i \(-0.0834142\pi\)
\(542\) 0 0
\(543\) −138239. −0.468846
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 522917.i − 1.74766i −0.486227 0.873832i \(-0.661627\pi\)
0.486227 0.873832i \(-0.338373\pi\)
\(548\) 0 0
\(549\) 634084.i 2.10379i
\(550\) 0 0
\(551\) 163084.i 0.537166i
\(552\) 0 0
\(553\) 145059.i 0.474346i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −295824. −0.953504 −0.476752 0.879038i \(-0.658186\pi\)
−0.476752 + 0.879038i \(0.658186\pi\)
\(558\) 0 0
\(559\) 261944.i 0.838271i
\(560\) 0 0
\(561\) −521214. −1.65611
\(562\) 0 0
\(563\) − 36177.5i − 0.114136i −0.998370 0.0570679i \(-0.981825\pi\)
0.998370 0.0570679i \(-0.0181751\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 186975. 0.581590
\(568\) 0 0
\(569\) 631690. 1.95110 0.975550 0.219777i \(-0.0705331\pi\)
0.975550 + 0.219777i \(0.0705331\pi\)
\(570\) 0 0
\(571\) −145796. −0.447170 −0.223585 0.974684i \(-0.571776\pi\)
−0.223585 + 0.974684i \(0.571776\pi\)
\(572\) 0 0
\(573\) −508827. −1.54975
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 333473.i − 1.00163i −0.865553 0.500817i \(-0.833033\pi\)
0.865553 0.500817i \(-0.166967\pi\)
\(578\) 0 0
\(579\) −451661. −1.34727
\(580\) 0 0
\(581\) − 536693.i − 1.58992i
\(582\) 0 0
\(583\) 249017. 0.732642
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 410391.i 1.19103i 0.803345 + 0.595514i \(0.203051\pi\)
−0.803345 + 0.595514i \(0.796949\pi\)
\(588\) 0 0
\(589\) − 154355.i − 0.444928i
\(590\) 0 0
\(591\) − 678654.i − 1.94300i
\(592\) 0 0
\(593\) − 649441.i − 1.84684i −0.383787 0.923422i \(-0.625380\pi\)
0.383787 0.923422i \(-0.374620\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −593553. −1.66537
\(598\) 0 0
\(599\) − 217117.i − 0.605119i −0.953131 0.302559i \(-0.902159\pi\)
0.953131 0.302559i \(-0.0978411\pi\)
\(600\) 0 0
\(601\) −39014.7 −0.108014 −0.0540069 0.998541i \(-0.517199\pi\)
−0.0540069 + 0.998541i \(0.517199\pi\)
\(602\) 0 0
\(603\) 392727.i 1.08008i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −405423. −1.10035 −0.550175 0.835050i \(-0.685439\pi\)
−0.550175 + 0.835050i \(0.685439\pi\)
\(608\) 0 0
\(609\) −951488. −2.56548
\(610\) 0 0
\(611\) −67347.0 −0.180400
\(612\) 0 0
\(613\) 149169. 0.396970 0.198485 0.980104i \(-0.436398\pi\)
0.198485 + 0.980104i \(0.436398\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 334637.i 0.879030i 0.898235 + 0.439515i \(0.144850\pi\)
−0.898235 + 0.439515i \(0.855150\pi\)
\(618\) 0 0
\(619\) −839.713 −0.00219154 −0.00109577 0.999999i \(-0.500349\pi\)
−0.00109577 + 0.999999i \(0.500349\pi\)
\(620\) 0 0
\(621\) 210573.i 0.546033i
\(622\) 0 0
\(623\) 208841. 0.538071
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 158749.i − 0.403809i
\(628\) 0 0
\(629\) − 348480.i − 0.880799i
\(630\) 0 0
\(631\) 502081.i 1.26100i 0.776189 + 0.630500i \(0.217150\pi\)
−0.776189 + 0.630500i \(0.782850\pi\)
\(632\) 0 0
\(633\) − 188337.i − 0.470033i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 32071.5 0.0790388
\(638\) 0 0
\(639\) 684784.i 1.67707i
\(640\) 0 0
\(641\) 362864. 0.883137 0.441569 0.897227i \(-0.354422\pi\)
0.441569 + 0.897227i \(0.354422\pi\)
\(642\) 0 0
\(643\) − 648692.i − 1.56898i −0.620144 0.784488i \(-0.712926\pi\)
0.620144 0.784488i \(-0.287074\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 242110. 0.578369 0.289184 0.957273i \(-0.406616\pi\)
0.289184 + 0.957273i \(0.406616\pi\)
\(648\) 0 0
\(649\) −55236.3 −0.131140
\(650\) 0 0
\(651\) 900557. 2.12495
\(652\) 0 0
\(653\) −542264. −1.27170 −0.635850 0.771813i \(-0.719350\pi\)
−0.635850 + 0.771813i \(0.719350\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 123953.i − 0.287161i
\(658\) 0 0
\(659\) −145840. −0.335820 −0.167910 0.985802i \(-0.553702\pi\)
−0.167910 + 0.985802i \(0.553702\pi\)
\(660\) 0 0
\(661\) 278680.i 0.637828i 0.947784 + 0.318914i \(0.103318\pi\)
−0.947784 + 0.318914i \(0.896682\pi\)
\(662\) 0 0
\(663\) −1.46670e6 −3.33667
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 260981.i − 0.586621i
\(668\) 0 0
\(669\) − 1.32750e6i − 2.96608i
\(670\) 0 0
\(671\) 353633.i 0.785431i
\(672\) 0 0
\(673\) − 431869.i − 0.953504i −0.879038 0.476752i \(-0.841814\pi\)
0.879038 0.476752i \(-0.158186\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 147.083 0.000320911 0 0.000160456 1.00000i \(-0.499949\pi\)
0.000160456 1.00000i \(0.499949\pi\)
\(678\) 0 0
\(679\) − 211742.i − 0.459269i
\(680\) 0 0
\(681\) 940475. 2.02793
\(682\) 0 0
\(683\) 313526.i 0.672097i 0.941845 + 0.336049i \(0.109091\pi\)
−0.941845 + 0.336049i \(0.890909\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 994279. 2.10666
\(688\) 0 0
\(689\) 700735. 1.47610
\(690\) 0 0
\(691\) 669052. 1.40121 0.700606 0.713548i \(-0.252913\pi\)
0.700606 + 0.713548i \(0.252913\pi\)
\(692\) 0 0
\(693\) 602314. 1.25417
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.25244e6i − 2.57805i
\(698\) 0 0
\(699\) −264478. −0.541296
\(700\) 0 0
\(701\) − 722704.i − 1.47070i −0.677687 0.735350i \(-0.737018\pi\)
0.677687 0.735350i \(-0.262982\pi\)
\(702\) 0 0
\(703\) 106138. 0.214764
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 433379.i − 0.867021i
\(708\) 0 0
\(709\) − 206901.i − 0.411596i −0.978595 0.205798i \(-0.934021\pi\)
0.978595 0.205798i \(-0.0659790\pi\)
\(710\) 0 0
\(711\) − 459097.i − 0.908166i
\(712\) 0 0
\(713\) 247012.i 0.485890i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 462126. 0.898922
\(718\) 0 0
\(719\) 226077.i 0.437319i 0.975801 + 0.218659i \(0.0701683\pi\)
−0.975801 + 0.218659i \(0.929832\pi\)
\(720\) 0 0
\(721\) 534691. 1.02857
\(722\) 0 0
\(723\) − 425240.i − 0.813501i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −236940. −0.448301 −0.224151 0.974555i \(-0.571961\pi\)
−0.224151 + 0.974555i \(0.571961\pi\)
\(728\) 0 0
\(729\) 714761. 1.34495
\(730\) 0 0
\(731\) −451683. −0.845277
\(732\) 0 0
\(733\) −722039. −1.34386 −0.671928 0.740616i \(-0.734534\pi\)
−0.671928 + 0.740616i \(0.734534\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 219027.i 0.403238i
\(738\) 0 0
\(739\) 371832. 0.680860 0.340430 0.940270i \(-0.389427\pi\)
0.340430 + 0.940270i \(0.389427\pi\)
\(740\) 0 0
\(741\) − 446720.i − 0.813578i
\(742\) 0 0
\(743\) 239765. 0.434318 0.217159 0.976136i \(-0.430321\pi\)
0.217159 + 0.976136i \(0.430321\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.69858e6i 3.04399i
\(748\) 0 0
\(749\) − 70228.4i − 0.125184i
\(750\) 0 0
\(751\) 229750.i 0.407357i 0.979038 + 0.203679i \(0.0652898\pi\)
−0.979038 + 0.203679i \(0.934710\pi\)
\(752\) 0 0
\(753\) 686781.i 1.21123i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 328293. 0.572888 0.286444 0.958097i \(-0.407527\pi\)
0.286444 + 0.958097i \(0.407527\pi\)
\(758\) 0 0
\(759\) 254043.i 0.440985i
\(760\) 0 0
\(761\) −481340. −0.831155 −0.415578 0.909558i \(-0.636421\pi\)
−0.415578 + 0.909558i \(0.636421\pi\)
\(762\) 0 0
\(763\) 556828.i 0.956472i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −155435. −0.264216
\(768\) 0 0
\(769\) 142240. 0.240530 0.120265 0.992742i \(-0.461625\pi\)
0.120265 + 0.992742i \(0.461625\pi\)
\(770\) 0 0
\(771\) 465261. 0.782687
\(772\) 0 0
\(773\) 445222. 0.745105 0.372552 0.928011i \(-0.378483\pi\)
0.372552 + 0.928011i \(0.378483\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 619247.i 1.02570i
\(778\) 0 0
\(779\) 381462. 0.628603
\(780\) 0 0
\(781\) 381909.i 0.626121i
\(782\) 0 0
\(783\) 1.39207e6 2.27059
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 625717.i − 1.01025i −0.863047 0.505124i \(-0.831447\pi\)
0.863047 0.505124i \(-0.168553\pi\)
\(788\) 0 0
\(789\) 310882.i 0.499392i
\(790\) 0 0
\(791\) 195501.i 0.312461i
\(792\) 0 0
\(793\) 995126.i 1.58246i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −563906. −0.887749 −0.443875 0.896089i \(-0.646396\pi\)
−0.443875 + 0.896089i \(0.646396\pi\)
\(798\) 0 0
\(799\) − 116130.i − 0.181907i
\(800\) 0 0
\(801\) −660959. −1.03017
\(802\) 0 0
\(803\) − 69129.4i − 0.107209i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 275957. 0.423736
\(808\) 0 0
\(809\) −326208. −0.498423 −0.249212 0.968449i \(-0.580171\pi\)
−0.249212 + 0.968449i \(0.580171\pi\)
\(810\) 0 0
\(811\) −1.29032e6 −1.96181 −0.980904 0.194492i \(-0.937694\pi\)
−0.980904 + 0.194492i \(0.937694\pi\)
\(812\) 0 0
\(813\) 1.75682e6 2.65795
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 137571.i − 0.206103i
\(818\) 0 0
\(819\) 1.69492e6 2.52685
\(820\) 0 0
\(821\) − 681025.i − 1.01036i −0.863014 0.505180i \(-0.831426\pi\)
0.863014 0.505180i \(-0.168574\pi\)
\(822\) 0 0
\(823\) −261315. −0.385802 −0.192901 0.981218i \(-0.561790\pi\)
−0.192901 + 0.981218i \(0.561790\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 424512.i − 0.620697i −0.950623 0.310348i \(-0.899554\pi\)
0.950623 0.310348i \(-0.100446\pi\)
\(828\) 0 0
\(829\) 53453.9i 0.0777804i 0.999243 + 0.0388902i \(0.0123823\pi\)
−0.999243 + 0.0388902i \(0.987618\pi\)
\(830\) 0 0
\(831\) − 1.66503e6i − 2.41113i
\(832\) 0 0
\(833\) 55302.6i 0.0796994i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.31756e6 −1.88070
\(838\) 0 0
\(839\) − 277775.i − 0.394611i −0.980342 0.197305i \(-0.936781\pi\)
0.980342 0.197305i \(-0.0632190\pi\)
\(840\) 0 0
\(841\) −1.01804e6 −1.43937
\(842\) 0 0
\(843\) 1.75676e6i 2.47205i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −360931. −0.503104
\(848\) 0 0
\(849\) 1.40979e6 1.95586
\(850\) 0 0
\(851\) −169852. −0.234537
\(852\) 0 0
\(853\) −403889. −0.555090 −0.277545 0.960713i \(-0.589521\pi\)
−0.277545 + 0.960713i \(0.589521\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 214464.i 0.292006i 0.989284 + 0.146003i \(0.0466409\pi\)
−0.989284 + 0.146003i \(0.953359\pi\)
\(858\) 0 0
\(859\) −1.21203e6 −1.64258 −0.821288 0.570513i \(-0.806744\pi\)
−0.821288 + 0.570513i \(0.806744\pi\)
\(860\) 0 0
\(861\) 2.22558e6i 3.00217i
\(862\) 0 0
\(863\) 1.37798e6 1.85021 0.925107 0.379707i \(-0.123975\pi\)
0.925107 + 0.379707i \(0.123975\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.25795e6i − 1.67350i
\(868\) 0 0
\(869\) − 256042.i − 0.339056i
\(870\) 0 0
\(871\) 616342.i 0.812429i
\(872\) 0 0
\(873\) 670139.i 0.879299i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −424259. −0.551610 −0.275805 0.961214i \(-0.588944\pi\)
−0.275805 + 0.961214i \(0.588944\pi\)
\(878\) 0 0
\(879\) − 2.06021e6i − 2.66645i
\(880\) 0 0
\(881\) 566909. 0.730401 0.365200 0.930929i \(-0.381000\pi\)
0.365200 + 0.930929i \(0.381000\pi\)
\(882\) 0 0
\(883\) 323624.i 0.415068i 0.978228 + 0.207534i \(0.0665437\pi\)
−0.978228 + 0.207534i \(0.933456\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.06589e6 1.35477 0.677385 0.735628i \(-0.263113\pi\)
0.677385 + 0.735628i \(0.263113\pi\)
\(888\) 0 0
\(889\) −56701.0 −0.0717443
\(890\) 0 0
\(891\) −330026. −0.415712
\(892\) 0 0
\(893\) 35370.3 0.0443543
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 714879.i 0.888480i
\(898\) 0 0
\(899\) 1.63297e6 2.02050
\(900\) 0 0
\(901\) 1.20831e6i 1.48844i
\(902\) 0 0
\(903\) 802637. 0.984337
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 852471.i 1.03625i 0.855305 + 0.518125i \(0.173370\pi\)
−0.855305 + 0.518125i \(0.826630\pi\)
\(908\) 0 0
\(909\) 1.37160e6i 1.65997i
\(910\) 0 0
\(911\) 251245.i 0.302734i 0.988478 + 0.151367i \(0.0483675\pi\)
−0.988478 + 0.151367i \(0.951632\pi\)
\(912\) 0 0
\(913\) 947309.i 1.13645i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.09954e6 1.30759
\(918\) 0 0
\(919\) − 1.19030e6i − 1.40937i −0.709520 0.704685i \(-0.751088\pi\)
0.709520 0.704685i \(-0.248912\pi\)
\(920\) 0 0
\(921\) 162871. 0.192010
\(922\) 0 0
\(923\) 1.07470e6i 1.26148i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.69224e6 −1.96926
\(928\) 0 0
\(929\) −542484. −0.628572 −0.314286 0.949328i \(-0.601765\pi\)
−0.314286 + 0.949328i \(0.601765\pi\)
\(930\) 0 0
\(931\) −16843.8 −0.0194330
\(932\) 0 0
\(933\) 345334. 0.396712
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 441434.i 0.502790i 0.967885 + 0.251395i \(0.0808893\pi\)
−0.967885 + 0.251395i \(0.919111\pi\)
\(938\) 0 0
\(939\) 190568. 0.216132
\(940\) 0 0
\(941\) − 1.51534e6i − 1.71132i −0.517539 0.855660i \(-0.673152\pi\)
0.517539 0.855660i \(-0.326848\pi\)
\(942\) 0 0
\(943\) −610447. −0.686475
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.20629e6i 1.34509i 0.740058 + 0.672543i \(0.234798\pi\)
−0.740058 + 0.672543i \(0.765202\pi\)
\(948\) 0 0
\(949\) − 194531.i − 0.216001i
\(950\) 0 0
\(951\) 1.13059e6i 1.25010i
\(952\) 0 0
\(953\) − 1.70875e6i − 1.88145i −0.339166 0.940727i \(-0.610145\pi\)
0.339166 0.940727i \(-0.389855\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.67946e6 1.83377
\(958\) 0 0
\(959\) 580734.i 0.631452i
\(960\) 0 0
\(961\) −622040. −0.673552
\(962\) 0 0
\(963\) 222265.i 0.239673i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.21487e6 −1.29921 −0.649604 0.760273i \(-0.725065\pi\)
−0.649604 + 0.760273i \(0.725065\pi\)
\(968\) 0 0
\(969\) 770302. 0.820377
\(970\) 0 0
\(971\) 1.18211e6 1.25378 0.626888 0.779110i \(-0.284329\pi\)
0.626888 + 0.779110i \(0.284329\pi\)
\(972\) 0 0
\(973\) 1.52961e6 1.61568
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 403569.i 0.422794i 0.977400 + 0.211397i \(0.0678012\pi\)
−0.977400 + 0.211397i \(0.932199\pi\)
\(978\) 0 0
\(979\) −368622. −0.384606
\(980\) 0 0
\(981\) − 1.76230e6i − 1.83123i
\(982\) 0 0
\(983\) 109135. 0.112943 0.0564713 0.998404i \(-0.482015\pi\)
0.0564713 + 0.998404i \(0.482015\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 206362.i 0.211834i
\(988\) 0 0
\(989\) 220153.i 0.225078i
\(990\) 0 0
\(991\) − 1.72512e6i − 1.75660i −0.478111 0.878299i \(-0.658678\pi\)
0.478111 0.878299i \(-0.341322\pi\)
\(992\) 0 0
\(993\) 1.77814e6i 1.80330i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.35890e6 1.36709 0.683543 0.729910i \(-0.260438\pi\)
0.683543 + 0.729910i \(0.260438\pi\)
\(998\) 0 0
\(999\) − 905990.i − 0.907805i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.e.e.399.8 32
4.3 odd 2 200.5.e.e.99.10 32
5.2 odd 4 160.5.g.a.111.16 16
5.3 odd 4 800.5.g.h.751.1 16
5.4 even 2 inner 800.5.e.e.399.25 32
8.3 odd 2 inner 800.5.e.e.399.26 32
8.5 even 2 200.5.e.e.99.24 32
15.2 even 4 1440.5.g.a.271.6 16
20.3 even 4 200.5.g.h.51.12 16
20.7 even 4 40.5.g.a.11.5 16
20.19 odd 2 200.5.e.e.99.23 32
40.3 even 4 800.5.g.h.751.2 16
40.13 odd 4 200.5.g.h.51.11 16
40.19 odd 2 inner 800.5.e.e.399.7 32
40.27 even 4 160.5.g.a.111.15 16
40.29 even 2 200.5.e.e.99.9 32
40.37 odd 4 40.5.g.a.11.6 yes 16
60.47 odd 4 360.5.g.a.91.12 16
120.77 even 4 360.5.g.a.91.11 16
120.107 odd 4 1440.5.g.a.271.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.5 16 20.7 even 4
40.5.g.a.11.6 yes 16 40.37 odd 4
160.5.g.a.111.15 16 40.27 even 4
160.5.g.a.111.16 16 5.2 odd 4
200.5.e.e.99.9 32 40.29 even 2
200.5.e.e.99.10 32 4.3 odd 2
200.5.e.e.99.23 32 20.19 odd 2
200.5.e.e.99.24 32 8.5 even 2
200.5.g.h.51.11 16 40.13 odd 4
200.5.g.h.51.12 16 20.3 even 4
360.5.g.a.91.11 16 120.77 even 4
360.5.g.a.91.12 16 60.47 odd 4
800.5.e.e.399.7 32 40.19 odd 2 inner
800.5.e.e.399.8 32 1.1 even 1 trivial
800.5.e.e.399.25 32 5.4 even 2 inner
800.5.e.e.399.26 32 8.3 odd 2 inner
800.5.g.h.751.1 16 5.3 odd 4
800.5.g.h.751.2 16 40.3 even 4
1440.5.g.a.271.6 16 15.2 even 4
1440.5.g.a.271.11 16 120.107 odd 4