Properties

Label 800.5.g.h.751.3
Level $800$
Weight $5$
Character 800.751
Analytic conductor $82.696$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(751,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.751");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 84 x^{13} + 628 x^{12} - 1392 x^{11} + 2016 x^{10} - 18048 x^{9} + \cdots + 4294967296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{2}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 751.3
Root \(-1.30255 + 3.78198i\) of defining polynomial
Character \(\chi\) \(=\) 800.751
Dual form 800.5.g.h.751.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.2034 q^{3} -43.3025i q^{7} +23.1094 q^{9} +165.050 q^{11} -201.647i q^{13} -172.778 q^{17} +640.745 q^{19} +441.833i q^{21} +497.626i q^{23} +590.681 q^{27} -509.953i q^{29} +492.136i q^{31} -1684.07 q^{33} -678.519i q^{37} +2057.49i q^{39} -613.848 q^{41} -1392.38 q^{43} -965.658i q^{47} +525.894 q^{49} +1762.92 q^{51} +4611.29i q^{53} -6537.78 q^{57} +822.630 q^{59} +6917.98i q^{61} -1000.70i q^{63} +4929.83 q^{67} -5077.48i q^{69} +4236.85i q^{71} +8507.29 q^{73} -7147.07i q^{77} -10205.9i q^{79} -7898.82 q^{81} -818.969 q^{83} +5203.25i q^{87} -10451.0 q^{89} -8731.82 q^{91} -5021.46i q^{93} +11691.7 q^{97} +3814.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 432 q^{9} - 192 q^{11} + 704 q^{19} + 3648 q^{27} + 992 q^{33} - 2208 q^{41} + 5568 q^{43} - 2480 q^{49} + 17792 q^{51} - 8608 q^{57} - 14016 q^{59} - 18880 q^{67} + 7360 q^{73} + 10384 q^{81} + 10560 q^{83}+ \cdots - 2624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −10.2034 −1.13371 −0.566856 0.823817i \(-0.691840\pi\)
−0.566856 + 0.823817i \(0.691840\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 43.3025i − 0.883724i −0.897083 0.441862i \(-0.854318\pi\)
0.897083 0.441862i \(-0.145682\pi\)
\(8\) 0 0
\(9\) 23.1094 0.285301
\(10\) 0 0
\(11\) 165.050 1.36405 0.682024 0.731329i \(-0.261100\pi\)
0.682024 + 0.731329i \(0.261100\pi\)
\(12\) 0 0
\(13\) − 201.647i − 1.19318i −0.802547 0.596589i \(-0.796522\pi\)
0.802547 0.596589i \(-0.203478\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −172.778 −0.597848 −0.298924 0.954277i \(-0.596628\pi\)
−0.298924 + 0.954277i \(0.596628\pi\)
\(18\) 0 0
\(19\) 640.745 1.77492 0.887458 0.460888i \(-0.152469\pi\)
0.887458 + 0.460888i \(0.152469\pi\)
\(20\) 0 0
\(21\) 441.833i 1.00189i
\(22\) 0 0
\(23\) 497.626i 0.940692i 0.882482 + 0.470346i \(0.155871\pi\)
−0.882482 + 0.470346i \(0.844129\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 590.681 0.810262
\(28\) 0 0
\(29\) − 509.953i − 0.606365i −0.952933 0.303182i \(-0.901951\pi\)
0.952933 0.303182i \(-0.0980491\pi\)
\(30\) 0 0
\(31\) 492.136i 0.512108i 0.966662 + 0.256054i \(0.0824225\pi\)
−0.966662 + 0.256054i \(0.917578\pi\)
\(32\) 0 0
\(33\) −1684.07 −1.54644
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 678.519i − 0.495631i −0.968807 0.247816i \(-0.920287\pi\)
0.968807 0.247816i \(-0.0797127\pi\)
\(38\) 0 0
\(39\) 2057.49i 1.35272i
\(40\) 0 0
\(41\) −613.848 −0.365168 −0.182584 0.983190i \(-0.558446\pi\)
−0.182584 + 0.983190i \(0.558446\pi\)
\(42\) 0 0
\(43\) −1392.38 −0.753043 −0.376522 0.926408i \(-0.622880\pi\)
−0.376522 + 0.926408i \(0.622880\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 965.658i − 0.437147i −0.975820 0.218574i \(-0.929860\pi\)
0.975820 0.218574i \(-0.0701404\pi\)
\(48\) 0 0
\(49\) 525.894 0.219031
\(50\) 0 0
\(51\) 1762.92 0.677787
\(52\) 0 0
\(53\) 4611.29i 1.64161i 0.571206 + 0.820807i \(0.306476\pi\)
−0.571206 + 0.820807i \(0.693524\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6537.78 −2.01224
\(58\) 0 0
\(59\) 822.630 0.236320 0.118160 0.992995i \(-0.462300\pi\)
0.118160 + 0.992995i \(0.462300\pi\)
\(60\) 0 0
\(61\) 6917.98i 1.85917i 0.368606 + 0.929586i \(0.379835\pi\)
−0.368606 + 0.929586i \(0.620165\pi\)
\(62\) 0 0
\(63\) − 1000.70i − 0.252128i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4929.83 1.09820 0.549101 0.835756i \(-0.314970\pi\)
0.549101 + 0.835756i \(0.314970\pi\)
\(68\) 0 0
\(69\) − 5077.48i − 1.06647i
\(70\) 0 0
\(71\) 4236.85i 0.840479i 0.907413 + 0.420239i \(0.138054\pi\)
−0.907413 + 0.420239i \(0.861946\pi\)
\(72\) 0 0
\(73\) 8507.29 1.59641 0.798207 0.602384i \(-0.205782\pi\)
0.798207 + 0.602384i \(0.205782\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 7147.07i − 1.20544i
\(78\) 0 0
\(79\) − 10205.9i − 1.63530i −0.575716 0.817650i \(-0.695276\pi\)
0.575716 0.817650i \(-0.304724\pi\)
\(80\) 0 0
\(81\) −7898.82 −1.20390
\(82\) 0 0
\(83\) −818.969 −0.118881 −0.0594403 0.998232i \(-0.518932\pi\)
−0.0594403 + 0.998232i \(0.518932\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5203.25i 0.687443i
\(88\) 0 0
\(89\) −10451.0 −1.31940 −0.659700 0.751529i \(-0.729317\pi\)
−0.659700 + 0.751529i \(0.729317\pi\)
\(90\) 0 0
\(91\) −8731.82 −1.05444
\(92\) 0 0
\(93\) − 5021.46i − 0.580583i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11691.7 1.24261 0.621306 0.783568i \(-0.286603\pi\)
0.621306 + 0.783568i \(0.286603\pi\)
\(98\) 0 0
\(99\) 3814.21 0.389165
\(100\) 0 0
\(101\) − 13430.4i − 1.31657i −0.752767 0.658287i \(-0.771281\pi\)
0.752767 0.658287i \(-0.228719\pi\)
\(102\) 0 0
\(103\) − 5546.66i − 0.522826i −0.965227 0.261413i \(-0.915812\pi\)
0.965227 0.261413i \(-0.0841885\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7485.33 0.653797 0.326899 0.945059i \(-0.393996\pi\)
0.326899 + 0.945059i \(0.393996\pi\)
\(108\) 0 0
\(109\) − 13391.1i − 1.12710i −0.826082 0.563549i \(-0.809435\pi\)
0.826082 0.563549i \(-0.190565\pi\)
\(110\) 0 0
\(111\) 6923.20i 0.561903i
\(112\) 0 0
\(113\) 2822.55 0.221047 0.110523 0.993874i \(-0.464747\pi\)
0.110523 + 0.993874i \(0.464747\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4659.95i − 0.340415i
\(118\) 0 0
\(119\) 7481.73i 0.528333i
\(120\) 0 0
\(121\) 12600.5 0.860629
\(122\) 0 0
\(123\) 6263.34 0.413995
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15755.3i 0.976831i 0.872611 + 0.488416i \(0.162425\pi\)
−0.872611 + 0.488416i \(0.837575\pi\)
\(128\) 0 0
\(129\) 14207.0 0.853733
\(130\) 0 0
\(131\) −4033.25 −0.235024 −0.117512 0.993071i \(-0.537492\pi\)
−0.117512 + 0.993071i \(0.537492\pi\)
\(132\) 0 0
\(133\) − 27745.9i − 1.56854i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15035.7 −0.801090 −0.400545 0.916277i \(-0.631179\pi\)
−0.400545 + 0.916277i \(0.631179\pi\)
\(138\) 0 0
\(139\) 31639.4 1.63756 0.818782 0.574105i \(-0.194650\pi\)
0.818782 + 0.574105i \(0.194650\pi\)
\(140\) 0 0
\(141\) 9853.00i 0.495599i
\(142\) 0 0
\(143\) − 33281.8i − 1.62755i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5365.90 −0.248318
\(148\) 0 0
\(149\) − 34271.9i − 1.54371i −0.635798 0.771856i \(-0.719329\pi\)
0.635798 0.771856i \(-0.280671\pi\)
\(150\) 0 0
\(151\) 478.378i 0.0209806i 0.999945 + 0.0104903i \(0.00333922\pi\)
−0.999945 + 0.0104903i \(0.996661\pi\)
\(152\) 0 0
\(153\) −3992.80 −0.170567
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13731.7i 0.557088i 0.960423 + 0.278544i \(0.0898518\pi\)
−0.960423 + 0.278544i \(0.910148\pi\)
\(158\) 0 0
\(159\) − 47050.9i − 1.86112i
\(160\) 0 0
\(161\) 21548.4 0.831312
\(162\) 0 0
\(163\) 23891.6 0.899228 0.449614 0.893223i \(-0.351561\pi\)
0.449614 + 0.893223i \(0.351561\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 27650.3i − 0.991442i −0.868482 0.495721i \(-0.834904\pi\)
0.868482 0.495721i \(-0.165096\pi\)
\(168\) 0 0
\(169\) −12100.5 −0.423673
\(170\) 0 0
\(171\) 14807.2 0.506386
\(172\) 0 0
\(173\) − 49203.7i − 1.64401i −0.569477 0.822007i \(-0.692854\pi\)
0.569477 0.822007i \(-0.307146\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8393.62 −0.267919
\(178\) 0 0
\(179\) 11247.1 0.351022 0.175511 0.984477i \(-0.443842\pi\)
0.175511 + 0.984477i \(0.443842\pi\)
\(180\) 0 0
\(181\) 9919.57i 0.302786i 0.988474 + 0.151393i \(0.0483759\pi\)
−0.988474 + 0.151393i \(0.951624\pi\)
\(182\) 0 0
\(183\) − 70586.9i − 2.10776i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −28517.0 −0.815494
\(188\) 0 0
\(189\) − 25578.0i − 0.716048i
\(190\) 0 0
\(191\) − 36233.6i − 0.993219i −0.867974 0.496609i \(-0.834578\pi\)
0.867974 0.496609i \(-0.165422\pi\)
\(192\) 0 0
\(193\) 37612.9 1.00977 0.504885 0.863187i \(-0.331535\pi\)
0.504885 + 0.863187i \(0.331535\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 27374.4i − 0.705361i −0.935744 0.352681i \(-0.885270\pi\)
0.935744 0.352681i \(-0.114730\pi\)
\(198\) 0 0
\(199\) − 53766.9i − 1.35772i −0.734270 0.678858i \(-0.762475\pi\)
0.734270 0.678858i \(-0.237525\pi\)
\(200\) 0 0
\(201\) −50301.0 −1.24504
\(202\) 0 0
\(203\) −22082.2 −0.535859
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 11499.8i 0.268381i
\(208\) 0 0
\(209\) 105755. 2.42107
\(210\) 0 0
\(211\) 19829.6 0.445399 0.222700 0.974887i \(-0.428513\pi\)
0.222700 + 0.974887i \(0.428513\pi\)
\(212\) 0 0
\(213\) − 43230.3i − 0.952860i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 21310.7 0.452562
\(218\) 0 0
\(219\) −86803.3 −1.80987
\(220\) 0 0
\(221\) 34840.2i 0.713339i
\(222\) 0 0
\(223\) 44470.0i 0.894247i 0.894472 + 0.447123i \(0.147552\pi\)
−0.894472 + 0.447123i \(0.852448\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −41012.9 −0.795919 −0.397959 0.917403i \(-0.630281\pi\)
−0.397959 + 0.917403i \(0.630281\pi\)
\(228\) 0 0
\(229\) 39184.8i 0.747217i 0.927587 + 0.373608i \(0.121880\pi\)
−0.927587 + 0.373608i \(0.878120\pi\)
\(230\) 0 0
\(231\) 72924.5i 1.36662i
\(232\) 0 0
\(233\) −64283.0 −1.18409 −0.592045 0.805905i \(-0.701679\pi\)
−0.592045 + 0.805905i \(0.701679\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 104135.i 1.85396i
\(238\) 0 0
\(239\) − 33481.2i − 0.586145i −0.956090 0.293073i \(-0.905322\pi\)
0.956090 0.293073i \(-0.0946778\pi\)
\(240\) 0 0
\(241\) −28929.0 −0.498080 −0.249040 0.968493i \(-0.580115\pi\)
−0.249040 + 0.968493i \(0.580115\pi\)
\(242\) 0 0
\(243\) 32749.7 0.554618
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 129204.i − 2.11779i
\(248\) 0 0
\(249\) 8356.27 0.134776
\(250\) 0 0
\(251\) 3632.83 0.0576630 0.0288315 0.999584i \(-0.490821\pi\)
0.0288315 + 0.999584i \(0.490821\pi\)
\(252\) 0 0
\(253\) 82133.1i 1.28315i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 55530.5 0.840747 0.420373 0.907351i \(-0.361899\pi\)
0.420373 + 0.907351i \(0.361899\pi\)
\(258\) 0 0
\(259\) −29381.6 −0.438001
\(260\) 0 0
\(261\) − 11784.7i − 0.172997i
\(262\) 0 0
\(263\) 4573.35i 0.0661185i 0.999453 + 0.0330593i \(0.0105250\pi\)
−0.999453 + 0.0330593i \(0.989475\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 106635. 1.49582
\(268\) 0 0
\(269\) − 74452.8i − 1.02891i −0.857518 0.514454i \(-0.827995\pi\)
0.857518 0.514454i \(-0.172005\pi\)
\(270\) 0 0
\(271\) − 13623.9i − 0.185508i −0.995689 0.0927541i \(-0.970433\pi\)
0.995689 0.0927541i \(-0.0295670\pi\)
\(272\) 0 0
\(273\) 89094.3 1.19543
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 18506.7i − 0.241195i −0.992701 0.120598i \(-0.961519\pi\)
0.992701 0.120598i \(-0.0384811\pi\)
\(278\) 0 0
\(279\) 11373.0i 0.146105i
\(280\) 0 0
\(281\) 26912.2 0.340830 0.170415 0.985372i \(-0.445489\pi\)
0.170415 + 0.985372i \(0.445489\pi\)
\(282\) 0 0
\(283\) 91580.2 1.14348 0.571740 0.820435i \(-0.306269\pi\)
0.571740 + 0.820435i \(0.306269\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26581.2i 0.322708i
\(288\) 0 0
\(289\) −53668.7 −0.642577
\(290\) 0 0
\(291\) −119295. −1.40876
\(292\) 0 0
\(293\) − 11242.9i − 0.130961i −0.997854 0.0654805i \(-0.979142\pi\)
0.997854 0.0654805i \(-0.0208580\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 97491.8 1.10524
\(298\) 0 0
\(299\) 100345. 1.12241
\(300\) 0 0
\(301\) 60293.4i 0.665483i
\(302\) 0 0
\(303\) 137035.i 1.49261i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6583.47 −0.0698519 −0.0349260 0.999390i \(-0.511120\pi\)
−0.0349260 + 0.999390i \(0.511120\pi\)
\(308\) 0 0
\(309\) 56594.8i 0.592734i
\(310\) 0 0
\(311\) 127524.i 1.31847i 0.751937 + 0.659235i \(0.229120\pi\)
−0.751937 + 0.659235i \(0.770880\pi\)
\(312\) 0 0
\(313\) −93160.2 −0.950915 −0.475457 0.879739i \(-0.657717\pi\)
−0.475457 + 0.879739i \(0.657717\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 69292.6i − 0.689554i −0.938685 0.344777i \(-0.887954\pi\)
0.938685 0.344777i \(-0.112046\pi\)
\(318\) 0 0
\(319\) − 84167.6i − 0.827111i
\(320\) 0 0
\(321\) −76375.8 −0.741217
\(322\) 0 0
\(323\) −110707. −1.06113
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 136634.i 1.27780i
\(328\) 0 0
\(329\) −41815.4 −0.386318
\(330\) 0 0
\(331\) −106686. −0.973763 −0.486882 0.873468i \(-0.661866\pi\)
−0.486882 + 0.873468i \(0.661866\pi\)
\(332\) 0 0
\(333\) − 15680.2i − 0.141404i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −34707.0 −0.305603 −0.152801 0.988257i \(-0.548829\pi\)
−0.152801 + 0.988257i \(0.548829\pi\)
\(338\) 0 0
\(339\) −28799.6 −0.250603
\(340\) 0 0
\(341\) 81226.9i 0.698540i
\(342\) 0 0
\(343\) − 126742.i − 1.07729i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −191096. −1.58706 −0.793529 0.608532i \(-0.791759\pi\)
−0.793529 + 0.608532i \(0.791759\pi\)
\(348\) 0 0
\(349\) 19760.1i 0.162233i 0.996705 + 0.0811165i \(0.0258486\pi\)
−0.996705 + 0.0811165i \(0.974151\pi\)
\(350\) 0 0
\(351\) − 119109.i − 0.966787i
\(352\) 0 0
\(353\) −65214.7 −0.523355 −0.261677 0.965155i \(-0.584276\pi\)
−0.261677 + 0.965155i \(0.584276\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 76339.1i − 0.598977i
\(358\) 0 0
\(359\) 183096.i 1.42066i 0.703871 + 0.710328i \(0.251453\pi\)
−0.703871 + 0.710328i \(0.748547\pi\)
\(360\) 0 0
\(361\) 280233. 2.15033
\(362\) 0 0
\(363\) −128568. −0.975705
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 11615.6i − 0.0862401i −0.999070 0.0431200i \(-0.986270\pi\)
0.999070 0.0431200i \(-0.0137298\pi\)
\(368\) 0 0
\(369\) −14185.7 −0.104183
\(370\) 0 0
\(371\) 199680. 1.45073
\(372\) 0 0
\(373\) 192501.i 1.38361i 0.722083 + 0.691806i \(0.243185\pi\)
−0.722083 + 0.691806i \(0.756815\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −102830. −0.723501
\(378\) 0 0
\(379\) 108067. 0.752342 0.376171 0.926550i \(-0.377240\pi\)
0.376171 + 0.926550i \(0.377240\pi\)
\(380\) 0 0
\(381\) − 160758.i − 1.10744i
\(382\) 0 0
\(383\) 188520.i 1.28517i 0.766215 + 0.642585i \(0.222138\pi\)
−0.766215 + 0.642585i \(0.777862\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −32177.0 −0.214844
\(388\) 0 0
\(389\) 27057.1i 0.178806i 0.995996 + 0.0894030i \(0.0284959\pi\)
−0.995996 + 0.0894030i \(0.971504\pi\)
\(390\) 0 0
\(391\) − 85978.9i − 0.562391i
\(392\) 0 0
\(393\) 41152.8 0.266449
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 156094.i − 0.990388i −0.868782 0.495194i \(-0.835097\pi\)
0.868782 0.495194i \(-0.164903\pi\)
\(398\) 0 0
\(399\) 283102.i 1.77827i
\(400\) 0 0
\(401\) −77777.2 −0.483686 −0.241843 0.970315i \(-0.577752\pi\)
−0.241843 + 0.970315i \(0.577752\pi\)
\(402\) 0 0
\(403\) 99237.7 0.611036
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 111989.i − 0.676065i
\(408\) 0 0
\(409\) −247426. −1.47911 −0.739553 0.673098i \(-0.764963\pi\)
−0.739553 + 0.673098i \(0.764963\pi\)
\(410\) 0 0
\(411\) 153415. 0.908205
\(412\) 0 0
\(413\) − 35621.9i − 0.208842i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −322829. −1.85652
\(418\) 0 0
\(419\) −62888.2 −0.358213 −0.179107 0.983830i \(-0.557321\pi\)
−0.179107 + 0.983830i \(0.557321\pi\)
\(420\) 0 0
\(421\) − 321321.i − 1.81290i −0.422311 0.906451i \(-0.638781\pi\)
0.422311 0.906451i \(-0.361219\pi\)
\(422\) 0 0
\(423\) − 22315.8i − 0.124719i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 299566. 1.64300
\(428\) 0 0
\(429\) 339588.i 1.84518i
\(430\) 0 0
\(431\) 66812.9i 0.359672i 0.983697 + 0.179836i \(0.0575566\pi\)
−0.983697 + 0.179836i \(0.942443\pi\)
\(432\) 0 0
\(433\) 171149. 0.912846 0.456423 0.889763i \(-0.349130\pi\)
0.456423 + 0.889763i \(0.349130\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 318851.i 1.66965i
\(438\) 0 0
\(439\) 82871.1i 0.430005i 0.976613 + 0.215003i \(0.0689760\pi\)
−0.976613 + 0.215003i \(0.931024\pi\)
\(440\) 0 0
\(441\) 12153.1 0.0624899
\(442\) 0 0
\(443\) −71237.1 −0.362994 −0.181497 0.983392i \(-0.558094\pi\)
−0.181497 + 0.983392i \(0.558094\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 349690.i 1.75012i
\(448\) 0 0
\(449\) 306433. 1.52000 0.759999 0.649925i \(-0.225200\pi\)
0.759999 + 0.649925i \(0.225200\pi\)
\(450\) 0 0
\(451\) −101316. −0.498107
\(452\) 0 0
\(453\) − 4881.08i − 0.0237859i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −31625.5 −0.151428 −0.0757138 0.997130i \(-0.524124\pi\)
−0.0757138 + 0.997130i \(0.524124\pi\)
\(458\) 0 0
\(459\) −102057. −0.484414
\(460\) 0 0
\(461\) − 66080.1i − 0.310934i −0.987841 0.155467i \(-0.950312\pi\)
0.987841 0.155467i \(-0.0496883\pi\)
\(462\) 0 0
\(463\) − 303583.i − 1.41617i −0.706126 0.708086i \(-0.749559\pi\)
0.706126 0.708086i \(-0.250441\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 121986. 0.559341 0.279670 0.960096i \(-0.409775\pi\)
0.279670 + 0.960096i \(0.409775\pi\)
\(468\) 0 0
\(469\) − 213474.i − 0.970508i
\(470\) 0 0
\(471\) − 140110.i − 0.631577i
\(472\) 0 0
\(473\) −229812. −1.02719
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 106564.i 0.468355i
\(478\) 0 0
\(479\) − 144501.i − 0.629794i −0.949126 0.314897i \(-0.898030\pi\)
0.949126 0.314897i \(-0.101970\pi\)
\(480\) 0 0
\(481\) −136821. −0.591376
\(482\) 0 0
\(483\) −219867. −0.942468
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7828.30i 0.0330073i 0.999864 + 0.0165036i \(0.00525351\pi\)
−0.999864 + 0.0165036i \(0.994746\pi\)
\(488\) 0 0
\(489\) −243776. −1.01947
\(490\) 0 0
\(491\) 254423. 1.05534 0.527671 0.849449i \(-0.323066\pi\)
0.527671 + 0.849449i \(0.323066\pi\)
\(492\) 0 0
\(493\) 88108.7i 0.362514i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 183466. 0.742752
\(498\) 0 0
\(499\) 19859.3 0.0797560 0.0398780 0.999205i \(-0.487303\pi\)
0.0398780 + 0.999205i \(0.487303\pi\)
\(500\) 0 0
\(501\) 282127.i 1.12401i
\(502\) 0 0
\(503\) 289925.i 1.14591i 0.819587 + 0.572954i \(0.194203\pi\)
−0.819587 + 0.572954i \(0.805797\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 123467. 0.480323
\(508\) 0 0
\(509\) 101676.i 0.392447i 0.980559 + 0.196224i \(0.0628679\pi\)
−0.980559 + 0.196224i \(0.937132\pi\)
\(510\) 0 0
\(511\) − 368387.i − 1.41079i
\(512\) 0 0
\(513\) 378476. 1.43815
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 159382.i − 0.596290i
\(518\) 0 0
\(519\) 502045.i 1.86384i
\(520\) 0 0
\(521\) −302599. −1.11479 −0.557393 0.830248i \(-0.688198\pi\)
−0.557393 + 0.830248i \(0.688198\pi\)
\(522\) 0 0
\(523\) −61255.9 −0.223947 −0.111973 0.993711i \(-0.535717\pi\)
−0.111973 + 0.993711i \(0.535717\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 85030.3i − 0.306163i
\(528\) 0 0
\(529\) 32209.5 0.115099
\(530\) 0 0
\(531\) 19010.5 0.0674224
\(532\) 0 0
\(533\) 123781.i 0.435711i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −114759. −0.397958
\(538\) 0 0
\(539\) 86798.7 0.298769
\(540\) 0 0
\(541\) − 223113.i − 0.762307i −0.924512 0.381154i \(-0.875527\pi\)
0.924512 0.381154i \(-0.124473\pi\)
\(542\) 0 0
\(543\) − 101213.i − 0.343272i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 56408.6 0.188526 0.0942629 0.995547i \(-0.469951\pi\)
0.0942629 + 0.995547i \(0.469951\pi\)
\(548\) 0 0
\(549\) 159870.i 0.530424i
\(550\) 0 0
\(551\) − 326750.i − 1.07625i
\(552\) 0 0
\(553\) −441941. −1.44515
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 288826.i − 0.930950i −0.885061 0.465475i \(-0.845883\pi\)
0.885061 0.465475i \(-0.154117\pi\)
\(558\) 0 0
\(559\) 280769.i 0.898514i
\(560\) 0 0
\(561\) 290971. 0.924535
\(562\) 0 0
\(563\) 611795. 1.93014 0.965071 0.261988i \(-0.0843782\pi\)
0.965071 + 0.261988i \(0.0843782\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 342039.i 1.06392i
\(568\) 0 0
\(569\) −633137. −1.95557 −0.977784 0.209613i \(-0.932780\pi\)
−0.977784 + 0.209613i \(0.932780\pi\)
\(570\) 0 0
\(571\) −279945. −0.858618 −0.429309 0.903158i \(-0.641243\pi\)
−0.429309 + 0.903158i \(0.641243\pi\)
\(572\) 0 0
\(573\) 369706.i 1.12602i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 371982. 1.11730 0.558651 0.829403i \(-0.311319\pi\)
0.558651 + 0.829403i \(0.311319\pi\)
\(578\) 0 0
\(579\) −383780. −1.14479
\(580\) 0 0
\(581\) 35463.4i 0.105058i
\(582\) 0 0
\(583\) 761093.i 2.23924i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 44751.2 0.129876 0.0649380 0.997889i \(-0.479315\pi\)
0.0649380 + 0.997889i \(0.479315\pi\)
\(588\) 0 0
\(589\) 315333.i 0.908949i
\(590\) 0 0
\(591\) 279312.i 0.799676i
\(592\) 0 0
\(593\) 140260. 0.398863 0.199431 0.979912i \(-0.436090\pi\)
0.199431 + 0.979912i \(0.436090\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 548605.i 1.53926i
\(598\) 0 0
\(599\) − 326102.i − 0.908866i −0.890781 0.454433i \(-0.849842\pi\)
0.890781 0.454433i \(-0.150158\pi\)
\(600\) 0 0
\(601\) 111831. 0.309608 0.154804 0.987945i \(-0.450525\pi\)
0.154804 + 0.987945i \(0.450525\pi\)
\(602\) 0 0
\(603\) 113925. 0.313319
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 442565.i − 1.20116i −0.799566 0.600579i \(-0.794937\pi\)
0.799566 0.600579i \(-0.205063\pi\)
\(608\) 0 0
\(609\) 225314. 0.607510
\(610\) 0 0
\(611\) −194722. −0.521594
\(612\) 0 0
\(613\) 235020.i 0.625436i 0.949846 + 0.312718i \(0.101240\pi\)
−0.949846 + 0.312718i \(0.898760\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −212842. −0.559098 −0.279549 0.960131i \(-0.590185\pi\)
−0.279549 + 0.960131i \(0.590185\pi\)
\(618\) 0 0
\(619\) 30660.8 0.0800207 0.0400103 0.999199i \(-0.487261\pi\)
0.0400103 + 0.999199i \(0.487261\pi\)
\(620\) 0 0
\(621\) 293938.i 0.762207i
\(622\) 0 0
\(623\) 452553.i 1.16599i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −1.07906e6 −2.74480
\(628\) 0 0
\(629\) 117233.i 0.296312i
\(630\) 0 0
\(631\) 398063.i 0.999755i 0.866096 + 0.499877i \(0.166622\pi\)
−0.866096 + 0.499877i \(0.833378\pi\)
\(632\) 0 0
\(633\) −202330. −0.504954
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 106045.i − 0.261343i
\(638\) 0 0
\(639\) 97911.2i 0.239790i
\(640\) 0 0
\(641\) 75692.2 0.184219 0.0921096 0.995749i \(-0.470639\pi\)
0.0921096 + 0.995749i \(0.470639\pi\)
\(642\) 0 0
\(643\) −786008. −1.90110 −0.950551 0.310570i \(-0.899480\pi\)
−0.950551 + 0.310570i \(0.899480\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 448043.i − 1.07031i −0.844752 0.535157i \(-0.820252\pi\)
0.844752 0.535157i \(-0.179748\pi\)
\(648\) 0 0
\(649\) 135775. 0.322352
\(650\) 0 0
\(651\) −217442. −0.513075
\(652\) 0 0
\(653\) − 396846.i − 0.930671i −0.885134 0.465335i \(-0.845934\pi\)
0.885134 0.465335i \(-0.154066\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 196598. 0.455459
\(658\) 0 0
\(659\) −290177. −0.668177 −0.334089 0.942542i \(-0.608428\pi\)
−0.334089 + 0.942542i \(0.608428\pi\)
\(660\) 0 0
\(661\) − 43962.0i − 0.100618i −0.998734 0.0503088i \(-0.983979\pi\)
0.998734 0.0503088i \(-0.0160206\pi\)
\(662\) 0 0
\(663\) − 355489.i − 0.808721i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 253766. 0.570402
\(668\) 0 0
\(669\) − 453745.i − 1.01382i
\(670\) 0 0
\(671\) 1.14181e6i 2.53600i
\(672\) 0 0
\(673\) −314835. −0.695110 −0.347555 0.937660i \(-0.612988\pi\)
−0.347555 + 0.937660i \(0.612988\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 317143.i − 0.691954i −0.938243 0.345977i \(-0.887548\pi\)
0.938243 0.345977i \(-0.112452\pi\)
\(678\) 0 0
\(679\) − 506281.i − 1.09813i
\(680\) 0 0
\(681\) 418471. 0.902342
\(682\) 0 0
\(683\) −64946.3 −0.139224 −0.0696118 0.997574i \(-0.522176\pi\)
−0.0696118 + 0.997574i \(0.522176\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 399818.i − 0.847128i
\(688\) 0 0
\(689\) 929854. 1.95874
\(690\) 0 0
\(691\) 225176. 0.471591 0.235796 0.971803i \(-0.424230\pi\)
0.235796 + 0.971803i \(0.424230\pi\)
\(692\) 0 0
\(693\) − 165165.i − 0.343915i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 106060. 0.218315
\(698\) 0 0
\(699\) 655906. 1.34242
\(700\) 0 0
\(701\) − 720970.i − 1.46717i −0.679597 0.733586i \(-0.737845\pi\)
0.679597 0.733586i \(-0.262155\pi\)
\(702\) 0 0
\(703\) − 434758.i − 0.879704i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −581568. −1.16349
\(708\) 0 0
\(709\) 616674.i 1.22677i 0.789784 + 0.613385i \(0.210192\pi\)
−0.789784 + 0.613385i \(0.789808\pi\)
\(710\) 0 0
\(711\) − 235853.i − 0.466553i
\(712\) 0 0
\(713\) −244899. −0.481736
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 341622.i 0.664520i
\(718\) 0 0
\(719\) − 369408.i − 0.714577i −0.933994 0.357288i \(-0.883701\pi\)
0.933994 0.357288i \(-0.116299\pi\)
\(720\) 0 0
\(721\) −240184. −0.462034
\(722\) 0 0
\(723\) 295174. 0.564679
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 402715.i 0.761954i 0.924585 + 0.380977i \(0.124412\pi\)
−0.924585 + 0.380977i \(0.875588\pi\)
\(728\) 0 0
\(729\) 305646. 0.575127
\(730\) 0 0
\(731\) 240572. 0.450206
\(732\) 0 0
\(733\) − 22951.5i − 0.0427172i −0.999772 0.0213586i \(-0.993201\pi\)
0.999772 0.0213586i \(-0.00679918\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 813668. 1.49800
\(738\) 0 0
\(739\) −161609. −0.295922 −0.147961 0.988993i \(-0.547271\pi\)
−0.147961 + 0.988993i \(0.547271\pi\)
\(740\) 0 0
\(741\) 1.31832e6i 2.40096i
\(742\) 0 0
\(743\) 194165.i 0.351718i 0.984415 + 0.175859i \(0.0562702\pi\)
−0.984415 + 0.175859i \(0.943730\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −18925.9 −0.0339168
\(748\) 0 0
\(749\) − 324133.i − 0.577777i
\(750\) 0 0
\(751\) − 595741.i − 1.05628i −0.849158 0.528138i \(-0.822890\pi\)
0.849158 0.528138i \(-0.177110\pi\)
\(752\) 0 0
\(753\) −37067.2 −0.0653732
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 566219.i − 0.988081i −0.869439 0.494040i \(-0.835519\pi\)
0.869439 0.494040i \(-0.164481\pi\)
\(758\) 0 0
\(759\) − 838037.i − 1.45472i
\(760\) 0 0
\(761\) −268262. −0.463223 −0.231612 0.972808i \(-0.574400\pi\)
−0.231612 + 0.972808i \(0.574400\pi\)
\(762\) 0 0
\(763\) −579866. −0.996045
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 165881.i − 0.281972i
\(768\) 0 0
\(769\) 495755. 0.838329 0.419165 0.907910i \(-0.362323\pi\)
0.419165 + 0.907910i \(0.362323\pi\)
\(770\) 0 0
\(771\) −566600. −0.953164
\(772\) 0 0
\(773\) − 437740.i − 0.732584i −0.930500 0.366292i \(-0.880627\pi\)
0.930500 0.366292i \(-0.119373\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 299792. 0.496567
\(778\) 0 0
\(779\) −393320. −0.648143
\(780\) 0 0
\(781\) 699292.i 1.14645i
\(782\) 0 0
\(783\) − 301219.i − 0.491314i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −16629.0 −0.0268484 −0.0134242 0.999910i \(-0.504273\pi\)
−0.0134242 + 0.999910i \(0.504273\pi\)
\(788\) 0 0
\(789\) − 46663.8i − 0.0749593i
\(790\) 0 0
\(791\) − 122223.i − 0.195345i
\(792\) 0 0
\(793\) 1.39499e6 2.21832
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 998541.i 1.57199i 0.618234 + 0.785994i \(0.287848\pi\)
−0.618234 + 0.785994i \(0.712152\pi\)
\(798\) 0 0
\(799\) 166845.i 0.261348i
\(800\) 0 0
\(801\) −241516. −0.376427
\(802\) 0 0
\(803\) 1.40413e6 2.17759
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 759672.i 1.16648i
\(808\) 0 0
\(809\) −523592. −0.800011 −0.400006 0.916513i \(-0.630992\pi\)
−0.400006 + 0.916513i \(0.630992\pi\)
\(810\) 0 0
\(811\) 741785. 1.12781 0.563905 0.825839i \(-0.309298\pi\)
0.563905 + 0.825839i \(0.309298\pi\)
\(812\) 0 0
\(813\) 139010.i 0.210313i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −892158. −1.33659
\(818\) 0 0
\(819\) −201787. −0.300833
\(820\) 0 0
\(821\) − 971065.i − 1.44066i −0.693630 0.720331i \(-0.743990\pi\)
0.693630 0.720331i \(-0.256010\pi\)
\(822\) 0 0
\(823\) − 932619.i − 1.37691i −0.725280 0.688454i \(-0.758290\pi\)
0.725280 0.688454i \(-0.241710\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.11332e6 1.62782 0.813911 0.580989i \(-0.197334\pi\)
0.813911 + 0.580989i \(0.197334\pi\)
\(828\) 0 0
\(829\) − 625811.i − 0.910613i −0.890335 0.455307i \(-0.849530\pi\)
0.890335 0.455307i \(-0.150470\pi\)
\(830\) 0 0
\(831\) 188831.i 0.273446i
\(832\) 0 0
\(833\) −90862.9 −0.130947
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 290695.i 0.414942i
\(838\) 0 0
\(839\) − 3902.74i − 0.00554428i −0.999996 0.00277214i \(-0.999118\pi\)
0.999996 0.00277214i \(-0.000882401\pi\)
\(840\) 0 0
\(841\) 447229. 0.632322
\(842\) 0 0
\(843\) −274596. −0.386402
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 545632.i − 0.760559i
\(848\) 0 0
\(849\) −934429. −1.29638
\(850\) 0 0
\(851\) 337649. 0.466236
\(852\) 0 0
\(853\) − 858678.i − 1.18014i −0.807353 0.590068i \(-0.799101\pi\)
0.807353 0.590068i \(-0.200899\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −143233. −0.195021 −0.0975103 0.995235i \(-0.531088\pi\)
−0.0975103 + 0.995235i \(0.531088\pi\)
\(858\) 0 0
\(859\) 892238. 1.20919 0.604595 0.796533i \(-0.293335\pi\)
0.604595 + 0.796533i \(0.293335\pi\)
\(860\) 0 0
\(861\) − 271218.i − 0.365858i
\(862\) 0 0
\(863\) − 838426.i − 1.12575i −0.826541 0.562877i \(-0.809695\pi\)
0.826541 0.562877i \(-0.190305\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 547603. 0.728497
\(868\) 0 0
\(869\) − 1.68448e6i − 2.23063i
\(870\) 0 0
\(871\) − 994085.i − 1.31035i
\(872\) 0 0
\(873\) 270189. 0.354519
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.16386e6i − 1.51322i −0.653868 0.756609i \(-0.726855\pi\)
0.653868 0.756609i \(-0.273145\pi\)
\(878\) 0 0
\(879\) 114715.i 0.148472i
\(880\) 0 0
\(881\) −1.22677e6 −1.58056 −0.790282 0.612744i \(-0.790066\pi\)
−0.790282 + 0.612744i \(0.790066\pi\)
\(882\) 0 0
\(883\) 443400. 0.568689 0.284344 0.958722i \(-0.408224\pi\)
0.284344 + 0.958722i \(0.408224\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 33686.5i − 0.0428162i −0.999771 0.0214081i \(-0.993185\pi\)
0.999771 0.0214081i \(-0.00681493\pi\)
\(888\) 0 0
\(889\) 682244. 0.863249
\(890\) 0 0
\(891\) −1.30370e6 −1.64218
\(892\) 0 0
\(893\) − 618740.i − 0.775900i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.02386e6 −1.27249
\(898\) 0 0
\(899\) 250966. 0.310524
\(900\) 0 0
\(901\) − 796731.i − 0.981436i
\(902\) 0 0
\(903\) − 615198.i − 0.754465i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 593935. 0.721979 0.360990 0.932570i \(-0.382439\pi\)
0.360990 + 0.932570i \(0.382439\pi\)
\(908\) 0 0
\(909\) − 310368.i − 0.375620i
\(910\) 0 0
\(911\) − 105485.i − 0.127102i −0.997979 0.0635510i \(-0.979757\pi\)
0.997979 0.0635510i \(-0.0202426\pi\)
\(912\) 0 0
\(913\) −135171. −0.162159
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 174650.i 0.207696i
\(918\) 0 0
\(919\) − 1.49149e6i − 1.76600i −0.469373 0.883000i \(-0.655520\pi\)
0.469373 0.883000i \(-0.344480\pi\)
\(920\) 0 0
\(921\) 67173.8 0.0791919
\(922\) 0 0
\(923\) 854349. 1.00284
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 128180.i − 0.149163i
\(928\) 0 0
\(929\) −1.27994e6 −1.48306 −0.741528 0.670922i \(-0.765898\pi\)
−0.741528 + 0.670922i \(0.765898\pi\)
\(930\) 0 0
\(931\) 336964. 0.388762
\(932\) 0 0
\(933\) − 1.30118e6i − 1.49476i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −225182. −0.256480 −0.128240 0.991743i \(-0.540933\pi\)
−0.128240 + 0.991743i \(0.540933\pi\)
\(938\) 0 0
\(939\) 950551. 1.07806
\(940\) 0 0
\(941\) 1.51647e6i 1.71260i 0.516482 + 0.856298i \(0.327241\pi\)
−0.516482 + 0.856298i \(0.672759\pi\)
\(942\) 0 0
\(943\) − 305467.i − 0.343511i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −475706. −0.530443 −0.265222 0.964187i \(-0.585445\pi\)
−0.265222 + 0.964187i \(0.585445\pi\)
\(948\) 0 0
\(949\) − 1.71547e6i − 1.90481i
\(950\) 0 0
\(951\) 707021.i 0.781756i
\(952\) 0 0
\(953\) −644868. −0.710044 −0.355022 0.934858i \(-0.615527\pi\)
−0.355022 + 0.934858i \(0.615527\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 858796.i 0.937705i
\(958\) 0 0
\(959\) 651082.i 0.707943i
\(960\) 0 0
\(961\) 681323. 0.737745
\(962\) 0 0
\(963\) 172981. 0.186529
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 250168.i − 0.267533i −0.991013 0.133767i \(-0.957293\pi\)
0.991013 0.133767i \(-0.0427073\pi\)
\(968\) 0 0
\(969\) 1.12959e6 1.20302
\(970\) 0 0
\(971\) 373022. 0.395636 0.197818 0.980239i \(-0.436614\pi\)
0.197818 + 0.980239i \(0.436614\pi\)
\(972\) 0 0
\(973\) − 1.37006e6i − 1.44715i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −57277.7 −0.0600063 −0.0300031 0.999550i \(-0.509552\pi\)
−0.0300031 + 0.999550i \(0.509552\pi\)
\(978\) 0 0
\(979\) −1.72493e6 −1.79973
\(980\) 0 0
\(981\) − 309460.i − 0.321563i
\(982\) 0 0
\(983\) 351082.i 0.363330i 0.983360 + 0.181665i \(0.0581487\pi\)
−0.983360 + 0.181665i \(0.941851\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 426659. 0.437973
\(988\) 0 0
\(989\) − 692883.i − 0.708381i
\(990\) 0 0
\(991\) 196492.i 0.200077i 0.994984 + 0.100038i \(0.0318965\pi\)
−0.994984 + 0.100038i \(0.968103\pi\)
\(992\) 0 0
\(993\) 1.08857e6 1.10397
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 736136.i − 0.740572i −0.928918 0.370286i \(-0.879260\pi\)
0.928918 0.370286i \(-0.120740\pi\)
\(998\) 0 0
\(999\) − 400788.i − 0.401591i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.g.h.751.3 16
4.3 odd 2 200.5.g.h.51.7 16
5.2 odd 4 800.5.e.e.399.10 32
5.3 odd 4 800.5.e.e.399.23 32
5.4 even 2 160.5.g.a.111.13 16
8.3 odd 2 inner 800.5.g.h.751.4 16
8.5 even 2 200.5.g.h.51.8 16
15.14 odd 2 1440.5.g.a.271.14 16
20.3 even 4 200.5.e.e.99.2 32
20.7 even 4 200.5.e.e.99.31 32
20.19 odd 2 40.5.g.a.11.10 yes 16
40.3 even 4 800.5.e.e.399.9 32
40.13 odd 4 200.5.e.e.99.32 32
40.19 odd 2 160.5.g.a.111.14 16
40.27 even 4 800.5.e.e.399.24 32
40.29 even 2 40.5.g.a.11.9 16
40.37 odd 4 200.5.e.e.99.1 32
60.59 even 2 360.5.g.a.91.7 16
120.29 odd 2 360.5.g.a.91.8 16
120.59 even 2 1440.5.g.a.271.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.9 16 40.29 even 2
40.5.g.a.11.10 yes 16 20.19 odd 2
160.5.g.a.111.13 16 5.4 even 2
160.5.g.a.111.14 16 40.19 odd 2
200.5.e.e.99.1 32 40.37 odd 4
200.5.e.e.99.2 32 20.3 even 4
200.5.e.e.99.31 32 20.7 even 4
200.5.e.e.99.32 32 40.13 odd 4
200.5.g.h.51.7 16 4.3 odd 2
200.5.g.h.51.8 16 8.5 even 2
360.5.g.a.91.7 16 60.59 even 2
360.5.g.a.91.8 16 120.29 odd 2
800.5.e.e.399.9 32 40.3 even 4
800.5.e.e.399.10 32 5.2 odd 4
800.5.e.e.399.23 32 5.3 odd 4
800.5.e.e.399.24 32 40.27 even 4
800.5.g.h.751.3 16 1.1 even 1 trivial
800.5.g.h.751.4 16 8.3 odd 2 inner
1440.5.g.a.271.3 16 120.59 even 2
1440.5.g.a.271.14 16 15.14 odd 2