Properties

Label 800.5.g.h.751.3
Level 800800
Weight 55
Character 800.751
Analytic conductor 82.69682.696
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(751,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.751");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 800.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 82.695970467182.6959704671
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x166x15+14x1484x13+628x121392x11+2016x1018048x9++4294967296 x^{16} - 6 x^{15} + 14 x^{14} - 84 x^{13} + 628 x^{12} - 1392 x^{11} + 2016 x^{10} - 18048 x^{9} + \cdots + 4294967296 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2583255 2^{58}\cdot 3^{2}\cdot 5^{5}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 751.3
Root 1.30255+3.78198i-1.30255 + 3.78198i of defining polynomial
Character χ\chi == 800.751
Dual form 800.5.g.h.751.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q10.2034q343.3025iq7+23.1094q9+165.050q11201.647iq13172.778q17+640.745q19+441.833iq21+497.626iq23+590.681q27509.953iq29+492.136iq311684.07q33678.519iq37+2057.49iq39613.848q411392.38q43965.658iq47+525.894q49+1762.92q51+4611.29iq536537.78q57+822.630q59+6917.98iq611000.70iq63+4929.83q675077.48iq69+4236.85iq71+8507.29q737147.07iq7710205.9iq797898.82q81818.969q83+5203.25iq8710451.0q898731.82q915021.46iq93+11691.7q97+3814.21q99+O(q100)q-10.2034 q^{3} -43.3025i q^{7} +23.1094 q^{9} +165.050 q^{11} -201.647i q^{13} -172.778 q^{17} +640.745 q^{19} +441.833i q^{21} +497.626i q^{23} +590.681 q^{27} -509.953i q^{29} +492.136i q^{31} -1684.07 q^{33} -678.519i q^{37} +2057.49i q^{39} -613.848 q^{41} -1392.38 q^{43} -965.658i q^{47} +525.894 q^{49} +1762.92 q^{51} +4611.29i q^{53} -6537.78 q^{57} +822.630 q^{59} +6917.98i q^{61} -1000.70i q^{63} +4929.83 q^{67} -5077.48i q^{69} +4236.85i q^{71} +8507.29 q^{73} -7147.07i q^{77} -10205.9i q^{79} -7898.82 q^{81} -818.969 q^{83} +5203.25i q^{87} -10451.0 q^{89} -8731.82 q^{91} -5021.46i q^{93} +11691.7 q^{97} +3814.21 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+432q9192q11+704q19+3648q27+992q332208q41+5568q432480q49+17792q518608q5714016q5918880q67+7360q73+10384q81+10560q83+2624q99+O(q100) 16 q + 432 q^{9} - 192 q^{11} + 704 q^{19} + 3648 q^{27} + 992 q^{33} - 2208 q^{41} + 5568 q^{43} - 2480 q^{49} + 17792 q^{51} - 8608 q^{57} - 14016 q^{59} - 18880 q^{67} + 7360 q^{73} + 10384 q^{81} + 10560 q^{83}+ \cdots - 2624 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/800Z)×\left(\mathbb{Z}/800\mathbb{Z}\right)^\times.

nn 101101 351351 577577
χ(n)\chi(n) 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −10.2034 −1.13371 −0.566856 0.823817i 0.691840π-0.691840\pi
−0.566856 + 0.823817i 0.691840π0.691840\pi
44 0 0
55 0 0
66 0 0
77 − 43.3025i − 0.883724i −0.897083 0.441862i 0.854318π-0.854318\pi
0.897083 0.441862i 0.145682π-0.145682\pi
88 0 0
99 23.1094 0.285301
1010 0 0
1111 165.050 1.36405 0.682024 0.731329i 0.261100π-0.261100\pi
0.682024 + 0.731329i 0.261100π0.261100\pi
1212 0 0
1313 − 201.647i − 1.19318i −0.802547 0.596589i 0.796522π-0.796522\pi
0.802547 0.596589i 0.203478π-0.203478\pi
1414 0 0
1515 0 0
1616 0 0
1717 −172.778 −0.597848 −0.298924 0.954277i 0.596628π-0.596628\pi
−0.298924 + 0.954277i 0.596628π0.596628\pi
1818 0 0
1919 640.745 1.77492 0.887458 0.460888i 0.152469π-0.152469\pi
0.887458 + 0.460888i 0.152469π0.152469\pi
2020 0 0
2121 441.833i 1.00189i
2222 0 0
2323 497.626i 0.940692i 0.882482 + 0.470346i 0.155871π0.155871\pi
−0.882482 + 0.470346i 0.844129π0.844129\pi
2424 0 0
2525 0 0
2626 0 0
2727 590.681 0.810262
2828 0 0
2929 − 509.953i − 0.606365i −0.952933 0.303182i 0.901951π-0.901951\pi
0.952933 0.303182i 0.0980491π-0.0980491\pi
3030 0 0
3131 492.136i 0.512108i 0.966662 + 0.256054i 0.0824225π0.0824225\pi
−0.966662 + 0.256054i 0.917578π0.917578\pi
3232 0 0
3333 −1684.07 −1.54644
3434 0 0
3535 0 0
3636 0 0
3737 − 678.519i − 0.495631i −0.968807 0.247816i 0.920287π-0.920287\pi
0.968807 0.247816i 0.0797127π-0.0797127\pi
3838 0 0
3939 2057.49i 1.35272i
4040 0 0
4141 −613.848 −0.365168 −0.182584 0.983190i 0.558446π-0.558446\pi
−0.182584 + 0.983190i 0.558446π0.558446\pi
4242 0 0
4343 −1392.38 −0.753043 −0.376522 0.926408i 0.622880π-0.622880\pi
−0.376522 + 0.926408i 0.622880π0.622880\pi
4444 0 0
4545 0 0
4646 0 0
4747 − 965.658i − 0.437147i −0.975820 0.218574i 0.929860π-0.929860\pi
0.975820 0.218574i 0.0701404π-0.0701404\pi
4848 0 0
4949 525.894 0.219031
5050 0 0
5151 1762.92 0.677787
5252 0 0
5353 4611.29i 1.64161i 0.571206 + 0.820807i 0.306476π0.306476\pi
−0.571206 + 0.820807i 0.693524π0.693524\pi
5454 0 0
5555 0 0
5656 0 0
5757 −6537.78 −2.01224
5858 0 0
5959 822.630 0.236320 0.118160 0.992995i 0.462300π-0.462300\pi
0.118160 + 0.992995i 0.462300π0.462300\pi
6060 0 0
6161 6917.98i 1.85917i 0.368606 + 0.929586i 0.379835π0.379835\pi
−0.368606 + 0.929586i 0.620165π0.620165\pi
6262 0 0
6363 − 1000.70i − 0.252128i
6464 0 0
6565 0 0
6666 0 0
6767 4929.83 1.09820 0.549101 0.835756i 0.314970π-0.314970\pi
0.549101 + 0.835756i 0.314970π0.314970\pi
6868 0 0
6969 − 5077.48i − 1.06647i
7070 0 0
7171 4236.85i 0.840479i 0.907413 + 0.420239i 0.138054π0.138054\pi
−0.907413 + 0.420239i 0.861946π0.861946\pi
7272 0 0
7373 8507.29 1.59641 0.798207 0.602384i 0.205782π-0.205782\pi
0.798207 + 0.602384i 0.205782π0.205782\pi
7474 0 0
7575 0 0
7676 0 0
7777 − 7147.07i − 1.20544i
7878 0 0
7979 − 10205.9i − 1.63530i −0.575716 0.817650i 0.695276π-0.695276\pi
0.575716 0.817650i 0.304724π-0.304724\pi
8080 0 0
8181 −7898.82 −1.20390
8282 0 0
8383 −818.969 −0.118881 −0.0594403 0.998232i 0.518932π-0.518932\pi
−0.0594403 + 0.998232i 0.518932π0.518932\pi
8484 0 0
8585 0 0
8686 0 0
8787 5203.25i 0.687443i
8888 0 0
8989 −10451.0 −1.31940 −0.659700 0.751529i 0.729317π-0.729317\pi
−0.659700 + 0.751529i 0.729317π0.729317\pi
9090 0 0
9191 −8731.82 −1.05444
9292 0 0
9393 − 5021.46i − 0.580583i
9494 0 0
9595 0 0
9696 0 0
9797 11691.7 1.24261 0.621306 0.783568i 0.286603π-0.286603\pi
0.621306 + 0.783568i 0.286603π0.286603\pi
9898 0 0
9999 3814.21 0.389165
100100 0 0
101101 − 13430.4i − 1.31657i −0.752767 0.658287i 0.771281π-0.771281\pi
0.752767 0.658287i 0.228719π-0.228719\pi
102102 0 0
103103 − 5546.66i − 0.522826i −0.965227 0.261413i 0.915812π-0.915812\pi
0.965227 0.261413i 0.0841885π-0.0841885\pi
104104 0 0
105105 0 0
106106 0 0
107107 7485.33 0.653797 0.326899 0.945059i 0.393996π-0.393996\pi
0.326899 + 0.945059i 0.393996π0.393996\pi
108108 0 0
109109 − 13391.1i − 1.12710i −0.826082 0.563549i 0.809435π-0.809435\pi
0.826082 0.563549i 0.190565π-0.190565\pi
110110 0 0
111111 6923.20i 0.561903i
112112 0 0
113113 2822.55 0.221047 0.110523 0.993874i 0.464747π-0.464747\pi
0.110523 + 0.993874i 0.464747π0.464747\pi
114114 0 0
115115 0 0
116116 0 0
117117 − 4659.95i − 0.340415i
118118 0 0
119119 7481.73i 0.528333i
120120 0 0
121121 12600.5 0.860629
122122 0 0
123123 6263.34 0.413995
124124 0 0
125125 0 0
126126 0 0
127127 15755.3i 0.976831i 0.872611 + 0.488416i 0.162425π0.162425\pi
−0.872611 + 0.488416i 0.837575π0.837575\pi
128128 0 0
129129 14207.0 0.853733
130130 0 0
131131 −4033.25 −0.235024 −0.117512 0.993071i 0.537492π-0.537492\pi
−0.117512 + 0.993071i 0.537492π0.537492\pi
132132 0 0
133133 − 27745.9i − 1.56854i
134134 0 0
135135 0 0
136136 0 0
137137 −15035.7 −0.801090 −0.400545 0.916277i 0.631179π-0.631179\pi
−0.400545 + 0.916277i 0.631179π0.631179\pi
138138 0 0
139139 31639.4 1.63756 0.818782 0.574105i 0.194650π-0.194650\pi
0.818782 + 0.574105i 0.194650π0.194650\pi
140140 0 0
141141 9853.00i 0.495599i
142142 0 0
143143 − 33281.8i − 1.62755i
144144 0 0
145145 0 0
146146 0 0
147147 −5365.90 −0.248318
148148 0 0
149149 − 34271.9i − 1.54371i −0.635798 0.771856i 0.719329π-0.719329\pi
0.635798 0.771856i 0.280671π-0.280671\pi
150150 0 0
151151 478.378i 0.0209806i 0.999945 + 0.0104903i 0.00333922π0.00333922\pi
−0.999945 + 0.0104903i 0.996661π0.996661\pi
152152 0 0
153153 −3992.80 −0.170567
154154 0 0
155155 0 0
156156 0 0
157157 13731.7i 0.557088i 0.960423 + 0.278544i 0.0898518π0.0898518\pi
−0.960423 + 0.278544i 0.910148π0.910148\pi
158158 0 0
159159 − 47050.9i − 1.86112i
160160 0 0
161161 21548.4 0.831312
162162 0 0
163163 23891.6 0.899228 0.449614 0.893223i 0.351561π-0.351561\pi
0.449614 + 0.893223i 0.351561π0.351561\pi
164164 0 0
165165 0 0
166166 0 0
167167 − 27650.3i − 0.991442i −0.868482 0.495721i 0.834904π-0.834904\pi
0.868482 0.495721i 0.165096π-0.165096\pi
168168 0 0
169169 −12100.5 −0.423673
170170 0 0
171171 14807.2 0.506386
172172 0 0
173173 − 49203.7i − 1.64401i −0.569477 0.822007i 0.692854π-0.692854\pi
0.569477 0.822007i 0.307146π-0.307146\pi
174174 0 0
175175 0 0
176176 0 0
177177 −8393.62 −0.267919
178178 0 0
179179 11247.1 0.351022 0.175511 0.984477i 0.443842π-0.443842\pi
0.175511 + 0.984477i 0.443842π0.443842\pi
180180 0 0
181181 9919.57i 0.302786i 0.988474 + 0.151393i 0.0483759π0.0483759\pi
−0.988474 + 0.151393i 0.951624π0.951624\pi
182182 0 0
183183 − 70586.9i − 2.10776i
184184 0 0
185185 0 0
186186 0 0
187187 −28517.0 −0.815494
188188 0 0
189189 − 25578.0i − 0.716048i
190190 0 0
191191 − 36233.6i − 0.993219i −0.867974 0.496609i 0.834578π-0.834578\pi
0.867974 0.496609i 0.165422π-0.165422\pi
192192 0 0
193193 37612.9 1.00977 0.504885 0.863187i 0.331535π-0.331535\pi
0.504885 + 0.863187i 0.331535π0.331535\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 27374.4i − 0.705361i −0.935744 0.352681i 0.885270π-0.885270\pi
0.935744 0.352681i 0.114730π-0.114730\pi
198198 0 0
199199 − 53766.9i − 1.35772i −0.734270 0.678858i 0.762475π-0.762475\pi
0.734270 0.678858i 0.237525π-0.237525\pi
200200 0 0
201201 −50301.0 −1.24504
202202 0 0
203203 −22082.2 −0.535859
204204 0 0
205205 0 0
206206 0 0
207207 11499.8i 0.268381i
208208 0 0
209209 105755. 2.42107
210210 0 0
211211 19829.6 0.445399 0.222700 0.974887i 0.428513π-0.428513\pi
0.222700 + 0.974887i 0.428513π0.428513\pi
212212 0 0
213213 − 43230.3i − 0.952860i
214214 0 0
215215 0 0
216216 0 0
217217 21310.7 0.452562
218218 0 0
219219 −86803.3 −1.80987
220220 0 0
221221 34840.2i 0.713339i
222222 0 0
223223 44470.0i 0.894247i 0.894472 + 0.447123i 0.147552π0.147552\pi
−0.894472 + 0.447123i 0.852448π0.852448\pi
224224 0 0
225225 0 0
226226 0 0
227227 −41012.9 −0.795919 −0.397959 0.917403i 0.630281π-0.630281\pi
−0.397959 + 0.917403i 0.630281π0.630281\pi
228228 0 0
229229 39184.8i 0.747217i 0.927587 + 0.373608i 0.121880π0.121880\pi
−0.927587 + 0.373608i 0.878120π0.878120\pi
230230 0 0
231231 72924.5i 1.36662i
232232 0 0
233233 −64283.0 −1.18409 −0.592045 0.805905i 0.701679π-0.701679\pi
−0.592045 + 0.805905i 0.701679π0.701679\pi
234234 0 0
235235 0 0
236236 0 0
237237 104135.i 1.85396i
238238 0 0
239239 − 33481.2i − 0.586145i −0.956090 0.293073i 0.905322π-0.905322\pi
0.956090 0.293073i 0.0946778π-0.0946778\pi
240240 0 0
241241 −28929.0 −0.498080 −0.249040 0.968493i 0.580115π-0.580115\pi
−0.249040 + 0.968493i 0.580115π0.580115\pi
242242 0 0
243243 32749.7 0.554618
244244 0 0
245245 0 0
246246 0 0
247247 − 129204.i − 2.11779i
248248 0 0
249249 8356.27 0.134776
250250 0 0
251251 3632.83 0.0576630 0.0288315 0.999584i 0.490821π-0.490821\pi
0.0288315 + 0.999584i 0.490821π0.490821\pi
252252 0 0
253253 82133.1i 1.28315i
254254 0 0
255255 0 0
256256 0 0
257257 55530.5 0.840747 0.420373 0.907351i 0.361899π-0.361899\pi
0.420373 + 0.907351i 0.361899π0.361899\pi
258258 0 0
259259 −29381.6 −0.438001
260260 0 0
261261 − 11784.7i − 0.172997i
262262 0 0
263263 4573.35i 0.0661185i 0.999453 + 0.0330593i 0.0105250π0.0105250\pi
−0.999453 + 0.0330593i 0.989475π0.989475\pi
264264 0 0
265265 0 0
266266 0 0
267267 106635. 1.49582
268268 0 0
269269 − 74452.8i − 1.02891i −0.857518 0.514454i 0.827995π-0.827995\pi
0.857518 0.514454i 0.172005π-0.172005\pi
270270 0 0
271271 − 13623.9i − 0.185508i −0.995689 0.0927541i 0.970433π-0.970433\pi
0.995689 0.0927541i 0.0295670π-0.0295670\pi
272272 0 0
273273 89094.3 1.19543
274274 0 0
275275 0 0
276276 0 0
277277 − 18506.7i − 0.241195i −0.992701 0.120598i 0.961519π-0.961519\pi
0.992701 0.120598i 0.0384811π-0.0384811\pi
278278 0 0
279279 11373.0i 0.146105i
280280 0 0
281281 26912.2 0.340830 0.170415 0.985372i 0.445489π-0.445489\pi
0.170415 + 0.985372i 0.445489π0.445489\pi
282282 0 0
283283 91580.2 1.14348 0.571740 0.820435i 0.306269π-0.306269\pi
0.571740 + 0.820435i 0.306269π0.306269\pi
284284 0 0
285285 0 0
286286 0 0
287287 26581.2i 0.322708i
288288 0 0
289289 −53668.7 −0.642577
290290 0 0
291291 −119295. −1.40876
292292 0 0
293293 − 11242.9i − 0.130961i −0.997854 0.0654805i 0.979142π-0.979142\pi
0.997854 0.0654805i 0.0208580π-0.0208580\pi
294294 0 0
295295 0 0
296296 0 0
297297 97491.8 1.10524
298298 0 0
299299 100345. 1.12241
300300 0 0
301301 60293.4i 0.665483i
302302 0 0
303303 137035.i 1.49261i
304304 0 0
305305 0 0
306306 0 0
307307 −6583.47 −0.0698519 −0.0349260 0.999390i 0.511120π-0.511120\pi
−0.0349260 + 0.999390i 0.511120π0.511120\pi
308308 0 0
309309 56594.8i 0.592734i
310310 0 0
311311 127524.i 1.31847i 0.751937 + 0.659235i 0.229120π0.229120\pi
−0.751937 + 0.659235i 0.770880π0.770880\pi
312312 0 0
313313 −93160.2 −0.950915 −0.475457 0.879739i 0.657717π-0.657717\pi
−0.475457 + 0.879739i 0.657717π0.657717\pi
314314 0 0
315315 0 0
316316 0 0
317317 − 69292.6i − 0.689554i −0.938685 0.344777i 0.887954π-0.887954\pi
0.938685 0.344777i 0.112046π-0.112046\pi
318318 0 0
319319 − 84167.6i − 0.827111i
320320 0 0
321321 −76375.8 −0.741217
322322 0 0
323323 −110707. −1.06113
324324 0 0
325325 0 0
326326 0 0
327327 136634.i 1.27780i
328328 0 0
329329 −41815.4 −0.386318
330330 0 0
331331 −106686. −0.973763 −0.486882 0.873468i 0.661866π-0.661866\pi
−0.486882 + 0.873468i 0.661866π0.661866\pi
332332 0 0
333333 − 15680.2i − 0.141404i
334334 0 0
335335 0 0
336336 0 0
337337 −34707.0 −0.305603 −0.152801 0.988257i 0.548829π-0.548829\pi
−0.152801 + 0.988257i 0.548829π0.548829\pi
338338 0 0
339339 −28799.6 −0.250603
340340 0 0
341341 81226.9i 0.698540i
342342 0 0
343343 − 126742.i − 1.07729i
344344 0 0
345345 0 0
346346 0 0
347347 −191096. −1.58706 −0.793529 0.608532i 0.791759π-0.791759\pi
−0.793529 + 0.608532i 0.791759π0.791759\pi
348348 0 0
349349 19760.1i 0.162233i 0.996705 + 0.0811165i 0.0258486π0.0258486\pi
−0.996705 + 0.0811165i 0.974151π0.974151\pi
350350 0 0
351351 − 119109.i − 0.966787i
352352 0 0
353353 −65214.7 −0.523355 −0.261677 0.965155i 0.584276π-0.584276\pi
−0.261677 + 0.965155i 0.584276π0.584276\pi
354354 0 0
355355 0 0
356356 0 0
357357 − 76339.1i − 0.598977i
358358 0 0
359359 183096.i 1.42066i 0.703871 + 0.710328i 0.251453π0.251453\pi
−0.703871 + 0.710328i 0.748547π0.748547\pi
360360 0 0
361361 280233. 2.15033
362362 0 0
363363 −128568. −0.975705
364364 0 0
365365 0 0
366366 0 0
367367 − 11615.6i − 0.0862401i −0.999070 0.0431200i 0.986270π-0.986270\pi
0.999070 0.0431200i 0.0137298π-0.0137298\pi
368368 0 0
369369 −14185.7 −0.104183
370370 0 0
371371 199680. 1.45073
372372 0 0
373373 192501.i 1.38361i 0.722083 + 0.691806i 0.243185π0.243185\pi
−0.722083 + 0.691806i 0.756815π0.756815\pi
374374 0 0
375375 0 0
376376 0 0
377377 −102830. −0.723501
378378 0 0
379379 108067. 0.752342 0.376171 0.926550i 0.377240π-0.377240\pi
0.376171 + 0.926550i 0.377240π0.377240\pi
380380 0 0
381381 − 160758.i − 1.10744i
382382 0 0
383383 188520.i 1.28517i 0.766215 + 0.642585i 0.222138π0.222138\pi
−0.766215 + 0.642585i 0.777862π0.777862\pi
384384 0 0
385385 0 0
386386 0 0
387387 −32177.0 −0.214844
388388 0 0
389389 27057.1i 0.178806i 0.995996 + 0.0894030i 0.0284959π0.0284959\pi
−0.995996 + 0.0894030i 0.971504π0.971504\pi
390390 0 0
391391 − 85978.9i − 0.562391i
392392 0 0
393393 41152.8 0.266449
394394 0 0
395395 0 0
396396 0 0
397397 − 156094.i − 0.990388i −0.868782 0.495194i 0.835097π-0.835097\pi
0.868782 0.495194i 0.164903π-0.164903\pi
398398 0 0
399399 283102.i 1.77827i
400400 0 0
401401 −77777.2 −0.483686 −0.241843 0.970315i 0.577752π-0.577752\pi
−0.241843 + 0.970315i 0.577752π0.577752\pi
402402 0 0
403403 99237.7 0.611036
404404 0 0
405405 0 0
406406 0 0
407407 − 111989.i − 0.676065i
408408 0 0
409409 −247426. −1.47911 −0.739553 0.673098i 0.764963π-0.764963\pi
−0.739553 + 0.673098i 0.764963π0.764963\pi
410410 0 0
411411 153415. 0.908205
412412 0 0
413413 − 35621.9i − 0.208842i
414414 0 0
415415 0 0
416416 0 0
417417 −322829. −1.85652
418418 0 0
419419 −62888.2 −0.358213 −0.179107 0.983830i 0.557321π-0.557321\pi
−0.179107 + 0.983830i 0.557321π0.557321\pi
420420 0 0
421421 − 321321.i − 1.81290i −0.422311 0.906451i 0.638781π-0.638781\pi
0.422311 0.906451i 0.361219π-0.361219\pi
422422 0 0
423423 − 22315.8i − 0.124719i
424424 0 0
425425 0 0
426426 0 0
427427 299566. 1.64300
428428 0 0
429429 339588.i 1.84518i
430430 0 0
431431 66812.9i 0.359672i 0.983697 + 0.179836i 0.0575566π0.0575566\pi
−0.983697 + 0.179836i 0.942443π0.942443\pi
432432 0 0
433433 171149. 0.912846 0.456423 0.889763i 0.349130π-0.349130\pi
0.456423 + 0.889763i 0.349130π0.349130\pi
434434 0 0
435435 0 0
436436 0 0
437437 318851.i 1.66965i
438438 0 0
439439 82871.1i 0.430005i 0.976613 + 0.215003i 0.0689760π0.0689760\pi
−0.976613 + 0.215003i 0.931024π0.931024\pi
440440 0 0
441441 12153.1 0.0624899
442442 0 0
443443 −71237.1 −0.362994 −0.181497 0.983392i 0.558094π-0.558094\pi
−0.181497 + 0.983392i 0.558094π0.558094\pi
444444 0 0
445445 0 0
446446 0 0
447447 349690.i 1.75012i
448448 0 0
449449 306433. 1.52000 0.759999 0.649925i 0.225200π-0.225200\pi
0.759999 + 0.649925i 0.225200π0.225200\pi
450450 0 0
451451 −101316. −0.498107
452452 0 0
453453 − 4881.08i − 0.0237859i
454454 0 0
455455 0 0
456456 0 0
457457 −31625.5 −0.151428 −0.0757138 0.997130i 0.524124π-0.524124\pi
−0.0757138 + 0.997130i 0.524124π0.524124\pi
458458 0 0
459459 −102057. −0.484414
460460 0 0
461461 − 66080.1i − 0.310934i −0.987841 0.155467i 0.950312π-0.950312\pi
0.987841 0.155467i 0.0496883π-0.0496883\pi
462462 0 0
463463 − 303583.i − 1.41617i −0.706126 0.708086i 0.749559π-0.749559\pi
0.706126 0.708086i 0.250441π-0.250441\pi
464464 0 0
465465 0 0
466466 0 0
467467 121986. 0.559341 0.279670 0.960096i 0.409775π-0.409775\pi
0.279670 + 0.960096i 0.409775π0.409775\pi
468468 0 0
469469 − 213474.i − 0.970508i
470470 0 0
471471 − 140110.i − 0.631577i
472472 0 0
473473 −229812. −1.02719
474474 0 0
475475 0 0
476476 0 0
477477 106564.i 0.468355i
478478 0 0
479479 − 144501.i − 0.629794i −0.949126 0.314897i 0.898030π-0.898030\pi
0.949126 0.314897i 0.101970π-0.101970\pi
480480 0 0
481481 −136821. −0.591376
482482 0 0
483483 −219867. −0.942468
484484 0 0
485485 0 0
486486 0 0
487487 7828.30i 0.0330073i 0.999864 + 0.0165036i 0.00525351π0.00525351\pi
−0.999864 + 0.0165036i 0.994746π0.994746\pi
488488 0 0
489489 −243776. −1.01947
490490 0 0
491491 254423. 1.05534 0.527671 0.849449i 0.323066π-0.323066\pi
0.527671 + 0.849449i 0.323066π0.323066\pi
492492 0 0
493493 88108.7i 0.362514i
494494 0 0
495495 0 0
496496 0 0
497497 183466. 0.742752
498498 0 0
499499 19859.3 0.0797560 0.0398780 0.999205i 0.487303π-0.487303\pi
0.0398780 + 0.999205i 0.487303π0.487303\pi
500500 0 0
501501 282127.i 1.12401i
502502 0 0
503503 289925.i 1.14591i 0.819587 + 0.572954i 0.194203π0.194203\pi
−0.819587 + 0.572954i 0.805797π0.805797\pi
504504 0 0
505505 0 0
506506 0 0
507507 123467. 0.480323
508508 0 0
509509 101676.i 0.392447i 0.980559 + 0.196224i 0.0628679π0.0628679\pi
−0.980559 + 0.196224i 0.937132π0.937132\pi
510510 0 0
511511 − 368387.i − 1.41079i
512512 0 0
513513 378476. 1.43815
514514 0 0
515515 0 0
516516 0 0
517517 − 159382.i − 0.596290i
518518 0 0
519519 502045.i 1.86384i
520520 0 0
521521 −302599. −1.11479 −0.557393 0.830248i 0.688198π-0.688198\pi
−0.557393 + 0.830248i 0.688198π0.688198\pi
522522 0 0
523523 −61255.9 −0.223947 −0.111973 0.993711i 0.535717π-0.535717\pi
−0.111973 + 0.993711i 0.535717π0.535717\pi
524524 0 0
525525 0 0
526526 0 0
527527 − 85030.3i − 0.306163i
528528 0 0
529529 32209.5 0.115099
530530 0 0
531531 19010.5 0.0674224
532532 0 0
533533 123781.i 0.435711i
534534 0 0
535535 0 0
536536 0 0
537537 −114759. −0.397958
538538 0 0
539539 86798.7 0.298769
540540 0 0
541541 − 223113.i − 0.762307i −0.924512 0.381154i 0.875527π-0.875527\pi
0.924512 0.381154i 0.124473π-0.124473\pi
542542 0 0
543543 − 101213.i − 0.343272i
544544 0 0
545545 0 0
546546 0 0
547547 56408.6 0.188526 0.0942629 0.995547i 0.469951π-0.469951\pi
0.0942629 + 0.995547i 0.469951π0.469951\pi
548548 0 0
549549 159870.i 0.530424i
550550 0 0
551551 − 326750.i − 1.07625i
552552 0 0
553553 −441941. −1.44515
554554 0 0
555555 0 0
556556 0 0
557557 − 288826.i − 0.930950i −0.885061 0.465475i 0.845883π-0.845883\pi
0.885061 0.465475i 0.154117π-0.154117\pi
558558 0 0
559559 280769.i 0.898514i
560560 0 0
561561 290971. 0.924535
562562 0 0
563563 611795. 1.93014 0.965071 0.261988i 0.0843782π-0.0843782\pi
0.965071 + 0.261988i 0.0843782π0.0843782\pi
564564 0 0
565565 0 0
566566 0 0
567567 342039.i 1.06392i
568568 0 0
569569 −633137. −1.95557 −0.977784 0.209613i 0.932780π-0.932780\pi
−0.977784 + 0.209613i 0.932780π0.932780\pi
570570 0 0
571571 −279945. −0.858618 −0.429309 0.903158i 0.641243π-0.641243\pi
−0.429309 + 0.903158i 0.641243π0.641243\pi
572572 0 0
573573 369706.i 1.12602i
574574 0 0
575575 0 0
576576 0 0
577577 371982. 1.11730 0.558651 0.829403i 0.311319π-0.311319\pi
0.558651 + 0.829403i 0.311319π0.311319\pi
578578 0 0
579579 −383780. −1.14479
580580 0 0
581581 35463.4i 0.105058i
582582 0 0
583583 761093.i 2.23924i
584584 0 0
585585 0 0
586586 0 0
587587 44751.2 0.129876 0.0649380 0.997889i 0.479315π-0.479315\pi
0.0649380 + 0.997889i 0.479315π0.479315\pi
588588 0 0
589589 315333.i 0.908949i
590590 0 0
591591 279312.i 0.799676i
592592 0 0
593593 140260. 0.398863 0.199431 0.979912i 0.436090π-0.436090\pi
0.199431 + 0.979912i 0.436090π0.436090\pi
594594 0 0
595595 0 0
596596 0 0
597597 548605.i 1.53926i
598598 0 0
599599 − 326102.i − 0.908866i −0.890781 0.454433i 0.849842π-0.849842\pi
0.890781 0.454433i 0.150158π-0.150158\pi
600600 0 0
601601 111831. 0.309608 0.154804 0.987945i 0.450525π-0.450525\pi
0.154804 + 0.987945i 0.450525π0.450525\pi
602602 0 0
603603 113925. 0.313319
604604 0 0
605605 0 0
606606 0 0
607607 − 442565.i − 1.20116i −0.799566 0.600579i 0.794937π-0.794937\pi
0.799566 0.600579i 0.205063π-0.205063\pi
608608 0 0
609609 225314. 0.607510
610610 0 0
611611 −194722. −0.521594
612612 0 0
613613 235020.i 0.625436i 0.949846 + 0.312718i 0.101240π0.101240\pi
−0.949846 + 0.312718i 0.898760π0.898760\pi
614614 0 0
615615 0 0
616616 0 0
617617 −212842. −0.559098 −0.279549 0.960131i 0.590185π-0.590185\pi
−0.279549 + 0.960131i 0.590185π0.590185\pi
618618 0 0
619619 30660.8 0.0800207 0.0400103 0.999199i 0.487261π-0.487261\pi
0.0400103 + 0.999199i 0.487261π0.487261\pi
620620 0 0
621621 293938.i 0.762207i
622622 0 0
623623 452553.i 1.16599i
624624 0 0
625625 0 0
626626 0 0
627627 −1.07906e6 −2.74480
628628 0 0
629629 117233.i 0.296312i
630630 0 0
631631 398063.i 0.999755i 0.866096 + 0.499877i 0.166622π0.166622\pi
−0.866096 + 0.499877i 0.833378π0.833378\pi
632632 0 0
633633 −202330. −0.504954
634634 0 0
635635 0 0
636636 0 0
637637 − 106045.i − 0.261343i
638638 0 0
639639 97911.2i 0.239790i
640640 0 0
641641 75692.2 0.184219 0.0921096 0.995749i 0.470639π-0.470639\pi
0.0921096 + 0.995749i 0.470639π0.470639\pi
642642 0 0
643643 −786008. −1.90110 −0.950551 0.310570i 0.899480π-0.899480\pi
−0.950551 + 0.310570i 0.899480π0.899480\pi
644644 0 0
645645 0 0
646646 0 0
647647 − 448043.i − 1.07031i −0.844752 0.535157i 0.820252π-0.820252\pi
0.844752 0.535157i 0.179748π-0.179748\pi
648648 0 0
649649 135775. 0.322352
650650 0 0
651651 −217442. −0.513075
652652 0 0
653653 − 396846.i − 0.930671i −0.885134 0.465335i 0.845934π-0.845934\pi
0.885134 0.465335i 0.154066π-0.154066\pi
654654 0 0
655655 0 0
656656 0 0
657657 196598. 0.455459
658658 0 0
659659 −290177. −0.668177 −0.334089 0.942542i 0.608428π-0.608428\pi
−0.334089 + 0.942542i 0.608428π0.608428\pi
660660 0 0
661661 − 43962.0i − 0.100618i −0.998734 0.0503088i 0.983979π-0.983979\pi
0.998734 0.0503088i 0.0160206π-0.0160206\pi
662662 0 0
663663 − 355489.i − 0.808721i
664664 0 0
665665 0 0
666666 0 0
667667 253766. 0.570402
668668 0 0
669669 − 453745.i − 1.01382i
670670 0 0
671671 1.14181e6i 2.53600i
672672 0 0
673673 −314835. −0.695110 −0.347555 0.937660i 0.612988π-0.612988\pi
−0.347555 + 0.937660i 0.612988π0.612988\pi
674674 0 0
675675 0 0
676676 0 0
677677 − 317143.i − 0.691954i −0.938243 0.345977i 0.887548π-0.887548\pi
0.938243 0.345977i 0.112452π-0.112452\pi
678678 0 0
679679 − 506281.i − 1.09813i
680680 0 0
681681 418471. 0.902342
682682 0 0
683683 −64946.3 −0.139224 −0.0696118 0.997574i 0.522176π-0.522176\pi
−0.0696118 + 0.997574i 0.522176π0.522176\pi
684684 0 0
685685 0 0
686686 0 0
687687 − 399818.i − 0.847128i
688688 0 0
689689 929854. 1.95874
690690 0 0
691691 225176. 0.471591 0.235796 0.971803i 0.424230π-0.424230\pi
0.235796 + 0.971803i 0.424230π0.424230\pi
692692 0 0
693693 − 165165.i − 0.343915i
694694 0 0
695695 0 0
696696 0 0
697697 106060. 0.218315
698698 0 0
699699 655906. 1.34242
700700 0 0
701701 − 720970.i − 1.46717i −0.679597 0.733586i 0.737845π-0.737845\pi
0.679597 0.733586i 0.262155π-0.262155\pi
702702 0 0
703703 − 434758.i − 0.879704i
704704 0 0
705705 0 0
706706 0 0
707707 −581568. −1.16349
708708 0 0
709709 616674.i 1.22677i 0.789784 + 0.613385i 0.210192π0.210192\pi
−0.789784 + 0.613385i 0.789808π0.789808\pi
710710 0 0
711711 − 235853.i − 0.466553i
712712 0 0
713713 −244899. −0.481736
714714 0 0
715715 0 0
716716 0 0
717717 341622.i 0.664520i
718718 0 0
719719 − 369408.i − 0.714577i −0.933994 0.357288i 0.883701π-0.883701\pi
0.933994 0.357288i 0.116299π-0.116299\pi
720720 0 0
721721 −240184. −0.462034
722722 0 0
723723 295174. 0.564679
724724 0 0
725725 0 0
726726 0 0
727727 402715.i 0.761954i 0.924585 + 0.380977i 0.124412π0.124412\pi
−0.924585 + 0.380977i 0.875588π0.875588\pi
728728 0 0
729729 305646. 0.575127
730730 0 0
731731 240572. 0.450206
732732 0 0
733733 − 22951.5i − 0.0427172i −0.999772 0.0213586i 0.993201π-0.993201\pi
0.999772 0.0213586i 0.00679918π-0.00679918\pi
734734 0 0
735735 0 0
736736 0 0
737737 813668. 1.49800
738738 0 0
739739 −161609. −0.295922 −0.147961 0.988993i 0.547271π-0.547271\pi
−0.147961 + 0.988993i 0.547271π0.547271\pi
740740 0 0
741741 1.31832e6i 2.40096i
742742 0 0
743743 194165.i 0.351718i 0.984415 + 0.175859i 0.0562702π0.0562702\pi
−0.984415 + 0.175859i 0.943730π0.943730\pi
744744 0 0
745745 0 0
746746 0 0
747747 −18925.9 −0.0339168
748748 0 0
749749 − 324133.i − 0.577777i
750750 0 0
751751 − 595741.i − 1.05628i −0.849158 0.528138i 0.822890π-0.822890\pi
0.849158 0.528138i 0.177110π-0.177110\pi
752752 0 0
753753 −37067.2 −0.0653732
754754 0 0
755755 0 0
756756 0 0
757757 − 566219.i − 0.988081i −0.869439 0.494040i 0.835519π-0.835519\pi
0.869439 0.494040i 0.164481π-0.164481\pi
758758 0 0
759759 − 838037.i − 1.45472i
760760 0 0
761761 −268262. −0.463223 −0.231612 0.972808i 0.574400π-0.574400\pi
−0.231612 + 0.972808i 0.574400π0.574400\pi
762762 0 0
763763 −579866. −0.996045
764764 0 0
765765 0 0
766766 0 0
767767 − 165881.i − 0.281972i
768768 0 0
769769 495755. 0.838329 0.419165 0.907910i 0.362323π-0.362323\pi
0.419165 + 0.907910i 0.362323π0.362323\pi
770770 0 0
771771 −566600. −0.953164
772772 0 0
773773 − 437740.i − 0.732584i −0.930500 0.366292i 0.880627π-0.880627\pi
0.930500 0.366292i 0.119373π-0.119373\pi
774774 0 0
775775 0 0
776776 0 0
777777 299792. 0.496567
778778 0 0
779779 −393320. −0.648143
780780 0 0
781781 699292.i 1.14645i
782782 0 0
783783 − 301219.i − 0.491314i
784784 0 0
785785 0 0
786786 0 0
787787 −16629.0 −0.0268484 −0.0134242 0.999910i 0.504273π-0.504273\pi
−0.0134242 + 0.999910i 0.504273π0.504273\pi
788788 0 0
789789 − 46663.8i − 0.0749593i
790790 0 0
791791 − 122223.i − 0.195345i
792792 0 0
793793 1.39499e6 2.21832
794794 0 0
795795 0 0
796796 0 0
797797 998541.i 1.57199i 0.618234 + 0.785994i 0.287848π0.287848\pi
−0.618234 + 0.785994i 0.712152π0.712152\pi
798798 0 0
799799 166845.i 0.261348i
800800 0 0
801801 −241516. −0.376427
802802 0 0
803803 1.40413e6 2.17759
804804 0 0
805805 0 0
806806 0 0
807807 759672.i 1.16648i
808808 0 0
809809 −523592. −0.800011 −0.400006 0.916513i 0.630992π-0.630992\pi
−0.400006 + 0.916513i 0.630992π0.630992\pi
810810 0 0
811811 741785. 1.12781 0.563905 0.825839i 0.309298π-0.309298\pi
0.563905 + 0.825839i 0.309298π0.309298\pi
812812 0 0
813813 139010.i 0.210313i
814814 0 0
815815 0 0
816816 0 0
817817 −892158. −1.33659
818818 0 0
819819 −201787. −0.300833
820820 0 0
821821 − 971065.i − 1.44066i −0.693630 0.720331i 0.743990π-0.743990\pi
0.693630 0.720331i 0.256010π-0.256010\pi
822822 0 0
823823 − 932619.i − 1.37691i −0.725280 0.688454i 0.758290π-0.758290\pi
0.725280 0.688454i 0.241710π-0.241710\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.11332e6 1.62782 0.813911 0.580989i 0.197334π-0.197334\pi
0.813911 + 0.580989i 0.197334π0.197334\pi
828828 0 0
829829 − 625811.i − 0.910613i −0.890335 0.455307i 0.849530π-0.849530\pi
0.890335 0.455307i 0.150470π-0.150470\pi
830830 0 0
831831 188831.i 0.273446i
832832 0 0
833833 −90862.9 −0.130947
834834 0 0
835835 0 0
836836 0 0
837837 290695.i 0.414942i
838838 0 0
839839 − 3902.74i − 0.00554428i −0.999996 0.00277214i 0.999118π-0.999118\pi
0.999996 0.00277214i 0.000882401π-0.000882401\pi
840840 0 0
841841 447229. 0.632322
842842 0 0
843843 −274596. −0.386402
844844 0 0
845845 0 0
846846 0 0
847847 − 545632.i − 0.760559i
848848 0 0
849849 −934429. −1.29638
850850 0 0
851851 337649. 0.466236
852852 0 0
853853 − 858678.i − 1.18014i −0.807353 0.590068i 0.799101π-0.799101\pi
0.807353 0.590068i 0.200899π-0.200899\pi
854854 0 0
855855 0 0
856856 0 0
857857 −143233. −0.195021 −0.0975103 0.995235i 0.531088π-0.531088\pi
−0.0975103 + 0.995235i 0.531088π0.531088\pi
858858 0 0
859859 892238. 1.20919 0.604595 0.796533i 0.293335π-0.293335\pi
0.604595 + 0.796533i 0.293335π0.293335\pi
860860 0 0
861861 − 271218.i − 0.365858i
862862 0 0
863863 − 838426.i − 1.12575i −0.826541 0.562877i 0.809695π-0.809695\pi
0.826541 0.562877i 0.190305π-0.190305\pi
864864 0 0
865865 0 0
866866 0 0
867867 547603. 0.728497
868868 0 0
869869 − 1.68448e6i − 2.23063i
870870 0 0
871871 − 994085.i − 1.31035i
872872 0 0
873873 270189. 0.354519
874874 0 0
875875 0 0
876876 0 0
877877 − 1.16386e6i − 1.51322i −0.653868 0.756609i 0.726855π-0.726855\pi
0.653868 0.756609i 0.273145π-0.273145\pi
878878 0 0
879879 114715.i 0.148472i
880880 0 0
881881 −1.22677e6 −1.58056 −0.790282 0.612744i 0.790066π-0.790066\pi
−0.790282 + 0.612744i 0.790066π0.790066\pi
882882 0 0
883883 443400. 0.568689 0.284344 0.958722i 0.408224π-0.408224\pi
0.284344 + 0.958722i 0.408224π0.408224\pi
884884 0 0
885885 0 0
886886 0 0
887887 − 33686.5i − 0.0428162i −0.999771 0.0214081i 0.993185π-0.993185\pi
0.999771 0.0214081i 0.00681493π-0.00681493\pi
888888 0 0
889889 682244. 0.863249
890890 0 0
891891 −1.30370e6 −1.64218
892892 0 0
893893 − 618740.i − 0.775900i
894894 0 0
895895 0 0
896896 0 0
897897 −1.02386e6 −1.27249
898898 0 0
899899 250966. 0.310524
900900 0 0
901901 − 796731.i − 0.981436i
902902 0 0
903903 − 615198.i − 0.754465i
904904 0 0
905905 0 0
906906 0 0
907907 593935. 0.721979 0.360990 0.932570i 0.382439π-0.382439\pi
0.360990 + 0.932570i 0.382439π0.382439\pi
908908 0 0
909909 − 310368.i − 0.375620i
910910 0 0
911911 − 105485.i − 0.127102i −0.997979 0.0635510i 0.979757π-0.979757\pi
0.997979 0.0635510i 0.0202426π-0.0202426\pi
912912 0 0
913913 −135171. −0.162159
914914 0 0
915915 0 0
916916 0 0
917917 174650.i 0.207696i
918918 0 0
919919 − 1.49149e6i − 1.76600i −0.469373 0.883000i 0.655520π-0.655520\pi
0.469373 0.883000i 0.344480π-0.344480\pi
920920 0 0
921921 67173.8 0.0791919
922922 0 0
923923 854349. 1.00284
924924 0 0
925925 0 0
926926 0 0
927927 − 128180.i − 0.149163i
928928 0 0
929929 −1.27994e6 −1.48306 −0.741528 0.670922i 0.765898π-0.765898\pi
−0.741528 + 0.670922i 0.765898π0.765898\pi
930930 0 0
931931 336964. 0.388762
932932 0 0
933933 − 1.30118e6i − 1.49476i
934934 0 0
935935 0 0
936936 0 0
937937 −225182. −0.256480 −0.128240 0.991743i 0.540933π-0.540933\pi
−0.128240 + 0.991743i 0.540933π0.540933\pi
938938 0 0
939939 950551. 1.07806
940940 0 0
941941 1.51647e6i 1.71260i 0.516482 + 0.856298i 0.327241π0.327241\pi
−0.516482 + 0.856298i 0.672759π0.672759\pi
942942 0 0
943943 − 305467.i − 0.343511i
944944 0 0
945945 0 0
946946 0 0
947947 −475706. −0.530443 −0.265222 0.964187i 0.585445π-0.585445\pi
−0.265222 + 0.964187i 0.585445π0.585445\pi
948948 0 0
949949 − 1.71547e6i − 1.90481i
950950 0 0
951951 707021.i 0.781756i
952952 0 0
953953 −644868. −0.710044 −0.355022 0.934858i 0.615527π-0.615527\pi
−0.355022 + 0.934858i 0.615527π0.615527\pi
954954 0 0
955955 0 0
956956 0 0
957957 858796.i 0.937705i
958958 0 0
959959 651082.i 0.707943i
960960 0 0
961961 681323. 0.737745
962962 0 0
963963 172981. 0.186529
964964 0 0
965965 0 0
966966 0 0
967967 − 250168.i − 0.267533i −0.991013 0.133767i 0.957293π-0.957293\pi
0.991013 0.133767i 0.0427073π-0.0427073\pi
968968 0 0
969969 1.12959e6 1.20302
970970 0 0
971971 373022. 0.395636 0.197818 0.980239i 0.436614π-0.436614\pi
0.197818 + 0.980239i 0.436614π0.436614\pi
972972 0 0
973973 − 1.37006e6i − 1.44715i
974974 0 0
975975 0 0
976976 0 0
977977 −57277.7 −0.0600063 −0.0300031 0.999550i 0.509552π-0.509552\pi
−0.0300031 + 0.999550i 0.509552π0.509552\pi
978978 0 0
979979 −1.72493e6 −1.79973
980980 0 0
981981 − 309460.i − 0.321563i
982982 0 0
983983 351082.i 0.363330i 0.983360 + 0.181665i 0.0581487π0.0581487\pi
−0.983360 + 0.181665i 0.941851π0.941851\pi
984984 0 0
985985 0 0
986986 0 0
987987 426659. 0.437973
988988 0 0
989989 − 692883.i − 0.708381i
990990 0 0
991991 196492.i 0.200077i 0.994984 + 0.100038i 0.0318965π0.0318965\pi
−0.994984 + 0.100038i 0.968103π0.968103\pi
992992 0 0
993993 1.08857e6 1.10397
994994 0 0
995995 0 0
996996 0 0
997997 − 736136.i − 0.740572i −0.928918 0.370286i 0.879260π-0.879260\pi
0.928918 0.370286i 0.120740π-0.120740\pi
998998 0 0
999999 − 400788.i − 0.401591i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.g.h.751.3 16
4.3 odd 2 200.5.g.h.51.7 16
5.2 odd 4 800.5.e.e.399.10 32
5.3 odd 4 800.5.e.e.399.23 32
5.4 even 2 160.5.g.a.111.13 16
8.3 odd 2 inner 800.5.g.h.751.4 16
8.5 even 2 200.5.g.h.51.8 16
15.14 odd 2 1440.5.g.a.271.14 16
20.3 even 4 200.5.e.e.99.2 32
20.7 even 4 200.5.e.e.99.31 32
20.19 odd 2 40.5.g.a.11.10 yes 16
40.3 even 4 800.5.e.e.399.9 32
40.13 odd 4 200.5.e.e.99.32 32
40.19 odd 2 160.5.g.a.111.14 16
40.27 even 4 800.5.e.e.399.24 32
40.29 even 2 40.5.g.a.11.9 16
40.37 odd 4 200.5.e.e.99.1 32
60.59 even 2 360.5.g.a.91.7 16
120.29 odd 2 360.5.g.a.91.8 16
120.59 even 2 1440.5.g.a.271.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.9 16 40.29 even 2
40.5.g.a.11.10 yes 16 20.19 odd 2
160.5.g.a.111.13 16 5.4 even 2
160.5.g.a.111.14 16 40.19 odd 2
200.5.e.e.99.1 32 40.37 odd 4
200.5.e.e.99.2 32 20.3 even 4
200.5.e.e.99.31 32 20.7 even 4
200.5.e.e.99.32 32 40.13 odd 4
200.5.g.h.51.7 16 4.3 odd 2
200.5.g.h.51.8 16 8.5 even 2
360.5.g.a.91.7 16 60.59 even 2
360.5.g.a.91.8 16 120.29 odd 2
800.5.e.e.399.9 32 40.3 even 4
800.5.e.e.399.10 32 5.2 odd 4
800.5.e.e.399.23 32 5.3 odd 4
800.5.e.e.399.24 32 40.27 even 4
800.5.g.h.751.3 16 1.1 even 1 trivial
800.5.g.h.751.4 16 8.3 odd 2 inner
1440.5.g.a.271.3 16 120.59 even 2
1440.5.g.a.271.14 16 15.14 odd 2