Properties

Label 800.5.e.e.399.10
Level $800$
Weight $5$
Character 800.399
Analytic conductor $82.696$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(399,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.399");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.10
Character \(\chi\) \(=\) 800.399
Dual form 800.5.e.e.399.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.2034i q^{3} +43.3025 q^{7} -23.1094 q^{9} +165.050 q^{11} -201.647 q^{13} -172.778i q^{17} -640.745 q^{19} +441.833i q^{21} +497.626 q^{23} +590.681i q^{27} +509.953i q^{29} +492.136i q^{31} +1684.07i q^{33} +678.519 q^{37} -2057.49i q^{39} -613.848 q^{41} +1392.38i q^{43} +965.658 q^{47} -525.894 q^{49} +1762.92 q^{51} +4611.29 q^{53} -6537.78i q^{57} -822.630 q^{59} +6917.98i q^{61} -1000.70 q^{63} +4929.83i q^{67} +5077.48i q^{69} +4236.85i q^{71} -8507.29i q^{73} +7147.07 q^{77} +10205.9i q^{79} -7898.82 q^{81} +818.969i q^{83} -5203.25 q^{87} +10451.0 q^{89} -8731.82 q^{91} -5021.46 q^{93} +11691.7i q^{97} -3814.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 864 q^{9} - 384 q^{11} - 1408 q^{19} - 4416 q^{41} + 4960 q^{49} + 35584 q^{51} + 28032 q^{59} + 20768 q^{81} - 13632 q^{89} - 49152 q^{91} + 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.2034i 1.13371i 0.823817 + 0.566856i \(0.191840\pi\)
−0.823817 + 0.566856i \(0.808160\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 43.3025 0.883724 0.441862 0.897083i \(-0.354318\pi\)
0.441862 + 0.897083i \(0.354318\pi\)
\(8\) 0 0
\(9\) −23.1094 −0.285301
\(10\) 0 0
\(11\) 165.050 1.36405 0.682024 0.731329i \(-0.261100\pi\)
0.682024 + 0.731329i \(0.261100\pi\)
\(12\) 0 0
\(13\) −201.647 −1.19318 −0.596589 0.802547i \(-0.703478\pi\)
−0.596589 + 0.802547i \(0.703478\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 172.778i − 0.597848i −0.954277 0.298924i \(-0.903372\pi\)
0.954277 0.298924i \(-0.0966278\pi\)
\(18\) 0 0
\(19\) −640.745 −1.77492 −0.887458 0.460888i \(-0.847531\pi\)
−0.887458 + 0.460888i \(0.847531\pi\)
\(20\) 0 0
\(21\) 441.833i 1.00189i
\(22\) 0 0
\(23\) 497.626 0.940692 0.470346 0.882482i \(-0.344129\pi\)
0.470346 + 0.882482i \(0.344129\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 590.681i 0.810262i
\(28\) 0 0
\(29\) 509.953i 0.606365i 0.952933 + 0.303182i \(0.0980491\pi\)
−0.952933 + 0.303182i \(0.901951\pi\)
\(30\) 0 0
\(31\) 492.136i 0.512108i 0.966662 + 0.256054i \(0.0824225\pi\)
−0.966662 + 0.256054i \(0.917578\pi\)
\(32\) 0 0
\(33\) 1684.07i 1.54644i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 678.519 0.495631 0.247816 0.968807i \(-0.420287\pi\)
0.247816 + 0.968807i \(0.420287\pi\)
\(38\) 0 0
\(39\) − 2057.49i − 1.35272i
\(40\) 0 0
\(41\) −613.848 −0.365168 −0.182584 0.983190i \(-0.558446\pi\)
−0.182584 + 0.983190i \(0.558446\pi\)
\(42\) 0 0
\(43\) 1392.38i 0.753043i 0.926408 + 0.376522i \(0.122880\pi\)
−0.926408 + 0.376522i \(0.877120\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 965.658 0.437147 0.218574 0.975820i \(-0.429860\pi\)
0.218574 + 0.975820i \(0.429860\pi\)
\(48\) 0 0
\(49\) −525.894 −0.219031
\(50\) 0 0
\(51\) 1762.92 0.677787
\(52\) 0 0
\(53\) 4611.29 1.64161 0.820807 0.571206i \(-0.193524\pi\)
0.820807 + 0.571206i \(0.193524\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 6537.78i − 2.01224i
\(58\) 0 0
\(59\) −822.630 −0.236320 −0.118160 0.992995i \(-0.537700\pi\)
−0.118160 + 0.992995i \(0.537700\pi\)
\(60\) 0 0
\(61\) 6917.98i 1.85917i 0.368606 + 0.929586i \(0.379835\pi\)
−0.368606 + 0.929586i \(0.620165\pi\)
\(62\) 0 0
\(63\) −1000.70 −0.252128
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4929.83i 1.09820i 0.835756 + 0.549101i \(0.185030\pi\)
−0.835756 + 0.549101i \(0.814970\pi\)
\(68\) 0 0
\(69\) 5077.48i 1.06647i
\(70\) 0 0
\(71\) 4236.85i 0.840479i 0.907413 + 0.420239i \(0.138054\pi\)
−0.907413 + 0.420239i \(0.861946\pi\)
\(72\) 0 0
\(73\) − 8507.29i − 1.59641i −0.602384 0.798207i \(-0.705782\pi\)
0.602384 0.798207i \(-0.294218\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7147.07 1.20544
\(78\) 0 0
\(79\) 10205.9i 1.63530i 0.575716 + 0.817650i \(0.304724\pi\)
−0.575716 + 0.817650i \(0.695276\pi\)
\(80\) 0 0
\(81\) −7898.82 −1.20390
\(82\) 0 0
\(83\) 818.969i 0.118881i 0.998232 + 0.0594403i \(0.0189316\pi\)
−0.998232 + 0.0594403i \(0.981068\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −5203.25 −0.687443
\(88\) 0 0
\(89\) 10451.0 1.31940 0.659700 0.751529i \(-0.270683\pi\)
0.659700 + 0.751529i \(0.270683\pi\)
\(90\) 0 0
\(91\) −8731.82 −1.05444
\(92\) 0 0
\(93\) −5021.46 −0.580583
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11691.7i 1.24261i 0.783568 + 0.621306i \(0.213397\pi\)
−0.783568 + 0.621306i \(0.786603\pi\)
\(98\) 0 0
\(99\) −3814.21 −0.389165
\(100\) 0 0
\(101\) − 13430.4i − 1.31657i −0.752767 0.658287i \(-0.771281\pi\)
0.752767 0.658287i \(-0.228719\pi\)
\(102\) 0 0
\(103\) −5546.66 −0.522826 −0.261413 0.965227i \(-0.584188\pi\)
−0.261413 + 0.965227i \(0.584188\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7485.33i 0.653797i 0.945059 + 0.326899i \(0.106004\pi\)
−0.945059 + 0.326899i \(0.893996\pi\)
\(108\) 0 0
\(109\) 13391.1i 1.12710i 0.826082 + 0.563549i \(0.190565\pi\)
−0.826082 + 0.563549i \(0.809435\pi\)
\(110\) 0 0
\(111\) 6923.20i 0.561903i
\(112\) 0 0
\(113\) − 2822.55i − 0.221047i −0.993874 0.110523i \(-0.964747\pi\)
0.993874 0.110523i \(-0.0352527\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4659.95 0.340415
\(118\) 0 0
\(119\) − 7481.73i − 0.528333i
\(120\) 0 0
\(121\) 12600.5 0.860629
\(122\) 0 0
\(123\) − 6263.34i − 0.413995i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −15755.3 −0.976831 −0.488416 0.872611i \(-0.662425\pi\)
−0.488416 + 0.872611i \(0.662425\pi\)
\(128\) 0 0
\(129\) −14207.0 −0.853733
\(130\) 0 0
\(131\) −4033.25 −0.235024 −0.117512 0.993071i \(-0.537492\pi\)
−0.117512 + 0.993071i \(0.537492\pi\)
\(132\) 0 0
\(133\) −27745.9 −1.56854
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 15035.7i − 0.801090i −0.916277 0.400545i \(-0.868821\pi\)
0.916277 0.400545i \(-0.131179\pi\)
\(138\) 0 0
\(139\) −31639.4 −1.63756 −0.818782 0.574105i \(-0.805350\pi\)
−0.818782 + 0.574105i \(0.805350\pi\)
\(140\) 0 0
\(141\) 9853.00i 0.495599i
\(142\) 0 0
\(143\) −33281.8 −1.62755
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 5365.90i − 0.248318i
\(148\) 0 0
\(149\) 34271.9i 1.54371i 0.635798 + 0.771856i \(0.280671\pi\)
−0.635798 + 0.771856i \(0.719329\pi\)
\(150\) 0 0
\(151\) 478.378i 0.0209806i 0.999945 + 0.0104903i \(0.00333922\pi\)
−0.999945 + 0.0104903i \(0.996661\pi\)
\(152\) 0 0
\(153\) 3992.80i 0.170567i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13731.7 −0.557088 −0.278544 0.960423i \(-0.589852\pi\)
−0.278544 + 0.960423i \(0.589852\pi\)
\(158\) 0 0
\(159\) 47050.9i 1.86112i
\(160\) 0 0
\(161\) 21548.4 0.831312
\(162\) 0 0
\(163\) − 23891.6i − 0.899228i −0.893223 0.449614i \(-0.851561\pi\)
0.893223 0.449614i \(-0.148439\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 27650.3 0.991442 0.495721 0.868482i \(-0.334904\pi\)
0.495721 + 0.868482i \(0.334904\pi\)
\(168\) 0 0
\(169\) 12100.5 0.423673
\(170\) 0 0
\(171\) 14807.2 0.506386
\(172\) 0 0
\(173\) −49203.7 −1.64401 −0.822007 0.569477i \(-0.807146\pi\)
−0.822007 + 0.569477i \(0.807146\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 8393.62i − 0.267919i
\(178\) 0 0
\(179\) −11247.1 −0.351022 −0.175511 0.984477i \(-0.556158\pi\)
−0.175511 + 0.984477i \(0.556158\pi\)
\(180\) 0 0
\(181\) 9919.57i 0.302786i 0.988474 + 0.151393i \(0.0483759\pi\)
−0.988474 + 0.151393i \(0.951624\pi\)
\(182\) 0 0
\(183\) −70586.9 −2.10776
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 28517.0i − 0.815494i
\(188\) 0 0
\(189\) 25578.0i 0.716048i
\(190\) 0 0
\(191\) − 36233.6i − 0.993219i −0.867974 0.496609i \(-0.834578\pi\)
0.867974 0.496609i \(-0.165422\pi\)
\(192\) 0 0
\(193\) − 37612.9i − 1.00977i −0.863187 0.504885i \(-0.831535\pi\)
0.863187 0.504885i \(-0.168465\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27374.4 0.705361 0.352681 0.935744i \(-0.385270\pi\)
0.352681 + 0.935744i \(0.385270\pi\)
\(198\) 0 0
\(199\) 53766.9i 1.35772i 0.734270 + 0.678858i \(0.237525\pi\)
−0.734270 + 0.678858i \(0.762475\pi\)
\(200\) 0 0
\(201\) −50301.0 −1.24504
\(202\) 0 0
\(203\) 22082.2i 0.535859i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −11499.8 −0.268381
\(208\) 0 0
\(209\) −105755. −2.42107
\(210\) 0 0
\(211\) 19829.6 0.445399 0.222700 0.974887i \(-0.428513\pi\)
0.222700 + 0.974887i \(0.428513\pi\)
\(212\) 0 0
\(213\) −43230.3 −0.952860
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 21310.7i 0.452562i
\(218\) 0 0
\(219\) 86803.3 1.80987
\(220\) 0 0
\(221\) 34840.2i 0.713339i
\(222\) 0 0
\(223\) 44470.0 0.894247 0.447123 0.894472i \(-0.352448\pi\)
0.447123 + 0.894472i \(0.352448\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 41012.9i − 0.795919i −0.917403 0.397959i \(-0.869719\pi\)
0.917403 0.397959i \(-0.130281\pi\)
\(228\) 0 0
\(229\) − 39184.8i − 0.747217i −0.927587 0.373608i \(-0.878120\pi\)
0.927587 0.373608i \(-0.121880\pi\)
\(230\) 0 0
\(231\) 72924.5i 1.36662i
\(232\) 0 0
\(233\) 64283.0i 1.18409i 0.805905 + 0.592045i \(0.201679\pi\)
−0.805905 + 0.592045i \(0.798321\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −104135. −1.85396
\(238\) 0 0
\(239\) 33481.2i 0.586145i 0.956090 + 0.293073i \(0.0946778\pi\)
−0.956090 + 0.293073i \(0.905322\pi\)
\(240\) 0 0
\(241\) −28929.0 −0.498080 −0.249040 0.968493i \(-0.580115\pi\)
−0.249040 + 0.968493i \(0.580115\pi\)
\(242\) 0 0
\(243\) − 32749.7i − 0.554618i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 129204. 2.11779
\(248\) 0 0
\(249\) −8356.27 −0.134776
\(250\) 0 0
\(251\) 3632.83 0.0576630 0.0288315 0.999584i \(-0.490821\pi\)
0.0288315 + 0.999584i \(0.490821\pi\)
\(252\) 0 0
\(253\) 82133.1 1.28315
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 55530.5i 0.840747i 0.907351 + 0.420373i \(0.138101\pi\)
−0.907351 + 0.420373i \(0.861899\pi\)
\(258\) 0 0
\(259\) 29381.6 0.438001
\(260\) 0 0
\(261\) − 11784.7i − 0.172997i
\(262\) 0 0
\(263\) 4573.35 0.0661185 0.0330593 0.999453i \(-0.489475\pi\)
0.0330593 + 0.999453i \(0.489475\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 106635.i 1.49582i
\(268\) 0 0
\(269\) 74452.8i 1.02891i 0.857518 + 0.514454i \(0.172005\pi\)
−0.857518 + 0.514454i \(0.827995\pi\)
\(270\) 0 0
\(271\) − 13623.9i − 0.185508i −0.995689 0.0927541i \(-0.970433\pi\)
0.995689 0.0927541i \(-0.0295670\pi\)
\(272\) 0 0
\(273\) − 89094.3i − 1.19543i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 18506.7 0.241195 0.120598 0.992701i \(-0.461519\pi\)
0.120598 + 0.992701i \(0.461519\pi\)
\(278\) 0 0
\(279\) − 11373.0i − 0.146105i
\(280\) 0 0
\(281\) 26912.2 0.340830 0.170415 0.985372i \(-0.445489\pi\)
0.170415 + 0.985372i \(0.445489\pi\)
\(282\) 0 0
\(283\) − 91580.2i − 1.14348i −0.820435 0.571740i \(-0.806269\pi\)
0.820435 0.571740i \(-0.193731\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26581.2 −0.322708
\(288\) 0 0
\(289\) 53668.7 0.642577
\(290\) 0 0
\(291\) −119295. −1.40876
\(292\) 0 0
\(293\) −11242.9 −0.130961 −0.0654805 0.997854i \(-0.520858\pi\)
−0.0654805 + 0.997854i \(0.520858\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 97491.8i 1.10524i
\(298\) 0 0
\(299\) −100345. −1.12241
\(300\) 0 0
\(301\) 60293.4i 0.665483i
\(302\) 0 0
\(303\) 137035. 1.49261
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 6583.47i − 0.0698519i −0.999390 0.0349260i \(-0.988880\pi\)
0.999390 0.0349260i \(-0.0111195\pi\)
\(308\) 0 0
\(309\) − 56594.8i − 0.592734i
\(310\) 0 0
\(311\) 127524.i 1.31847i 0.751937 + 0.659235i \(0.229120\pi\)
−0.751937 + 0.659235i \(0.770880\pi\)
\(312\) 0 0
\(313\) 93160.2i 0.950915i 0.879739 + 0.475457i \(0.157717\pi\)
−0.879739 + 0.475457i \(0.842283\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 69292.6 0.689554 0.344777 0.938685i \(-0.387954\pi\)
0.344777 + 0.938685i \(0.387954\pi\)
\(318\) 0 0
\(319\) 84167.6i 0.827111i
\(320\) 0 0
\(321\) −76375.8 −0.741217
\(322\) 0 0
\(323\) 110707.i 1.06113i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −136634. −1.27780
\(328\) 0 0
\(329\) 41815.4 0.386318
\(330\) 0 0
\(331\) −106686. −0.973763 −0.486882 0.873468i \(-0.661866\pi\)
−0.486882 + 0.873468i \(0.661866\pi\)
\(332\) 0 0
\(333\) −15680.2 −0.141404
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 34707.0i − 0.305603i −0.988257 0.152801i \(-0.951171\pi\)
0.988257 0.152801i \(-0.0488294\pi\)
\(338\) 0 0
\(339\) 28799.6 0.250603
\(340\) 0 0
\(341\) 81226.9i 0.698540i
\(342\) 0 0
\(343\) −126742. −1.07729
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 191096.i − 1.58706i −0.608532 0.793529i \(-0.708241\pi\)
0.608532 0.793529i \(-0.291759\pi\)
\(348\) 0 0
\(349\) − 19760.1i − 0.162233i −0.996705 0.0811165i \(-0.974151\pi\)
0.996705 0.0811165i \(-0.0258486\pi\)
\(350\) 0 0
\(351\) − 119109.i − 0.966787i
\(352\) 0 0
\(353\) 65214.7i 0.523355i 0.965155 + 0.261677i \(0.0842757\pi\)
−0.965155 + 0.261677i \(0.915724\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 76339.1 0.598977
\(358\) 0 0
\(359\) − 183096.i − 1.42066i −0.703871 0.710328i \(-0.748547\pi\)
0.703871 0.710328i \(-0.251453\pi\)
\(360\) 0 0
\(361\) 280233. 2.15033
\(362\) 0 0
\(363\) 128568.i 0.975705i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11615.6 0.0862401 0.0431200 0.999070i \(-0.486270\pi\)
0.0431200 + 0.999070i \(0.486270\pi\)
\(368\) 0 0
\(369\) 14185.7 0.104183
\(370\) 0 0
\(371\) 199680. 1.45073
\(372\) 0 0
\(373\) 192501. 1.38361 0.691806 0.722083i \(-0.256815\pi\)
0.691806 + 0.722083i \(0.256815\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 102830.i − 0.723501i
\(378\) 0 0
\(379\) −108067. −0.752342 −0.376171 0.926550i \(-0.622760\pi\)
−0.376171 + 0.926550i \(0.622760\pi\)
\(380\) 0 0
\(381\) − 160758.i − 1.10744i
\(382\) 0 0
\(383\) 188520. 1.28517 0.642585 0.766215i \(-0.277862\pi\)
0.642585 + 0.766215i \(0.277862\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 32177.0i − 0.214844i
\(388\) 0 0
\(389\) − 27057.1i − 0.178806i −0.995996 0.0894030i \(-0.971504\pi\)
0.995996 0.0894030i \(-0.0284959\pi\)
\(390\) 0 0
\(391\) − 85978.9i − 0.562391i
\(392\) 0 0
\(393\) − 41152.8i − 0.266449i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 156094. 0.990388 0.495194 0.868782i \(-0.335097\pi\)
0.495194 + 0.868782i \(0.335097\pi\)
\(398\) 0 0
\(399\) − 283102.i − 1.77827i
\(400\) 0 0
\(401\) −77777.2 −0.483686 −0.241843 0.970315i \(-0.577752\pi\)
−0.241843 + 0.970315i \(0.577752\pi\)
\(402\) 0 0
\(403\) − 99237.7i − 0.611036i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 111989. 0.676065
\(408\) 0 0
\(409\) 247426. 1.47911 0.739553 0.673098i \(-0.235037\pi\)
0.739553 + 0.673098i \(0.235037\pi\)
\(410\) 0 0
\(411\) 153415. 0.908205
\(412\) 0 0
\(413\) −35621.9 −0.208842
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 322829.i − 1.85652i
\(418\) 0 0
\(419\) 62888.2 0.358213 0.179107 0.983830i \(-0.442679\pi\)
0.179107 + 0.983830i \(0.442679\pi\)
\(420\) 0 0
\(421\) − 321321.i − 1.81290i −0.422311 0.906451i \(-0.638781\pi\)
0.422311 0.906451i \(-0.361219\pi\)
\(422\) 0 0
\(423\) −22315.8 −0.124719
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 299566.i 1.64300i
\(428\) 0 0
\(429\) − 339588.i − 1.84518i
\(430\) 0 0
\(431\) 66812.9i 0.359672i 0.983697 + 0.179836i \(0.0575566\pi\)
−0.983697 + 0.179836i \(0.942443\pi\)
\(432\) 0 0
\(433\) − 171149.i − 0.912846i −0.889763 0.456423i \(-0.849130\pi\)
0.889763 0.456423i \(-0.150870\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −318851. −1.66965
\(438\) 0 0
\(439\) − 82871.1i − 0.430005i −0.976613 0.215003i \(-0.931024\pi\)
0.976613 0.215003i \(-0.0689760\pi\)
\(440\) 0 0
\(441\) 12153.1 0.0624899
\(442\) 0 0
\(443\) 71237.1i 0.362994i 0.983392 + 0.181497i \(0.0580942\pi\)
−0.983392 + 0.181497i \(0.941906\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −349690. −1.75012
\(448\) 0 0
\(449\) −306433. −1.52000 −0.759999 0.649925i \(-0.774800\pi\)
−0.759999 + 0.649925i \(0.774800\pi\)
\(450\) 0 0
\(451\) −101316. −0.498107
\(452\) 0 0
\(453\) −4881.08 −0.0237859
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 31625.5i − 0.151428i −0.997130 0.0757138i \(-0.975876\pi\)
0.997130 0.0757138i \(-0.0241235\pi\)
\(458\) 0 0
\(459\) 102057. 0.484414
\(460\) 0 0
\(461\) − 66080.1i − 0.310934i −0.987841 0.155467i \(-0.950312\pi\)
0.987841 0.155467i \(-0.0496883\pi\)
\(462\) 0 0
\(463\) −303583. −1.41617 −0.708086 0.706126i \(-0.750441\pi\)
−0.708086 + 0.706126i \(0.750441\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 121986.i 0.559341i 0.960096 + 0.279670i \(0.0902252\pi\)
−0.960096 + 0.279670i \(0.909775\pi\)
\(468\) 0 0
\(469\) 213474.i 0.970508i
\(470\) 0 0
\(471\) − 140110.i − 0.631577i
\(472\) 0 0
\(473\) 229812.i 1.02719i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −106564. −0.468355
\(478\) 0 0
\(479\) 144501.i 0.629794i 0.949126 + 0.314897i \(0.101970\pi\)
−0.949126 + 0.314897i \(0.898030\pi\)
\(480\) 0 0
\(481\) −136821. −0.591376
\(482\) 0 0
\(483\) 219867.i 0.942468i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7828.30 −0.0330073 −0.0165036 0.999864i \(-0.505254\pi\)
−0.0165036 + 0.999864i \(0.505254\pi\)
\(488\) 0 0
\(489\) 243776. 1.01947
\(490\) 0 0
\(491\) 254423. 1.05534 0.527671 0.849449i \(-0.323066\pi\)
0.527671 + 0.849449i \(0.323066\pi\)
\(492\) 0 0
\(493\) 88108.7 0.362514
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 183466.i 0.742752i
\(498\) 0 0
\(499\) −19859.3 −0.0797560 −0.0398780 0.999205i \(-0.512697\pi\)
−0.0398780 + 0.999205i \(0.512697\pi\)
\(500\) 0 0
\(501\) 282127.i 1.12401i
\(502\) 0 0
\(503\) 289925. 1.14591 0.572954 0.819587i \(-0.305797\pi\)
0.572954 + 0.819587i \(0.305797\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 123467.i 0.480323i
\(508\) 0 0
\(509\) − 101676.i − 0.392447i −0.980559 0.196224i \(-0.937132\pi\)
0.980559 0.196224i \(-0.0628679\pi\)
\(510\) 0 0
\(511\) − 368387.i − 1.41079i
\(512\) 0 0
\(513\) − 378476.i − 1.43815i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 159382. 0.596290
\(518\) 0 0
\(519\) − 502045.i − 1.86384i
\(520\) 0 0
\(521\) −302599. −1.11479 −0.557393 0.830248i \(-0.688198\pi\)
−0.557393 + 0.830248i \(0.688198\pi\)
\(522\) 0 0
\(523\) 61255.9i 0.223947i 0.993711 + 0.111973i \(0.0357171\pi\)
−0.993711 + 0.111973i \(0.964283\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 85030.3 0.306163
\(528\) 0 0
\(529\) −32209.5 −0.115099
\(530\) 0 0
\(531\) 19010.5 0.0674224
\(532\) 0 0
\(533\) 123781. 0.435711
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 114759.i − 0.397958i
\(538\) 0 0
\(539\) −86798.7 −0.298769
\(540\) 0 0
\(541\) − 223113.i − 0.762307i −0.924512 0.381154i \(-0.875527\pi\)
0.924512 0.381154i \(-0.124473\pi\)
\(542\) 0 0
\(543\) −101213. −0.343272
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 56408.6i 0.188526i 0.995547 + 0.0942629i \(0.0300494\pi\)
−0.995547 + 0.0942629i \(0.969951\pi\)
\(548\) 0 0
\(549\) − 159870.i − 0.530424i
\(550\) 0 0
\(551\) − 326750.i − 1.07625i
\(552\) 0 0
\(553\) 441941.i 1.44515i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 288826. 0.930950 0.465475 0.885061i \(-0.345883\pi\)
0.465475 + 0.885061i \(0.345883\pi\)
\(558\) 0 0
\(559\) − 280769.i − 0.898514i
\(560\) 0 0
\(561\) 290971. 0.924535
\(562\) 0 0
\(563\) − 611795.i − 1.93014i −0.261988 0.965071i \(-0.584378\pi\)
0.261988 0.965071i \(-0.415622\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −342039. −1.06392
\(568\) 0 0
\(569\) 633137. 1.95557 0.977784 0.209613i \(-0.0672204\pi\)
0.977784 + 0.209613i \(0.0672204\pi\)
\(570\) 0 0
\(571\) −279945. −0.858618 −0.429309 0.903158i \(-0.641243\pi\)
−0.429309 + 0.903158i \(0.641243\pi\)
\(572\) 0 0
\(573\) 369706. 1.12602
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 371982.i 1.11730i 0.829403 + 0.558651i \(0.188681\pi\)
−0.829403 + 0.558651i \(0.811319\pi\)
\(578\) 0 0
\(579\) 383780. 1.14479
\(580\) 0 0
\(581\) 35463.4i 0.105058i
\(582\) 0 0
\(583\) 761093. 2.23924
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 44751.2i 0.129876i 0.997889 + 0.0649380i \(0.0206850\pi\)
−0.997889 + 0.0649380i \(0.979315\pi\)
\(588\) 0 0
\(589\) − 315333.i − 0.908949i
\(590\) 0 0
\(591\) 279312.i 0.799676i
\(592\) 0 0
\(593\) − 140260.i − 0.398863i −0.979912 0.199431i \(-0.936090\pi\)
0.979912 0.199431i \(-0.0639095\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −548605. −1.53926
\(598\) 0 0
\(599\) 326102.i 0.908866i 0.890781 + 0.454433i \(0.150158\pi\)
−0.890781 + 0.454433i \(0.849842\pi\)
\(600\) 0 0
\(601\) 111831. 0.309608 0.154804 0.987945i \(-0.450525\pi\)
0.154804 + 0.987945i \(0.450525\pi\)
\(602\) 0 0
\(603\) − 113925.i − 0.313319i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 442565. 1.20116 0.600579 0.799566i \(-0.294937\pi\)
0.600579 + 0.799566i \(0.294937\pi\)
\(608\) 0 0
\(609\) −225314. −0.607510
\(610\) 0 0
\(611\) −194722. −0.521594
\(612\) 0 0
\(613\) 235020. 0.625436 0.312718 0.949846i \(-0.398760\pi\)
0.312718 + 0.949846i \(0.398760\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 212842.i − 0.559098i −0.960131 0.279549i \(-0.909815\pi\)
0.960131 0.279549i \(-0.0901850\pi\)
\(618\) 0 0
\(619\) −30660.8 −0.0800207 −0.0400103 0.999199i \(-0.512739\pi\)
−0.0400103 + 0.999199i \(0.512739\pi\)
\(620\) 0 0
\(621\) 293938.i 0.762207i
\(622\) 0 0
\(623\) 452553. 1.16599
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1.07906e6i − 2.74480i
\(628\) 0 0
\(629\) − 117233.i − 0.296312i
\(630\) 0 0
\(631\) 398063.i 0.999755i 0.866096 + 0.499877i \(0.166622\pi\)
−0.866096 + 0.499877i \(0.833378\pi\)
\(632\) 0 0
\(633\) 202330.i 0.504954i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 106045. 0.261343
\(638\) 0 0
\(639\) − 97911.2i − 0.239790i
\(640\) 0 0
\(641\) 75692.2 0.184219 0.0921096 0.995749i \(-0.470639\pi\)
0.0921096 + 0.995749i \(0.470639\pi\)
\(642\) 0 0
\(643\) 786008.i 1.90110i 0.310570 + 0.950551i \(0.399480\pi\)
−0.310570 + 0.950551i \(0.600520\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 448043. 1.07031 0.535157 0.844752i \(-0.320252\pi\)
0.535157 + 0.844752i \(0.320252\pi\)
\(648\) 0 0
\(649\) −135775. −0.322352
\(650\) 0 0
\(651\) −217442. −0.513075
\(652\) 0 0
\(653\) −396846. −0.930671 −0.465335 0.885134i \(-0.654066\pi\)
−0.465335 + 0.885134i \(0.654066\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 196598.i 0.455459i
\(658\) 0 0
\(659\) 290177. 0.668177 0.334089 0.942542i \(-0.391572\pi\)
0.334089 + 0.942542i \(0.391572\pi\)
\(660\) 0 0
\(661\) − 43962.0i − 0.100618i −0.998734 0.0503088i \(-0.983979\pi\)
0.998734 0.0503088i \(-0.0160206\pi\)
\(662\) 0 0
\(663\) −355489. −0.808721
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 253766.i 0.570402i
\(668\) 0 0
\(669\) 453745.i 1.01382i
\(670\) 0 0
\(671\) 1.14181e6i 2.53600i
\(672\) 0 0
\(673\) 314835.i 0.695110i 0.937660 + 0.347555i \(0.112988\pi\)
−0.937660 + 0.347555i \(0.887012\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 317143. 0.691954 0.345977 0.938243i \(-0.387548\pi\)
0.345977 + 0.938243i \(0.387548\pi\)
\(678\) 0 0
\(679\) 506281.i 1.09813i
\(680\) 0 0
\(681\) 418471. 0.902342
\(682\) 0 0
\(683\) 64946.3i 0.139224i 0.997574 + 0.0696118i \(0.0221761\pi\)
−0.997574 + 0.0696118i \(0.977824\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 399818. 0.847128
\(688\) 0 0
\(689\) −929854. −1.95874
\(690\) 0 0
\(691\) 225176. 0.471591 0.235796 0.971803i \(-0.424230\pi\)
0.235796 + 0.971803i \(0.424230\pi\)
\(692\) 0 0
\(693\) −165165. −0.343915
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 106060.i 0.218315i
\(698\) 0 0
\(699\) −655906. −1.34242
\(700\) 0 0
\(701\) − 720970.i − 1.46717i −0.679597 0.733586i \(-0.737845\pi\)
0.679597 0.733586i \(-0.262155\pi\)
\(702\) 0 0
\(703\) −434758. −0.879704
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 581568.i − 1.16349i
\(708\) 0 0
\(709\) − 616674.i − 1.22677i −0.789784 0.613385i \(-0.789808\pi\)
0.789784 0.613385i \(-0.210192\pi\)
\(710\) 0 0
\(711\) − 235853.i − 0.466553i
\(712\) 0 0
\(713\) 244899.i 0.481736i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −341622. −0.664520
\(718\) 0 0
\(719\) 369408.i 0.714577i 0.933994 + 0.357288i \(0.116299\pi\)
−0.933994 + 0.357288i \(0.883701\pi\)
\(720\) 0 0
\(721\) −240184. −0.462034
\(722\) 0 0
\(723\) − 295174.i − 0.564679i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −402715. −0.761954 −0.380977 0.924585i \(-0.624412\pi\)
−0.380977 + 0.924585i \(0.624412\pi\)
\(728\) 0 0
\(729\) −305646. −0.575127
\(730\) 0 0
\(731\) 240572. 0.450206
\(732\) 0 0
\(733\) −22951.5 −0.0427172 −0.0213586 0.999772i \(-0.506799\pi\)
−0.0213586 + 0.999772i \(0.506799\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 813668.i 1.49800i
\(738\) 0 0
\(739\) 161609. 0.295922 0.147961 0.988993i \(-0.452729\pi\)
0.147961 + 0.988993i \(0.452729\pi\)
\(740\) 0 0
\(741\) 1.31832e6i 2.40096i
\(742\) 0 0
\(743\) 194165. 0.351718 0.175859 0.984415i \(-0.443730\pi\)
0.175859 + 0.984415i \(0.443730\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 18925.9i − 0.0339168i
\(748\) 0 0
\(749\) 324133.i 0.577777i
\(750\) 0 0
\(751\) − 595741.i − 1.05628i −0.849158 0.528138i \(-0.822890\pi\)
0.849158 0.528138i \(-0.177110\pi\)
\(752\) 0 0
\(753\) 37067.2i 0.0653732i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 566219. 0.988081 0.494040 0.869439i \(-0.335519\pi\)
0.494040 + 0.869439i \(0.335519\pi\)
\(758\) 0 0
\(759\) 838037.i 1.45472i
\(760\) 0 0
\(761\) −268262. −0.463223 −0.231612 0.972808i \(-0.574400\pi\)
−0.231612 + 0.972808i \(0.574400\pi\)
\(762\) 0 0
\(763\) 579866.i 0.996045i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 165881. 0.281972
\(768\) 0 0
\(769\) −495755. −0.838329 −0.419165 0.907910i \(-0.637677\pi\)
−0.419165 + 0.907910i \(0.637677\pi\)
\(770\) 0 0
\(771\) −566600. −0.953164
\(772\) 0 0
\(773\) −437740. −0.732584 −0.366292 0.930500i \(-0.619373\pi\)
−0.366292 + 0.930500i \(0.619373\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 299792.i 0.496567i
\(778\) 0 0
\(779\) 393320. 0.648143
\(780\) 0 0
\(781\) 699292.i 1.14645i
\(782\) 0 0
\(783\) −301219. −0.491314
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 16629.0i − 0.0268484i −0.999910 0.0134242i \(-0.995727\pi\)
0.999910 0.0134242i \(-0.00427318\pi\)
\(788\) 0 0
\(789\) 46663.8i 0.0749593i
\(790\) 0 0
\(791\) − 122223.i − 0.195345i
\(792\) 0 0
\(793\) − 1.39499e6i − 2.21832i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −998541. −1.57199 −0.785994 0.618234i \(-0.787848\pi\)
−0.785994 + 0.618234i \(0.787848\pi\)
\(798\) 0 0
\(799\) − 166845.i − 0.261348i
\(800\) 0 0
\(801\) −241516. −0.376427
\(802\) 0 0
\(803\) − 1.40413e6i − 2.17759i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −759672. −1.16648
\(808\) 0 0
\(809\) 523592. 0.800011 0.400006 0.916513i \(-0.369008\pi\)
0.400006 + 0.916513i \(0.369008\pi\)
\(810\) 0 0
\(811\) 741785. 1.12781 0.563905 0.825839i \(-0.309298\pi\)
0.563905 + 0.825839i \(0.309298\pi\)
\(812\) 0 0
\(813\) 139010. 0.210313
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 892158.i − 1.33659i
\(818\) 0 0
\(819\) 201787. 0.300833
\(820\) 0 0
\(821\) − 971065.i − 1.44066i −0.693630 0.720331i \(-0.743990\pi\)
0.693630 0.720331i \(-0.256010\pi\)
\(822\) 0 0
\(823\) −932619. −1.37691 −0.688454 0.725280i \(-0.741710\pi\)
−0.688454 + 0.725280i \(0.741710\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.11332e6i 1.62782i 0.580989 + 0.813911i \(0.302666\pi\)
−0.580989 + 0.813911i \(0.697334\pi\)
\(828\) 0 0
\(829\) 625811.i 0.910613i 0.890335 + 0.455307i \(0.150470\pi\)
−0.890335 + 0.455307i \(0.849530\pi\)
\(830\) 0 0
\(831\) 188831.i 0.273446i
\(832\) 0 0
\(833\) 90862.9i 0.130947i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −290695. −0.414942
\(838\) 0 0
\(839\) 3902.74i 0.00554428i 0.999996 + 0.00277214i \(0.000882401\pi\)
−0.999996 + 0.00277214i \(0.999118\pi\)
\(840\) 0 0
\(841\) 447229. 0.632322
\(842\) 0 0
\(843\) 274596.i 0.386402i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 545632. 0.760559
\(848\) 0 0
\(849\) 934429. 1.29638
\(850\) 0 0
\(851\) 337649. 0.466236
\(852\) 0 0
\(853\) −858678. −1.18014 −0.590068 0.807353i \(-0.700899\pi\)
−0.590068 + 0.807353i \(0.700899\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 143233.i − 0.195021i −0.995235 0.0975103i \(-0.968912\pi\)
0.995235 0.0975103i \(-0.0310879\pi\)
\(858\) 0 0
\(859\) −892238. −1.20919 −0.604595 0.796533i \(-0.706665\pi\)
−0.604595 + 0.796533i \(0.706665\pi\)
\(860\) 0 0
\(861\) − 271218.i − 0.365858i
\(862\) 0 0
\(863\) −838426. −1.12575 −0.562877 0.826541i \(-0.690305\pi\)
−0.562877 + 0.826541i \(0.690305\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 547603.i 0.728497i
\(868\) 0 0
\(869\) 1.68448e6i 2.23063i
\(870\) 0 0
\(871\) − 994085.i − 1.31035i
\(872\) 0 0
\(873\) − 270189.i − 0.354519i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.16386e6 1.51322 0.756609 0.653868i \(-0.226855\pi\)
0.756609 + 0.653868i \(0.226855\pi\)
\(878\) 0 0
\(879\) − 114715.i − 0.148472i
\(880\) 0 0
\(881\) −1.22677e6 −1.58056 −0.790282 0.612744i \(-0.790066\pi\)
−0.790282 + 0.612744i \(0.790066\pi\)
\(882\) 0 0
\(883\) − 443400.i − 0.568689i −0.958722 0.284344i \(-0.908224\pi\)
0.958722 0.284344i \(-0.0917759\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33686.5 0.0428162 0.0214081 0.999771i \(-0.493185\pi\)
0.0214081 + 0.999771i \(0.493185\pi\)
\(888\) 0 0
\(889\) −682244. −0.863249
\(890\) 0 0
\(891\) −1.30370e6 −1.64218
\(892\) 0 0
\(893\) −618740. −0.775900
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.02386e6i − 1.27249i
\(898\) 0 0
\(899\) −250966. −0.310524
\(900\) 0 0
\(901\) − 796731.i − 0.981436i
\(902\) 0 0
\(903\) −615198. −0.754465
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 593935.i 0.721979i 0.932570 + 0.360990i \(0.117561\pi\)
−0.932570 + 0.360990i \(0.882439\pi\)
\(908\) 0 0
\(909\) 310368.i 0.375620i
\(910\) 0 0
\(911\) − 105485.i − 0.127102i −0.997979 0.0635510i \(-0.979757\pi\)
0.997979 0.0635510i \(-0.0202426\pi\)
\(912\) 0 0
\(913\) 135171.i 0.162159i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −174650. −0.207696
\(918\) 0 0
\(919\) 1.49149e6i 1.76600i 0.469373 + 0.883000i \(0.344480\pi\)
−0.469373 + 0.883000i \(0.655520\pi\)
\(920\) 0 0
\(921\) 67173.8 0.0791919
\(922\) 0 0
\(923\) − 854349.i − 1.00284i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 128180. 0.149163
\(928\) 0 0
\(929\) 1.27994e6 1.48306 0.741528 0.670922i \(-0.234102\pi\)
0.741528 + 0.670922i \(0.234102\pi\)
\(930\) 0 0
\(931\) 336964. 0.388762
\(932\) 0 0
\(933\) −1.30118e6 −1.49476
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 225182.i − 0.256480i −0.991743 0.128240i \(-0.959067\pi\)
0.991743 0.128240i \(-0.0409328\pi\)
\(938\) 0 0
\(939\) −950551. −1.07806
\(940\) 0 0
\(941\) 1.51647e6i 1.71260i 0.516482 + 0.856298i \(0.327241\pi\)
−0.516482 + 0.856298i \(0.672759\pi\)
\(942\) 0 0
\(943\) −305467. −0.343511
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 475706.i − 0.530443i −0.964187 0.265222i \(-0.914555\pi\)
0.964187 0.265222i \(-0.0854451\pi\)
\(948\) 0 0
\(949\) 1.71547e6i 1.90481i
\(950\) 0 0
\(951\) 707021.i 0.781756i
\(952\) 0 0
\(953\) 644868.i 0.710044i 0.934858 + 0.355022i \(0.115527\pi\)
−0.934858 + 0.355022i \(0.884473\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −858796. −0.937705
\(958\) 0 0
\(959\) − 651082.i − 0.707943i
\(960\) 0 0
\(961\) 681323. 0.737745
\(962\) 0 0
\(963\) − 172981.i − 0.186529i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 250168. 0.267533 0.133767 0.991013i \(-0.457293\pi\)
0.133767 + 0.991013i \(0.457293\pi\)
\(968\) 0 0
\(969\) −1.12959e6 −1.20302
\(970\) 0 0
\(971\) 373022. 0.395636 0.197818 0.980239i \(-0.436614\pi\)
0.197818 + 0.980239i \(0.436614\pi\)
\(972\) 0 0
\(973\) −1.37006e6 −1.44715
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 57277.7i − 0.0600063i −0.999550 0.0300031i \(-0.990448\pi\)
0.999550 0.0300031i \(-0.00955173\pi\)
\(978\) 0 0
\(979\) 1.72493e6 1.79973
\(980\) 0 0
\(981\) − 309460.i − 0.321563i
\(982\) 0 0
\(983\) 351082. 0.363330 0.181665 0.983360i \(-0.441851\pi\)
0.181665 + 0.983360i \(0.441851\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 426659.i 0.437973i
\(988\) 0 0
\(989\) 692883.i 0.708381i
\(990\) 0 0
\(991\) 196492.i 0.200077i 0.994984 + 0.100038i \(0.0318965\pi\)
−0.994984 + 0.100038i \(0.968103\pi\)
\(992\) 0 0
\(993\) − 1.08857e6i − 1.10397i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 736136. 0.740572 0.370286 0.928918i \(-0.379260\pi\)
0.370286 + 0.928918i \(0.379260\pi\)
\(998\) 0 0
\(999\) 400788.i 0.401591i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.e.e.399.10 32
4.3 odd 2 200.5.e.e.99.31 32
5.2 odd 4 160.5.g.a.111.13 16
5.3 odd 4 800.5.g.h.751.3 16
5.4 even 2 inner 800.5.e.e.399.23 32
8.3 odd 2 inner 800.5.e.e.399.24 32
8.5 even 2 200.5.e.e.99.1 32
15.2 even 4 1440.5.g.a.271.14 16
20.3 even 4 200.5.g.h.51.7 16
20.7 even 4 40.5.g.a.11.10 yes 16
20.19 odd 2 200.5.e.e.99.2 32
40.3 even 4 800.5.g.h.751.4 16
40.13 odd 4 200.5.g.h.51.8 16
40.19 odd 2 inner 800.5.e.e.399.9 32
40.27 even 4 160.5.g.a.111.14 16
40.29 even 2 200.5.e.e.99.32 32
40.37 odd 4 40.5.g.a.11.9 16
60.47 odd 4 360.5.g.a.91.7 16
120.77 even 4 360.5.g.a.91.8 16
120.107 odd 4 1440.5.g.a.271.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.9 16 40.37 odd 4
40.5.g.a.11.10 yes 16 20.7 even 4
160.5.g.a.111.13 16 5.2 odd 4
160.5.g.a.111.14 16 40.27 even 4
200.5.e.e.99.1 32 8.5 even 2
200.5.e.e.99.2 32 20.19 odd 2
200.5.e.e.99.31 32 4.3 odd 2
200.5.e.e.99.32 32 40.29 even 2
200.5.g.h.51.7 16 20.3 even 4
200.5.g.h.51.8 16 40.13 odd 4
360.5.g.a.91.7 16 60.47 odd 4
360.5.g.a.91.8 16 120.77 even 4
800.5.e.e.399.9 32 40.19 odd 2 inner
800.5.e.e.399.10 32 1.1 even 1 trivial
800.5.e.e.399.23 32 5.4 even 2 inner
800.5.e.e.399.24 32 8.3 odd 2 inner
800.5.g.h.751.3 16 5.3 odd 4
800.5.g.h.751.4 16 40.3 even 4
1440.5.g.a.271.3 16 120.107 odd 4
1440.5.g.a.271.14 16 15.2 even 4