Properties

Label 800.5.g.i.751.15
Level $800$
Weight $5$
Character 800.751
Analytic conductor $82.696$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(751,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.751");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{18} - 20 x^{16} - 2640 x^{14} + 22400 x^{12} + 652288 x^{10} + 5734400 x^{8} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{71}\cdot 5^{6} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 751.15
Root \(-3.96917 + 0.495691i\) of defining polynomial
Character \(\chi\) \(=\) 800.751
Dual form 800.5.g.i.751.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.2033 q^{3} -84.8600i q^{7} +23.1073 q^{9} -71.3055 q^{11} +109.279i q^{13} +151.344 q^{17} -368.470 q^{19} -865.852i q^{21} +358.031i q^{23} -590.697 q^{27} +387.610i q^{29} -1687.73i q^{31} -727.551 q^{33} -1158.77i q^{37} +1115.01i q^{39} -2545.99 q^{41} +1354.04 q^{43} -901.424i q^{47} -4800.23 q^{49} +1544.21 q^{51} +3409.47i q^{53} -3759.61 q^{57} -1454.37 q^{59} +5324.84i q^{61} -1960.88i q^{63} +657.048 q^{67} +3653.09i q^{69} +6741.79i q^{71} -4130.26 q^{73} +6050.98i q^{77} -2307.14i q^{79} -7898.74 q^{81} -2146.14 q^{83} +3954.90i q^{87} -5117.03 q^{89} +9273.44 q^{91} -17220.4i q^{93} -9169.66 q^{97} -1647.68 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 652 q^{9} + 168 q^{11} + 728 q^{19} - 4728 q^{41} - 540 q^{49} - 4352 q^{51} + 8280 q^{59} - 10956 q^{81} - 22248 q^{89} + 39760 q^{91} - 62504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.2033 1.13370 0.566850 0.823821i \(-0.308162\pi\)
0.566850 + 0.823821i \(0.308162\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 84.8600i − 1.73184i −0.500185 0.865919i \(-0.666735\pi\)
0.500185 0.865919i \(-0.333265\pi\)
\(8\) 0 0
\(9\) 23.1073 0.285275
\(10\) 0 0
\(11\) −71.3055 −0.589301 −0.294651 0.955605i \(-0.595203\pi\)
−0.294651 + 0.955605i \(0.595203\pi\)
\(12\) 0 0
\(13\) 109.279i 0.646623i 0.946293 + 0.323311i \(0.104796\pi\)
−0.946293 + 0.323311i \(0.895204\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 151.344 0.523681 0.261840 0.965111i \(-0.415671\pi\)
0.261840 + 0.965111i \(0.415671\pi\)
\(18\) 0 0
\(19\) −368.470 −1.02069 −0.510346 0.859969i \(-0.670483\pi\)
−0.510346 + 0.859969i \(0.670483\pi\)
\(20\) 0 0
\(21\) − 865.852i − 1.96338i
\(22\) 0 0
\(23\) 358.031i 0.676807i 0.941001 + 0.338403i \(0.109887\pi\)
−0.941001 + 0.338403i \(0.890113\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −590.697 −0.810283
\(28\) 0 0
\(29\) 387.610i 0.460892i 0.973085 + 0.230446i \(0.0740185\pi\)
−0.973085 + 0.230446i \(0.925982\pi\)
\(30\) 0 0
\(31\) − 1687.73i − 1.75622i −0.478457 0.878111i \(-0.658804\pi\)
0.478457 0.878111i \(-0.341196\pi\)
\(32\) 0 0
\(33\) −727.551 −0.668091
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 1158.77i − 0.846434i −0.906028 0.423217i \(-0.860901\pi\)
0.906028 0.423217i \(-0.139099\pi\)
\(38\) 0 0
\(39\) 1115.01i 0.733076i
\(40\) 0 0
\(41\) −2545.99 −1.51457 −0.757285 0.653084i \(-0.773475\pi\)
−0.757285 + 0.653084i \(0.773475\pi\)
\(42\) 0 0
\(43\) 1354.04 0.732308 0.366154 0.930554i \(-0.380674\pi\)
0.366154 + 0.930554i \(0.380674\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 901.424i − 0.408069i −0.978964 0.204034i \(-0.934595\pi\)
0.978964 0.204034i \(-0.0654054\pi\)
\(48\) 0 0
\(49\) −4800.23 −1.99926
\(50\) 0 0
\(51\) 1544.21 0.593697
\(52\) 0 0
\(53\) 3409.47i 1.21377i 0.794791 + 0.606883i \(0.207580\pi\)
−0.794791 + 0.606883i \(0.792420\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3759.61 −1.15716
\(58\) 0 0
\(59\) −1454.37 −0.417803 −0.208902 0.977937i \(-0.566989\pi\)
−0.208902 + 0.977937i \(0.566989\pi\)
\(60\) 0 0
\(61\) 5324.84i 1.43102i 0.698601 + 0.715512i \(0.253806\pi\)
−0.698601 + 0.715512i \(0.746194\pi\)
\(62\) 0 0
\(63\) − 1960.88i − 0.494050i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 657.048 0.146368 0.0731842 0.997318i \(-0.476684\pi\)
0.0731842 + 0.997318i \(0.476684\pi\)
\(68\) 0 0
\(69\) 3653.09i 0.767295i
\(70\) 0 0
\(71\) 6741.79i 1.33739i 0.743536 + 0.668696i \(0.233147\pi\)
−0.743536 + 0.668696i \(0.766853\pi\)
\(72\) 0 0
\(73\) −4130.26 −0.775054 −0.387527 0.921858i \(-0.626671\pi\)
−0.387527 + 0.921858i \(0.626671\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6050.98i 1.02057i
\(78\) 0 0
\(79\) − 2307.14i − 0.369675i −0.982769 0.184837i \(-0.940824\pi\)
0.982769 0.184837i \(-0.0591758\pi\)
\(80\) 0 0
\(81\) −7898.74 −1.20389
\(82\) 0 0
\(83\) −2146.14 −0.311532 −0.155766 0.987794i \(-0.549785\pi\)
−0.155766 + 0.987794i \(0.549785\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3954.90i 0.522513i
\(88\) 0 0
\(89\) −5117.03 −0.646008 −0.323004 0.946398i \(-0.604693\pi\)
−0.323004 + 0.946398i \(0.604693\pi\)
\(90\) 0 0
\(91\) 9273.44 1.11985
\(92\) 0 0
\(93\) − 17220.4i − 1.99103i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9169.66 −0.974563 −0.487281 0.873245i \(-0.662011\pi\)
−0.487281 + 0.873245i \(0.662011\pi\)
\(98\) 0 0
\(99\) −1647.68 −0.168113
\(100\) 0 0
\(101\) 536.675i 0.0526100i 0.999654 + 0.0263050i \(0.00837411\pi\)
−0.999654 + 0.0263050i \(0.991626\pi\)
\(102\) 0 0
\(103\) 3140.33i 0.296007i 0.988987 + 0.148003i \(0.0472846\pi\)
−0.988987 + 0.148003i \(0.952715\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16703.3 −1.45893 −0.729466 0.684017i \(-0.760231\pi\)
−0.729466 + 0.684017i \(0.760231\pi\)
\(108\) 0 0
\(109\) − 15790.1i − 1.32902i −0.747279 0.664510i \(-0.768640\pi\)
0.747279 0.664510i \(-0.231360\pi\)
\(110\) 0 0
\(111\) − 11823.3i − 0.959602i
\(112\) 0 0
\(113\) 4460.76 0.349343 0.174672 0.984627i \(-0.444114\pi\)
0.174672 + 0.984627i \(0.444114\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2525.15i 0.184465i
\(118\) 0 0
\(119\) − 12843.0i − 0.906930i
\(120\) 0 0
\(121\) −9556.53 −0.652724
\(122\) 0 0
\(123\) −25977.5 −1.71707
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10888.2i 0.675070i 0.941313 + 0.337535i \(0.109593\pi\)
−0.941313 + 0.337535i \(0.890407\pi\)
\(128\) 0 0
\(129\) 13815.7 0.830218
\(130\) 0 0
\(131\) 9105.25 0.530578 0.265289 0.964169i \(-0.414533\pi\)
0.265289 + 0.964169i \(0.414533\pi\)
\(132\) 0 0
\(133\) 31268.4i 1.76767i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14976.2 −0.797921 −0.398960 0.916968i \(-0.630629\pi\)
−0.398960 + 0.916968i \(0.630629\pi\)
\(138\) 0 0
\(139\) 25598.6 1.32491 0.662456 0.749101i \(-0.269514\pi\)
0.662456 + 0.749101i \(0.269514\pi\)
\(140\) 0 0
\(141\) − 9197.49i − 0.462627i
\(142\) 0 0
\(143\) − 7792.21i − 0.381056i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −48978.1 −2.26656
\(148\) 0 0
\(149\) 10269.8i 0.462585i 0.972884 + 0.231292i \(0.0742954\pi\)
−0.972884 + 0.231292i \(0.925705\pi\)
\(150\) 0 0
\(151\) − 14739.4i − 0.646435i −0.946325 0.323217i \(-0.895236\pi\)
0.946325 0.323217i \(-0.104764\pi\)
\(152\) 0 0
\(153\) 3497.14 0.149393
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 27740.2i − 1.12541i −0.826658 0.562705i \(-0.809761\pi\)
0.826658 0.562705i \(-0.190239\pi\)
\(158\) 0 0
\(159\) 34787.8i 1.37605i
\(160\) 0 0
\(161\) 30382.5 1.17212
\(162\) 0 0
\(163\) −3732.97 −0.140501 −0.0702505 0.997529i \(-0.522380\pi\)
−0.0702505 + 0.997529i \(0.522380\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 20717.4i − 0.742853i −0.928462 0.371427i \(-0.878869\pi\)
0.928462 0.371427i \(-0.121131\pi\)
\(168\) 0 0
\(169\) 16619.0 0.581879
\(170\) 0 0
\(171\) −8514.34 −0.291178
\(172\) 0 0
\(173\) − 35335.7i − 1.18065i −0.807165 0.590326i \(-0.798999\pi\)
0.807165 0.590326i \(-0.201001\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −14839.4 −0.473664
\(178\) 0 0
\(179\) 23669.8 0.738734 0.369367 0.929284i \(-0.379575\pi\)
0.369367 + 0.929284i \(0.379575\pi\)
\(180\) 0 0
\(181\) − 7525.59i − 0.229712i −0.993382 0.114856i \(-0.963359\pi\)
0.993382 0.114856i \(-0.0366406\pi\)
\(182\) 0 0
\(183\) 54330.9i 1.62235i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10791.6 −0.308606
\(188\) 0 0
\(189\) 50126.5i 1.40328i
\(190\) 0 0
\(191\) 28925.8i 0.792901i 0.918056 + 0.396450i \(0.129758\pi\)
−0.918056 + 0.396450i \(0.870242\pi\)
\(192\) 0 0
\(193\) −48944.4 −1.31398 −0.656990 0.753900i \(-0.728171\pi\)
−0.656990 + 0.753900i \(0.728171\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 47883.5i 1.23382i 0.787032 + 0.616912i \(0.211617\pi\)
−0.787032 + 0.616912i \(0.788383\pi\)
\(198\) 0 0
\(199\) − 29644.2i − 0.748573i −0.927313 0.374286i \(-0.877888\pi\)
0.927313 0.374286i \(-0.122112\pi\)
\(200\) 0 0
\(201\) 6704.06 0.165938
\(202\) 0 0
\(203\) 32892.6 0.798190
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8273.12i 0.193076i
\(208\) 0 0
\(209\) 26273.9 0.601496
\(210\) 0 0
\(211\) −19653.5 −0.441444 −0.220722 0.975337i \(-0.570841\pi\)
−0.220722 + 0.975337i \(0.570841\pi\)
\(212\) 0 0
\(213\) 68788.5i 1.51620i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −143221. −3.04149
\(218\) 0 0
\(219\) −42142.3 −0.878678
\(220\) 0 0
\(221\) 16538.7i 0.338624i
\(222\) 0 0
\(223\) − 60977.7i − 1.22620i −0.790005 0.613100i \(-0.789922\pi\)
0.790005 0.613100i \(-0.210078\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2698.14 −0.0523616 −0.0261808 0.999657i \(-0.508335\pi\)
−0.0261808 + 0.999657i \(0.508335\pi\)
\(228\) 0 0
\(229\) − 68901.3i − 1.31388i −0.753942 0.656941i \(-0.771850\pi\)
0.753942 0.656941i \(-0.228150\pi\)
\(230\) 0 0
\(231\) 61740.0i 1.15702i
\(232\) 0 0
\(233\) −83770.9 −1.54305 −0.771527 0.636196i \(-0.780507\pi\)
−0.771527 + 0.636196i \(0.780507\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 23540.4i − 0.419100i
\(238\) 0 0
\(239\) 36602.8i 0.640795i 0.947283 + 0.320397i \(0.103816\pi\)
−0.947283 + 0.320397i \(0.896184\pi\)
\(240\) 0 0
\(241\) 48755.9 0.839447 0.419724 0.907652i \(-0.362127\pi\)
0.419724 + 0.907652i \(0.362127\pi\)
\(242\) 0 0
\(243\) −32746.8 −0.554570
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 40266.1i − 0.660003i
\(248\) 0 0
\(249\) −21897.8 −0.353184
\(250\) 0 0
\(251\) −75319.3 −1.19553 −0.597763 0.801673i \(-0.703944\pi\)
−0.597763 + 0.801673i \(0.703944\pi\)
\(252\) 0 0
\(253\) − 25529.5i − 0.398843i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27190.5 0.411672 0.205836 0.978587i \(-0.434009\pi\)
0.205836 + 0.978587i \(0.434009\pi\)
\(258\) 0 0
\(259\) −98333.1 −1.46589
\(260\) 0 0
\(261\) 8956.62i 0.131481i
\(262\) 0 0
\(263\) − 48135.0i − 0.695905i −0.937512 0.347952i \(-0.886877\pi\)
0.937512 0.347952i \(-0.113123\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −52210.6 −0.732379
\(268\) 0 0
\(269\) − 57856.4i − 0.799553i −0.916613 0.399776i \(-0.869088\pi\)
0.916613 0.399776i \(-0.130912\pi\)
\(270\) 0 0
\(271\) − 135141.i − 1.84013i −0.391765 0.920065i \(-0.628136\pi\)
0.391765 0.920065i \(-0.371864\pi\)
\(272\) 0 0
\(273\) 94619.7 1.26957
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 66626.3i 0.868333i 0.900833 + 0.434166i \(0.142957\pi\)
−0.900833 + 0.434166i \(0.857043\pi\)
\(278\) 0 0
\(279\) − 38998.8i − 0.501006i
\(280\) 0 0
\(281\) 70518.3 0.893078 0.446539 0.894764i \(-0.352656\pi\)
0.446539 + 0.894764i \(0.352656\pi\)
\(282\) 0 0
\(283\) 5580.69 0.0696811 0.0348406 0.999393i \(-0.488908\pi\)
0.0348406 + 0.999393i \(0.488908\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 216053.i 2.62299i
\(288\) 0 0
\(289\) −60616.1 −0.725758
\(290\) 0 0
\(291\) −93560.8 −1.10486
\(292\) 0 0
\(293\) − 85817.1i − 0.999628i −0.866133 0.499814i \(-0.833402\pi\)
0.866133 0.499814i \(-0.166598\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 42119.9 0.477501
\(298\) 0 0
\(299\) −39125.3 −0.437639
\(300\) 0 0
\(301\) − 114904.i − 1.26824i
\(302\) 0 0
\(303\) 5475.85i 0.0596440i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 24380.3 0.258680 0.129340 0.991600i \(-0.458714\pi\)
0.129340 + 0.991600i \(0.458714\pi\)
\(308\) 0 0
\(309\) 32041.8i 0.335583i
\(310\) 0 0
\(311\) 145304.i 1.50230i 0.660133 + 0.751149i \(0.270500\pi\)
−0.660133 + 0.751149i \(0.729500\pi\)
\(312\) 0 0
\(313\) −15.3803 −0.000156991 0 −7.84956e−5 1.00000i \(-0.500025\pi\)
−7.84956e−5 1.00000i \(0.500025\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 19873.1i − 0.197764i −0.995099 0.0988819i \(-0.968473\pi\)
0.995099 0.0988819i \(-0.0315266\pi\)
\(318\) 0 0
\(319\) − 27638.7i − 0.271604i
\(320\) 0 0
\(321\) −170429. −1.65399
\(322\) 0 0
\(323\) −55765.7 −0.534517
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 161111.i − 1.50671i
\(328\) 0 0
\(329\) −76494.8 −0.706708
\(330\) 0 0
\(331\) 55183.9 0.503682 0.251841 0.967769i \(-0.418964\pi\)
0.251841 + 0.967769i \(0.418964\pi\)
\(332\) 0 0
\(333\) − 26776.0i − 0.241466i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 172509. 1.51898 0.759489 0.650520i \(-0.225449\pi\)
0.759489 + 0.650520i \(0.225449\pi\)
\(338\) 0 0
\(339\) 45514.5 0.396050
\(340\) 0 0
\(341\) 120344.i 1.03494i
\(342\) 0 0
\(343\) 203598.i 1.73056i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −53756.2 −0.446447 −0.223223 0.974767i \(-0.571658\pi\)
−0.223223 + 0.974767i \(0.571658\pi\)
\(348\) 0 0
\(349\) 101720.i 0.835136i 0.908646 + 0.417568i \(0.137117\pi\)
−0.908646 + 0.417568i \(0.862883\pi\)
\(350\) 0 0
\(351\) − 64550.9i − 0.523948i
\(352\) 0 0
\(353\) 119472. 0.958778 0.479389 0.877603i \(-0.340858\pi\)
0.479389 + 0.877603i \(0.340858\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 131041.i − 1.02819i
\(358\) 0 0
\(359\) − 66348.7i − 0.514806i −0.966304 0.257403i \(-0.917133\pi\)
0.966304 0.257403i \(-0.0828668\pi\)
\(360\) 0 0
\(361\) 5449.20 0.0418137
\(362\) 0 0
\(363\) −97508.1 −0.739993
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 146492.i − 1.08763i −0.839204 0.543817i \(-0.816979\pi\)
0.839204 0.543817i \(-0.183021\pi\)
\(368\) 0 0
\(369\) −58831.0 −0.432069
\(370\) 0 0
\(371\) 289328. 2.10205
\(372\) 0 0
\(373\) 113125.i 0.813092i 0.913630 + 0.406546i \(0.133267\pi\)
−0.913630 + 0.406546i \(0.866733\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −42357.7 −0.298023
\(378\) 0 0
\(379\) 43592.1 0.303480 0.151740 0.988420i \(-0.451512\pi\)
0.151740 + 0.988420i \(0.451512\pi\)
\(380\) 0 0
\(381\) 111096.i 0.765327i
\(382\) 0 0
\(383\) − 99396.2i − 0.677598i −0.940859 0.338799i \(-0.889979\pi\)
0.940859 0.338799i \(-0.110021\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 31288.2 0.208909
\(388\) 0 0
\(389\) 99896.0i 0.660159i 0.943953 + 0.330080i \(0.107076\pi\)
−0.943953 + 0.330080i \(0.892924\pi\)
\(390\) 0 0
\(391\) 54185.7i 0.354431i
\(392\) 0 0
\(393\) 92903.6 0.601516
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 55234.5i 0.350453i 0.984528 + 0.175226i \(0.0560657\pi\)
−0.984528 + 0.175226i \(0.943934\pi\)
\(398\) 0 0
\(399\) 319041.i 2.00401i
\(400\) 0 0
\(401\) −40688.8 −0.253038 −0.126519 0.991964i \(-0.540380\pi\)
−0.126519 + 0.991964i \(0.540380\pi\)
\(402\) 0 0
\(403\) 184434. 1.13561
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 82626.5i 0.498804i
\(408\) 0 0
\(409\) 313804. 1.87591 0.937955 0.346757i \(-0.112717\pi\)
0.937955 + 0.346757i \(0.112717\pi\)
\(410\) 0 0
\(411\) −152806. −0.904603
\(412\) 0 0
\(413\) 123418.i 0.723567i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 261190. 1.50205
\(418\) 0 0
\(419\) 264287. 1.50538 0.752692 0.658373i \(-0.228755\pi\)
0.752692 + 0.658373i \(0.228755\pi\)
\(420\) 0 0
\(421\) − 179764.i − 1.01424i −0.861877 0.507118i \(-0.830711\pi\)
0.861877 0.507118i \(-0.169289\pi\)
\(422\) 0 0
\(423\) − 20829.4i − 0.116412i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 451866. 2.47830
\(428\) 0 0
\(429\) − 79506.2i − 0.432003i
\(430\) 0 0
\(431\) − 151073.i − 0.813266i −0.913592 0.406633i \(-0.866703\pi\)
0.913592 0.406633i \(-0.133297\pi\)
\(432\) 0 0
\(433\) −133641. −0.712796 −0.356398 0.934334i \(-0.615995\pi\)
−0.356398 + 0.934334i \(0.615995\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 131924.i − 0.690812i
\(438\) 0 0
\(439\) 74613.0i 0.387156i 0.981085 + 0.193578i \(0.0620092\pi\)
−0.981085 + 0.193578i \(0.937991\pi\)
\(440\) 0 0
\(441\) −110920. −0.570339
\(442\) 0 0
\(443\) 110554. 0.563334 0.281667 0.959512i \(-0.409113\pi\)
0.281667 + 0.959512i \(0.409113\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 104786.i 0.524432i
\(448\) 0 0
\(449\) −9722.73 −0.0482276 −0.0241138 0.999709i \(-0.507676\pi\)
−0.0241138 + 0.999709i \(0.507676\pi\)
\(450\) 0 0
\(451\) 181543. 0.892539
\(452\) 0 0
\(453\) − 150390.i − 0.732863i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −331629. −1.58789 −0.793945 0.607990i \(-0.791976\pi\)
−0.793945 + 0.607990i \(0.791976\pi\)
\(458\) 0 0
\(459\) −89398.3 −0.424330
\(460\) 0 0
\(461\) 86774.7i 0.408311i 0.978938 + 0.204156i \(0.0654449\pi\)
−0.978938 + 0.204156i \(0.934555\pi\)
\(462\) 0 0
\(463\) − 35664.8i − 0.166371i −0.996534 0.0831856i \(-0.973491\pi\)
0.996534 0.0831856i \(-0.0265094\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 293718. 1.34678 0.673389 0.739288i \(-0.264838\pi\)
0.673389 + 0.739288i \(0.264838\pi\)
\(468\) 0 0
\(469\) − 55757.1i − 0.253486i
\(470\) 0 0
\(471\) − 283042.i − 1.27588i
\(472\) 0 0
\(473\) −96550.3 −0.431550
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 78783.6i 0.346257i
\(478\) 0 0
\(479\) − 435529.i − 1.89822i −0.314945 0.949110i \(-0.601986\pi\)
0.314945 0.949110i \(-0.398014\pi\)
\(480\) 0 0
\(481\) 126629. 0.547323
\(482\) 0 0
\(483\) 310002. 1.32883
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 187286.i − 0.789672i −0.918752 0.394836i \(-0.870801\pi\)
0.918752 0.394836i \(-0.129199\pi\)
\(488\) 0 0
\(489\) −38088.6 −0.159286
\(490\) 0 0
\(491\) 287674. 1.19327 0.596634 0.802513i \(-0.296504\pi\)
0.596634 + 0.802513i \(0.296504\pi\)
\(492\) 0 0
\(493\) 58662.4i 0.241360i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 572109. 2.31615
\(498\) 0 0
\(499\) 175430. 0.704537 0.352268 0.935899i \(-0.385410\pi\)
0.352268 + 0.935899i \(0.385410\pi\)
\(500\) 0 0
\(501\) − 211386.i − 0.842172i
\(502\) 0 0
\(503\) − 95682.5i − 0.378178i −0.981960 0.189089i \(-0.939447\pi\)
0.981960 0.189089i \(-0.0605535\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 169569. 0.659676
\(508\) 0 0
\(509\) − 370388.i − 1.42962i −0.699318 0.714811i \(-0.746513\pi\)
0.699318 0.714811i \(-0.253487\pi\)
\(510\) 0 0
\(511\) 350494.i 1.34227i
\(512\) 0 0
\(513\) 217654. 0.827050
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 64276.4i 0.240475i
\(518\) 0 0
\(519\) − 360541.i − 1.33850i
\(520\) 0 0
\(521\) −259622. −0.956458 −0.478229 0.878235i \(-0.658721\pi\)
−0.478229 + 0.878235i \(0.658721\pi\)
\(522\) 0 0
\(523\) 108562. 0.396895 0.198448 0.980111i \(-0.436410\pi\)
0.198448 + 0.980111i \(0.436410\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 255427.i − 0.919700i
\(528\) 0 0
\(529\) 151655. 0.541933
\(530\) 0 0
\(531\) −33606.6 −0.119189
\(532\) 0 0
\(533\) − 278224.i − 0.979356i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 241510. 0.837502
\(538\) 0 0
\(539\) 342282. 1.17817
\(540\) 0 0
\(541\) 280006.i 0.956694i 0.878171 + 0.478347i \(0.158764\pi\)
−0.878171 + 0.478347i \(0.841236\pi\)
\(542\) 0 0
\(543\) − 76785.8i − 0.260424i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −72377.7 −0.241897 −0.120948 0.992659i \(-0.538594\pi\)
−0.120948 + 0.992659i \(0.538594\pi\)
\(548\) 0 0
\(549\) 123043.i 0.408235i
\(550\) 0 0
\(551\) − 142823.i − 0.470429i
\(552\) 0 0
\(553\) −195784. −0.640216
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 402974.i 1.29887i 0.760416 + 0.649437i \(0.224995\pi\)
−0.760416 + 0.649437i \(0.775005\pi\)
\(558\) 0 0
\(559\) 147968.i 0.473527i
\(560\) 0 0
\(561\) −110110. −0.349866
\(562\) 0 0
\(563\) −244892. −0.772606 −0.386303 0.922372i \(-0.626248\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 670288.i 2.08495i
\(568\) 0 0
\(569\) −644997. −1.99220 −0.996100 0.0882331i \(-0.971878\pi\)
−0.996100 + 0.0882331i \(0.971878\pi\)
\(570\) 0 0
\(571\) −198216. −0.607947 −0.303973 0.952681i \(-0.598313\pi\)
−0.303973 + 0.952681i \(0.598313\pi\)
\(572\) 0 0
\(573\) 295139.i 0.898911i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 218459. 0.656172 0.328086 0.944648i \(-0.393596\pi\)
0.328086 + 0.944648i \(0.393596\pi\)
\(578\) 0 0
\(579\) −499394. −1.48966
\(580\) 0 0
\(581\) 182122.i 0.539523i
\(582\) 0 0
\(583\) − 243114.i − 0.715274i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −330673. −0.959673 −0.479836 0.877358i \(-0.659304\pi\)
−0.479836 + 0.877358i \(0.659304\pi\)
\(588\) 0 0
\(589\) 621878.i 1.79256i
\(590\) 0 0
\(591\) 488569.i 1.39879i
\(592\) 0 0
\(593\) 499960. 1.42176 0.710879 0.703314i \(-0.248297\pi\)
0.710879 + 0.703314i \(0.248297\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 302469.i − 0.848657i
\(598\) 0 0
\(599\) 407848.i 1.13670i 0.822788 + 0.568348i \(0.192417\pi\)
−0.822788 + 0.568348i \(0.807583\pi\)
\(600\) 0 0
\(601\) 441217. 1.22153 0.610763 0.791813i \(-0.290863\pi\)
0.610763 + 0.791813i \(0.290863\pi\)
\(602\) 0 0
\(603\) 15182.6 0.0417553
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 71921.7i 0.195201i 0.995226 + 0.0976006i \(0.0311168\pi\)
−0.995226 + 0.0976006i \(0.968883\pi\)
\(608\) 0 0
\(609\) 335613. 0.904908
\(610\) 0 0
\(611\) 98506.9 0.263866
\(612\) 0 0
\(613\) − 527274.i − 1.40319i −0.712577 0.701593i \(-0.752472\pi\)
0.712577 0.701593i \(-0.247528\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −91867.0 −0.241318 −0.120659 0.992694i \(-0.538501\pi\)
−0.120659 + 0.992694i \(0.538501\pi\)
\(618\) 0 0
\(619\) −633381. −1.65304 −0.826521 0.562906i \(-0.809683\pi\)
−0.826521 + 0.562906i \(0.809683\pi\)
\(620\) 0 0
\(621\) − 211488.i − 0.548405i
\(622\) 0 0
\(623\) 434231.i 1.11878i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 268081. 0.681915
\(628\) 0 0
\(629\) − 175372.i − 0.443261i
\(630\) 0 0
\(631\) 128753.i 0.323368i 0.986843 + 0.161684i \(0.0516926\pi\)
−0.986843 + 0.161684i \(0.948307\pi\)
\(632\) 0 0
\(633\) −200531. −0.500465
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 524565.i − 1.29277i
\(638\) 0 0
\(639\) 155785.i 0.381525i
\(640\) 0 0
\(641\) 391151. 0.951980 0.475990 0.879451i \(-0.342090\pi\)
0.475990 + 0.879451i \(0.342090\pi\)
\(642\) 0 0
\(643\) −720581. −1.74285 −0.871427 0.490525i \(-0.836805\pi\)
−0.871427 + 0.490525i \(0.836805\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 403682.i − 0.964341i −0.876077 0.482171i \(-0.839849\pi\)
0.876077 0.482171i \(-0.160151\pi\)
\(648\) 0 0
\(649\) 103705. 0.246212
\(650\) 0 0
\(651\) −1.46132e6 −3.44814
\(652\) 0 0
\(653\) 404377.i 0.948332i 0.880436 + 0.474166i \(0.157250\pi\)
−0.880436 + 0.474166i \(0.842750\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −95439.1 −0.221104
\(658\) 0 0
\(659\) 179720. 0.413834 0.206917 0.978359i \(-0.433657\pi\)
0.206917 + 0.978359i \(0.433657\pi\)
\(660\) 0 0
\(661\) 512413.i 1.17278i 0.810028 + 0.586391i \(0.199452\pi\)
−0.810028 + 0.586391i \(0.800548\pi\)
\(662\) 0 0
\(663\) 168750.i 0.383898i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −138776. −0.311935
\(668\) 0 0
\(669\) − 622174.i − 1.39014i
\(670\) 0 0
\(671\) − 379690.i − 0.843304i
\(672\) 0 0
\(673\) 136431. 0.301220 0.150610 0.988593i \(-0.451876\pi\)
0.150610 + 0.988593i \(0.451876\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 185710.i − 0.405190i −0.979263 0.202595i \(-0.935063\pi\)
0.979263 0.202595i \(-0.0649374\pi\)
\(678\) 0 0
\(679\) 778138.i 1.68778i
\(680\) 0 0
\(681\) −27529.9 −0.0593623
\(682\) 0 0
\(683\) 521505. 1.11794 0.558968 0.829189i \(-0.311198\pi\)
0.558968 + 0.829189i \(0.311198\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 703020.i − 1.48955i
\(688\) 0 0
\(689\) −372584. −0.784849
\(690\) 0 0
\(691\) 159485. 0.334012 0.167006 0.985956i \(-0.446590\pi\)
0.167006 + 0.985956i \(0.446590\pi\)
\(692\) 0 0
\(693\) 139822.i 0.291144i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −385320. −0.793152
\(698\) 0 0
\(699\) −854739. −1.74936
\(700\) 0 0
\(701\) − 924458.i − 1.88127i −0.339418 0.940635i \(-0.610230\pi\)
0.339418 0.940635i \(-0.389770\pi\)
\(702\) 0 0
\(703\) 426971.i 0.863949i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 45542.2 0.0911120
\(708\) 0 0
\(709\) 49979.9i 0.0994267i 0.998764 + 0.0497134i \(0.0158308\pi\)
−0.998764 + 0.0497134i \(0.984169\pi\)
\(710\) 0 0
\(711\) − 53311.7i − 0.105459i
\(712\) 0 0
\(713\) 604259. 1.18862
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 373470.i 0.726469i
\(718\) 0 0
\(719\) − 823502.i − 1.59297i −0.604659 0.796484i \(-0.706691\pi\)
0.604659 0.796484i \(-0.293309\pi\)
\(720\) 0 0
\(721\) 266489. 0.512635
\(722\) 0 0
\(723\) 497471. 0.951681
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 791865.i 1.49824i 0.662432 + 0.749122i \(0.269524\pi\)
−0.662432 + 0.749122i \(0.730476\pi\)
\(728\) 0 0
\(729\) 305673. 0.575177
\(730\) 0 0
\(731\) 204925. 0.383496
\(732\) 0 0
\(733\) 586208.i 1.09105i 0.838095 + 0.545524i \(0.183669\pi\)
−0.838095 + 0.545524i \(0.816331\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −46851.1 −0.0862551
\(738\) 0 0
\(739\) 51496.3 0.0942947 0.0471474 0.998888i \(-0.484987\pi\)
0.0471474 + 0.998888i \(0.484987\pi\)
\(740\) 0 0
\(741\) − 410847.i − 0.748245i
\(742\) 0 0
\(743\) − 333510.i − 0.604132i −0.953287 0.302066i \(-0.902324\pi\)
0.953287 0.302066i \(-0.0976763\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −49591.6 −0.0888724
\(748\) 0 0
\(749\) 1.41744e6i 2.52663i
\(750\) 0 0
\(751\) − 315513.i − 0.559419i −0.960085 0.279710i \(-0.909762\pi\)
0.960085 0.279710i \(-0.0902382\pi\)
\(752\) 0 0
\(753\) −768505. −1.35537
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 559184.i 0.975806i 0.872898 + 0.487903i \(0.162238\pi\)
−0.872898 + 0.487903i \(0.837762\pi\)
\(758\) 0 0
\(759\) − 260486.i − 0.452168i
\(760\) 0 0
\(761\) −432702. −0.747170 −0.373585 0.927596i \(-0.621872\pi\)
−0.373585 + 0.927596i \(0.621872\pi\)
\(762\) 0 0
\(763\) −1.33995e6 −2.30165
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 158933.i − 0.270161i
\(768\) 0 0
\(769\) −258310. −0.436805 −0.218403 0.975859i \(-0.570085\pi\)
−0.218403 + 0.975859i \(0.570085\pi\)
\(770\) 0 0
\(771\) 277433. 0.466712
\(772\) 0 0
\(773\) − 280428.i − 0.469312i −0.972078 0.234656i \(-0.924604\pi\)
0.972078 0.234656i \(-0.0753964\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.00332e6 −1.66187
\(778\) 0 0
\(779\) 938122. 1.54591
\(780\) 0 0
\(781\) − 480727.i − 0.788127i
\(782\) 0 0
\(783\) − 228960.i − 0.373453i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.17964e6 −1.90459 −0.952296 0.305177i \(-0.901284\pi\)
−0.952296 + 0.305177i \(0.901284\pi\)
\(788\) 0 0
\(789\) − 491136.i − 0.788947i
\(790\) 0 0
\(791\) − 378540.i − 0.605005i
\(792\) 0 0
\(793\) −581894. −0.925332
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 627511.i − 0.987881i −0.869496 0.493940i \(-0.835556\pi\)
0.869496 0.493940i \(-0.164444\pi\)
\(798\) 0 0
\(799\) − 136425.i − 0.213698i
\(800\) 0 0
\(801\) −118241. −0.184290
\(802\) 0 0
\(803\) 294510. 0.456740
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 590326.i − 0.906453i
\(808\) 0 0
\(809\) 328656. 0.502163 0.251081 0.967966i \(-0.419214\pi\)
0.251081 + 0.967966i \(0.419214\pi\)
\(810\) 0 0
\(811\) −510808. −0.776634 −0.388317 0.921526i \(-0.626943\pi\)
−0.388317 + 0.921526i \(0.626943\pi\)
\(812\) 0 0
\(813\) − 1.37888e6i − 2.08616i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −498923. −0.747462
\(818\) 0 0
\(819\) 214284. 0.319464
\(820\) 0 0
\(821\) − 37920.6i − 0.0562586i −0.999604 0.0281293i \(-0.991045\pi\)
0.999604 0.0281293i \(-0.00895502\pi\)
\(822\) 0 0
\(823\) − 449975.i − 0.664337i −0.943220 0.332168i \(-0.892220\pi\)
0.943220 0.332168i \(-0.107780\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −41920.8 −0.0612940 −0.0306470 0.999530i \(-0.509757\pi\)
−0.0306470 + 0.999530i \(0.509757\pi\)
\(828\) 0 0
\(829\) − 1.28858e6i − 1.87500i −0.347985 0.937500i \(-0.613134\pi\)
0.347985 0.937500i \(-0.386866\pi\)
\(830\) 0 0
\(831\) 679808.i 0.984429i
\(832\) 0 0
\(833\) −726484. −1.04697
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 996936.i 1.42304i
\(838\) 0 0
\(839\) 506198.i 0.719112i 0.933124 + 0.359556i \(0.117072\pi\)
−0.933124 + 0.359556i \(0.882928\pi\)
\(840\) 0 0
\(841\) 557039. 0.787579
\(842\) 0 0
\(843\) 719519. 1.01248
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 810968.i 1.13041i
\(848\) 0 0
\(849\) 56941.5 0.0789975
\(850\) 0 0
\(851\) 414874. 0.572872
\(852\) 0 0
\(853\) 656590.i 0.902395i 0.892424 + 0.451197i \(0.149003\pi\)
−0.892424 + 0.451197i \(0.850997\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −388067. −0.528379 −0.264189 0.964471i \(-0.585104\pi\)
−0.264189 + 0.964471i \(0.585104\pi\)
\(858\) 0 0
\(859\) 282145. 0.382372 0.191186 0.981554i \(-0.438767\pi\)
0.191186 + 0.981554i \(0.438767\pi\)
\(860\) 0 0
\(861\) 2.20445e6i 2.97368i
\(862\) 0 0
\(863\) 1.01110e6i 1.35761i 0.734320 + 0.678804i \(0.237501\pi\)
−0.734320 + 0.678804i \(0.762499\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −618484. −0.822792
\(868\) 0 0
\(869\) 164512.i 0.217850i
\(870\) 0 0
\(871\) 71801.7i 0.0946452i
\(872\) 0 0
\(873\) −211886. −0.278018
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 190192.i 0.247283i 0.992327 + 0.123641i \(0.0394572\pi\)
−0.992327 + 0.123641i \(0.960543\pi\)
\(878\) 0 0
\(879\) − 875617.i − 1.13328i
\(880\) 0 0
\(881\) 237801. 0.306380 0.153190 0.988197i \(-0.451045\pi\)
0.153190 + 0.988197i \(0.451045\pi\)
\(882\) 0 0
\(883\) −175861. −0.225552 −0.112776 0.993620i \(-0.535974\pi\)
−0.112776 + 0.993620i \(0.535974\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.36691e6i 1.73738i 0.495360 + 0.868688i \(0.335036\pi\)
−0.495360 + 0.868688i \(0.664964\pi\)
\(888\) 0 0
\(889\) 923974. 1.16911
\(890\) 0 0
\(891\) 563224. 0.709456
\(892\) 0 0
\(893\) 332148.i 0.416513i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −399207. −0.496151
\(898\) 0 0
\(899\) 654181. 0.809428
\(900\) 0 0
\(901\) 516002.i 0.635626i
\(902\) 0 0
\(903\) − 1.17240e6i − 1.43780i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −699123. −0.849843 −0.424922 0.905230i \(-0.639698\pi\)
−0.424922 + 0.905230i \(0.639698\pi\)
\(908\) 0 0
\(909\) 12401.1i 0.0150083i
\(910\) 0 0
\(911\) 1.27217e6i 1.53288i 0.642315 + 0.766441i \(0.277974\pi\)
−0.642315 + 0.766441i \(0.722026\pi\)
\(912\) 0 0
\(913\) 153032. 0.183586
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 772672.i − 0.918875i
\(918\) 0 0
\(919\) − 507149.i − 0.600488i −0.953862 0.300244i \(-0.902932\pi\)
0.953862 0.300244i \(-0.0970681\pi\)
\(920\) 0 0
\(921\) 248760. 0.293265
\(922\) 0 0
\(923\) −736738. −0.864788
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 72564.6i 0.0844433i
\(928\) 0 0
\(929\) 31736.2 0.0367725 0.0183862 0.999831i \(-0.494147\pi\)
0.0183862 + 0.999831i \(0.494147\pi\)
\(930\) 0 0
\(931\) 1.76874e6 2.04063
\(932\) 0 0
\(933\) 1.48258e6i 1.70315i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.23459e6 1.40619 0.703094 0.711096i \(-0.251801\pi\)
0.703094 + 0.711096i \(0.251801\pi\)
\(938\) 0 0
\(939\) −156.930 −0.000177981 0
\(940\) 0 0
\(941\) − 126651.i − 0.143031i −0.997439 0.0715156i \(-0.977216\pi\)
0.997439 0.0715156i \(-0.0227836\pi\)
\(942\) 0 0
\(943\) − 911544.i − 1.02507i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −213933. −0.238549 −0.119275 0.992861i \(-0.538057\pi\)
−0.119275 + 0.992861i \(0.538057\pi\)
\(948\) 0 0
\(949\) − 451352.i − 0.501168i
\(950\) 0 0
\(951\) − 202771.i − 0.224205i
\(952\) 0 0
\(953\) 281174. 0.309592 0.154796 0.987946i \(-0.450528\pi\)
0.154796 + 0.987946i \(0.450528\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 282006.i − 0.307918i
\(958\) 0 0
\(959\) 1.27088e6i 1.38187i
\(960\) 0 0
\(961\) −1.92491e6 −2.08431
\(962\) 0 0
\(963\) −385968. −0.416197
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.15290e6i − 1.23293i −0.787381 0.616467i \(-0.788563\pi\)
0.787381 0.616467i \(-0.211437\pi\)
\(968\) 0 0
\(969\) −568994. −0.605982
\(970\) 0 0
\(971\) −857201. −0.909169 −0.454584 0.890704i \(-0.650212\pi\)
−0.454584 + 0.890704i \(0.650212\pi\)
\(972\) 0 0
\(973\) − 2.17230e6i − 2.29453i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.68459e6 −1.76484 −0.882419 0.470464i \(-0.844086\pi\)
−0.882419 + 0.470464i \(0.844086\pi\)
\(978\) 0 0
\(979\) 364872. 0.380693
\(980\) 0 0
\(981\) − 364866.i − 0.379136i
\(982\) 0 0
\(983\) 501269.i 0.518756i 0.965776 + 0.259378i \(0.0835176\pi\)
−0.965776 + 0.259378i \(0.916482\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −780500. −0.801195
\(988\) 0 0
\(989\) 484787.i 0.495631i
\(990\) 0 0
\(991\) − 650776.i − 0.662650i −0.943517 0.331325i \(-0.892504\pi\)
0.943517 0.331325i \(-0.107496\pi\)
\(992\) 0 0
\(993\) 563058. 0.571024
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 724549.i 0.728916i 0.931220 + 0.364458i \(0.118746\pi\)
−0.931220 + 0.364458i \(0.881254\pi\)
\(998\) 0 0
\(999\) 684480.i 0.685851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.g.i.751.15 20
4.3 odd 2 200.5.g.i.51.1 20
5.2 odd 4 160.5.e.c.79.5 20
5.3 odd 4 160.5.e.c.79.16 20
5.4 even 2 inner 800.5.g.i.751.6 20
8.3 odd 2 inner 800.5.g.i.751.16 20
8.5 even 2 200.5.g.i.51.2 20
20.3 even 4 40.5.e.c.19.10 yes 20
20.7 even 4 40.5.e.c.19.11 yes 20
20.19 odd 2 200.5.g.i.51.20 20
40.3 even 4 160.5.e.c.79.15 20
40.13 odd 4 40.5.e.c.19.12 yes 20
40.19 odd 2 inner 800.5.g.i.751.5 20
40.27 even 4 160.5.e.c.79.6 20
40.29 even 2 200.5.g.i.51.19 20
40.37 odd 4 40.5.e.c.19.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.e.c.19.9 20 40.37 odd 4
40.5.e.c.19.10 yes 20 20.3 even 4
40.5.e.c.19.11 yes 20 20.7 even 4
40.5.e.c.19.12 yes 20 40.13 odd 4
160.5.e.c.79.5 20 5.2 odd 4
160.5.e.c.79.6 20 40.27 even 4
160.5.e.c.79.15 20 40.3 even 4
160.5.e.c.79.16 20 5.3 odd 4
200.5.g.i.51.1 20 4.3 odd 2
200.5.g.i.51.2 20 8.5 even 2
200.5.g.i.51.19 20 40.29 even 2
200.5.g.i.51.20 20 20.19 odd 2
800.5.g.i.751.5 20 40.19 odd 2 inner
800.5.g.i.751.6 20 5.4 even 2 inner
800.5.g.i.751.15 20 1.1 even 1 trivial
800.5.g.i.751.16 20 8.3 odd 2 inner