Properties

Label 160.5.e.c.79.16
Level $160$
Weight $5$
Character 160.79
Analytic conductor $16.539$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,5,Mod(79,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.79");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 160.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5391940934\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 10 x^{18} - 20 x^{16} + 2640 x^{14} + 22400 x^{12} - 652288 x^{10} + 5734400 x^{8} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{70}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 79.16
Root \(-0.495691 - 3.96917i\) of defining polynomial
Character \(\chi\) \(=\) 160.79
Dual form 160.5.e.c.79.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.2033i q^{3} +(17.9141 + 17.4381i) q^{5} -84.8600 q^{7} -23.1073 q^{9} -71.3055 q^{11} -109.279 q^{13} +(-177.926 + 182.783i) q^{15} -151.344i q^{17} +368.470 q^{19} -865.852i q^{21} -358.031 q^{23} +(16.8280 + 624.773i) q^{25} +590.697i q^{27} -387.610i q^{29} -1687.73i q^{31} -727.551i q^{33} +(-1520.19 - 1479.79i) q^{35} -1158.77 q^{37} -1115.01i q^{39} -2545.99 q^{41} +1354.04i q^{43} +(-413.946 - 402.946i) q^{45} -901.424 q^{47} +4800.23 q^{49} +1544.21 q^{51} -3409.47 q^{53} +(-1277.37 - 1243.43i) q^{55} +3759.61i q^{57} +1454.37 q^{59} +5324.84i q^{61} +1960.88 q^{63} +(-1957.64 - 1905.62i) q^{65} -657.048i q^{67} -3653.09i q^{69} +6741.79i q^{71} -4130.26i q^{73} +(-6374.75 + 171.701i) q^{75} +6050.98 q^{77} +2307.14i q^{79} -7898.74 q^{81} -2146.14i q^{83} +(2639.14 - 2711.18i) q^{85} +3954.90 q^{87} +5117.03 q^{89} +9273.44 q^{91} +17220.4 q^{93} +(6600.80 + 6425.40i) q^{95} +9169.66i q^{97} +1647.68 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 652 q^{9} + 168 q^{11} - 728 q^{19} - 1420 q^{25} - 4440 q^{35} - 4728 q^{41} + 540 q^{49} - 4352 q^{51} - 8280 q^{59} + 9480 q^{65} + 16000 q^{75} - 10956 q^{81} + 22248 q^{89} + 39760 q^{91} + 62504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.2033i 1.13370i 0.823821 + 0.566850i \(0.191838\pi\)
−0.823821 + 0.566850i \(0.808162\pi\)
\(4\) 0 0
\(5\) 17.9141 + 17.4381i 0.716563 + 0.697522i
\(6\) 0 0
\(7\) −84.8600 −1.73184 −0.865919 0.500185i \(-0.833265\pi\)
−0.865919 + 0.500185i \(0.833265\pi\)
\(8\) 0 0
\(9\) −23.1073 −0.285275
\(10\) 0 0
\(11\) −71.3055 −0.589301 −0.294651 0.955605i \(-0.595203\pi\)
−0.294651 + 0.955605i \(0.595203\pi\)
\(12\) 0 0
\(13\) −109.279 −0.646623 −0.323311 0.946293i \(-0.604796\pi\)
−0.323311 + 0.946293i \(0.604796\pi\)
\(14\) 0 0
\(15\) −177.926 + 182.783i −0.790781 + 0.812367i
\(16\) 0 0
\(17\) 151.344i 0.523681i −0.965111 0.261840i \(-0.915671\pi\)
0.965111 0.261840i \(-0.0843294\pi\)
\(18\) 0 0
\(19\) 368.470 1.02069 0.510346 0.859969i \(-0.329517\pi\)
0.510346 + 0.859969i \(0.329517\pi\)
\(20\) 0 0
\(21\) 865.852i 1.96338i
\(22\) 0 0
\(23\) −358.031 −0.676807 −0.338403 0.941001i \(-0.609887\pi\)
−0.338403 + 0.941001i \(0.609887\pi\)
\(24\) 0 0
\(25\) 16.8280 + 624.773i 0.0269248 + 0.999637i
\(26\) 0 0
\(27\) 590.697i 0.810283i
\(28\) 0 0
\(29\) 387.610i 0.460892i −0.973085 0.230446i \(-0.925982\pi\)
0.973085 0.230446i \(-0.0740185\pi\)
\(30\) 0 0
\(31\) 1687.73i 1.75622i −0.478457 0.878111i \(-0.658804\pi\)
0.478457 0.878111i \(-0.341196\pi\)
\(32\) 0 0
\(33\) 727.551i 0.668091i
\(34\) 0 0
\(35\) −1520.19 1479.79i −1.24097 1.20800i
\(36\) 0 0
\(37\) −1158.77 −0.846434 −0.423217 0.906028i \(-0.639099\pi\)
−0.423217 + 0.906028i \(0.639099\pi\)
\(38\) 0 0
\(39\) 1115.01i 0.733076i
\(40\) 0 0
\(41\) −2545.99 −1.51457 −0.757285 0.653084i \(-0.773475\pi\)
−0.757285 + 0.653084i \(0.773475\pi\)
\(42\) 0 0
\(43\) 1354.04i 0.732308i 0.930554 + 0.366154i \(0.119326\pi\)
−0.930554 + 0.366154i \(0.880674\pi\)
\(44\) 0 0
\(45\) −413.946 402.946i −0.204418 0.198986i
\(46\) 0 0
\(47\) −901.424 −0.408069 −0.204034 0.978964i \(-0.565405\pi\)
−0.204034 + 0.978964i \(0.565405\pi\)
\(48\) 0 0
\(49\) 4800.23 1.99926
\(50\) 0 0
\(51\) 1544.21 0.593697
\(52\) 0 0
\(53\) −3409.47 −1.21377 −0.606883 0.794791i \(-0.707580\pi\)
−0.606883 + 0.794791i \(0.707580\pi\)
\(54\) 0 0
\(55\) −1277.37 1243.43i −0.422271 0.411051i
\(56\) 0 0
\(57\) 3759.61i 1.15716i
\(58\) 0 0
\(59\) 1454.37 0.417803 0.208902 0.977937i \(-0.433011\pi\)
0.208902 + 0.977937i \(0.433011\pi\)
\(60\) 0 0
\(61\) 5324.84i 1.43102i 0.698601 + 0.715512i \(0.253806\pi\)
−0.698601 + 0.715512i \(0.746194\pi\)
\(62\) 0 0
\(63\) 1960.88 0.494050
\(64\) 0 0
\(65\) −1957.64 1905.62i −0.463346 0.451034i
\(66\) 0 0
\(67\) 657.048i 0.146368i −0.997318 0.0731842i \(-0.976684\pi\)
0.997318 0.0731842i \(-0.0233161\pi\)
\(68\) 0 0
\(69\) 3653.09i 0.767295i
\(70\) 0 0
\(71\) 6741.79i 1.33739i 0.743536 + 0.668696i \(0.233147\pi\)
−0.743536 + 0.668696i \(0.766853\pi\)
\(72\) 0 0
\(73\) 4130.26i 0.775054i −0.921858 0.387527i \(-0.873329\pi\)
0.921858 0.387527i \(-0.126671\pi\)
\(74\) 0 0
\(75\) −6374.75 + 171.701i −1.13329 + 0.0305246i
\(76\) 0 0
\(77\) 6050.98 1.02057
\(78\) 0 0
\(79\) 2307.14i 0.369675i 0.982769 + 0.184837i \(0.0591758\pi\)
−0.982769 + 0.184837i \(0.940824\pi\)
\(80\) 0 0
\(81\) −7898.74 −1.20389
\(82\) 0 0
\(83\) 2146.14i 0.311532i −0.987794 0.155766i \(-0.950215\pi\)
0.987794 0.155766i \(-0.0497846\pi\)
\(84\) 0 0
\(85\) 2639.14 2711.18i 0.365279 0.375250i
\(86\) 0 0
\(87\) 3954.90 0.522513
\(88\) 0 0
\(89\) 5117.03 0.646008 0.323004 0.946398i \(-0.395307\pi\)
0.323004 + 0.946398i \(0.395307\pi\)
\(90\) 0 0
\(91\) 9273.44 1.11985
\(92\) 0 0
\(93\) 17220.4 1.99103
\(94\) 0 0
\(95\) 6600.80 + 6425.40i 0.731391 + 0.711956i
\(96\) 0 0
\(97\) 9169.66i 0.974563i 0.873245 + 0.487281i \(0.162011\pi\)
−0.873245 + 0.487281i \(0.837989\pi\)
\(98\) 0 0
\(99\) 1647.68 0.168113
\(100\) 0 0
\(101\) 536.675i 0.0526100i 0.999654 + 0.0263050i \(0.00837411\pi\)
−0.999654 + 0.0263050i \(0.991626\pi\)
\(102\) 0 0
\(103\) −3140.33 −0.296007 −0.148003 0.988987i \(-0.547285\pi\)
−0.148003 + 0.988987i \(0.547285\pi\)
\(104\) 0 0
\(105\) 15098.8 15510.9i 1.36950 1.40689i
\(106\) 0 0
\(107\) 16703.3i 1.45893i 0.684017 + 0.729466i \(0.260231\pi\)
−0.684017 + 0.729466i \(0.739769\pi\)
\(108\) 0 0
\(109\) 15790.1i 1.32902i 0.747279 + 0.664510i \(0.231360\pi\)
−0.747279 + 0.664510i \(0.768640\pi\)
\(110\) 0 0
\(111\) 11823.3i 0.959602i
\(112\) 0 0
\(113\) 4460.76i 0.349343i 0.984627 + 0.174672i \(0.0558864\pi\)
−0.984627 + 0.174672i \(0.944114\pi\)
\(114\) 0 0
\(115\) −6413.79 6243.36i −0.484974 0.472088i
\(116\) 0 0
\(117\) 2525.15 0.184465
\(118\) 0 0
\(119\) 12843.0i 0.906930i
\(120\) 0 0
\(121\) −9556.53 −0.652724
\(122\) 0 0
\(123\) 25977.5i 1.71707i
\(124\) 0 0
\(125\) −10593.4 + 11485.7i −0.677976 + 0.735084i
\(126\) 0 0
\(127\) 10888.2 0.675070 0.337535 0.941313i \(-0.390407\pi\)
0.337535 + 0.941313i \(0.390407\pi\)
\(128\) 0 0
\(129\) −13815.7 −0.830218
\(130\) 0 0
\(131\) 9105.25 0.530578 0.265289 0.964169i \(-0.414533\pi\)
0.265289 + 0.964169i \(0.414533\pi\)
\(132\) 0 0
\(133\) −31268.4 −1.76767
\(134\) 0 0
\(135\) −10300.6 + 10581.8i −0.565191 + 0.580619i
\(136\) 0 0
\(137\) 14976.2i 0.797921i 0.916968 + 0.398960i \(0.130629\pi\)
−0.916968 + 0.398960i \(0.869371\pi\)
\(138\) 0 0
\(139\) −25598.6 −1.32491 −0.662456 0.749101i \(-0.730486\pi\)
−0.662456 + 0.749101i \(0.730486\pi\)
\(140\) 0 0
\(141\) 9197.49i 0.462627i
\(142\) 0 0
\(143\) 7792.21 0.381056
\(144\) 0 0
\(145\) 6759.17 6943.68i 0.321482 0.330258i
\(146\) 0 0
\(147\) 48978.1i 2.26656i
\(148\) 0 0
\(149\) 10269.8i 0.462585i −0.972884 0.231292i \(-0.925705\pi\)
0.972884 0.231292i \(-0.0742954\pi\)
\(150\) 0 0
\(151\) 14739.4i 0.646435i −0.946325 0.323217i \(-0.895236\pi\)
0.946325 0.323217i \(-0.104764\pi\)
\(152\) 0 0
\(153\) 3497.14i 0.149393i
\(154\) 0 0
\(155\) 29430.7 30234.1i 1.22500 1.25844i
\(156\) 0 0
\(157\) −27740.2 −1.12541 −0.562705 0.826658i \(-0.690239\pi\)
−0.562705 + 0.826658i \(0.690239\pi\)
\(158\) 0 0
\(159\) 34787.8i 1.37605i
\(160\) 0 0
\(161\) 30382.5 1.17212
\(162\) 0 0
\(163\) 3732.97i 0.140501i −0.997529 0.0702505i \(-0.977620\pi\)
0.997529 0.0702505i \(-0.0223799\pi\)
\(164\) 0 0
\(165\) 12687.1 13033.4i 0.466008 0.478729i
\(166\) 0 0
\(167\) −20717.4 −0.742853 −0.371427 0.928462i \(-0.621131\pi\)
−0.371427 + 0.928462i \(0.621131\pi\)
\(168\) 0 0
\(169\) −16619.0 −0.581879
\(170\) 0 0
\(171\) −8514.34 −0.291178
\(172\) 0 0
\(173\) 35335.7 1.18065 0.590326 0.807165i \(-0.298999\pi\)
0.590326 + 0.807165i \(0.298999\pi\)
\(174\) 0 0
\(175\) −1428.02 53018.3i −0.0466293 1.73121i
\(176\) 0 0
\(177\) 14839.4i 0.473664i
\(178\) 0 0
\(179\) −23669.8 −0.738734 −0.369367 0.929284i \(-0.620425\pi\)
−0.369367 + 0.929284i \(0.620425\pi\)
\(180\) 0 0
\(181\) 7525.59i 0.229712i −0.993382 0.114856i \(-0.963359\pi\)
0.993382 0.114856i \(-0.0366406\pi\)
\(182\) 0 0
\(183\) −54330.9 −1.62235
\(184\) 0 0
\(185\) −20758.2 20206.7i −0.606523 0.590407i
\(186\) 0 0
\(187\) 10791.6i 0.308606i
\(188\) 0 0
\(189\) 50126.5i 1.40328i
\(190\) 0 0
\(191\) 28925.8i 0.792901i 0.918056 + 0.396450i \(0.129758\pi\)
−0.918056 + 0.396450i \(0.870242\pi\)
\(192\) 0 0
\(193\) 48944.4i 1.31398i −0.753900 0.656990i \(-0.771829\pi\)
0.753900 0.656990i \(-0.228171\pi\)
\(194\) 0 0
\(195\) 19443.6 19974.3i 0.511337 0.525295i
\(196\) 0 0
\(197\) 47883.5 1.23382 0.616912 0.787032i \(-0.288383\pi\)
0.616912 + 0.787032i \(0.288383\pi\)
\(198\) 0 0
\(199\) 29644.2i 0.748573i 0.927313 + 0.374286i \(0.122112\pi\)
−0.927313 + 0.374286i \(0.877888\pi\)
\(200\) 0 0
\(201\) 6704.06 0.165938
\(202\) 0 0
\(203\) 32892.6i 0.798190i
\(204\) 0 0
\(205\) −45609.1 44397.2i −1.08529 1.05645i
\(206\) 0 0
\(207\) 8273.12 0.193076
\(208\) 0 0
\(209\) −26273.9 −0.601496
\(210\) 0 0
\(211\) −19653.5 −0.441444 −0.220722 0.975337i \(-0.570841\pi\)
−0.220722 + 0.975337i \(0.570841\pi\)
\(212\) 0 0
\(213\) −68788.5 −1.51620
\(214\) 0 0
\(215\) −23611.8 + 24256.3i −0.510802 + 0.524745i
\(216\) 0 0
\(217\) 143221.i 3.04149i
\(218\) 0 0
\(219\) 42142.3 0.878678
\(220\) 0 0
\(221\) 16538.7i 0.338624i
\(222\) 0 0
\(223\) 60977.7 1.22620 0.613100 0.790005i \(-0.289922\pi\)
0.613100 + 0.790005i \(0.289922\pi\)
\(224\) 0 0
\(225\) −388.849 14436.8i −0.00768097 0.285172i
\(226\) 0 0
\(227\) 2698.14i 0.0523616i 0.999657 + 0.0261808i \(0.00833456\pi\)
−0.999657 + 0.0261808i \(0.991665\pi\)
\(228\) 0 0
\(229\) 68901.3i 1.31388i 0.753942 + 0.656941i \(0.228150\pi\)
−0.753942 + 0.656941i \(0.771850\pi\)
\(230\) 0 0
\(231\) 61740.0i 1.15702i
\(232\) 0 0
\(233\) 83770.9i 1.54305i −0.636196 0.771527i \(-0.719493\pi\)
0.636196 0.771527i \(-0.280507\pi\)
\(234\) 0 0
\(235\) −16148.2 15719.1i −0.292407 0.284637i
\(236\) 0 0
\(237\) −23540.4 −0.419100
\(238\) 0 0
\(239\) 36602.8i 0.640795i −0.947283 0.320397i \(-0.896184\pi\)
0.947283 0.320397i \(-0.103816\pi\)
\(240\) 0 0
\(241\) 48755.9 0.839447 0.419724 0.907652i \(-0.362127\pi\)
0.419724 + 0.907652i \(0.362127\pi\)
\(242\) 0 0
\(243\) 32746.8i 0.554570i
\(244\) 0 0
\(245\) 85991.6 + 83706.6i 1.43260 + 1.39453i
\(246\) 0 0
\(247\) −40266.1 −0.660003
\(248\) 0 0
\(249\) 21897.8 0.353184
\(250\) 0 0
\(251\) −75319.3 −1.19553 −0.597763 0.801673i \(-0.703944\pi\)
−0.597763 + 0.801673i \(0.703944\pi\)
\(252\) 0 0
\(253\) 25529.5 0.398843
\(254\) 0 0
\(255\) 27663.0 + 26928.0i 0.425421 + 0.414117i
\(256\) 0 0
\(257\) 27190.5i 0.411672i −0.978587 0.205836i \(-0.934009\pi\)
0.978587 0.205836i \(-0.0659913\pi\)
\(258\) 0 0
\(259\) 98333.1 1.46589
\(260\) 0 0
\(261\) 8956.62i 0.131481i
\(262\) 0 0
\(263\) 48135.0 0.695905 0.347952 0.937512i \(-0.386877\pi\)
0.347952 + 0.937512i \(0.386877\pi\)
\(264\) 0 0
\(265\) −61077.5 59454.6i −0.869740 0.846630i
\(266\) 0 0
\(267\) 52210.6i 0.732379i
\(268\) 0 0
\(269\) 57856.4i 0.799553i 0.916613 + 0.399776i \(0.130912\pi\)
−0.916613 + 0.399776i \(0.869088\pi\)
\(270\) 0 0
\(271\) 135141.i 1.84013i −0.391765 0.920065i \(-0.628136\pi\)
0.391765 0.920065i \(-0.371864\pi\)
\(272\) 0 0
\(273\) 94619.7i 1.26957i
\(274\) 0 0
\(275\) −1199.93 44549.8i −0.0158668 0.589088i
\(276\) 0 0
\(277\) 66626.3 0.868333 0.434166 0.900833i \(-0.357043\pi\)
0.434166 + 0.900833i \(0.357043\pi\)
\(278\) 0 0
\(279\) 38998.8i 0.501006i
\(280\) 0 0
\(281\) 70518.3 0.893078 0.446539 0.894764i \(-0.352656\pi\)
0.446539 + 0.894764i \(0.352656\pi\)
\(282\) 0 0
\(283\) 5580.69i 0.0696811i 0.999393 + 0.0348406i \(0.0110923\pi\)
−0.999393 + 0.0348406i \(0.988908\pi\)
\(284\) 0 0
\(285\) −65560.3 + 67349.9i −0.807144 + 0.829177i
\(286\) 0 0
\(287\) 216053. 2.62299
\(288\) 0 0
\(289\) 60616.1 0.725758
\(290\) 0 0
\(291\) −93560.8 −1.10486
\(292\) 0 0
\(293\) 85817.1 0.999628 0.499814 0.866133i \(-0.333402\pi\)
0.499814 + 0.866133i \(0.333402\pi\)
\(294\) 0 0
\(295\) 26053.8 + 25361.5i 0.299382 + 0.291427i
\(296\) 0 0
\(297\) 42119.9i 0.477501i
\(298\) 0 0
\(299\) 39125.3 0.437639
\(300\) 0 0
\(301\) 114904.i 1.26824i
\(302\) 0 0
\(303\) −5475.85 −0.0596440
\(304\) 0 0
\(305\) −92854.9 + 95389.5i −0.998171 + 1.02542i
\(306\) 0 0
\(307\) 24380.3i 0.258680i −0.991600 0.129340i \(-0.958714\pi\)
0.991600 0.129340i \(-0.0412858\pi\)
\(308\) 0 0
\(309\) 32041.8i 0.335583i
\(310\) 0 0
\(311\) 145304.i 1.50230i 0.660133 + 0.751149i \(0.270500\pi\)
−0.660133 + 0.751149i \(0.729500\pi\)
\(312\) 0 0
\(313\) 15.3803i 0.000156991i −1.00000 7.84956e-5i \(-0.999975\pi\)
1.00000 7.84956e-5i \(-2.49859e-5\pi\)
\(314\) 0 0
\(315\) 35127.4 + 34194.0i 0.354018 + 0.344611i
\(316\) 0 0
\(317\) −19873.1 −0.197764 −0.0988819 0.995099i \(-0.531527\pi\)
−0.0988819 + 0.995099i \(0.531527\pi\)
\(318\) 0 0
\(319\) 27638.7i 0.271604i
\(320\) 0 0
\(321\) −170429. −1.65399
\(322\) 0 0
\(323\) 55765.7i 0.534517i
\(324\) 0 0
\(325\) −1838.95 68274.8i −0.0174102 0.646388i
\(326\) 0 0
\(327\) −161111. −1.50671
\(328\) 0 0
\(329\) 76494.8 0.706708
\(330\) 0 0
\(331\) 55183.9 0.503682 0.251841 0.967769i \(-0.418964\pi\)
0.251841 + 0.967769i \(0.418964\pi\)
\(332\) 0 0
\(333\) 26776.0 0.241466
\(334\) 0 0
\(335\) 11457.6 11770.4i 0.102095 0.104882i
\(336\) 0 0
\(337\) 172509.i 1.51898i −0.650520 0.759489i \(-0.725449\pi\)
0.650520 0.759489i \(-0.274551\pi\)
\(338\) 0 0
\(339\) −45514.5 −0.396050
\(340\) 0 0
\(341\) 120344.i 1.03494i
\(342\) 0 0
\(343\) −203598. −1.73056
\(344\) 0 0
\(345\) 63702.9 65441.8i 0.535206 0.549815i
\(346\) 0 0
\(347\) 53756.2i 0.446447i 0.974767 + 0.223223i \(0.0716579\pi\)
−0.974767 + 0.223223i \(0.928342\pi\)
\(348\) 0 0
\(349\) 101720.i 0.835136i −0.908646 0.417568i \(-0.862883\pi\)
0.908646 0.417568i \(-0.137117\pi\)
\(350\) 0 0
\(351\) 64550.9i 0.523948i
\(352\) 0 0
\(353\) 119472.i 0.958778i 0.877603 + 0.479389i \(0.159142\pi\)
−0.877603 + 0.479389i \(0.840858\pi\)
\(354\) 0 0
\(355\) −117564. + 120773.i −0.932861 + 0.958325i
\(356\) 0 0
\(357\) −131041. −1.02819
\(358\) 0 0
\(359\) 66348.7i 0.514806i 0.966304 + 0.257403i \(0.0828668\pi\)
−0.966304 + 0.257403i \(0.917133\pi\)
\(360\) 0 0
\(361\) 5449.20 0.0418137
\(362\) 0 0
\(363\) 97508.1i 0.739993i
\(364\) 0 0
\(365\) 72023.8 73989.8i 0.540618 0.555375i
\(366\) 0 0
\(367\) −146492. −1.08763 −0.543817 0.839204i \(-0.683021\pi\)
−0.543817 + 0.839204i \(0.683021\pi\)
\(368\) 0 0
\(369\) 58831.0 0.432069
\(370\) 0 0
\(371\) 289328. 2.10205
\(372\) 0 0
\(373\) −113125. −0.813092 −0.406546 0.913630i \(-0.633267\pi\)
−0.406546 + 0.913630i \(0.633267\pi\)
\(374\) 0 0
\(375\) −117192. 108087.i −0.833364 0.768622i
\(376\) 0 0
\(377\) 42357.7i 0.298023i
\(378\) 0 0
\(379\) −43592.1 −0.303480 −0.151740 0.988420i \(-0.548488\pi\)
−0.151740 + 0.988420i \(0.548488\pi\)
\(380\) 0 0
\(381\) 111096.i 0.765327i
\(382\) 0 0
\(383\) 99396.2 0.677598 0.338799 0.940859i \(-0.389979\pi\)
0.338799 + 0.940859i \(0.389979\pi\)
\(384\) 0 0
\(385\) 108398. + 105517.i 0.731306 + 0.711873i
\(386\) 0 0
\(387\) 31288.2i 0.208909i
\(388\) 0 0
\(389\) 99896.0i 0.660159i −0.943953 0.330080i \(-0.892924\pi\)
0.943953 0.330080i \(-0.107076\pi\)
\(390\) 0 0
\(391\) 54185.7i 0.354431i
\(392\) 0 0
\(393\) 92903.6i 0.601516i
\(394\) 0 0
\(395\) −40232.0 + 41330.3i −0.257856 + 0.264895i
\(396\) 0 0
\(397\) 55234.5 0.350453 0.175226 0.984528i \(-0.443934\pi\)
0.175226 + 0.984528i \(0.443934\pi\)
\(398\) 0 0
\(399\) 319041.i 2.00401i
\(400\) 0 0
\(401\) −40688.8 −0.253038 −0.126519 0.991964i \(-0.540380\pi\)
−0.126519 + 0.991964i \(0.540380\pi\)
\(402\) 0 0
\(403\) 184434.i 1.13561i
\(404\) 0 0
\(405\) −141499. 137739.i −0.862665 0.839743i
\(406\) 0 0
\(407\) 82626.5 0.498804
\(408\) 0 0
\(409\) −313804. −1.87591 −0.937955 0.346757i \(-0.887283\pi\)
−0.937955 + 0.346757i \(0.887283\pi\)
\(410\) 0 0
\(411\) −152806. −0.904603
\(412\) 0 0
\(413\) −123418. −0.723567
\(414\) 0 0
\(415\) 37424.6 38446.2i 0.217301 0.223232i
\(416\) 0 0
\(417\) 261190.i 1.50205i
\(418\) 0 0
\(419\) −264287. −1.50538 −0.752692 0.658373i \(-0.771245\pi\)
−0.752692 + 0.658373i \(0.771245\pi\)
\(420\) 0 0
\(421\) 179764.i 1.01424i −0.861877 0.507118i \(-0.830711\pi\)
0.861877 0.507118i \(-0.169289\pi\)
\(422\) 0 0
\(423\) 20829.4 0.116412
\(424\) 0 0
\(425\) 94555.6 2546.81i 0.523491 0.0141000i
\(426\) 0 0
\(427\) 451866.i 2.47830i
\(428\) 0 0
\(429\) 79506.2i 0.432003i
\(430\) 0 0
\(431\) 151073.i 0.813266i −0.913592 0.406633i \(-0.866703\pi\)
0.913592 0.406633i \(-0.133297\pi\)
\(432\) 0 0
\(433\) 133641.i 0.712796i −0.934334 0.356398i \(-0.884005\pi\)
0.934334 0.356398i \(-0.115995\pi\)
\(434\) 0 0
\(435\) 70848.4 + 68965.8i 0.374413 + 0.364465i
\(436\) 0 0
\(437\) −131924. −0.690812
\(438\) 0 0
\(439\) 74613.0i 0.387156i −0.981085 0.193578i \(-0.937991\pi\)
0.981085 0.193578i \(-0.0620092\pi\)
\(440\) 0 0
\(441\) −110920. −0.570339
\(442\) 0 0
\(443\) 110554.i 0.563334i 0.959512 + 0.281667i \(0.0908874\pi\)
−0.959512 + 0.281667i \(0.909113\pi\)
\(444\) 0 0
\(445\) 91666.8 + 89231.1i 0.462905 + 0.450605i
\(446\) 0 0
\(447\) 104786. 0.524432
\(448\) 0 0
\(449\) 9722.73 0.0482276 0.0241138 0.999709i \(-0.492324\pi\)
0.0241138 + 0.999709i \(0.492324\pi\)
\(450\) 0 0
\(451\) 181543. 0.892539
\(452\) 0 0
\(453\) 150390. 0.732863
\(454\) 0 0
\(455\) 166125. + 161711.i 0.802440 + 0.781117i
\(456\) 0 0
\(457\) 331629.i 1.58789i 0.607990 + 0.793945i \(0.291976\pi\)
−0.607990 + 0.793945i \(0.708024\pi\)
\(458\) 0 0
\(459\) 89398.3 0.424330
\(460\) 0 0
\(461\) 86774.7i 0.408311i 0.978938 + 0.204156i \(0.0654449\pi\)
−0.978938 + 0.204156i \(0.934555\pi\)
\(462\) 0 0
\(463\) 35664.8 0.166371 0.0831856 0.996534i \(-0.473491\pi\)
0.0831856 + 0.996534i \(0.473491\pi\)
\(464\) 0 0
\(465\) 308487. + 300290.i 1.42670 + 1.38879i
\(466\) 0 0
\(467\) 293718.i 1.34678i −0.739288 0.673389i \(-0.764838\pi\)
0.739288 0.673389i \(-0.235162\pi\)
\(468\) 0 0
\(469\) 55757.1i 0.253486i
\(470\) 0 0
\(471\) 283042.i 1.27588i
\(472\) 0 0
\(473\) 96550.3i 0.431550i
\(474\) 0 0
\(475\) 6200.61 + 230210.i 0.0274819 + 1.02032i
\(476\) 0 0
\(477\) 78783.6 0.346257
\(478\) 0 0
\(479\) 435529.i 1.89822i 0.314945 + 0.949110i \(0.398014\pi\)
−0.314945 + 0.949110i \(0.601986\pi\)
\(480\) 0 0
\(481\) 126629. 0.547323
\(482\) 0 0
\(483\) 310002.i 1.32883i
\(484\) 0 0
\(485\) −159901. + 164266.i −0.679779 + 0.698335i
\(486\) 0 0
\(487\) −187286. −0.789672 −0.394836 0.918752i \(-0.629199\pi\)
−0.394836 + 0.918752i \(0.629199\pi\)
\(488\) 0 0
\(489\) 38088.6 0.159286
\(490\) 0 0
\(491\) 287674. 1.19327 0.596634 0.802513i \(-0.296504\pi\)
0.596634 + 0.802513i \(0.296504\pi\)
\(492\) 0 0
\(493\) −58662.4 −0.241360
\(494\) 0 0
\(495\) 29516.6 + 28732.3i 0.120464 + 0.117263i
\(496\) 0 0
\(497\) 572109.i 2.31615i
\(498\) 0 0
\(499\) −175430. −0.704537 −0.352268 0.935899i \(-0.614590\pi\)
−0.352268 + 0.935899i \(0.614590\pi\)
\(500\) 0 0
\(501\) 211386.i 0.842172i
\(502\) 0 0
\(503\) 95682.5 0.378178 0.189089 0.981960i \(-0.439447\pi\)
0.189089 + 0.981960i \(0.439447\pi\)
\(504\) 0 0
\(505\) −9358.57 + 9614.03i −0.0366967 + 0.0376984i
\(506\) 0 0
\(507\) 169569.i 0.659676i
\(508\) 0 0
\(509\) 370388.i 1.42962i 0.699318 + 0.714811i \(0.253487\pi\)
−0.699318 + 0.714811i \(0.746513\pi\)
\(510\) 0 0
\(511\) 350494.i 1.34227i
\(512\) 0 0
\(513\) 217654.i 0.827050i
\(514\) 0 0
\(515\) −56256.2 54761.3i −0.212107 0.206471i
\(516\) 0 0
\(517\) 64276.4 0.240475
\(518\) 0 0
\(519\) 360541.i 1.33850i
\(520\) 0 0
\(521\) −259622. −0.956458 −0.478229 0.878235i \(-0.658721\pi\)
−0.478229 + 0.878235i \(0.658721\pi\)
\(522\) 0 0
\(523\) 108562.i 0.396895i 0.980111 + 0.198448i \(0.0635900\pi\)
−0.980111 + 0.198448i \(0.936410\pi\)
\(524\) 0 0
\(525\) 540961. 14570.5i 1.96267 0.0528637i
\(526\) 0 0
\(527\) −255427. −0.919700
\(528\) 0 0
\(529\) −151655. −0.541933
\(530\) 0 0
\(531\) −33606.6 −0.119189
\(532\) 0 0
\(533\) 278224. 0.979356
\(534\) 0 0
\(535\) −291273. + 299224.i −1.01764 + 1.04542i
\(536\) 0 0
\(537\) 241510.i 0.837502i
\(538\) 0 0
\(539\) −342282. −1.17817
\(540\) 0 0
\(541\) 280006.i 0.956694i 0.878171 + 0.478347i \(0.158764\pi\)
−0.878171 + 0.478347i \(0.841236\pi\)
\(542\) 0 0
\(543\) 76785.8 0.260424
\(544\) 0 0
\(545\) −275348. + 282865.i −0.927021 + 0.952326i
\(546\) 0 0
\(547\) 72377.7i 0.241897i 0.992659 + 0.120948i \(0.0385936\pi\)
−0.992659 + 0.120948i \(0.961406\pi\)
\(548\) 0 0
\(549\) 123043.i 0.408235i
\(550\) 0 0
\(551\) 142823.i 0.470429i
\(552\) 0 0
\(553\) 195784.i 0.640216i
\(554\) 0 0
\(555\) 206175. 211803.i 0.669344 0.687615i
\(556\) 0 0
\(557\) 402974. 1.29887 0.649437 0.760416i \(-0.275005\pi\)
0.649437 + 0.760416i \(0.275005\pi\)
\(558\) 0 0
\(559\) 147968.i 0.473527i
\(560\) 0 0
\(561\) −110110. −0.349866
\(562\) 0 0
\(563\) 244892.i 0.772606i −0.922372 0.386303i \(-0.873752\pi\)
0.922372 0.386303i \(-0.126248\pi\)
\(564\) 0 0
\(565\) −77787.0 + 79910.4i −0.243675 + 0.250326i
\(566\) 0 0
\(567\) 670288. 2.08495
\(568\) 0 0
\(569\) 644997. 1.99220 0.996100 0.0882331i \(-0.0281220\pi\)
0.996100 + 0.0882331i \(0.0281220\pi\)
\(570\) 0 0
\(571\) −198216. −0.607947 −0.303973 0.952681i \(-0.598313\pi\)
−0.303973 + 0.952681i \(0.598313\pi\)
\(572\) 0 0
\(573\) −295139. −0.898911
\(574\) 0 0
\(575\) −6024.94 223688.i −0.0182229 0.676561i
\(576\) 0 0
\(577\) 218459.i 0.656172i −0.944648 0.328086i \(-0.893596\pi\)
0.944648 0.328086i \(-0.106404\pi\)
\(578\) 0 0
\(579\) 499394. 1.48966
\(580\) 0 0
\(581\) 182122.i 0.539523i
\(582\) 0 0
\(583\) 243114. 0.715274
\(584\) 0 0
\(585\) 45235.7 + 44033.7i 0.132181 + 0.128669i
\(586\) 0 0
\(587\) 330673.i 0.959673i 0.877358 + 0.479836i \(0.159304\pi\)
−0.877358 + 0.479836i \(0.840696\pi\)
\(588\) 0 0
\(589\) 621878.i 1.79256i
\(590\) 0 0
\(591\) 488569.i 1.39879i
\(592\) 0 0
\(593\) 499960.i 1.42176i 0.703314 + 0.710879i \(0.251703\pi\)
−0.703314 + 0.710879i \(0.748297\pi\)
\(594\) 0 0
\(595\) −223958. + 230071.i −0.632604 + 0.649873i
\(596\) 0 0
\(597\) −302469. −0.848657
\(598\) 0 0
\(599\) 407848.i 1.13670i −0.822788 0.568348i \(-0.807583\pi\)
0.822788 0.568348i \(-0.192417\pi\)
\(600\) 0 0
\(601\) 441217. 1.22153 0.610763 0.791813i \(-0.290863\pi\)
0.610763 + 0.791813i \(0.290863\pi\)
\(602\) 0 0
\(603\) 15182.6i 0.0417553i
\(604\) 0 0
\(605\) −171196. 166647.i −0.467718 0.455290i
\(606\) 0 0
\(607\) 71921.7 0.195201 0.0976006 0.995226i \(-0.468883\pi\)
0.0976006 + 0.995226i \(0.468883\pi\)
\(608\) 0 0
\(609\) −335613. −0.904908
\(610\) 0 0
\(611\) 98506.9 0.263866
\(612\) 0 0
\(613\) 527274. 1.40319 0.701593 0.712577i \(-0.252472\pi\)
0.701593 + 0.712577i \(0.252472\pi\)
\(614\) 0 0
\(615\) 452998. 465363.i 1.19769 1.23039i
\(616\) 0 0
\(617\) 91867.0i 0.241318i 0.992694 + 0.120659i \(0.0385007\pi\)
−0.992694 + 0.120659i \(0.961499\pi\)
\(618\) 0 0
\(619\) 633381. 1.65304 0.826521 0.562906i \(-0.190317\pi\)
0.826521 + 0.562906i \(0.190317\pi\)
\(620\) 0 0
\(621\) 211488.i 0.548405i
\(622\) 0 0
\(623\) −434231. −1.11878
\(624\) 0 0
\(625\) −390059. + 21027.4i −0.998550 + 0.0538300i
\(626\) 0 0
\(627\) 268081.i 0.681915i
\(628\) 0 0
\(629\) 175372.i 0.443261i
\(630\) 0 0
\(631\) 128753.i 0.323368i 0.986843 + 0.161684i \(0.0516926\pi\)
−0.986843 + 0.161684i \(0.948307\pi\)
\(632\) 0 0
\(633\) 200531.i 0.500465i
\(634\) 0 0
\(635\) 195052. + 189869.i 0.483730 + 0.470877i
\(636\) 0 0
\(637\) −524565. −1.29277
\(638\) 0 0
\(639\) 155785.i 0.381525i
\(640\) 0 0
\(641\) 391151. 0.951980 0.475990 0.879451i \(-0.342090\pi\)
0.475990 + 0.879451i \(0.342090\pi\)
\(642\) 0 0
\(643\) 720581.i 1.74285i −0.490525 0.871427i \(-0.663195\pi\)
0.490525 0.871427i \(-0.336805\pi\)
\(644\) 0 0
\(645\) −247495. 240918.i −0.594903 0.579096i
\(646\) 0 0
\(647\) −403682. −0.964341 −0.482171 0.876077i \(-0.660151\pi\)
−0.482171 + 0.876077i \(0.660151\pi\)
\(648\) 0 0
\(649\) −103705. −0.246212
\(650\) 0 0
\(651\) −1.46132e6 −3.44814
\(652\) 0 0
\(653\) −404377. −0.948332 −0.474166 0.880436i \(-0.657250\pi\)
−0.474166 + 0.880436i \(0.657250\pi\)
\(654\) 0 0
\(655\) 163112. + 158778.i 0.380192 + 0.370090i
\(656\) 0 0
\(657\) 95439.1i 0.221104i
\(658\) 0 0
\(659\) −179720. −0.413834 −0.206917 0.978359i \(-0.566343\pi\)
−0.206917 + 0.978359i \(0.566343\pi\)
\(660\) 0 0
\(661\) 512413.i 1.17278i 0.810028 + 0.586391i \(0.199452\pi\)
−0.810028 + 0.586391i \(0.800548\pi\)
\(662\) 0 0
\(663\) −168750. −0.383898
\(664\) 0 0
\(665\) −560144. 545260.i −1.26665 1.23299i
\(666\) 0 0
\(667\) 138776.i 0.311935i
\(668\) 0 0
\(669\) 622174.i 1.39014i
\(670\) 0 0
\(671\) 379690.i 0.843304i
\(672\) 0 0
\(673\) 136431.i 0.301220i 0.988593 + 0.150610i \(0.0481238\pi\)
−0.988593 + 0.150610i \(0.951876\pi\)
\(674\) 0 0
\(675\) −369052. + 9940.24i −0.809990 + 0.0218167i
\(676\) 0 0
\(677\) −185710. −0.405190 −0.202595 0.979263i \(-0.564937\pi\)
−0.202595 + 0.979263i \(0.564937\pi\)
\(678\) 0 0
\(679\) 778138.i 1.68778i
\(680\) 0 0
\(681\) −27529.9 −0.0593623
\(682\) 0 0
\(683\) 521505.i 1.11794i 0.829189 + 0.558968i \(0.188802\pi\)
−0.829189 + 0.558968i \(0.811198\pi\)
\(684\) 0 0
\(685\) −261156. + 268284.i −0.556568 + 0.571761i
\(686\) 0 0
\(687\) −703020. −1.48955
\(688\) 0 0
\(689\) 372584. 0.784849
\(690\) 0 0
\(691\) 159485. 0.334012 0.167006 0.985956i \(-0.446590\pi\)
0.167006 + 0.985956i \(0.446590\pi\)
\(692\) 0 0
\(693\) −139822. −0.291144
\(694\) 0 0
\(695\) −458576. 446391.i −0.949383 0.924156i
\(696\) 0 0
\(697\) 385320.i 0.793152i
\(698\) 0 0
\(699\) 854739. 1.74936
\(700\) 0 0
\(701\) 924458.i 1.88127i −0.339418 0.940635i \(-0.610230\pi\)
0.339418 0.940635i \(-0.389770\pi\)
\(702\) 0 0
\(703\) −426971. −0.863949
\(704\) 0 0
\(705\) 160386. 164765.i 0.322693 0.331502i
\(706\) 0 0
\(707\) 45542.2i 0.0911120i
\(708\) 0 0
\(709\) 49979.9i 0.0994267i −0.998764 0.0497134i \(-0.984169\pi\)
0.998764 0.0497134i \(-0.0158308\pi\)
\(710\) 0 0
\(711\) 53311.7i 0.105459i
\(712\) 0 0
\(713\) 604259.i 1.18862i
\(714\) 0 0
\(715\) 139590. + 135881.i 0.273050 + 0.265795i
\(716\) 0 0
\(717\) 373470. 0.726469
\(718\) 0 0
\(719\) 823502.i 1.59297i 0.604659 + 0.796484i \(0.293309\pi\)
−0.604659 + 0.796484i \(0.706691\pi\)
\(720\) 0 0
\(721\) 266489. 0.512635
\(722\) 0 0
\(723\) 497471.i 0.951681i
\(724\) 0 0
\(725\) 242168. 6522.70i 0.460725 0.0124094i
\(726\) 0 0
\(727\) 791865. 1.49824 0.749122 0.662432i \(-0.230476\pi\)
0.749122 + 0.662432i \(0.230476\pi\)
\(728\) 0 0
\(729\) −305673. −0.575177
\(730\) 0 0
\(731\) 204925. 0.383496
\(732\) 0 0
\(733\) −586208. −1.09105 −0.545524 0.838095i \(-0.683669\pi\)
−0.545524 + 0.838095i \(0.683669\pi\)
\(734\) 0 0
\(735\) −854084. + 877398.i −1.58098 + 1.62413i
\(736\) 0 0
\(737\) 46851.1i 0.0862551i
\(738\) 0 0
\(739\) −51496.3 −0.0942947 −0.0471474 0.998888i \(-0.515013\pi\)
−0.0471474 + 0.998888i \(0.515013\pi\)
\(740\) 0 0
\(741\) 410847.i 0.748245i
\(742\) 0 0
\(743\) 333510. 0.604132 0.302066 0.953287i \(-0.402324\pi\)
0.302066 + 0.953287i \(0.402324\pi\)
\(744\) 0 0
\(745\) 179086. 183975.i 0.322663 0.331471i
\(746\) 0 0
\(747\) 49591.6i 0.0888724i
\(748\) 0 0
\(749\) 1.41744e6i 2.52663i
\(750\) 0 0
\(751\) 315513.i 0.559419i −0.960085 0.279710i \(-0.909762\pi\)
0.960085 0.279710i \(-0.0902382\pi\)
\(752\) 0 0
\(753\) 768505.i 1.35537i
\(754\) 0 0
\(755\) 257026. 264042.i 0.450903 0.463211i
\(756\) 0 0
\(757\) 559184. 0.975806 0.487903 0.872898i \(-0.337762\pi\)
0.487903 + 0.872898i \(0.337762\pi\)
\(758\) 0 0
\(759\) 260486.i 0.452168i
\(760\) 0 0
\(761\) −432702. −0.747170 −0.373585 0.927596i \(-0.621872\pi\)
−0.373585 + 0.927596i \(0.621872\pi\)
\(762\) 0 0
\(763\) 1.33995e6i 2.30165i
\(764\) 0 0
\(765\) −60983.4 + 62648.1i −0.104205 + 0.107050i
\(766\) 0 0
\(767\) −158933. −0.270161
\(768\) 0 0
\(769\) 258310. 0.436805 0.218403 0.975859i \(-0.429915\pi\)
0.218403 + 0.975859i \(0.429915\pi\)
\(770\) 0 0
\(771\) 277433. 0.466712
\(772\) 0 0
\(773\) 280428. 0.469312 0.234656 0.972078i \(-0.424604\pi\)
0.234656 + 0.972078i \(0.424604\pi\)
\(774\) 0 0
\(775\) 1.05445e6 28401.1i 1.75558 0.0472859i
\(776\) 0 0
\(777\) 1.00332e6i 1.66187i
\(778\) 0 0
\(779\) −938122. −1.54591
\(780\) 0 0
\(781\) 480727.i 0.788127i
\(782\) 0 0
\(783\) 228960. 0.373453
\(784\) 0 0
\(785\) −496940. 483735.i −0.806426 0.784998i
\(786\) 0 0
\(787\) 1.17964e6i 1.90459i 0.305177 + 0.952296i \(0.401284\pi\)
−0.305177 + 0.952296i \(0.598716\pi\)
\(788\) 0 0
\(789\) 491136.i 0.788947i
\(790\) 0 0
\(791\) 378540.i 0.605005i
\(792\) 0 0
\(793\) 581894.i 0.925332i
\(794\) 0 0
\(795\) 606633. 623192.i 0.959824 0.986024i
\(796\) 0 0
\(797\) −627511. −0.987881 −0.493940 0.869496i \(-0.664444\pi\)
−0.493940 + 0.869496i \(0.664444\pi\)
\(798\) 0 0
\(799\) 136425.i 0.213698i
\(800\) 0 0
\(801\) −118241. −0.184290
\(802\) 0 0
\(803\) 294510.i 0.456740i
\(804\) 0 0
\(805\) 544274. + 529812.i 0.839897 + 0.817579i
\(806\) 0 0
\(807\) −590326. −0.906453
\(808\) 0 0
\(809\) −328656. −0.502163 −0.251081 0.967966i \(-0.580786\pi\)
−0.251081 + 0.967966i \(0.580786\pi\)
\(810\) 0 0
\(811\) −510808. −0.776634 −0.388317 0.921526i \(-0.626943\pi\)
−0.388317 + 0.921526i \(0.626943\pi\)
\(812\) 0 0
\(813\) 1.37888e6 2.08616
\(814\) 0 0
\(815\) 65095.8 66872.7i 0.0980026 0.100678i
\(816\) 0 0
\(817\) 498923.i 0.747462i
\(818\) 0 0
\(819\) −214284. −0.319464
\(820\) 0 0
\(821\) 37920.6i 0.0562586i −0.999604 0.0281293i \(-0.991045\pi\)
0.999604 0.0281293i \(-0.00895502\pi\)
\(822\) 0 0
\(823\) 449975. 0.664337 0.332168 0.943220i \(-0.392220\pi\)
0.332168 + 0.943220i \(0.392220\pi\)
\(824\) 0 0
\(825\) 454554. 12243.2i 0.667849 0.0179882i
\(826\) 0 0
\(827\) 41920.8i 0.0612940i 0.999530 + 0.0306470i \(0.00975678\pi\)
−0.999530 + 0.0306470i \(0.990243\pi\)
\(828\) 0 0
\(829\) 1.28858e6i 1.87500i 0.347985 + 0.937500i \(0.386866\pi\)
−0.347985 + 0.937500i \(0.613134\pi\)
\(830\) 0 0
\(831\) 679808.i 0.984429i
\(832\) 0 0
\(833\) 726484.i 1.04697i
\(834\) 0 0
\(835\) −371134. 361272.i −0.532301 0.518157i
\(836\) 0 0
\(837\) 996936. 1.42304
\(838\) 0 0
\(839\) 506198.i 0.719112i −0.933124 0.359556i \(-0.882928\pi\)
0.933124 0.359556i \(-0.117072\pi\)
\(840\) 0 0
\(841\) 557039. 0.787579
\(842\) 0 0
\(843\) 719519.i 1.01248i
\(844\) 0 0
\(845\) −297715. 289804.i −0.416953 0.405874i
\(846\) 0 0
\(847\) 810968. 1.13041
\(848\) 0 0
\(849\) −56941.5 −0.0789975
\(850\) 0 0
\(851\) 414874. 0.572872
\(852\) 0 0
\(853\) −656590. −0.902395 −0.451197 0.892424i \(-0.649003\pi\)
−0.451197 + 0.892424i \(0.649003\pi\)
\(854\) 0 0
\(855\) −152527. 148474.i −0.208648 0.203103i
\(856\) 0 0
\(857\) 388067.i 0.528379i 0.964471 + 0.264189i \(0.0851044\pi\)
−0.964471 + 0.264189i \(0.914896\pi\)
\(858\) 0 0
\(859\) −282145. −0.382372 −0.191186 0.981554i \(-0.561233\pi\)
−0.191186 + 0.981554i \(0.561233\pi\)
\(860\) 0 0
\(861\) 2.20445e6i 2.97368i
\(862\) 0 0
\(863\) −1.01110e6 −1.35761 −0.678804 0.734320i \(-0.737501\pi\)
−0.678804 + 0.734320i \(0.737501\pi\)
\(864\) 0 0
\(865\) 633007. + 616186.i 0.846011 + 0.823531i
\(866\) 0 0
\(867\) 618484.i 0.822792i
\(868\) 0 0
\(869\) 164512.i 0.217850i
\(870\) 0 0
\(871\) 71801.7i 0.0946452i
\(872\) 0 0
\(873\) 211886.i 0.278018i
\(874\) 0 0
\(875\) 898955. 974676.i 1.17414 1.27305i
\(876\) 0 0
\(877\) 190192. 0.247283 0.123641 0.992327i \(-0.460543\pi\)
0.123641 + 0.992327i \(0.460543\pi\)
\(878\) 0 0
\(879\) 875617.i 1.13328i
\(880\) 0 0
\(881\) 237801. 0.306380 0.153190 0.988197i \(-0.451045\pi\)
0.153190 + 0.988197i \(0.451045\pi\)
\(882\) 0 0
\(883\) 175861.i 0.225552i −0.993620 0.112776i \(-0.964026\pi\)
0.993620 0.112776i \(-0.0359743\pi\)
\(884\) 0 0
\(885\) −258770. + 265834.i −0.330391 + 0.339410i
\(886\) 0 0
\(887\) 1.36691e6 1.73738 0.868688 0.495360i \(-0.164964\pi\)
0.868688 + 0.495360i \(0.164964\pi\)
\(888\) 0 0
\(889\) −923974. −1.16911
\(890\) 0 0
\(891\) 563224. 0.709456
\(892\) 0 0
\(893\) −332148. −0.416513
\(894\) 0 0
\(895\) −424022. 412755.i −0.529349 0.515283i
\(896\) 0 0
\(897\) 399207.i 0.496151i
\(898\) 0 0
\(899\) −654181. −0.809428
\(900\) 0 0
\(901\) 516002.i 0.635626i
\(902\) 0 0
\(903\) 1.17240e6 1.43780
\(904\) 0 0
\(905\) 131232. 134814.i 0.160229 0.164603i
\(906\) 0 0
\(907\) 699123.i 0.849843i 0.905230 + 0.424922i \(0.139698\pi\)
−0.905230 + 0.424922i \(0.860302\pi\)
\(908\) 0 0
\(909\) 12401.1i 0.0150083i
\(910\) 0 0
\(911\) 1.27217e6i 1.53288i 0.642315 + 0.766441i \(0.277974\pi\)
−0.642315 + 0.766441i \(0.722026\pi\)
\(912\) 0 0
\(913\) 153032.i 0.183586i
\(914\) 0 0
\(915\) −973288. 947426.i −1.16252 1.13163i
\(916\) 0 0
\(917\) −772672. −0.918875
\(918\) 0 0
\(919\) 507149.i 0.600488i 0.953862 + 0.300244i \(0.0970681\pi\)
−0.953862 + 0.300244i \(0.902932\pi\)
\(920\) 0 0
\(921\) 248760. 0.293265
\(922\) 0 0
\(923\) 736738.i 0.864788i
\(924\) 0 0
\(925\) −19499.7 723967.i −0.0227900 0.846127i
\(926\) 0 0
\(927\) 72564.6 0.0844433
\(928\) 0 0
\(929\) −31736.2 −0.0367725 −0.0183862 0.999831i \(-0.505853\pi\)
−0.0183862 + 0.999831i \(0.505853\pi\)
\(930\) 0 0
\(931\) 1.76874e6 2.04063
\(932\) 0 0
\(933\) −1.48258e6 −1.70315
\(934\) 0 0
\(935\) −188185. + 193322.i −0.215260 + 0.221135i
\(936\) 0 0
\(937\) 1.23459e6i 1.40619i −0.711096 0.703094i \(-0.751801\pi\)
0.711096 0.703094i \(-0.248199\pi\)
\(938\) 0 0
\(939\) 156.930 0.000177981
\(940\) 0 0
\(941\) 126651.i 0.143031i −0.997439 0.0715156i \(-0.977216\pi\)
0.997439 0.0715156i \(-0.0227836\pi\)
\(942\) 0 0
\(943\) 911544. 1.02507
\(944\) 0 0
\(945\) 874110. 897970.i 0.978819 1.00554i
\(946\) 0 0
\(947\) 213933.i 0.238549i 0.992861 + 0.119275i \(0.0380569\pi\)
−0.992861 + 0.119275i \(0.961943\pi\)
\(948\) 0 0
\(949\) 451352.i 0.501168i
\(950\) 0 0
\(951\) 202771.i 0.224205i
\(952\) 0 0
\(953\) 281174.i 0.309592i 0.987946 + 0.154796i \(0.0494720\pi\)
−0.987946 + 0.154796i \(0.950528\pi\)
\(954\) 0 0
\(955\) −504410. + 518179.i −0.553066 + 0.568163i
\(956\) 0 0
\(957\) −282006. −0.307918
\(958\) 0 0
\(959\) 1.27088e6i 1.38187i
\(960\) 0 0
\(961\) −1.92491e6 −2.08431
\(962\) 0 0
\(963\) 385968.i 0.416197i
\(964\) 0 0
\(965\) 853496. 876794.i 0.916530 0.941549i
\(966\) 0 0
\(967\) −1.15290e6 −1.23293 −0.616467 0.787381i \(-0.711437\pi\)
−0.616467 + 0.787381i \(0.711437\pi\)
\(968\) 0 0
\(969\) 568994. 0.605982
\(970\) 0 0
\(971\) −857201. −0.909169 −0.454584 0.890704i \(-0.650212\pi\)
−0.454584 + 0.890704i \(0.650212\pi\)
\(972\) 0 0
\(973\) 2.17230e6 2.29453
\(974\) 0 0
\(975\) 696628. 18763.4i 0.732810 0.0197379i
\(976\) 0 0
\(977\) 1.68459e6i 1.76484i 0.470464 + 0.882419i \(0.344086\pi\)
−0.470464 + 0.882419i \(0.655914\pi\)
\(978\) 0 0
\(979\) −364872. −0.380693
\(980\) 0 0
\(981\) 364866.i 0.379136i
\(982\) 0 0
\(983\) −501269. −0.518756 −0.259378 0.965776i \(-0.583518\pi\)
−0.259378 + 0.965776i \(0.583518\pi\)
\(984\) 0 0
\(985\) 857788. + 834995.i 0.884112 + 0.860620i
\(986\) 0 0
\(987\) 780500.i 0.801195i
\(988\) 0 0
\(989\) 484787.i 0.495631i
\(990\) 0 0
\(991\) 650776.i 0.662650i −0.943517 0.331325i \(-0.892504\pi\)
0.943517 0.331325i \(-0.107496\pi\)
\(992\) 0 0
\(993\) 563058.i 0.571024i
\(994\) 0 0
\(995\) −516938. + 531049.i −0.522146 + 0.536400i
\(996\) 0 0
\(997\) 724549. 0.728916 0.364458 0.931220i \(-0.381254\pi\)
0.364458 + 0.931220i \(0.381254\pi\)
\(998\) 0 0
\(999\) 684480.i 0.685851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.5.e.c.79.16 20
4.3 odd 2 40.5.e.c.19.10 yes 20
5.2 odd 4 800.5.g.i.751.15 20
5.3 odd 4 800.5.g.i.751.6 20
5.4 even 2 inner 160.5.e.c.79.5 20
8.3 odd 2 inner 160.5.e.c.79.15 20
8.5 even 2 40.5.e.c.19.12 yes 20
20.3 even 4 200.5.g.i.51.20 20
20.7 even 4 200.5.g.i.51.1 20
20.19 odd 2 40.5.e.c.19.11 yes 20
40.3 even 4 800.5.g.i.751.5 20
40.13 odd 4 200.5.g.i.51.19 20
40.19 odd 2 inner 160.5.e.c.79.6 20
40.27 even 4 800.5.g.i.751.16 20
40.29 even 2 40.5.e.c.19.9 20
40.37 odd 4 200.5.g.i.51.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.e.c.19.9 20 40.29 even 2
40.5.e.c.19.10 yes 20 4.3 odd 2
40.5.e.c.19.11 yes 20 20.19 odd 2
40.5.e.c.19.12 yes 20 8.5 even 2
160.5.e.c.79.5 20 5.4 even 2 inner
160.5.e.c.79.6 20 40.19 odd 2 inner
160.5.e.c.79.15 20 8.3 odd 2 inner
160.5.e.c.79.16 20 1.1 even 1 trivial
200.5.g.i.51.1 20 20.7 even 4
200.5.g.i.51.2 20 40.37 odd 4
200.5.g.i.51.19 20 40.13 odd 4
200.5.g.i.51.20 20 20.3 even 4
800.5.g.i.751.5 20 40.3 even 4
800.5.g.i.751.6 20 5.3 odd 4
800.5.g.i.751.15 20 5.2 odd 4
800.5.g.i.751.16 20 40.27 even 4