Properties

Label 800.6.f.d.49.20
Level $800$
Weight $6$
Character 800.49
Analytic conductor $128.307$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.20
Character \(\chi\) \(=\) 800.49
Dual form 800.6.f.d.49.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.457817 q^{3} -195.837i q^{7} -242.790 q^{9} +358.513i q^{11} +951.826 q^{13} -2101.46i q^{17} +2882.77i q^{19} +89.6574i q^{21} +1537.16i q^{23} +222.403 q^{27} +3875.11i q^{29} -5182.92 q^{31} -164.133i q^{33} -9494.97 q^{37} -435.762 q^{39} +3802.93 q^{41} +4330.63 q^{43} +12506.7i q^{47} -21545.1 q^{49} +962.084i q^{51} +25075.5 q^{53} -1319.78i q^{57} -18453.8i q^{59} +17488.7i q^{61} +47547.3i q^{63} +7490.73 q^{67} -703.739i q^{69} -1056.69 q^{71} -55286.5i q^{73} +70210.1 q^{77} +89387.0 q^{79} +58896.2 q^{81} -103847. q^{83} -1774.09i q^{87} +38137.1 q^{89} -186403. i q^{91} +2372.83 q^{93} +22739.9i q^{97} -87043.5i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 3240 q^{9} - 14320 q^{31} + 44904 q^{39} - 11608 q^{41} - 125304 q^{49} + 15448 q^{71} - 15560 q^{79} + 193968 q^{81} + 6320 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.457817 −0.0293689 −0.0146845 0.999892i \(-0.504674\pi\)
−0.0146845 + 0.999892i \(0.504674\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 195.837i − 1.51060i −0.655379 0.755300i \(-0.727491\pi\)
0.655379 0.755300i \(-0.272509\pi\)
\(8\) 0 0
\(9\) −242.790 −0.999137
\(10\) 0 0
\(11\) 358.513i 0.893353i 0.894696 + 0.446676i \(0.147392\pi\)
−0.894696 + 0.446676i \(0.852608\pi\)
\(12\) 0 0
\(13\) 951.826 1.56207 0.781033 0.624490i \(-0.214693\pi\)
0.781033 + 0.624490i \(0.214693\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2101.46i − 1.76360i −0.471628 0.881798i \(-0.656333\pi\)
0.471628 0.881798i \(-0.343667\pi\)
\(18\) 0 0
\(19\) 2882.77i 1.83200i 0.401178 + 0.916000i \(0.368601\pi\)
−0.401178 + 0.916000i \(0.631399\pi\)
\(20\) 0 0
\(21\) 89.6574i 0.0443648i
\(22\) 0 0
\(23\) 1537.16i 0.605899i 0.953007 + 0.302950i \(0.0979714\pi\)
−0.953007 + 0.302950i \(0.902029\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 222.403 0.0587126
\(28\) 0 0
\(29\) 3875.11i 0.855636i 0.903865 + 0.427818i \(0.140718\pi\)
−0.903865 + 0.427818i \(0.859282\pi\)
\(30\) 0 0
\(31\) −5182.92 −0.968658 −0.484329 0.874886i \(-0.660936\pi\)
−0.484329 + 0.874886i \(0.660936\pi\)
\(32\) 0 0
\(33\) − 164.133i − 0.0262368i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9494.97 −1.14022 −0.570111 0.821568i \(-0.693100\pi\)
−0.570111 + 0.821568i \(0.693100\pi\)
\(38\) 0 0
\(39\) −435.762 −0.0458762
\(40\) 0 0
\(41\) 3802.93 0.353312 0.176656 0.984273i \(-0.443472\pi\)
0.176656 + 0.984273i \(0.443472\pi\)
\(42\) 0 0
\(43\) 4330.63 0.357174 0.178587 0.983924i \(-0.442847\pi\)
0.178587 + 0.983924i \(0.442847\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12506.7i 0.825842i 0.910767 + 0.412921i \(0.135492\pi\)
−0.910767 + 0.412921i \(0.864508\pi\)
\(48\) 0 0
\(49\) −21545.1 −1.28191
\(50\) 0 0
\(51\) 962.084i 0.0517949i
\(52\) 0 0
\(53\) 25075.5 1.22620 0.613099 0.790006i \(-0.289923\pi\)
0.613099 + 0.790006i \(0.289923\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1319.78i − 0.0538039i
\(58\) 0 0
\(59\) − 18453.8i − 0.690171i −0.938571 0.345085i \(-0.887850\pi\)
0.938571 0.345085i \(-0.112150\pi\)
\(60\) 0 0
\(61\) 17488.7i 0.601774i 0.953660 + 0.300887i \(0.0972827\pi\)
−0.953660 + 0.300887i \(0.902717\pi\)
\(62\) 0 0
\(63\) 47547.3i 1.50930i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7490.73 0.203862 0.101931 0.994791i \(-0.467498\pi\)
0.101931 + 0.994791i \(0.467498\pi\)
\(68\) 0 0
\(69\) − 703.739i − 0.0177946i
\(70\) 0 0
\(71\) −1056.69 −0.0248773 −0.0124387 0.999923i \(-0.503959\pi\)
−0.0124387 + 0.999923i \(0.503959\pi\)
\(72\) 0 0
\(73\) − 55286.5i − 1.21426i −0.794602 0.607130i \(-0.792321\pi\)
0.794602 0.607130i \(-0.207679\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 70210.1 1.34950
\(78\) 0 0
\(79\) 89387.0 1.61141 0.805706 0.592316i \(-0.201786\pi\)
0.805706 + 0.592316i \(0.201786\pi\)
\(80\) 0 0
\(81\) 58896.2 0.997413
\(82\) 0 0
\(83\) −103847. −1.65462 −0.827310 0.561746i \(-0.810130\pi\)
−0.827310 + 0.561746i \(0.810130\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1774.09i − 0.0251291i
\(88\) 0 0
\(89\) 38137.1 0.510355 0.255178 0.966894i \(-0.417866\pi\)
0.255178 + 0.966894i \(0.417866\pi\)
\(90\) 0 0
\(91\) − 186403.i − 2.35966i
\(92\) 0 0
\(93\) 2372.83 0.0284485
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 22739.9i 0.245391i 0.992444 + 0.122696i \(0.0391539\pi\)
−0.992444 + 0.122696i \(0.960846\pi\)
\(98\) 0 0
\(99\) − 87043.5i − 0.892582i
\(100\) 0 0
\(101\) − 52711.9i − 0.514168i −0.966389 0.257084i \(-0.917238\pi\)
0.966389 0.257084i \(-0.0827618\pi\)
\(102\) 0 0
\(103\) − 38301.0i − 0.355727i −0.984055 0.177863i \(-0.943081\pi\)
0.984055 0.177863i \(-0.0569185\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 151431. 1.27866 0.639329 0.768933i \(-0.279212\pi\)
0.639329 + 0.768933i \(0.279212\pi\)
\(108\) 0 0
\(109\) 146420.i 1.18041i 0.807253 + 0.590206i \(0.200953\pi\)
−0.807253 + 0.590206i \(0.799047\pi\)
\(110\) 0 0
\(111\) 4346.96 0.0334871
\(112\) 0 0
\(113\) − 59368.9i − 0.437384i −0.975794 0.218692i \(-0.929821\pi\)
0.975794 0.218692i \(-0.0701789\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −231094. −1.56072
\(118\) 0 0
\(119\) −411544. −2.66409
\(120\) 0 0
\(121\) 32519.6 0.201921
\(122\) 0 0
\(123\) −1741.05 −0.0103764
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 13242.9i − 0.0728577i −0.999336 0.0364288i \(-0.988402\pi\)
0.999336 0.0364288i \(-0.0115982\pi\)
\(128\) 0 0
\(129\) −1982.63 −0.0104898
\(130\) 0 0
\(131\) 29434.9i 0.149860i 0.997189 + 0.0749298i \(0.0238733\pi\)
−0.997189 + 0.0749298i \(0.976127\pi\)
\(132\) 0 0
\(133\) 564553. 2.76742
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 226821.i 1.03248i 0.856443 + 0.516241i \(0.172669\pi\)
−0.856443 + 0.516241i \(0.827331\pi\)
\(138\) 0 0
\(139\) 206068.i 0.904637i 0.891856 + 0.452319i \(0.149403\pi\)
−0.891856 + 0.452319i \(0.850597\pi\)
\(140\) 0 0
\(141\) − 5725.76i − 0.0242541i
\(142\) 0 0
\(143\) 341242.i 1.39548i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 9863.72 0.0376485
\(148\) 0 0
\(149\) 276062.i 1.01869i 0.860563 + 0.509344i \(0.170112\pi\)
−0.860563 + 0.509344i \(0.829888\pi\)
\(150\) 0 0
\(151\) 88898.4 0.317287 0.158643 0.987336i \(-0.449288\pi\)
0.158643 + 0.987336i \(0.449288\pi\)
\(152\) 0 0
\(153\) 510215.i 1.76207i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 273937. 0.886954 0.443477 0.896286i \(-0.353745\pi\)
0.443477 + 0.896286i \(0.353745\pi\)
\(158\) 0 0
\(159\) −11480.0 −0.0360122
\(160\) 0 0
\(161\) 301034. 0.915272
\(162\) 0 0
\(163\) 22520.3 0.0663902 0.0331951 0.999449i \(-0.489432\pi\)
0.0331951 + 0.999449i \(0.489432\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4216.06i 0.0116981i 0.999983 + 0.00584906i \(0.00186182\pi\)
−0.999983 + 0.00584906i \(0.998138\pi\)
\(168\) 0 0
\(169\) 534680. 1.44005
\(170\) 0 0
\(171\) − 699908.i − 1.83042i
\(172\) 0 0
\(173\) 240365. 0.610599 0.305299 0.952256i \(-0.401243\pi\)
0.305299 + 0.952256i \(0.401243\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8448.47i 0.0202696i
\(178\) 0 0
\(179\) − 245501.i − 0.572691i −0.958126 0.286346i \(-0.907559\pi\)
0.958126 0.286346i \(-0.0924406\pi\)
\(180\) 0 0
\(181\) 16588.7i 0.0376370i 0.999823 + 0.0188185i \(0.00599048\pi\)
−0.999823 + 0.0188185i \(0.994010\pi\)
\(182\) 0 0
\(183\) − 8006.62i − 0.0176735i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 753401. 1.57551
\(188\) 0 0
\(189\) − 43554.7i − 0.0886912i
\(190\) 0 0
\(191\) 555884. 1.10256 0.551278 0.834322i \(-0.314140\pi\)
0.551278 + 0.834322i \(0.314140\pi\)
\(192\) 0 0
\(193\) − 397154.i − 0.767477i −0.923442 0.383738i \(-0.874636\pi\)
0.923442 0.383738i \(-0.125364\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 722243. 1.32592 0.662961 0.748654i \(-0.269300\pi\)
0.662961 + 0.748654i \(0.269300\pi\)
\(198\) 0 0
\(199\) −129890. −0.232511 −0.116256 0.993219i \(-0.537089\pi\)
−0.116256 + 0.993219i \(0.537089\pi\)
\(200\) 0 0
\(201\) −3429.38 −0.00598722
\(202\) 0 0
\(203\) 758890. 1.29252
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 373209.i − 0.605377i
\(208\) 0 0
\(209\) −1.03351e6 −1.63662
\(210\) 0 0
\(211\) − 608872.i − 0.941499i −0.882267 0.470749i \(-0.843984\pi\)
0.882267 0.470749i \(-0.156016\pi\)
\(212\) 0 0
\(213\) 483.772 0.000730620 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.01501e6i 1.46325i
\(218\) 0 0
\(219\) 25311.1i 0.0356615i
\(220\) 0 0
\(221\) − 2.00023e6i − 2.75485i
\(222\) 0 0
\(223\) − 22540.8i − 0.0303534i −0.999885 0.0151767i \(-0.995169\pi\)
0.999885 0.0151767i \(-0.00483108\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −150889. −0.194354 −0.0971770 0.995267i \(-0.530981\pi\)
−0.0971770 + 0.995267i \(0.530981\pi\)
\(228\) 0 0
\(229\) 724516.i 0.912976i 0.889730 + 0.456488i \(0.150893\pi\)
−0.889730 + 0.456488i \(0.849107\pi\)
\(230\) 0 0
\(231\) −32143.3 −0.0396334
\(232\) 0 0
\(233\) 336561.i 0.406138i 0.979164 + 0.203069i \(0.0650916\pi\)
−0.979164 + 0.203069i \(0.934908\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −40922.8 −0.0473255
\(238\) 0 0
\(239\) 330500. 0.374262 0.187131 0.982335i \(-0.440081\pi\)
0.187131 + 0.982335i \(0.440081\pi\)
\(240\) 0 0
\(241\) 900033. 0.998196 0.499098 0.866546i \(-0.333665\pi\)
0.499098 + 0.866546i \(0.333665\pi\)
\(242\) 0 0
\(243\) −81007.6 −0.0880055
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.74389e6i 2.86171i
\(248\) 0 0
\(249\) 47542.8 0.0485944
\(250\) 0 0
\(251\) − 963725.i − 0.965537i −0.875748 0.482768i \(-0.839631\pi\)
0.875748 0.482768i \(-0.160369\pi\)
\(252\) 0 0
\(253\) −551093. −0.541282
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1.50847e6i − 1.42463i −0.701857 0.712317i \(-0.747646\pi\)
0.701857 0.712317i \(-0.252354\pi\)
\(258\) 0 0
\(259\) 1.85947e6i 1.72242i
\(260\) 0 0
\(261\) − 940839.i − 0.854898i
\(262\) 0 0
\(263\) 721202.i 0.642936i 0.946920 + 0.321468i \(0.104176\pi\)
−0.946920 + 0.321468i \(0.895824\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −17459.8 −0.0149886
\(268\) 0 0
\(269\) − 1.43076e6i − 1.20556i −0.797909 0.602778i \(-0.794061\pi\)
0.797909 0.602778i \(-0.205939\pi\)
\(270\) 0 0
\(271\) 1.94059e6 1.60514 0.802568 0.596561i \(-0.203467\pi\)
0.802568 + 0.596561i \(0.203467\pi\)
\(272\) 0 0
\(273\) 85338.3i 0.0693007i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.71081e6 1.33968 0.669842 0.742504i \(-0.266362\pi\)
0.669842 + 0.742504i \(0.266362\pi\)
\(278\) 0 0
\(279\) 1.25836e6 0.967822
\(280\) 0 0
\(281\) 1.44573e6 1.09225 0.546126 0.837703i \(-0.316102\pi\)
0.546126 + 0.837703i \(0.316102\pi\)
\(282\) 0 0
\(283\) 1.07186e6 0.795555 0.397777 0.917482i \(-0.369782\pi\)
0.397777 + 0.917482i \(0.369782\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 744755.i − 0.533714i
\(288\) 0 0
\(289\) −2.99628e6 −2.11027
\(290\) 0 0
\(291\) − 10410.7i − 0.00720688i
\(292\) 0 0
\(293\) 176850. 0.120347 0.0601735 0.998188i \(-0.480835\pi\)
0.0601735 + 0.998188i \(0.480835\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 79734.3i 0.0524510i
\(298\) 0 0
\(299\) 1.46311e6i 0.946455i
\(300\) 0 0
\(301\) − 848097.i − 0.539547i
\(302\) 0 0
\(303\) 24132.4i 0.0151006i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.76503e6 1.67438 0.837189 0.546914i \(-0.184198\pi\)
0.837189 + 0.546914i \(0.184198\pi\)
\(308\) 0 0
\(309\) 17534.8i 0.0104473i
\(310\) 0 0
\(311\) −748055. −0.438564 −0.219282 0.975662i \(-0.570371\pi\)
−0.219282 + 0.975662i \(0.570371\pi\)
\(312\) 0 0
\(313\) 2.84259e6i 1.64003i 0.572340 + 0.820017i \(0.306036\pi\)
−0.572340 + 0.820017i \(0.693964\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 97492.6 0.0544908 0.0272454 0.999629i \(-0.491326\pi\)
0.0272454 + 0.999629i \(0.491326\pi\)
\(318\) 0 0
\(319\) −1.38928e6 −0.764384
\(320\) 0 0
\(321\) −69327.5 −0.0375528
\(322\) 0 0
\(323\) 6.05802e6 3.23091
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 67033.4i − 0.0346674i
\(328\) 0 0
\(329\) 2.44927e6 1.24752
\(330\) 0 0
\(331\) 2.71471e6i 1.36193i 0.732317 + 0.680964i \(0.238439\pi\)
−0.732317 + 0.680964i \(0.761561\pi\)
\(332\) 0 0
\(333\) 2.30529e6 1.13924
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 495886.i 0.237852i 0.992903 + 0.118926i \(0.0379452\pi\)
−0.992903 + 0.118926i \(0.962055\pi\)
\(338\) 0 0
\(339\) 27180.0i 0.0128455i
\(340\) 0 0
\(341\) − 1.85814e6i − 0.865353i
\(342\) 0 0
\(343\) 927903.i 0.425860i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.14504e6 −1.40217 −0.701087 0.713076i \(-0.747302\pi\)
−0.701087 + 0.713076i \(0.747302\pi\)
\(348\) 0 0
\(349\) 2.62573e6i 1.15395i 0.816762 + 0.576975i \(0.195767\pi\)
−0.816762 + 0.576975i \(0.804233\pi\)
\(350\) 0 0
\(351\) 211689. 0.0917129
\(352\) 0 0
\(353\) 536996.i 0.229369i 0.993402 + 0.114684i \(0.0365857\pi\)
−0.993402 + 0.114684i \(0.963414\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 188412. 0.0782415
\(358\) 0 0
\(359\) −369981. −0.151511 −0.0757553 0.997126i \(-0.524137\pi\)
−0.0757553 + 0.997126i \(0.524137\pi\)
\(360\) 0 0
\(361\) −5.83425e6 −2.35623
\(362\) 0 0
\(363\) −14888.0 −0.00593021
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.41712e6i 0.549214i 0.961557 + 0.274607i \(0.0885478\pi\)
−0.961557 + 0.274607i \(0.911452\pi\)
\(368\) 0 0
\(369\) −923315. −0.353008
\(370\) 0 0
\(371\) − 4.91072e6i − 1.85230i
\(372\) 0 0
\(373\) −2.16053e6 −0.804060 −0.402030 0.915626i \(-0.631695\pi\)
−0.402030 + 0.915626i \(0.631695\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.68843e6i 1.33656i
\(378\) 0 0
\(379\) − 1.60069e6i − 0.572412i −0.958168 0.286206i \(-0.907606\pi\)
0.958168 0.286206i \(-0.0923942\pi\)
\(380\) 0 0
\(381\) 6062.84i 0.00213975i
\(382\) 0 0
\(383\) − 3.07943e6i − 1.07269i −0.844000 0.536344i \(-0.819805\pi\)
0.844000 0.536344i \(-0.180195\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.05143e6 −0.356866
\(388\) 0 0
\(389\) − 2.71294e6i − 0.909006i −0.890745 0.454503i \(-0.849817\pi\)
0.890745 0.454503i \(-0.150183\pi\)
\(390\) 0 0
\(391\) 3.23029e6 1.06856
\(392\) 0 0
\(393\) − 13475.8i − 0.00440122i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.05795e6 1.29220 0.646101 0.763252i \(-0.276399\pi\)
0.646101 + 0.763252i \(0.276399\pi\)
\(398\) 0 0
\(399\) −258462. −0.0812762
\(400\) 0 0
\(401\) 5.22811e6 1.62362 0.811809 0.583923i \(-0.198483\pi\)
0.811809 + 0.583923i \(0.198483\pi\)
\(402\) 0 0
\(403\) −4.93324e6 −1.51311
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 3.40407e6i − 1.01862i
\(408\) 0 0
\(409\) 1.89554e6 0.560306 0.280153 0.959955i \(-0.409615\pi\)
0.280153 + 0.959955i \(0.409615\pi\)
\(410\) 0 0
\(411\) − 103843.i − 0.0303229i
\(412\) 0 0
\(413\) −3.61394e6 −1.04257
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 94341.5i − 0.0265682i
\(418\) 0 0
\(419\) 663430.i 0.184612i 0.995731 + 0.0923060i \(0.0294238\pi\)
−0.995731 + 0.0923060i \(0.970576\pi\)
\(420\) 0 0
\(421\) − 1.14330e6i − 0.314381i −0.987568 0.157190i \(-0.949756\pi\)
0.987568 0.157190i \(-0.0502436\pi\)
\(422\) 0 0
\(423\) − 3.03650e6i − 0.825130i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.42494e6 0.909040
\(428\) 0 0
\(429\) − 156226.i − 0.0409837i
\(430\) 0 0
\(431\) −559165. −0.144993 −0.0724964 0.997369i \(-0.523097\pi\)
−0.0724964 + 0.997369i \(0.523097\pi\)
\(432\) 0 0
\(433\) − 4.04780e6i − 1.03753i −0.854918 0.518764i \(-0.826392\pi\)
0.854918 0.518764i \(-0.173608\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.43129e6 −1.11001
\(438\) 0 0
\(439\) −4.17879e6 −1.03488 −0.517439 0.855720i \(-0.673114\pi\)
−0.517439 + 0.855720i \(0.673114\pi\)
\(440\) 0 0
\(441\) 5.23095e6 1.28081
\(442\) 0 0
\(443\) −6.19142e6 −1.49893 −0.749464 0.662045i \(-0.769689\pi\)
−0.749464 + 0.662045i \(0.769689\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 126386.i − 0.0299178i
\(448\) 0 0
\(449\) 3.11618e6 0.729469 0.364735 0.931111i \(-0.381160\pi\)
0.364735 + 0.931111i \(0.381160\pi\)
\(450\) 0 0
\(451\) 1.36340e6i 0.315633i
\(452\) 0 0
\(453\) −40699.2 −0.00931837
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 4.44694e6i − 0.996026i −0.867170 0.498013i \(-0.834063\pi\)
0.867170 0.498013i \(-0.165937\pi\)
\(458\) 0 0
\(459\) − 467371.i − 0.103545i
\(460\) 0 0
\(461\) 7.51985e6i 1.64800i 0.566590 + 0.824000i \(0.308262\pi\)
−0.566590 + 0.824000i \(0.691738\pi\)
\(462\) 0 0
\(463\) 4.34253e6i 0.941434i 0.882284 + 0.470717i \(0.156005\pi\)
−0.882284 + 0.470717i \(0.843995\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 890290. 0.188903 0.0944515 0.995529i \(-0.469890\pi\)
0.0944515 + 0.995529i \(0.469890\pi\)
\(468\) 0 0
\(469\) − 1.46696e6i − 0.307955i
\(470\) 0 0
\(471\) −125413. −0.0260489
\(472\) 0 0
\(473\) 1.55258e6i 0.319082i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.08810e6 −1.22514
\(478\) 0 0
\(479\) 3.93305e6 0.783233 0.391617 0.920128i \(-0.371916\pi\)
0.391617 + 0.920128i \(0.371916\pi\)
\(480\) 0 0
\(481\) −9.03757e6 −1.78110
\(482\) 0 0
\(483\) −137818. −0.0268806
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 3.91119e6i − 0.747286i −0.927573 0.373643i \(-0.878109\pi\)
0.927573 0.373643i \(-0.121891\pi\)
\(488\) 0 0
\(489\) −10310.1 −0.00194981
\(490\) 0 0
\(491\) 4.43336e6i 0.829907i 0.909843 + 0.414954i \(0.136202\pi\)
−0.909843 + 0.414954i \(0.863798\pi\)
\(492\) 0 0
\(493\) 8.14339e6 1.50900
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 206940.i 0.0375797i
\(498\) 0 0
\(499\) − 4.84134e6i − 0.870391i −0.900336 0.435196i \(-0.856679\pi\)
0.900336 0.435196i \(-0.143321\pi\)
\(500\) 0 0
\(501\) − 1930.18i 0 0.000343561i
\(502\) 0 0
\(503\) 1.68379e6i 0.296735i 0.988932 + 0.148367i \(0.0474018\pi\)
−0.988932 + 0.148367i \(0.952598\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −244786. −0.0422927
\(508\) 0 0
\(509\) 9.81220e6i 1.67869i 0.543595 + 0.839347i \(0.317063\pi\)
−0.543595 + 0.839347i \(0.682937\pi\)
\(510\) 0 0
\(511\) −1.08271e7 −1.83426
\(512\) 0 0
\(513\) 641136.i 0.107561i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −4.48380e6 −0.737768
\(518\) 0 0
\(519\) −110043. −0.0179326
\(520\) 0 0
\(521\) −2.02601e6 −0.327000 −0.163500 0.986543i \(-0.552278\pi\)
−0.163500 + 0.986543i \(0.552278\pi\)
\(522\) 0 0
\(523\) 402702. 0.0643768 0.0321884 0.999482i \(-0.489752\pi\)
0.0321884 + 0.999482i \(0.489752\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.08917e7i 1.70832i
\(528\) 0 0
\(529\) 4.07347e6 0.632886
\(530\) 0 0
\(531\) 4.48041e6i 0.689575i
\(532\) 0 0
\(533\) 3.61973e6 0.551897
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 112394.i 0.0168193i
\(538\) 0 0
\(539\) − 7.72421e6i − 1.14520i
\(540\) 0 0
\(541\) 8.47881e6i 1.24549i 0.782423 + 0.622747i \(0.213984\pi\)
−0.782423 + 0.622747i \(0.786016\pi\)
\(542\) 0 0
\(543\) − 7594.57i − 0.00110536i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −7.10206e6 −1.01488 −0.507441 0.861686i \(-0.669409\pi\)
−0.507441 + 0.861686i \(0.669409\pi\)
\(548\) 0 0
\(549\) − 4.24609e6i − 0.601255i
\(550\) 0 0
\(551\) −1.11710e7 −1.56752
\(552\) 0 0
\(553\) − 1.75053e7i − 2.43420i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.42337e6 0.330965 0.165482 0.986213i \(-0.447082\pi\)
0.165482 + 0.986213i \(0.447082\pi\)
\(558\) 0 0
\(559\) 4.12200e6 0.557929
\(560\) 0 0
\(561\) −344919. −0.0462712
\(562\) 0 0
\(563\) −1.03666e7 −1.37837 −0.689184 0.724586i \(-0.742031\pi\)
−0.689184 + 0.724586i \(0.742031\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 1.15341e7i − 1.50669i
\(568\) 0 0
\(569\) −1.33323e7 −1.72633 −0.863165 0.504921i \(-0.831521\pi\)
−0.863165 + 0.504921i \(0.831521\pi\)
\(570\) 0 0
\(571\) − 4.77970e6i − 0.613494i −0.951791 0.306747i \(-0.900760\pi\)
0.951791 0.306747i \(-0.0992405\pi\)
\(572\) 0 0
\(573\) −254493. −0.0323809
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 5.73641e6i − 0.717300i −0.933472 0.358650i \(-0.883237\pi\)
0.933472 0.358650i \(-0.116763\pi\)
\(578\) 0 0
\(579\) 181823.i 0.0225400i
\(580\) 0 0
\(581\) 2.03371e7i 2.49947i
\(582\) 0 0
\(583\) 8.98990e6i 1.09543i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.32016e6 −0.637279 −0.318639 0.947876i \(-0.603226\pi\)
−0.318639 + 0.947876i \(0.603226\pi\)
\(588\) 0 0
\(589\) − 1.49412e7i − 1.77458i
\(590\) 0 0
\(591\) −330655. −0.0389409
\(592\) 0 0
\(593\) 828623.i 0.0967654i 0.998829 + 0.0483827i \(0.0154067\pi\)
−0.998829 + 0.0483827i \(0.984593\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 59465.9 0.00682861
\(598\) 0 0
\(599\) 5.87196e6 0.668676 0.334338 0.942453i \(-0.391487\pi\)
0.334338 + 0.942453i \(0.391487\pi\)
\(600\) 0 0
\(601\) 3.38777e6 0.382584 0.191292 0.981533i \(-0.438732\pi\)
0.191292 + 0.981533i \(0.438732\pi\)
\(602\) 0 0
\(603\) −1.81868e6 −0.203686
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 4.02635e6i − 0.443547i −0.975098 0.221774i \(-0.928815\pi\)
0.975098 0.221774i \(-0.0711846\pi\)
\(608\) 0 0
\(609\) −347432. −0.0379601
\(610\) 0 0
\(611\) 1.19042e7i 1.29002i
\(612\) 0 0
\(613\) −5.30633e6 −0.570352 −0.285176 0.958475i \(-0.592052\pi\)
−0.285176 + 0.958475i \(0.592052\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9.56854e6i − 1.01189i −0.862566 0.505944i \(-0.831144\pi\)
0.862566 0.505944i \(-0.168856\pi\)
\(618\) 0 0
\(619\) 6.58401e6i 0.690659i 0.938481 + 0.345330i \(0.112233\pi\)
−0.938481 + 0.345330i \(0.887767\pi\)
\(620\) 0 0
\(621\) 341870.i 0.0355739i
\(622\) 0 0
\(623\) − 7.46866e6i − 0.770943i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 473157. 0.0480659
\(628\) 0 0
\(629\) 1.99533e7i 2.01089i
\(630\) 0 0
\(631\) 1.34839e7 1.34816 0.674079 0.738659i \(-0.264541\pi\)
0.674079 + 0.738659i \(0.264541\pi\)
\(632\) 0 0
\(633\) 278752.i 0.0276508i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2.05072e7 −2.00244
\(638\) 0 0
\(639\) 256555. 0.0248559
\(640\) 0 0
\(641\) −7.72929e6 −0.743010 −0.371505 0.928431i \(-0.621158\pi\)
−0.371505 + 0.928431i \(0.621158\pi\)
\(642\) 0 0
\(643\) −9.41828e6 −0.898347 −0.449174 0.893444i \(-0.648282\pi\)
−0.449174 + 0.893444i \(0.648282\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 3.44122e6i − 0.323185i −0.986858 0.161593i \(-0.948337\pi\)
0.986858 0.161593i \(-0.0516631\pi\)
\(648\) 0 0
\(649\) 6.61593e6 0.616566
\(650\) 0 0
\(651\) − 464687.i − 0.0429743i
\(652\) 0 0
\(653\) −1.39531e7 −1.28053 −0.640263 0.768155i \(-0.721175\pi\)
−0.640263 + 0.768155i \(0.721175\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.34230e7i 1.21321i
\(658\) 0 0
\(659\) − 1.16197e7i − 1.04227i −0.853474 0.521135i \(-0.825509\pi\)
0.853474 0.521135i \(-0.174491\pi\)
\(660\) 0 0
\(661\) 2.02640e6i 0.180394i 0.995924 + 0.0901970i \(0.0287497\pi\)
−0.995924 + 0.0901970i \(0.971250\pi\)
\(662\) 0 0
\(663\) 915737.i 0.0809071i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.95668e6 −0.518429
\(668\) 0 0
\(669\) 10319.6i 0 0.000891447i
\(670\) 0 0
\(671\) −6.26993e6 −0.537596
\(672\) 0 0
\(673\) 5.84126e6i 0.497129i 0.968615 + 0.248564i \(0.0799587\pi\)
−0.968615 + 0.248564i \(0.920041\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.28265e7 1.07557 0.537784 0.843083i \(-0.319262\pi\)
0.537784 + 0.843083i \(0.319262\pi\)
\(678\) 0 0
\(679\) 4.45331e6 0.370688
\(680\) 0 0
\(681\) 69079.6 0.00570797
\(682\) 0 0
\(683\) −7.24686e6 −0.594426 −0.297213 0.954811i \(-0.596057\pi\)
−0.297213 + 0.954811i \(0.596057\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 331695.i − 0.0268131i
\(688\) 0 0
\(689\) 2.38676e7 1.91540
\(690\) 0 0
\(691\) 2.08754e7i 1.66318i 0.555388 + 0.831592i \(0.312570\pi\)
−0.555388 + 0.831592i \(0.687430\pi\)
\(692\) 0 0
\(693\) −1.70463e7 −1.34834
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 7.99171e6i − 0.623100i
\(698\) 0 0
\(699\) − 154083.i − 0.0119279i
\(700\) 0 0
\(701\) − 1.73225e7i − 1.33142i −0.746209 0.665712i \(-0.768128\pi\)
0.746209 0.665712i \(-0.231872\pi\)
\(702\) 0 0
\(703\) − 2.73718e7i − 2.08889i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.03229e7 −0.776703
\(708\) 0 0
\(709\) − 1.99424e7i − 1.48991i −0.667113 0.744956i \(-0.732470\pi\)
0.667113 0.744956i \(-0.267530\pi\)
\(710\) 0 0
\(711\) −2.17023e7 −1.61002
\(712\) 0 0
\(713\) − 7.96700e6i − 0.586909i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −151308. −0.0109917
\(718\) 0 0
\(719\) −2.44269e7 −1.76217 −0.881083 0.472962i \(-0.843185\pi\)
−0.881083 + 0.472962i \(0.843185\pi\)
\(720\) 0 0
\(721\) −7.50075e6 −0.537361
\(722\) 0 0
\(723\) −412050. −0.0293160
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.52812e7i 1.07231i 0.844119 + 0.536155i \(0.180124\pi\)
−0.844119 + 0.536155i \(0.819876\pi\)
\(728\) 0 0
\(729\) −1.42747e7 −0.994829
\(730\) 0 0
\(731\) − 9.10064e6i − 0.629910i
\(732\) 0 0
\(733\) −7.69123e6 −0.528732 −0.264366 0.964422i \(-0.585163\pi\)
−0.264366 + 0.964422i \(0.585163\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.68552e6i 0.182121i
\(738\) 0 0
\(739\) − 7.32363e6i − 0.493305i −0.969104 0.246652i \(-0.920669\pi\)
0.969104 0.246652i \(-0.0793306\pi\)
\(740\) 0 0
\(741\) − 1.25620e6i − 0.0840453i
\(742\) 0 0
\(743\) − 1.61613e7i − 1.07400i −0.843582 0.537001i \(-0.819557\pi\)
0.843582 0.537001i \(-0.180443\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.52130e7 1.65319
\(748\) 0 0
\(749\) − 2.96557e7i − 1.93154i
\(750\) 0 0
\(751\) 3.01764e7 1.95240 0.976199 0.216879i \(-0.0695876\pi\)
0.976199 + 0.216879i \(0.0695876\pi\)
\(752\) 0 0
\(753\) 441209.i 0.0283568i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.40193e7 −0.889171 −0.444586 0.895736i \(-0.646649\pi\)
−0.444586 + 0.895736i \(0.646649\pi\)
\(758\) 0 0
\(759\) 252299. 0.0158969
\(760\) 0 0
\(761\) −1.39222e7 −0.871456 −0.435728 0.900078i \(-0.643509\pi\)
−0.435728 + 0.900078i \(0.643509\pi\)
\(762\) 0 0
\(763\) 2.86744e7 1.78313
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1.75648e7i − 1.07809i
\(768\) 0 0
\(769\) 1.41369e7 0.862063 0.431031 0.902337i \(-0.358150\pi\)
0.431031 + 0.902337i \(0.358150\pi\)
\(770\) 0 0
\(771\) 690602.i 0.0418400i
\(772\) 0 0
\(773\) 1.39310e7 0.838558 0.419279 0.907858i \(-0.362283\pi\)
0.419279 + 0.907858i \(0.362283\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 851295.i − 0.0505857i
\(778\) 0 0
\(779\) 1.09630e7i 0.647268i
\(780\) 0 0
\(781\) − 378838.i − 0.0222242i
\(782\) 0 0
\(783\) 861835.i 0.0502366i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9.60345e6 −0.552701 −0.276351 0.961057i \(-0.589125\pi\)
−0.276351 + 0.961057i \(0.589125\pi\)
\(788\) 0 0
\(789\) − 330178.i − 0.0188823i
\(790\) 0 0
\(791\) −1.16266e7 −0.660712
\(792\) 0 0
\(793\) 1.66462e7i 0.940010i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.97451e7 1.10107 0.550534 0.834813i \(-0.314424\pi\)
0.550534 + 0.834813i \(0.314424\pi\)
\(798\) 0 0
\(799\) 2.62823e7 1.45645
\(800\) 0 0
\(801\) −9.25932e6 −0.509915
\(802\) 0 0
\(803\) 1.98209e7 1.08476
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 655027.i 0.0354059i
\(808\) 0 0
\(809\) −1.73178e7 −0.930296 −0.465148 0.885233i \(-0.653999\pi\)
−0.465148 + 0.885233i \(0.653999\pi\)
\(810\) 0 0
\(811\) 3.16102e7i 1.68762i 0.536642 + 0.843810i \(0.319693\pi\)
−0.536642 + 0.843810i \(0.680307\pi\)
\(812\) 0 0
\(813\) −888436. −0.0471411
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.24842e7i 0.654342i
\(818\) 0 0
\(819\) 4.52568e7i 2.35762i
\(820\) 0 0
\(821\) 1.86667e7i 0.966519i 0.875477 + 0.483260i \(0.160547\pi\)
−0.875477 + 0.483260i \(0.839453\pi\)
\(822\) 0 0
\(823\) 3.88081e7i 1.99720i 0.0528555 + 0.998602i \(0.483168\pi\)
−0.0528555 + 0.998602i \(0.516832\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.98829e7 −1.51935 −0.759677 0.650301i \(-0.774643\pi\)
−0.759677 + 0.650301i \(0.774643\pi\)
\(828\) 0 0
\(829\) 2.10001e7i 1.06129i 0.847594 + 0.530645i \(0.178050\pi\)
−0.847594 + 0.530645i \(0.821950\pi\)
\(830\) 0 0
\(831\) −783237. −0.0393451
\(832\) 0 0
\(833\) 4.52763e7i 2.26078i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.15270e6 −0.0568724
\(838\) 0 0
\(839\) −7.61546e6 −0.373501 −0.186750 0.982407i \(-0.559796\pi\)
−0.186750 + 0.982407i \(0.559796\pi\)
\(840\) 0 0
\(841\) 5.49468e6 0.267888
\(842\) 0 0
\(843\) −661881. −0.0320783
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 6.36854e6i − 0.305022i
\(848\) 0 0
\(849\) −490713. −0.0233646
\(850\) 0 0
\(851\) − 1.45953e7i − 0.690860i
\(852\) 0 0
\(853\) 9.56553e6 0.450128 0.225064 0.974344i \(-0.427741\pi\)
0.225064 + 0.974344i \(0.427741\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.34556e7i − 1.09092i −0.838136 0.545462i \(-0.816354\pi\)
0.838136 0.545462i \(-0.183646\pi\)
\(858\) 0 0
\(859\) − 9.13964e6i − 0.422616i −0.977420 0.211308i \(-0.932228\pi\)
0.977420 0.211308i \(-0.0677723\pi\)
\(860\) 0 0
\(861\) 340961.i 0.0156746i
\(862\) 0 0
\(863\) − 1.04151e7i − 0.476034i −0.971261 0.238017i \(-0.923503\pi\)
0.971261 0.238017i \(-0.0764974\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.37175e6 0.0619764
\(868\) 0 0
\(869\) 3.20464e7i 1.43956i
\(870\) 0 0
\(871\) 7.12987e6 0.318446
\(872\) 0 0
\(873\) − 5.52102e6i − 0.245179i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.02537e7 0.889210 0.444605 0.895727i \(-0.353344\pi\)
0.444605 + 0.895727i \(0.353344\pi\)
\(878\) 0 0
\(879\) −80964.7 −0.00353447
\(880\) 0 0
\(881\) 2.74936e7 1.19341 0.596707 0.802459i \(-0.296475\pi\)
0.596707 + 0.802459i \(0.296475\pi\)
\(882\) 0 0
\(883\) 3.50971e7 1.51485 0.757425 0.652922i \(-0.226457\pi\)
0.757425 + 0.652922i \(0.226457\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.77301e7i 0.756660i 0.925671 + 0.378330i \(0.123502\pi\)
−0.925671 + 0.378330i \(0.876498\pi\)
\(888\) 0 0
\(889\) −2.59346e6 −0.110059
\(890\) 0 0
\(891\) 2.11151e7i 0.891042i
\(892\) 0 0
\(893\) −3.60538e7 −1.51294
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 669837.i − 0.0277964i
\(898\) 0 0
\(899\) − 2.00844e7i − 0.828818i
\(900\) 0 0
\(901\) − 5.26953e7i − 2.16252i
\(902\) 0 0
\(903\) 388273.i 0.0158459i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.04686e7 0.422542 0.211271 0.977428i \(-0.432240\pi\)
0.211271 + 0.977428i \(0.432240\pi\)
\(908\) 0 0
\(909\) 1.27979e7i 0.513725i
\(910\) 0 0
\(911\) 4.87147e7 1.94475 0.972376 0.233420i \(-0.0749918\pi\)
0.972376 + 0.233420i \(0.0749918\pi\)
\(912\) 0 0
\(913\) − 3.72304e7i − 1.47816i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.76445e6 0.226378
\(918\) 0 0
\(919\) −2.63015e7 −1.02729 −0.513643 0.858004i \(-0.671704\pi\)
−0.513643 + 0.858004i \(0.671704\pi\)
\(920\) 0 0
\(921\) −1.26587e6 −0.0491747
\(922\) 0 0
\(923\) −1.00579e6 −0.0388600
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 9.29911e6i 0.355420i
\(928\) 0 0
\(929\) −4.91045e7 −1.86673 −0.933366 0.358925i \(-0.883143\pi\)
−0.933366 + 0.358925i \(0.883143\pi\)
\(930\) 0 0
\(931\) − 6.21096e7i − 2.34847i
\(932\) 0 0
\(933\) 342472. 0.0128802
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.24439e7i 1.20721i 0.797282 + 0.603607i \(0.206271\pi\)
−0.797282 + 0.603607i \(0.793729\pi\)
\(938\) 0 0
\(939\) − 1.30138e6i − 0.0481660i
\(940\) 0 0
\(941\) − 5.58017e6i − 0.205435i −0.994711 0.102717i \(-0.967246\pi\)
0.994711 0.102717i \(-0.0327537\pi\)
\(942\) 0 0
\(943\) 5.84573e6i 0.214072i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.29821e7 0.832748 0.416374 0.909193i \(-0.363301\pi\)
0.416374 + 0.909193i \(0.363301\pi\)
\(948\) 0 0
\(949\) − 5.26231e7i − 1.89675i
\(950\) 0 0
\(951\) −44633.7 −0.00160034
\(952\) 0 0
\(953\) − 2.98158e7i − 1.06344i −0.846920 0.531721i \(-0.821545\pi\)
0.846920 0.531721i \(-0.178455\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 636034. 0.0224492
\(958\) 0 0
\(959\) 4.44200e7 1.55967
\(960\) 0 0
\(961\) −1.76649e6 −0.0617026
\(962\) 0 0
\(963\) −3.67659e7 −1.27756
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.13822e6i − 0.142314i −0.997465 0.0711570i \(-0.977331\pi\)
0.997465 0.0711570i \(-0.0226691\pi\)
\(968\) 0 0
\(969\) −2.77346e6 −0.0948884
\(970\) 0 0
\(971\) − 5.43256e7i − 1.84908i −0.381081 0.924542i \(-0.624448\pi\)
0.381081 0.924542i \(-0.375552\pi\)
\(972\) 0 0
\(973\) 4.03558e7 1.36655
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.00334e7i − 0.671456i −0.941959 0.335728i \(-0.891018\pi\)
0.941959 0.335728i \(-0.108982\pi\)
\(978\) 0 0
\(979\) 1.36726e7i 0.455927i
\(980\) 0 0
\(981\) − 3.55493e7i − 1.17939i
\(982\) 0 0
\(983\) − 2.92947e6i − 0.0966953i −0.998831 0.0483476i \(-0.984604\pi\)
0.998831 0.0483476i \(-0.0153955\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.12132e6 −0.0366383
\(988\) 0 0
\(989\) 6.65688e6i 0.216411i
\(990\) 0 0
\(991\) −5.27467e7 −1.70613 −0.853064 0.521807i \(-0.825258\pi\)
−0.853064 + 0.521807i \(0.825258\pi\)
\(992\) 0 0
\(993\) − 1.24284e6i − 0.0399984i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.04084e7 −0.331625 −0.165812 0.986157i \(-0.553025\pi\)
−0.165812 + 0.986157i \(0.553025\pi\)
\(998\) 0 0
\(999\) −2.11171e6 −0.0669454
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.f.d.49.20 40
4.3 odd 2 200.6.f.d.149.31 40
5.2 odd 4 800.6.d.d.401.11 20
5.3 odd 4 800.6.d.b.401.10 20
5.4 even 2 inner 800.6.f.d.49.21 40
8.3 odd 2 200.6.f.d.149.9 40
8.5 even 2 inner 800.6.f.d.49.22 40
20.3 even 4 200.6.d.d.101.5 yes 20
20.7 even 4 200.6.d.c.101.16 yes 20
20.19 odd 2 200.6.f.d.149.10 40
40.3 even 4 200.6.d.d.101.6 yes 20
40.13 odd 4 800.6.d.b.401.11 20
40.19 odd 2 200.6.f.d.149.32 40
40.27 even 4 200.6.d.c.101.15 20
40.29 even 2 inner 800.6.f.d.49.19 40
40.37 odd 4 800.6.d.d.401.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.15 20 40.27 even 4
200.6.d.c.101.16 yes 20 20.7 even 4
200.6.d.d.101.5 yes 20 20.3 even 4
200.6.d.d.101.6 yes 20 40.3 even 4
200.6.f.d.149.9 40 8.3 odd 2
200.6.f.d.149.10 40 20.19 odd 2
200.6.f.d.149.31 40 4.3 odd 2
200.6.f.d.149.32 40 40.19 odd 2
800.6.d.b.401.10 20 5.3 odd 4
800.6.d.b.401.11 20 40.13 odd 4
800.6.d.d.401.10 20 40.37 odd 4
800.6.d.d.401.11 20 5.2 odd 4
800.6.f.d.49.19 40 40.29 even 2 inner
800.6.f.d.49.20 40 1.1 even 1 trivial
800.6.f.d.49.21 40 5.4 even 2 inner
800.6.f.d.49.22 40 8.5 even 2 inner