Properties

Label 200.6.f.d.149.10
Level $200$
Weight $6$
Character 200.149
Analytic conductor $32.077$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0767639626\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.10
Character \(\chi\) \(=\) 200.149
Dual form 200.6.f.d.149.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.83252 + 2.94053i) q^{2} -0.457817 q^{3} +(14.7065 - 28.4204i) q^{4} +(2.21241 - 1.34622i) q^{6} -195.837i q^{7} +(12.5013 + 180.587i) q^{8} -242.790 q^{9} -358.513i q^{11} +(-6.73290 + 13.0113i) q^{12} -951.826 q^{13} +(575.865 + 946.387i) q^{14} +(-591.435 - 835.931i) q^{16} +2101.46i q^{17} +(1173.29 - 713.933i) q^{18} -2882.77i q^{19} +89.6574i q^{21} +(1054.22 + 1732.52i) q^{22} +1537.16i q^{23} +(-5.72328 - 82.6758i) q^{24} +(4599.72 - 2798.88i) q^{26} +222.403 q^{27} +(-5565.76 - 2880.09i) q^{28} +3875.11i q^{29} +5182.92 q^{31} +(5316.20 + 2300.52i) q^{32} +164.133i q^{33} +(-6179.41 - 10155.4i) q^{34} +(-3570.61 + 6900.19i) q^{36} +9494.97 q^{37} +(8476.87 + 13931.0i) q^{38} +435.762 q^{39} +3802.93 q^{41} +(-263.641 - 433.272i) q^{42} +4330.63 q^{43} +(-10189.1 - 5272.49i) q^{44} +(-4520.08 - 7428.38i) q^{46} +12506.7i q^{47} +(270.769 + 382.703i) q^{48} -21545.1 q^{49} -962.084i q^{51} +(-13998.1 + 27051.3i) q^{52} -25075.5 q^{53} +(-1074.77 + 653.983i) q^{54} +(35365.6 - 2448.21i) q^{56} +1319.78i q^{57} +(-11394.9 - 18726.5i) q^{58} +18453.8i q^{59} +17488.7i q^{61} +(-25046.6 + 15240.5i) q^{62} +47547.3i q^{63} +(-32455.4 + 4515.13i) q^{64} +(-482.639 - 793.177i) q^{66} +7490.73 q^{67} +(59724.3 + 30905.2i) q^{68} -703.739i q^{69} +1056.69 q^{71} +(-3035.19 - 43844.8i) q^{72} +55286.5i q^{73} +(-45884.7 + 27920.3i) q^{74} +(-81929.3 - 42395.6i) q^{76} -70210.1 q^{77} +(-2105.83 + 1281.37i) q^{78} -89387.0 q^{79} +58896.2 q^{81} +(-18377.8 + 11182.6i) q^{82} -103847. q^{83} +(2548.10 + 1318.55i) q^{84} +(-20927.8 + 12734.3i) q^{86} -1774.09i q^{87} +(64742.8 - 4481.86i) q^{88} +38137.1 q^{89} +186403. i q^{91} +(43686.8 + 22606.4i) q^{92} -2372.83 q^{93} +(-36776.3 - 60438.8i) q^{94} +(-2433.85 - 1053.22i) q^{96} -22739.9i q^{97} +(104117. - 63354.2i) q^{98} +87043.5i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{4} + 66 q^{6} + 3240 q^{9} + 848 q^{14} - 110 q^{16} - 18918 q^{24} + 18344 q^{26} + 14320 q^{31} + 19182 q^{34} + 29656 q^{36} - 44904 q^{39} - 11608 q^{41} + 23186 q^{44} - 75224 q^{46} - 125304 q^{49}+ \cdots + 115582 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.83252 + 2.94053i −0.854277 + 0.519817i
\(3\) −0.457817 −0.0293689 −0.0146845 0.999892i \(-0.504674\pi\)
−0.0146845 + 0.999892i \(0.504674\pi\)
\(4\) 14.7065 28.4204i 0.459580 0.888137i
\(5\) 0 0
\(6\) 2.21241 1.34622i 0.0250892 0.0152665i
\(7\) 195.837i 1.51060i −0.655379 0.755300i \(-0.727491\pi\)
0.655379 0.755300i \(-0.272509\pi\)
\(8\) 12.5013 + 180.587i 0.0690604 + 0.997612i
\(9\) −242.790 −0.999137
\(10\) 0 0
\(11\) 358.513i 0.893353i −0.894696 0.446676i \(-0.852608\pi\)
0.894696 0.446676i \(-0.147392\pi\)
\(12\) −6.73290 + 13.0113i −0.0134974 + 0.0260836i
\(13\) −951.826 −1.56207 −0.781033 0.624490i \(-0.785307\pi\)
−0.781033 + 0.624490i \(0.785307\pi\)
\(14\) 575.865 + 946.387i 0.785237 + 1.29047i
\(15\) 0 0
\(16\) −591.435 835.931i −0.577573 0.816339i
\(17\) 2101.46i 1.76360i 0.471628 + 0.881798i \(0.343667\pi\)
−0.471628 + 0.881798i \(0.656333\pi\)
\(18\) 1173.29 713.933i 0.853541 0.519369i
\(19\) 2882.77i 1.83200i −0.401178 0.916000i \(-0.631399\pi\)
0.401178 0.916000i \(-0.368601\pi\)
\(20\) 0 0
\(21\) 89.6574i 0.0443648i
\(22\) 1054.22 + 1732.52i 0.464380 + 0.763171i
\(23\) 1537.16i 0.605899i 0.953007 + 0.302950i \(0.0979714\pi\)
−0.953007 + 0.302950i \(0.902029\pi\)
\(24\) −5.72328 82.6758i −0.00202823 0.0292988i
\(25\) 0 0
\(26\) 4599.72 2798.88i 1.33444 0.811989i
\(27\) 222.403 0.0587126
\(28\) −5565.76 2880.09i −1.34162 0.694241i
\(29\) 3875.11i 0.855636i 0.903865 + 0.427818i \(0.140718\pi\)
−0.903865 + 0.427818i \(0.859282\pi\)
\(30\) 0 0
\(31\) 5182.92 0.968658 0.484329 0.874886i \(-0.339064\pi\)
0.484329 + 0.874886i \(0.339064\pi\)
\(32\) 5316.20 + 2300.52i 0.917755 + 0.397147i
\(33\) 164.133i 0.0262368i
\(34\) −6179.41 10155.4i −0.916748 1.50660i
\(35\) 0 0
\(36\) −3570.61 + 6900.19i −0.459183 + 0.887371i
\(37\) 9494.97 1.14022 0.570111 0.821568i \(-0.306900\pi\)
0.570111 + 0.821568i \(0.306900\pi\)
\(38\) 8476.87 + 13931.0i 0.952306 + 1.56504i
\(39\) 435.762 0.0458762
\(40\) 0 0
\(41\) 3802.93 0.353312 0.176656 0.984273i \(-0.443472\pi\)
0.176656 + 0.984273i \(0.443472\pi\)
\(42\) −263.641 433.272i −0.0230616 0.0378998i
\(43\) 4330.63 0.357174 0.178587 0.983924i \(-0.442847\pi\)
0.178587 + 0.983924i \(0.442847\pi\)
\(44\) −10189.1 5272.49i −0.793419 0.410567i
\(45\) 0 0
\(46\) −4520.08 7428.38i −0.314957 0.517606i
\(47\) 12506.7i 0.825842i 0.910767 + 0.412921i \(0.135492\pi\)
−0.910767 + 0.412921i \(0.864508\pi\)
\(48\) 270.769 + 382.703i 0.0169627 + 0.0239750i
\(49\) −21545.1 −1.28191
\(50\) 0 0
\(51\) 962.084i 0.0517949i
\(52\) −13998.1 + 27051.3i −0.717894 + 1.38733i
\(53\) −25075.5 −1.22620 −0.613099 0.790006i \(-0.710077\pi\)
−0.613099 + 0.790006i \(0.710077\pi\)
\(54\) −1074.77 + 653.983i −0.0501568 + 0.0305198i
\(55\) 0 0
\(56\) 35365.6 2448.21i 1.50699 0.104323i
\(57\) 1319.78i 0.0538039i
\(58\) −11394.9 18726.5i −0.444774 0.730950i
\(59\) 18453.8i 0.690171i 0.938571 + 0.345085i \(0.112150\pi\)
−0.938571 + 0.345085i \(0.887850\pi\)
\(60\) 0 0
\(61\) 17488.7i 0.601774i 0.953660 + 0.300887i \(0.0972827\pi\)
−0.953660 + 0.300887i \(0.902717\pi\)
\(62\) −25046.6 + 15240.5i −0.827502 + 0.503525i
\(63\) 47547.3i 1.50930i
\(64\) −32455.4 + 4515.13i −0.990461 + 0.137791i
\(65\) 0 0
\(66\) −482.639 793.177i −0.0136384 0.0224135i
\(67\) 7490.73 0.203862 0.101931 0.994791i \(-0.467498\pi\)
0.101931 + 0.994791i \(0.467498\pi\)
\(68\) 59724.3 + 30905.2i 1.56631 + 0.810513i
\(69\) 703.739i 0.0177946i
\(70\) 0 0
\(71\) 1056.69 0.0248773 0.0124387 0.999923i \(-0.496041\pi\)
0.0124387 + 0.999923i \(0.496041\pi\)
\(72\) −3035.19 43844.8i −0.0690008 0.996752i
\(73\) 55286.5i 1.21426i 0.794602 + 0.607130i \(0.207679\pi\)
−0.794602 + 0.607130i \(0.792321\pi\)
\(74\) −45884.7 + 27920.3i −0.974066 + 0.592707i
\(75\) 0 0
\(76\) −81929.3 42395.6i −1.62707 0.841950i
\(77\) −70210.1 −1.34950
\(78\) −2105.83 + 1281.37i −0.0391910 + 0.0238473i
\(79\) −89387.0 −1.61141 −0.805706 0.592316i \(-0.798214\pi\)
−0.805706 + 0.592316i \(0.798214\pi\)
\(80\) 0 0
\(81\) 58896.2 0.997413
\(82\) −18377.8 + 11182.6i −0.301827 + 0.183658i
\(83\) −103847. −1.65462 −0.827310 0.561746i \(-0.810130\pi\)
−0.827310 + 0.561746i \(0.810130\pi\)
\(84\) 2548.10 + 1318.55i 0.0394020 + 0.0203891i
\(85\) 0 0
\(86\) −20927.8 + 12734.3i −0.305125 + 0.185665i
\(87\) 1774.09i 0.0251291i
\(88\) 64742.8 4481.86i 0.891220 0.0616953i
\(89\) 38137.1 0.510355 0.255178 0.966894i \(-0.417866\pi\)
0.255178 + 0.966894i \(0.417866\pi\)
\(90\) 0 0
\(91\) 186403.i 2.35966i
\(92\) 43686.8 + 22606.4i 0.538121 + 0.278459i
\(93\) −2372.83 −0.0284485
\(94\) −36776.3 60438.8i −0.429287 0.705498i
\(95\) 0 0
\(96\) −2433.85 1053.22i −0.0269535 0.0116638i
\(97\) 22739.9i 0.245391i −0.992444 0.122696i \(-0.960846\pi\)
0.992444 0.122696i \(-0.0391539\pi\)
\(98\) 104117. 63354.2i 1.09511 0.666362i
\(99\) 87043.5i 0.892582i
\(100\) 0 0
\(101\) 52711.9i 0.514168i −0.966389 0.257084i \(-0.917238\pi\)
0.966389 0.257084i \(-0.0827618\pi\)
\(102\) 2829.04 + 4649.29i 0.0269239 + 0.0442473i
\(103\) 38301.0i 0.355727i −0.984055 0.177863i \(-0.943081\pi\)
0.984055 0.177863i \(-0.0569185\pi\)
\(104\) −11899.0 171888.i −0.107877 1.55834i
\(105\) 0 0
\(106\) 121178. 73735.4i 1.04751 0.637399i
\(107\) 151431. 1.27866 0.639329 0.768933i \(-0.279212\pi\)
0.639329 + 0.768933i \(0.279212\pi\)
\(108\) 3270.78 6320.77i 0.0269831 0.0521448i
\(109\) 146420.i 1.18041i 0.807253 + 0.590206i \(0.200953\pi\)
−0.807253 + 0.590206i \(0.799047\pi\)
\(110\) 0 0
\(111\) −4346.96 −0.0334871
\(112\) −163706. + 115825.i −1.23316 + 0.872482i
\(113\) 59368.9i 0.437384i 0.975794 + 0.218692i \(0.0701789\pi\)
−0.975794 + 0.218692i \(0.929821\pi\)
\(114\) −3880.85 6377.86i −0.0279682 0.0459635i
\(115\) 0 0
\(116\) 110132. + 56989.5i 0.759921 + 0.393233i
\(117\) 231094. 1.56072
\(118\) −54264.1 89178.6i −0.358763 0.589597i
\(119\) 411544. 2.66409
\(120\) 0 0
\(121\) 32519.6 0.201921
\(122\) −51426.1 84514.6i −0.312812 0.514082i
\(123\) −1741.05 −0.0103764
\(124\) 76222.9 147300.i 0.445175 0.860300i
\(125\) 0 0
\(126\) −139814. 229774.i −0.784559 1.28936i
\(127\) 13242.9i 0.0728577i −0.999336 0.0364288i \(-0.988402\pi\)
0.999336 0.0364288i \(-0.0115982\pi\)
\(128\) 143565. 117256.i 0.774503 0.632571i
\(129\) −1982.63 −0.0104898
\(130\) 0 0
\(131\) 29434.9i 0.149860i −0.997189 0.0749298i \(-0.976127\pi\)
0.997189 0.0749298i \(-0.0238733\pi\)
\(132\) 4664.72 + 2413.83i 0.0233019 + 0.0120579i
\(133\) −564553. −2.76742
\(134\) −36199.1 + 22026.7i −0.174155 + 0.105971i
\(135\) 0 0
\(136\) −379497. + 26270.9i −1.75938 + 0.121795i
\(137\) 226821.i 1.03248i −0.856443 0.516241i \(-0.827331\pi\)
0.856443 0.516241i \(-0.172669\pi\)
\(138\) 2069.37 + 3400.84i 0.00924996 + 0.0152016i
\(139\) 206068.i 0.904637i −0.891856 0.452319i \(-0.850597\pi\)
0.891856 0.452319i \(-0.149403\pi\)
\(140\) 0 0
\(141\) 5725.76i 0.0242541i
\(142\) −5106.50 + 3107.24i −0.0212521 + 0.0129317i
\(143\) 341242.i 1.39548i
\(144\) 143595. + 202956.i 0.577075 + 0.815635i
\(145\) 0 0
\(146\) −162572. 267173.i −0.631194 1.03732i
\(147\) 9863.72 0.0376485
\(148\) 139638. 269851.i 0.524023 1.01267i
\(149\) 276062.i 1.01869i 0.860563 + 0.509344i \(0.170112\pi\)
−0.860563 + 0.509344i \(0.829888\pi\)
\(150\) 0 0
\(151\) −88898.4 −0.317287 −0.158643 0.987336i \(-0.550712\pi\)
−0.158643 + 0.987336i \(0.550712\pi\)
\(152\) 520591. 36038.2i 1.82763 0.126519i
\(153\) 510215.i 1.76207i
\(154\) 339292. 206455.i 1.15285 0.701493i
\(155\) 0 0
\(156\) 6408.55 12384.5i 0.0210838 0.0407444i
\(157\) −273937. −0.886954 −0.443477 0.896286i \(-0.646255\pi\)
−0.443477 + 0.896286i \(0.646255\pi\)
\(158\) 431965. 262845.i 1.37659 0.837640i
\(159\) 11480.0 0.0360122
\(160\) 0 0
\(161\) 301034. 0.915272
\(162\) −284617. + 173186.i −0.852067 + 0.518473i
\(163\) 22520.3 0.0663902 0.0331951 0.999449i \(-0.489432\pi\)
0.0331951 + 0.999449i \(0.489432\pi\)
\(164\) 55928.0 108081.i 0.162375 0.313790i
\(165\) 0 0
\(166\) 501842. 305365.i 1.41350 0.860100i
\(167\) 4216.06i 0.0116981i 0.999983 + 0.00584906i \(0.00186182\pi\)
−0.999983 + 0.00584906i \(0.998138\pi\)
\(168\) −16191.0 + 1120.83i −0.0442588 + 0.00306385i
\(169\) 534680. 1.44005
\(170\) 0 0
\(171\) 699908.i 1.83042i
\(172\) 63688.6 123078.i 0.164150 0.317219i
\(173\) −240365. −0.610599 −0.305299 0.952256i \(-0.598757\pi\)
−0.305299 + 0.952256i \(0.598757\pi\)
\(174\) 5216.76 + 8573.32i 0.0130626 + 0.0214672i
\(175\) 0 0
\(176\) −299692. + 212037.i −0.729279 + 0.515976i
\(177\) 8448.47i 0.0202696i
\(178\) −184298. + 112143.i −0.435985 + 0.265292i
\(179\) 245501.i 0.572691i 0.958126 + 0.286346i \(0.0924406\pi\)
−0.958126 + 0.286346i \(0.907559\pi\)
\(180\) 0 0
\(181\) 16588.7i 0.0376370i 0.999823 + 0.0188185i \(0.00599048\pi\)
−0.999823 + 0.0188185i \(0.994010\pi\)
\(182\) −548123. 900796.i −1.22659 2.01580i
\(183\) 8006.62i 0.0176735i
\(184\) −277592. + 19216.5i −0.604453 + 0.0418436i
\(185\) 0 0
\(186\) 11466.7 6977.37i 0.0243029 0.0147880i
\(187\) 753401. 1.57551
\(188\) 355444. + 183930.i 0.733461 + 0.379540i
\(189\) 43554.7i 0.0886912i
\(190\) 0 0
\(191\) −555884. −1.10256 −0.551278 0.834322i \(-0.685860\pi\)
−0.551278 + 0.834322i \(0.685860\pi\)
\(192\) 14858.6 2067.10i 0.0290888 0.00404678i
\(193\) 397154.i 0.767477i 0.923442 + 0.383738i \(0.125364\pi\)
−0.923442 + 0.383738i \(0.874636\pi\)
\(194\) 66867.3 + 109891.i 0.127559 + 0.209632i
\(195\) 0 0
\(196\) −316855. + 612321.i −0.589142 + 1.13852i
\(197\) −722243. −1.32592 −0.662961 0.748654i \(-0.730700\pi\)
−0.662961 + 0.748654i \(0.730700\pi\)
\(198\) −255954. 420640.i −0.463980 0.762513i
\(199\) 129890. 0.232511 0.116256 0.993219i \(-0.462911\pi\)
0.116256 + 0.993219i \(0.462911\pi\)
\(200\) 0 0
\(201\) −3429.38 −0.00598722
\(202\) 155001. + 254732.i 0.267274 + 0.439242i
\(203\) 758890. 1.29252
\(204\) −27342.8 14148.9i −0.0460010 0.0238039i
\(205\) 0 0
\(206\) 112625. + 185090.i 0.184913 + 0.303889i
\(207\) 373209.i 0.605377i
\(208\) 562943. + 795661.i 0.902207 + 1.27518i
\(209\) −1.03351e6 −1.63662
\(210\) 0 0
\(211\) 608872.i 0.941499i 0.882267 + 0.470749i \(0.156016\pi\)
−0.882267 + 0.470749i \(0.843984\pi\)
\(212\) −368775. + 712656.i −0.563536 + 1.08903i
\(213\) −483.772 −0.000730620
\(214\) −731792. + 445287.i −1.09233 + 0.664669i
\(215\) 0 0
\(216\) 2780.32 + 40163.1i 0.00405471 + 0.0585724i
\(217\) 1.01501e6i 1.46325i
\(218\) −430552. 707577.i −0.613598 1.00840i
\(219\) 25311.1i 0.0356615i
\(220\) 0 0
\(221\) 2.00023e6i 2.75485i
\(222\) 21006.8 12782.4i 0.0286073 0.0174072i
\(223\) 22540.8i 0.0303534i −0.999885 0.0151767i \(-0.995169\pi\)
0.999885 0.0151767i \(-0.00483108\pi\)
\(224\) 450528. 1.04111e6i 0.599931 1.38636i
\(225\) 0 0
\(226\) −174576. 286901.i −0.227360 0.373647i
\(227\) −150889. −0.194354 −0.0971770 0.995267i \(-0.530981\pi\)
−0.0971770 + 0.995267i \(0.530981\pi\)
\(228\) 37508.6 + 19409.4i 0.0477852 + 0.0247272i
\(229\) 724516.i 0.912976i 0.889730 + 0.456488i \(0.150893\pi\)
−0.889730 + 0.456488i \(0.849107\pi\)
\(230\) 0 0
\(231\) 32143.3 0.0396334
\(232\) −699795. + 48443.7i −0.853593 + 0.0590905i
\(233\) 336561.i 0.406138i −0.979164 0.203069i \(-0.934908\pi\)
0.979164 0.203069i \(-0.0650916\pi\)
\(234\) −1.11677e6 + 679540.i −1.33329 + 0.811289i
\(235\) 0 0
\(236\) 524465. + 271392.i 0.612966 + 0.317188i
\(237\) 40922.8 0.0473255
\(238\) −1.98879e6 + 1.21016e6i −2.27587 + 1.38484i
\(239\) −330500. −0.374262 −0.187131 0.982335i \(-0.559919\pi\)
−0.187131 + 0.982335i \(0.559919\pi\)
\(240\) 0 0
\(241\) 900033. 0.998196 0.499098 0.866546i \(-0.333665\pi\)
0.499098 + 0.866546i \(0.333665\pi\)
\(242\) −157152. + 95624.9i −0.172497 + 0.104962i
\(243\) −81007.6 −0.0880055
\(244\) 497036. + 257199.i 0.534457 + 0.276563i
\(245\) 0 0
\(246\) 8413.64 5119.60i 0.00886433 0.00539384i
\(247\) 2.74389e6i 2.86171i
\(248\) 64793.0 + 935969.i 0.0668958 + 0.966345i
\(249\) 47542.8 0.0485944
\(250\) 0 0
\(251\) 963725.i 0.965537i 0.875748 + 0.482768i \(0.160369\pi\)
−0.875748 + 0.482768i \(0.839631\pi\)
\(252\) 1.35131e6 + 699257.i 1.34046 + 0.693643i
\(253\) 551093. 0.541282
\(254\) 38941.3 + 63996.8i 0.0378727 + 0.0622406i
\(255\) 0 0
\(256\) −348986. + 988798.i −0.332819 + 0.942991i
\(257\) 1.50847e6i 1.42463i 0.701857 + 0.712317i \(0.252354\pi\)
−0.701857 + 0.712317i \(0.747646\pi\)
\(258\) 9581.11 5829.99i 0.00896121 0.00545279i
\(259\) 1.85947e6i 1.72242i
\(260\) 0 0
\(261\) 940839.i 0.854898i
\(262\) 86554.3 + 142245.i 0.0778997 + 0.128022i
\(263\) 721202.i 0.642936i 0.946920 + 0.321468i \(0.104176\pi\)
−0.946920 + 0.321468i \(0.895824\pi\)
\(264\) −29640.3 + 2051.87i −0.0261742 + 0.00181192i
\(265\) 0 0
\(266\) 2.72821e6 1.66008e6i 2.36415 1.43855i
\(267\) −17459.8 −0.0149886
\(268\) 110163. 212889.i 0.0936910 0.181058i
\(269\) 1.43076e6i 1.20556i −0.797909 0.602778i \(-0.794061\pi\)
0.797909 0.602778i \(-0.205939\pi\)
\(270\) 0 0
\(271\) −1.94059e6 −1.60514 −0.802568 0.596561i \(-0.796533\pi\)
−0.802568 + 0.596561i \(0.796533\pi\)
\(272\) 1.75668e6 1.24288e6i 1.43969 1.01861i
\(273\) 85338.3i 0.0693007i
\(274\) 666975. + 1.09612e6i 0.536702 + 0.882026i
\(275\) 0 0
\(276\) −20000.5 10349.6i −0.0158041 0.00817805i
\(277\) −1.71081e6 −1.33968 −0.669842 0.742504i \(-0.733638\pi\)
−0.669842 + 0.742504i \(0.733638\pi\)
\(278\) 605951. + 995830.i 0.470246 + 0.772811i
\(279\) −1.25836e6 −0.967822
\(280\) 0 0
\(281\) 1.44573e6 1.09225 0.546126 0.837703i \(-0.316102\pi\)
0.546126 + 0.837703i \(0.316102\pi\)
\(282\) 16836.8 + 27669.9i 0.0126077 + 0.0207197i
\(283\) 1.07186e6 0.795555 0.397777 0.917482i \(-0.369782\pi\)
0.397777 + 0.917482i \(0.369782\pi\)
\(284\) 15540.3 30031.6i 0.0114331 0.0220944i
\(285\) 0 0
\(286\) −1.00343e6 1.64906e6i −0.725393 1.19212i
\(287\) 744755.i 0.533714i
\(288\) −1.29072e6 558545.i −0.916963 0.396805i
\(289\) −2.99628e6 −2.11027
\(290\) 0 0
\(291\) 10410.7i 0.00720688i
\(292\) 1.57126e6 + 813073.i 1.07843 + 0.558049i
\(293\) −176850. −0.120347 −0.0601735 0.998188i \(-0.519165\pi\)
−0.0601735 + 0.998188i \(0.519165\pi\)
\(294\) −47666.7 + 29004.6i −0.0321622 + 0.0195703i
\(295\) 0 0
\(296\) 118699. + 1.71467e6i 0.0787442 + 1.13750i
\(297\) 79734.3i 0.0524510i
\(298\) −811769. 1.33408e6i −0.529532 0.870242i
\(299\) 1.46311e6i 0.946455i
\(300\) 0 0
\(301\) 848097.i 0.539547i
\(302\) 429604. 261409.i 0.271051 0.164931i
\(303\) 24132.4i 0.0151006i
\(304\) −2.40979e6 + 1.70497e6i −1.49553 + 1.05811i
\(305\) 0 0
\(306\) 1.50030e6 + 2.46562e6i 0.915957 + 1.50530i
\(307\) 2.76503e6 1.67438 0.837189 0.546914i \(-0.184198\pi\)
0.837189 + 0.546914i \(0.184198\pi\)
\(308\) −1.03255e6 + 1.99540e6i −0.620202 + 1.19854i
\(309\) 17534.8i 0.0104473i
\(310\) 0 0
\(311\) 748055. 0.438564 0.219282 0.975662i \(-0.429629\pi\)
0.219282 + 0.975662i \(0.429629\pi\)
\(312\) 5447.57 + 78693.0i 0.00316823 + 0.0457667i
\(313\) 2.84259e6i 1.64003i −0.572340 0.820017i \(-0.693964\pi\)
0.572340 0.820017i \(-0.306036\pi\)
\(314\) 1.32381e6 805520.i 0.757705 0.461054i
\(315\) 0 0
\(316\) −1.31457e6 + 2.54041e6i −0.740572 + 1.43115i
\(317\) −97492.6 −0.0544908 −0.0272454 0.999629i \(-0.508674\pi\)
−0.0272454 + 0.999629i \(0.508674\pi\)
\(318\) −55477.4 + 33757.3i −0.0307644 + 0.0187197i
\(319\) 1.38928e6 0.764384
\(320\) 0 0
\(321\) −69327.5 −0.0375528
\(322\) −1.45475e6 + 885199.i −0.781896 + 0.475774i
\(323\) 6.05802e6 3.23091
\(324\) 866161. 1.67385e6i 0.458391 0.885839i
\(325\) 0 0
\(326\) −108830. + 66221.5i −0.0567157 + 0.0345108i
\(327\) 67033.4i 0.0346674i
\(328\) 47541.4 + 686761.i 0.0243999 + 0.352469i
\(329\) 2.44927e6 1.24752
\(330\) 0 0
\(331\) 2.71471e6i 1.36193i −0.732317 0.680964i \(-0.761561\pi\)
0.732317 0.680964i \(-0.238439\pi\)
\(332\) −1.52723e6 + 2.95137e6i −0.760429 + 1.46953i
\(333\) −2.30529e6 −1.13924
\(334\) −12397.5 20374.2i −0.00608089 0.00999344i
\(335\) 0 0
\(336\) 74947.4 53026.5i 0.0362167 0.0256239i
\(337\) 495886.i 0.237852i −0.992903 0.118926i \(-0.962055\pi\)
0.992903 0.118926i \(-0.0379452\pi\)
\(338\) −2.58385e6 + 1.57224e6i −1.23020 + 0.748563i
\(339\) 27180.0i 0.0128455i
\(340\) 0 0
\(341\) 1.85814e6i 0.865353i
\(342\) −2.05810e6 3.38232e6i −0.951484 1.56369i
\(343\) 927903.i 0.425860i
\(344\) 54138.3 + 782055.i 0.0246665 + 0.356321i
\(345\) 0 0
\(346\) 1.16157e6 706801.i 0.521621 0.317400i
\(347\) −3.14504e6 −1.40217 −0.701087 0.713076i \(-0.747302\pi\)
−0.701087 + 0.713076i \(0.747302\pi\)
\(348\) −50420.3 26090.7i −0.0223181 0.0115488i
\(349\) 2.62573e6i 1.15395i 0.816762 + 0.576975i \(0.195767\pi\)
−0.816762 + 0.576975i \(0.804233\pi\)
\(350\) 0 0
\(351\) −211689. −0.0917129
\(352\) 824767. 1.90593e6i 0.354793 0.819879i
\(353\) 536996.i 0.229369i −0.993402 0.114684i \(-0.963414\pi\)
0.993402 0.114684i \(-0.0365857\pi\)
\(354\) 24843.0 + 40827.4i 0.0105365 + 0.0173159i
\(355\) 0 0
\(356\) 560865. 1.08387e6i 0.234549 0.453265i
\(357\) −188412. −0.0782415
\(358\) −721903. 1.18639e6i −0.297695 0.489237i
\(359\) 369981. 0.151511 0.0757553 0.997126i \(-0.475863\pi\)
0.0757553 + 0.997126i \(0.475863\pi\)
\(360\) 0 0
\(361\) −5.83425e6 −2.35623
\(362\) −48779.5 80165.2i −0.0195644 0.0321525i
\(363\) −14888.0 −0.00593021
\(364\) 5.29764e6 + 2.74134e6i 2.09570 + 1.08445i
\(365\) 0 0
\(366\) 23543.7 + 38692.2i 0.00918697 + 0.0150980i
\(367\) 1.41712e6i 0.549214i 0.961557 + 0.274607i \(0.0885478\pi\)
−0.961557 + 0.274607i \(0.911452\pi\)
\(368\) 1.28496e6 909132.i 0.494619 0.349951i
\(369\) −923315. −0.353008
\(370\) 0 0
\(371\) 4.91072e6i 1.85230i
\(372\) −34896.1 + 67436.6i −0.0130743 + 0.0252661i
\(373\) 2.16053e6 0.804060 0.402030 0.915626i \(-0.368305\pi\)
0.402030 + 0.915626i \(0.368305\pi\)
\(374\) −3.64083e6 + 2.21540e6i −1.34592 + 0.818979i
\(375\) 0 0
\(376\) −2.25854e6 + 156349.i −0.823871 + 0.0570330i
\(377\) 3.68843e6i 1.33656i
\(378\) 128074. + 210479.i 0.0461033 + 0.0757669i
\(379\) 1.60069e6i 0.572412i 0.958168 + 0.286206i \(0.0923942\pi\)
−0.958168 + 0.286206i \(0.907606\pi\)
\(380\) 0 0
\(381\) 6062.84i 0.00213975i
\(382\) 2.68632e6 1.63459e6i 0.941888 0.573128i
\(383\) 3.07943e6i 1.07269i −0.844000 0.536344i \(-0.819805\pi\)
0.844000 0.536344i \(-0.180195\pi\)
\(384\) −65726.3 + 53681.6i −0.0227463 + 0.0185779i
\(385\) 0 0
\(386\) −1.16784e6 1.91925e6i −0.398948 0.655638i
\(387\) −1.05143e6 −0.356866
\(388\) −646276. 334425.i −0.217941 0.112777i
\(389\) 2.71294e6i 0.909006i −0.890745 0.454503i \(-0.849817\pi\)
0.890745 0.454503i \(-0.150183\pi\)
\(390\) 0 0
\(391\) −3.23029e6 −1.06856
\(392\) −269341. 3.89078e6i −0.0885295 1.27885i
\(393\) 13475.8i 0.00440122i
\(394\) 3.49026e6 2.12378e6i 1.13270 0.689237i
\(395\) 0 0
\(396\) 2.47381e6 + 1.28011e6i 0.792735 + 0.410213i
\(397\) −4.05795e6 −1.29220 −0.646101 0.763252i \(-0.723601\pi\)
−0.646101 + 0.763252i \(0.723601\pi\)
\(398\) −627698. + 381947.i −0.198629 + 0.120863i
\(399\) 258462. 0.0812762
\(400\) 0 0
\(401\) 5.22811e6 1.62362 0.811809 0.583923i \(-0.198483\pi\)
0.811809 + 0.583923i \(0.198483\pi\)
\(402\) 16572.5 10084.2i 0.00511475 0.00311226i
\(403\) −4.93324e6 −1.51311
\(404\) −1.49809e6 775210.i −0.456652 0.236301i
\(405\) 0 0
\(406\) −3.66735e6 + 2.23154e6i −1.10417 + 0.671876i
\(407\) 3.40407e6i 1.01862i
\(408\) 173740. 12027.3i 0.0516713 0.00357698i
\(409\) 1.89554e6 0.560306 0.280153 0.959955i \(-0.409615\pi\)
0.280153 + 0.959955i \(0.409615\pi\)
\(410\) 0 0
\(411\) 103843.i 0.0303229i
\(412\) −1.08853e6 563275.i −0.315934 0.163485i
\(413\) 3.61394e6 1.04257
\(414\) 1.09743e6 + 1.80354e6i 0.314685 + 0.517160i
\(415\) 0 0
\(416\) −5.06010e6 2.18970e6i −1.43359 0.620370i
\(417\) 94341.5i 0.0265682i
\(418\) 4.99445e6 3.03907e6i 1.39813 0.850745i
\(419\) 663430.i 0.184612i −0.995731 0.0923060i \(-0.970576\pi\)
0.995731 0.0923060i \(-0.0294238\pi\)
\(420\) 0 0
\(421\) 1.14330e6i 0.314381i −0.987568 0.157190i \(-0.949756\pi\)
0.987568 0.157190i \(-0.0502436\pi\)
\(422\) −1.79041e6 2.94239e6i −0.489407 0.804301i
\(423\) 3.03650e6i 0.825130i
\(424\) −313476. 4.52832e6i −0.0846817 1.22327i
\(425\) 0 0
\(426\) 2337.84 1422.55i 0.000624153 0.000379789i
\(427\) 3.42494e6 0.909040
\(428\) 2.22702e6 4.30372e6i 0.587645 1.13562i
\(429\) 156226.i 0.0409837i
\(430\) 0 0
\(431\) 559165. 0.144993 0.0724964 0.997369i \(-0.476903\pi\)
0.0724964 + 0.997369i \(0.476903\pi\)
\(432\) −131537. 185914.i −0.0339108 0.0479294i
\(433\) 4.04780e6i 1.03753i 0.854918 + 0.518764i \(0.173608\pi\)
−0.854918 + 0.518764i \(0.826392\pi\)
\(434\) 2.98466e6 + 4.90505e6i 0.760625 + 1.25003i
\(435\) 0 0
\(436\) 4.16130e6 + 2.15333e6i 1.04837 + 0.542493i
\(437\) 4.43129e6 1.11001
\(438\) 74428.0 + 122316.i 0.0185375 + 0.0304649i
\(439\) 4.17879e6 1.03488 0.517439 0.855720i \(-0.326886\pi\)
0.517439 + 0.855720i \(0.326886\pi\)
\(440\) 0 0
\(441\) 5.23095e6 1.28081
\(442\) 5.88173e6 + 9.66614e6i 1.43202 + 2.35341i
\(443\) −6.19142e6 −1.49893 −0.749464 0.662045i \(-0.769689\pi\)
−0.749464 + 0.662045i \(0.769689\pi\)
\(444\) −63928.7 + 123542.i −0.0153900 + 0.0297411i
\(445\) 0 0
\(446\) 66281.9 + 108929.i 0.0157782 + 0.0259302i
\(447\) 126386.i 0.0299178i
\(448\) 884230. + 6.35598e6i 0.208147 + 1.49619i
\(449\) 3.11618e6 0.729469 0.364735 0.931111i \(-0.381160\pi\)
0.364735 + 0.931111i \(0.381160\pi\)
\(450\) 0 0
\(451\) 1.36340e6i 0.315633i
\(452\) 1.68728e6 + 873111.i 0.388456 + 0.201013i
\(453\) 40699.2 0.00931837
\(454\) 729175. 443694.i 0.166032 0.101029i
\(455\) 0 0
\(456\) −238335. + 16498.9i −0.0536755 + 0.00371572i
\(457\) 4.44694e6i 0.996026i 0.867170 + 0.498013i \(0.165937\pi\)
−0.867170 + 0.498013i \(0.834063\pi\)
\(458\) −2.13046e6 3.50124e6i −0.474581 0.779934i
\(459\) 467371.i 0.103545i
\(460\) 0 0
\(461\) 7.51985e6i 1.64800i 0.566590 + 0.824000i \(0.308262\pi\)
−0.566590 + 0.824000i \(0.691738\pi\)
\(462\) −155333. + 94518.5i −0.0338579 + 0.0206021i
\(463\) 4.34253e6i 0.941434i 0.882284 + 0.470717i \(0.156005\pi\)
−0.882284 + 0.470717i \(0.843995\pi\)
\(464\) 3.23932e6 2.29187e6i 0.698489 0.494192i
\(465\) 0 0
\(466\) 989668. + 1.62644e6i 0.211118 + 0.346955i
\(467\) 890290. 0.188903 0.0944515 0.995529i \(-0.469890\pi\)
0.0944515 + 0.995529i \(0.469890\pi\)
\(468\) 3.39860e6 6.56779e6i 0.717274 1.38613i
\(469\) 1.46696e6i 0.307955i
\(470\) 0 0
\(471\) 125413. 0.0260489
\(472\) −3.33253e6 + 230696.i −0.688523 + 0.0476634i
\(473\) 1.55258e6i 0.319082i
\(474\) −197761. + 120335.i −0.0404291 + 0.0246006i
\(475\) 0 0
\(476\) 6.05239e6 1.16962e7i 1.22436 2.36607i
\(477\) 6.08810e6 1.22514
\(478\) 1.59715e6 971844.i 0.319724 0.194548i
\(479\) −3.93305e6 −0.783233 −0.391617 0.920128i \(-0.628084\pi\)
−0.391617 + 0.920128i \(0.628084\pi\)
\(480\) 0 0
\(481\) −9.03757e6 −1.78110
\(482\) −4.34943e6 + 2.64657e6i −0.852736 + 0.518879i
\(483\) −137818. −0.0268806
\(484\) 478251. 924219.i 0.0927988 0.179333i
\(485\) 0 0
\(486\) 391471. 238205.i 0.0751811 0.0457468i
\(487\) 3.91119e6i 0.747286i −0.927573 0.373643i \(-0.878109\pi\)
0.927573 0.373643i \(-0.121891\pi\)
\(488\) −3.15824e6 + 218631.i −0.600337 + 0.0415587i
\(489\) −10310.1 −0.00194981
\(490\) 0 0
\(491\) 4.43336e6i 0.829907i −0.909843 0.414954i \(-0.863798\pi\)
0.909843 0.414954i \(-0.136202\pi\)
\(492\) −25604.8 + 49481.1i −0.00476879 + 0.00921567i
\(493\) −8.14339e6 −1.50900
\(494\) −8.06851e6 1.32599e7i −1.48756 2.44469i
\(495\) 0 0
\(496\) −3.06536e6 4.33256e6i −0.559470 0.790753i
\(497\) 206940.i 0.0375797i
\(498\) −229752. + 139801.i −0.0415131 + 0.0252602i
\(499\) 4.84134e6i 0.870391i 0.900336 + 0.435196i \(0.143321\pi\)
−0.900336 + 0.435196i \(0.856679\pi\)
\(500\) 0 0
\(501\) 1930.18i 0.000343561i
\(502\) −2.83386e6 4.65722e6i −0.501903 0.824836i
\(503\) 1.68379e6i 0.296735i 0.988932 + 0.148367i \(0.0474018\pi\)
−0.988932 + 0.148367i \(0.952598\pi\)
\(504\) −8.58644e6 + 594402.i −1.50569 + 0.104233i
\(505\) 0 0
\(506\) −2.66317e6 + 1.62051e6i −0.462405 + 0.281368i
\(507\) −244786. −0.0422927
\(508\) −376369. 194758.i −0.0647075 0.0334839i
\(509\) 9.81220e6i 1.67869i 0.543595 + 0.839347i \(0.317063\pi\)
−0.543595 + 0.839347i \(0.682937\pi\)
\(510\) 0 0
\(511\) 1.08271e7 1.83426
\(512\) −1.22111e6 5.80459e6i −0.205864 0.978581i
\(513\) 641136.i 0.107561i
\(514\) −4.43570e6 7.28971e6i −0.740550 1.21703i
\(515\) 0 0
\(516\) −29157.7 + 56347.1i −0.00482091 + 0.00931639i
\(517\) 4.48380e6 0.737768
\(518\) 5.46782e6 + 8.98592e6i 0.895344 + 1.47142i
\(519\) 110043. 0.0179326
\(520\) 0 0
\(521\) −2.02601e6 −0.327000 −0.163500 0.986543i \(-0.552278\pi\)
−0.163500 + 0.986543i \(0.552278\pi\)
\(522\) 2.76657e6 + 4.54663e6i 0.444391 + 0.730320i
\(523\) 402702. 0.0643768 0.0321884 0.999482i \(-0.489752\pi\)
0.0321884 + 0.999482i \(0.489752\pi\)
\(524\) −836551. 432886.i −0.133096 0.0688724i
\(525\) 0 0
\(526\) −2.12072e6 3.48523e6i −0.334209 0.549245i
\(527\) 1.08917e7i 1.70832i
\(528\) 137204. 97074.0i 0.0214181 0.0151537i
\(529\) 4.07347e6 0.632886
\(530\) 0 0
\(531\) 4.48041e6i 0.689575i
\(532\) −8.30262e6 + 1.60448e7i −1.27185 + 2.45785i
\(533\) −3.61973e6 −0.551897
\(534\) 84374.9 51341.1i 0.0128044 0.00779134i
\(535\) 0 0
\(536\) 93643.5 + 1.35273e6i 0.0140788 + 0.203376i
\(537\) 112394.i 0.0168193i
\(538\) 4.20721e6 + 6.91420e6i 0.626669 + 1.02988i
\(539\) 7.72421e6i 1.14520i
\(540\) 0 0
\(541\) 8.47881e6i 1.24549i 0.782423 + 0.622747i \(0.213984\pi\)
−0.782423 + 0.622747i \(0.786016\pi\)
\(542\) 9.37797e6 5.70638e6i 1.37123 0.834377i
\(543\) 7594.57i 0.00110536i
\(544\) −4.83446e6 + 1.11718e7i −0.700407 + 1.61855i
\(545\) 0 0
\(546\) 250940. + 412399.i 0.0360237 + 0.0592020i
\(547\) −7.10206e6 −1.01488 −0.507441 0.861686i \(-0.669409\pi\)
−0.507441 + 0.861686i \(0.669409\pi\)
\(548\) −6.44634e6 3.33576e6i −0.916985 0.474508i
\(549\) 4.24609e6i 0.601255i
\(550\) 0 0
\(551\) 1.11710e7 1.56752
\(552\) 127086. 8797.63i 0.0177521 0.00122890i
\(553\) 1.75053e7i 2.43420i
\(554\) 8.26753e6 5.03069e6i 1.14446 0.696391i
\(555\) 0 0
\(556\) −5.85654e6 3.03055e6i −0.803441 0.415753i
\(557\) −2.42337e6 −0.330965 −0.165482 0.986213i \(-0.552918\pi\)
−0.165482 + 0.986213i \(0.552918\pi\)
\(558\) 6.08107e6 3.70026e6i 0.826788 0.503091i
\(559\) −4.12200e6 −0.557929
\(560\) 0 0
\(561\) −344919. −0.0462712
\(562\) −6.98655e6 + 4.25123e6i −0.933086 + 0.567772i
\(563\) −1.03666e7 −1.37837 −0.689184 0.724586i \(-0.742031\pi\)
−0.689184 + 0.724586i \(0.742031\pi\)
\(564\) −162728. 84206.2i −0.0215410 0.0111467i
\(565\) 0 0
\(566\) −5.17976e6 + 3.15182e6i −0.679624 + 0.413543i
\(567\) 1.15341e7i 1.50669i
\(568\) 13210.0 + 190825.i 0.00171804 + 0.0248179i
\(569\) −1.33323e7 −1.72633 −0.863165 0.504921i \(-0.831521\pi\)
−0.863165 + 0.504921i \(0.831521\pi\)
\(570\) 0 0
\(571\) 4.77970e6i 0.613494i 0.951791 + 0.306747i \(0.0992405\pi\)
−0.951791 + 0.306747i \(0.900760\pi\)
\(572\) 9.69822e6 + 5.01849e6i 1.23937 + 0.641332i
\(573\) 254493. 0.0323809
\(574\) 2.18997e6 + 3.59904e6i 0.277434 + 0.455940i
\(575\) 0 0
\(576\) 7.87987e6 1.09623e6i 0.989607 0.137672i
\(577\) 5.73641e6i 0.717300i 0.933472 + 0.358650i \(0.116763\pi\)
−0.933472 + 0.358650i \(0.883237\pi\)
\(578\) 1.44796e7 8.81066e6i 1.80276 1.09695i
\(579\) 181823.i 0.0225400i
\(580\) 0 0
\(581\) 2.03371e7i 2.49947i
\(582\) −30613.0 50309.9i −0.00374626 0.00615667i
\(583\) 8.98990e6i 1.09543i
\(584\) −9.98403e6 + 691151.i −1.21136 + 0.0838572i
\(585\) 0 0
\(586\) 854630. 520032.i 0.102810 0.0625585i
\(587\) −5.32016e6 −0.637279 −0.318639 0.947876i \(-0.603226\pi\)
−0.318639 + 0.947876i \(0.603226\pi\)
\(588\) 145061. 280331.i 0.0173025 0.0334370i
\(589\) 1.49412e7i 1.77458i
\(590\) 0 0
\(591\) 330655. 0.0389409
\(592\) −5.61566e6 7.93714e6i −0.658562 0.930808i
\(593\) 828623.i 0.0967654i −0.998829 0.0483827i \(-0.984593\pi\)
0.998829 0.0483827i \(-0.0154067\pi\)
\(594\) 234461. + 385318.i 0.0272650 + 0.0448077i
\(595\) 0 0
\(596\) 7.84578e6 + 4.05992e6i 0.904734 + 0.468168i
\(597\) −59465.9 −0.00682861
\(598\) 4.30233e6 + 7.07053e6i 0.491984 + 0.808535i
\(599\) −5.87196e6 −0.668676 −0.334338 0.942453i \(-0.608513\pi\)
−0.334338 + 0.942453i \(0.608513\pi\)
\(600\) 0 0
\(601\) 3.38777e6 0.382584 0.191292 0.981533i \(-0.438732\pi\)
0.191292 + 0.981533i \(0.438732\pi\)
\(602\) 2.49386e6 + 4.09845e6i 0.280466 + 0.460923i
\(603\) −1.81868e6 −0.203686
\(604\) −1.30739e6 + 2.52653e6i −0.145818 + 0.281794i
\(605\) 0 0
\(606\) −70962.0 116620.i −0.00784955 0.0129001i
\(607\) 4.02635e6i 0.443547i −0.975098 0.221774i \(-0.928815\pi\)
0.975098 0.221774i \(-0.0711846\pi\)
\(608\) 6.63187e6 1.53254e7i 0.727574 1.68133i
\(609\) −347432. −0.0379601
\(610\) 0 0
\(611\) 1.19042e7i 1.29002i
\(612\) −1.45005e7 7.50350e6i −1.56496 0.809814i
\(613\) 5.30633e6 0.570352 0.285176 0.958475i \(-0.407948\pi\)
0.285176 + 0.958475i \(0.407948\pi\)
\(614\) −1.33621e7 + 8.13065e6i −1.43038 + 0.870370i
\(615\) 0 0
\(616\) −877714. 1.26790e7i −0.0931969 1.34628i
\(617\) 9.56854e6i 1.01189i 0.862566 + 0.505944i \(0.168856\pi\)
−0.862566 + 0.505944i \(0.831144\pi\)
\(618\) −51561.7 84737.4i −0.00543070 0.00892491i
\(619\) 6.58401e6i 0.690659i −0.938481 0.345330i \(-0.887767\pi\)
0.938481 0.345330i \(-0.112233\pi\)
\(620\) 0 0
\(621\) 341870.i 0.0355739i
\(622\) −3.61499e6 + 2.19968e6i −0.374655 + 0.227973i
\(623\) 7.46866e6i 0.770943i
\(624\) −257725. 364267.i −0.0264969 0.0374506i
\(625\) 0 0
\(626\) 8.35871e6 + 1.37369e7i 0.852518 + 1.40104i
\(627\) 473157. 0.0480659
\(628\) −4.02866e6 + 7.78538e6i −0.407626 + 0.787736i
\(629\) 1.99533e7i 2.01089i
\(630\) 0 0
\(631\) −1.34839e7 −1.34816 −0.674079 0.738659i \(-0.735459\pi\)
−0.674079 + 0.738659i \(0.735459\pi\)
\(632\) −1.11745e6 1.61421e7i −0.111285 1.60756i
\(633\) 278752.i 0.0276508i
\(634\) 471135. 286680.i 0.0465503 0.0283253i
\(635\) 0 0
\(636\) 168831. 326266.i 0.0165505 0.0319837i
\(637\) 2.05072e7 2.00244
\(638\) −6.71371e6 + 4.08521e6i −0.652996 + 0.397340i
\(639\) −256555. −0.0248559
\(640\) 0 0
\(641\) −7.72929e6 −0.743010 −0.371505 0.928431i \(-0.621158\pi\)
−0.371505 + 0.928431i \(0.621158\pi\)
\(642\) 335027. 203860.i 0.0320805 0.0195206i
\(643\) −9.41828e6 −0.898347 −0.449174 0.893444i \(-0.648282\pi\)
−0.449174 + 0.893444i \(0.648282\pi\)
\(644\) 4.42717e6 8.55549e6i 0.420641 0.812887i
\(645\) 0 0
\(646\) −2.92755e7 + 1.78138e7i −2.76009 + 1.67948i
\(647\) 3.44122e6i 0.323185i −0.986858 0.161593i \(-0.948337\pi\)
0.986858 0.161593i \(-0.0516631\pi\)
\(648\) 736277. + 1.06359e7i 0.0688817 + 0.995032i
\(649\) 6.61593e6 0.616566
\(650\) 0 0
\(651\) 464687.i 0.0429743i
\(652\) 331195. 640034.i 0.0305116 0.0589636i
\(653\) 1.39531e7 1.28053 0.640263 0.768155i \(-0.278825\pi\)
0.640263 + 0.768155i \(0.278825\pi\)
\(654\) 197114. + 323940.i 0.0180207 + 0.0296156i
\(655\) 0 0
\(656\) −2.24919e6 3.17899e6i −0.204064 0.288423i
\(657\) 1.34230e7i 1.21321i
\(658\) −1.18362e7 + 7.20215e6i −1.06573 + 0.648482i
\(659\) 1.16197e7i 1.04227i 0.853474 + 0.521135i \(0.174491\pi\)
−0.853474 + 0.521135i \(0.825509\pi\)
\(660\) 0 0
\(661\) 2.02640e6i 0.180394i 0.995924 + 0.0901970i \(0.0287497\pi\)
−0.995924 + 0.0901970i \(0.971250\pi\)
\(662\) 7.98270e6 + 1.31189e7i 0.707954 + 1.16346i
\(663\) 915737.i 0.0809071i
\(664\) −1.29822e6 1.87534e7i −0.114269 1.65067i
\(665\) 0 0
\(666\) 1.11404e7 6.77877e6i 0.973226 0.592196i
\(667\) −5.95668e6 −0.518429
\(668\) 119822. + 62003.8i 0.0103895 + 0.00537622i
\(669\) 10319.6i 0.000891447i
\(670\) 0 0
\(671\) 6.26993e6 0.537596
\(672\) −206259. + 476637.i −0.0176193 + 0.0407160i
\(673\) 5.84126e6i 0.497129i −0.968615 0.248564i \(-0.920041\pi\)
0.968615 0.248564i \(-0.0799587\pi\)
\(674\) 1.45817e6 + 2.39638e6i 0.123640 + 0.203192i
\(675\) 0 0
\(676\) 7.86330e6 1.51958e7i 0.661818 1.27896i
\(677\) −1.28265e7 −1.07557 −0.537784 0.843083i \(-0.680738\pi\)
−0.537784 + 0.843083i \(0.680738\pi\)
\(678\) 79923.8 + 131348.i 0.00667731 + 0.0109736i
\(679\) −4.45331e6 −0.370688
\(680\) 0 0
\(681\) 69079.6 0.00570797
\(682\) 5.46393e6 + 8.97952e6i 0.449825 + 0.739251i
\(683\) −7.24686e6 −0.594426 −0.297213 0.954811i \(-0.596057\pi\)
−0.297213 + 0.954811i \(0.596057\pi\)
\(684\) 1.98916e7 + 1.02932e7i 1.62566 + 0.841224i
\(685\) 0 0
\(686\) −2.72853e6 4.48411e6i −0.221370 0.363803i
\(687\) 331695.i 0.0268131i
\(688\) −2.56128e6 3.62010e6i −0.206294 0.291575i
\(689\) 2.38676e7 1.91540
\(690\) 0 0
\(691\) 2.08754e7i 1.66318i −0.555388 0.831592i \(-0.687430\pi\)
0.555388 0.831592i \(-0.312570\pi\)
\(692\) −3.53494e6 + 6.83126e6i −0.280619 + 0.542295i
\(693\) 1.70463e7 1.34834
\(694\) 1.51985e7 9.24808e6i 1.19785 0.728874i
\(695\) 0 0
\(696\) 320378. 22178.3i 0.0250691 0.00173543i
\(697\) 7.99171e6i 0.623100i
\(698\) −7.72105e6 1.26889e7i −0.599843 0.985793i
\(699\) 154083.i 0.0119279i
\(700\) 0 0
\(701\) 1.73225e7i 1.33142i −0.746209 0.665712i \(-0.768128\pi\)
0.746209 0.665712i \(-0.231872\pi\)
\(702\) 1.02299e6 622478.i 0.0783482 0.0476740i
\(703\) 2.73718e7i 2.08889i
\(704\) 1.61873e6 + 1.16357e7i 0.123096 + 0.884831i
\(705\) 0 0
\(706\) 1.57905e6 + 2.59505e6i 0.119230 + 0.195945i
\(707\) −1.03229e7 −0.776703
\(708\) −240109. 124248.i −0.0180022 0.00931549i
\(709\) 1.99424e7i 1.48991i −0.667113 0.744956i \(-0.732470\pi\)
0.667113 0.744956i \(-0.267530\pi\)
\(710\) 0 0
\(711\) 2.17023e7 1.61002
\(712\) 476762. + 6.88707e6i 0.0352453 + 0.509137i
\(713\) 7.96700e6i 0.586909i
\(714\) 910503. 554030.i 0.0668399 0.0406713i
\(715\) 0 0
\(716\) 6.97723e6 + 3.61047e6i 0.508628 + 0.263197i
\(717\) 151308. 0.0109917
\(718\) −1.78794e6 + 1.08794e6i −0.129432 + 0.0787579i
\(719\) 2.44269e7 1.76217 0.881083 0.472962i \(-0.156815\pi\)
0.881083 + 0.472962i \(0.156815\pi\)
\(720\) 0 0
\(721\) −7.50075e6 −0.537361
\(722\) 2.81941e7 1.71558e7i 2.01287 1.22481i
\(723\) −412050. −0.0293160
\(724\) 471457. + 243962.i 0.0334268 + 0.0172972i
\(725\) 0 0
\(726\) 71946.6 43778.6i 0.00506604 0.00308263i
\(727\) 1.52812e7i 1.07231i 0.844119 + 0.536155i \(0.180124\pi\)
−0.844119 + 0.536155i \(0.819876\pi\)
\(728\) −3.36620e7 + 2.33027e6i −2.35402 + 0.162959i
\(729\) −1.42747e7 −0.994829
\(730\) 0 0
\(731\) 9.10064e6i 0.629910i
\(732\) −227551. 117750.i −0.0156964 0.00812236i
\(733\) 7.69123e6 0.528732 0.264366 0.964422i \(-0.414837\pi\)
0.264366 + 0.964422i \(0.414837\pi\)
\(734\) −4.16709e6 6.84827e6i −0.285491 0.469181i
\(735\) 0 0
\(736\) −3.53628e6 + 8.17188e6i −0.240631 + 0.556067i
\(737\) 2.68552e6i 0.182121i
\(738\) 4.46194e6 2.71504e6i 0.301566 0.183500i
\(739\) 7.32363e6i 0.493305i 0.969104 + 0.246652i \(0.0793306\pi\)
−0.969104 + 0.246652i \(0.920669\pi\)
\(740\) 0 0
\(741\) 1.25620e6i 0.0840453i
\(742\) −1.44401e7 2.37312e7i −0.962856 1.58237i
\(743\) 1.61613e7i 1.07400i −0.843582 0.537001i \(-0.819557\pi\)
0.843582 0.537001i \(-0.180443\pi\)
\(744\) −29663.3 428502.i −0.00196466 0.0283805i
\(745\) 0 0
\(746\) −1.04408e7 + 6.35311e6i −0.686891 + 0.417965i
\(747\) 2.52130e7 1.65319
\(748\) 1.10799e7 2.14119e7i 0.724074 1.39927i
\(749\) 2.96557e7i 1.93154i
\(750\) 0 0
\(751\) −3.01764e7 −1.95240 −0.976199 0.216879i \(-0.930412\pi\)
−0.976199 + 0.216879i \(0.930412\pi\)
\(752\) 1.04547e7 7.39688e6i 0.674167 0.476984i
\(753\) 441209.i 0.0283568i
\(754\) 1.08459e7 + 1.78244e7i 0.694767 + 1.14179i
\(755\) 0 0
\(756\) −1.23784e6 640540.i −0.0787699 0.0407607i
\(757\) 1.40193e7 0.889171 0.444586 0.895736i \(-0.353351\pi\)
0.444586 + 0.895736i \(0.353351\pi\)
\(758\) −4.70687e6 7.73536e6i −0.297550 0.488999i
\(759\) −252299. −0.0158969
\(760\) 0 0
\(761\) −1.39222e7 −0.871456 −0.435728 0.900078i \(-0.643509\pi\)
−0.435728 + 0.900078i \(0.643509\pi\)
\(762\) −17828.0 29298.8i −0.00111228 0.00182794i
\(763\) 2.86744e7 1.78313
\(764\) −8.17513e6 + 1.57984e7i −0.506712 + 0.979220i
\(765\) 0 0
\(766\) 9.05516e6 + 1.48814e7i 0.557602 + 0.916373i
\(767\) 1.75648e7i 1.07809i
\(768\) 159771. 452688.i 0.00977454 0.0276946i
\(769\) 1.41369e7 0.862063 0.431031 0.902337i \(-0.358150\pi\)
0.431031 + 0.902337i \(0.358150\pi\)
\(770\) 0 0
\(771\) 690602.i 0.0418400i
\(772\) 1.12872e7 + 5.84076e6i 0.681624 + 0.352717i
\(773\) −1.39310e7 −0.838558 −0.419279 0.907858i \(-0.637717\pi\)
−0.419279 + 0.907858i \(0.637717\pi\)
\(774\) 5.08108e6 3.09178e6i 0.304862 0.185505i
\(775\) 0 0
\(776\) 4.10653e6 284277.i 0.244805 0.0169468i
\(777\) 851295.i 0.0505857i
\(778\) 7.97749e6 + 1.31104e7i 0.472517 + 0.776543i
\(779\) 1.09630e7i 0.647268i
\(780\) 0 0
\(781\) 378838.i 0.0222242i
\(782\) 1.56104e7 9.49877e6i 0.912848 0.555457i
\(783\) 861835.i 0.0502366i
\(784\) 1.27425e7 + 1.80103e7i 0.740399 + 1.04648i
\(785\) 0 0
\(786\) −39626.0 65122.1i −0.00228783 0.00375986i
\(787\) −9.60345e6 −0.552701 −0.276351 0.961057i \(-0.589125\pi\)
−0.276351 + 0.961057i \(0.589125\pi\)
\(788\) −1.06217e7 + 2.05264e7i −0.609366 + 1.17760i
\(789\) 330178.i 0.0188823i
\(790\) 0 0
\(791\) 1.16266e7 0.660712
\(792\) −1.57189e7 + 1.08815e6i −0.890451 + 0.0616420i
\(793\) 1.66462e7i 0.940010i
\(794\) 1.96101e7 1.19325e7i 1.10390 0.671709i
\(795\) 0 0
\(796\) 1.91024e6 3.69153e6i 0.106857 0.206502i
\(797\) −1.97451e7 −1.10107 −0.550534 0.834813i \(-0.685576\pi\)
−0.550534 + 0.834813i \(0.685576\pi\)
\(798\) −1.24902e6 + 760014.i −0.0694325 + 0.0422488i
\(799\) −2.62823e7 −1.45645
\(800\) 0 0
\(801\) −9.25932e6 −0.509915
\(802\) −2.52650e7 + 1.53734e7i −1.38702 + 0.843985i
\(803\) 1.98209e7 1.08476
\(804\) −50434.3 + 97464.2i −0.00275160 + 0.00531747i
\(805\) 0 0
\(806\) 2.38400e7 1.45063e7i 1.29261 0.786539i
\(807\) 655027.i 0.0354059i
\(808\) 9.51909e6 658965.i 0.512941 0.0355087i
\(809\) −1.73178e7 −0.930296 −0.465148 0.885233i \(-0.653999\pi\)
−0.465148 + 0.885233i \(0.653999\pi\)
\(810\) 0 0
\(811\) 3.16102e7i 1.68762i −0.536642 0.843810i \(-0.680307\pi\)
0.536642 0.843810i \(-0.319693\pi\)
\(812\) 1.11606e7 2.15679e7i 0.594018 1.14794i
\(813\) 888436. 0.0471411
\(814\) 1.00098e7 + 1.64502e7i 0.529497 + 0.870184i
\(815\) 0 0
\(816\) −804236. + 569010.i −0.0422822 + 0.0299154i
\(817\) 1.24842e7i 0.654342i
\(818\) −9.16026e6 + 5.57390e6i −0.478657 + 0.291257i
\(819\) 4.52568e7i 2.35762i
\(820\) 0 0
\(821\) 1.86667e7i 0.966519i 0.875477 + 0.483260i \(0.160547\pi\)
−0.875477 + 0.483260i \(0.839453\pi\)
\(822\) −305352. 501821.i −0.0157624 0.0259042i
\(823\) 3.88081e7i 1.99720i 0.0528555 + 0.998602i \(0.483168\pi\)
−0.0528555 + 0.998602i \(0.516832\pi\)
\(824\) 6.91666e6 478810.i 0.354878 0.0245666i
\(825\) 0 0
\(826\) −1.74645e7 + 1.06269e7i −0.890646 + 0.541947i
\(827\) −2.98829e7 −1.51935 −0.759677 0.650301i \(-0.774643\pi\)
−0.759677 + 0.650301i \(0.774643\pi\)
\(828\) −1.06067e7 5.48861e6i −0.537657 0.278219i
\(829\) 2.10001e7i 1.06129i 0.847594 + 0.530645i \(0.178050\pi\)
−0.847594 + 0.530645i \(0.821950\pi\)
\(830\) 0 0
\(831\) 783237. 0.0393451
\(832\) 3.08919e7 4.29762e6i 1.54717 0.215239i
\(833\) 4.52763e7i 2.26078i
\(834\) −277414. 455908.i −0.0138106 0.0226966i
\(835\) 0 0
\(836\) −1.51993e7 + 2.93727e7i −0.752158 + 1.45354i
\(837\) 1.15270e6 0.0568724
\(838\) 1.95084e6 + 3.20604e6i 0.0959645 + 0.157710i
\(839\) 7.61546e6 0.373501 0.186750 0.982407i \(-0.440204\pi\)
0.186750 + 0.982407i \(0.440204\pi\)
\(840\) 0 0
\(841\) 5.49468e6 0.267888
\(842\) 3.36192e6 + 5.52503e6i 0.163421 + 0.268568i
\(843\) −661881. −0.0320783
\(844\) 1.73044e7 + 8.95440e6i 0.836179 + 0.432694i
\(845\) 0 0
\(846\) 8.92892e6 + 1.46740e7i 0.428917 + 0.704890i
\(847\) 6.36854e6i 0.305022i
\(848\) 1.48306e7 + 2.09614e7i 0.708219 + 1.00099i
\(849\) −490713. −0.0233646
\(850\) 0 0
\(851\) 1.45953e7i 0.690860i
\(852\) −7114.62 + 13749.0i −0.000335778 + 0.000648891i
\(853\) −9.56553e6 −0.450128 −0.225064 0.974344i \(-0.572259\pi\)
−0.225064 + 0.974344i \(0.572259\pi\)
\(854\) −1.65511e7 + 1.00711e7i −0.776572 + 0.472535i
\(855\) 0 0
\(856\) 1.89307e6 + 2.73464e7i 0.0883046 + 1.27561i
\(857\) 2.34556e7i 1.09092i 0.838136 + 0.545462i \(0.183646\pi\)
−0.838136 + 0.545462i \(0.816354\pi\)
\(858\) 459388. + 754967.i 0.0213040 + 0.0350114i
\(859\) 9.13964e6i 0.422616i 0.977420 + 0.211308i \(0.0677723\pi\)
−0.977420 + 0.211308i \(0.932228\pi\)
\(860\) 0 0
\(861\) 340961.i 0.0156746i
\(862\) −2.70218e6 + 1.64424e6i −0.123864 + 0.0753698i
\(863\) 1.04151e7i 0.476034i −0.971261 0.238017i \(-0.923503\pi\)
0.971261 0.238017i \(-0.0764974\pi\)
\(864\) 1.18234e6 + 511643.i 0.0538837 + 0.0233175i
\(865\) 0 0
\(866\) −1.19027e7 1.95611e7i −0.539325 0.886336i
\(867\) 1.37175e6 0.0619764
\(868\) −2.88469e7 1.49273e7i −1.29957 0.672482i
\(869\) 3.20464e7i 1.43956i
\(870\) 0 0
\(871\) −7.12987e6 −0.318446
\(872\) −2.64415e7 + 1.83043e6i −1.17759 + 0.0815196i
\(873\) 5.52102e6i 0.245179i
\(874\) −2.14143e7 + 1.30303e7i −0.948255 + 0.577002i
\(875\) 0 0
\(876\) −719350. 372238.i −0.0316723 0.0163893i
\(877\) −2.02537e7 −0.889210 −0.444605 0.895727i \(-0.646656\pi\)
−0.444605 + 0.895727i \(0.646656\pi\)
\(878\) −2.01941e7 + 1.22879e7i −0.884072 + 0.537947i
\(879\) 80964.7 0.00353447
\(880\) 0 0
\(881\) 2.74936e7 1.19341 0.596707 0.802459i \(-0.296475\pi\)
0.596707 + 0.802459i \(0.296475\pi\)
\(882\) −2.52787e7 + 1.53818e7i −1.09417 + 0.665787i
\(883\) 3.50971e7 1.51485 0.757425 0.652922i \(-0.226457\pi\)
0.757425 + 0.652922i \(0.226457\pi\)
\(884\) −5.68472e7 2.94164e7i −2.44669 1.26607i
\(885\) 0 0
\(886\) 2.99202e7 1.82061e7i 1.28050 0.779169i
\(887\) 1.77301e7i 0.756660i 0.925671 + 0.378330i \(0.123502\pi\)
−0.925671 + 0.378330i \(0.876498\pi\)
\(888\) −54342.4 785005.i −0.00231263 0.0334072i
\(889\) −2.59346e6 −0.110059
\(890\) 0 0
\(891\) 2.11151e7i 0.891042i
\(892\) −640618. 331497.i −0.0269580 0.0139498i
\(893\) 3.60538e7 1.51294
\(894\) 371641. + 610762.i 0.0155518 + 0.0255581i
\(895\) 0 0
\(896\) −2.29630e7 2.81153e7i −0.955562 1.16996i
\(897\) 669837.i 0.0277964i
\(898\) −1.50590e7 + 9.16323e6i −0.623169 + 0.379191i
\(899\) 2.00844e7i 0.828818i
\(900\) 0 0
\(901\) 5.26953e7i 2.16252i
\(902\) 4.00912e6 + 6.58866e6i 0.164071 + 0.269638i
\(903\) 388273.i 0.0158459i
\(904\) −1.07213e7 + 742186.i −0.436339 + 0.0302059i
\(905\) 0 0
\(906\) −196680. + 119677.i −0.00796047 + 0.00484385i
\(907\) 1.04686e7 0.422542 0.211271 0.977428i \(-0.432240\pi\)
0.211271 + 0.977428i \(0.432240\pi\)
\(908\) −2.21906e6 + 4.28833e6i −0.0893211 + 0.172613i
\(909\) 1.27979e7i 0.513725i
\(910\) 0 0
\(911\) −4.87147e7 −1.94475 −0.972376 0.233420i \(-0.925008\pi\)
−0.972376 + 0.233420i \(0.925008\pi\)
\(912\) 1.10324e6 780563.i 0.0439222 0.0310757i
\(913\) 3.72304e7i 1.47816i
\(914\) −1.30764e7 2.14899e7i −0.517752 0.850882i
\(915\) 0 0
\(916\) 2.05910e7 + 1.06551e7i 0.810847 + 0.419585i
\(917\) −5.76445e6 −0.226378
\(918\) −1.37432e6 2.25858e6i −0.0538246 0.0884563i
\(919\) 2.63015e7 1.02729 0.513643 0.858004i \(-0.328296\pi\)
0.513643 + 0.858004i \(0.328296\pi\)
\(920\) 0 0
\(921\) −1.26587e6 −0.0491747
\(922\) −2.21124e7 3.63399e7i −0.856659 1.40785i
\(923\) −1.00579e6 −0.0388600
\(924\) 472718. 913526.i 0.0182147 0.0351998i
\(925\) 0 0
\(926\) −1.27693e7 2.09854e7i −0.489374 0.804246i
\(927\) 9.29911e6i 0.355420i
\(928\) −8.91478e6 + 2.06009e7i −0.339813 + 0.785264i
\(929\) −4.91045e7 −1.86673 −0.933366 0.358925i \(-0.883143\pi\)
−0.933366 + 0.358925i \(0.883143\pi\)
\(930\) 0 0
\(931\) 6.21096e7i 2.34847i
\(932\) −9.56519e6 4.94965e6i −0.360706 0.186653i
\(933\) −342472. −0.0128802
\(934\) −4.30234e6 + 2.61792e6i −0.161376 + 0.0981951i
\(935\) 0 0
\(936\) 2.88897e6 + 4.17327e7i 0.107784 + 1.55699i
\(937\) 3.24439e7i 1.20721i −0.797282 0.603607i \(-0.793729\pi\)
0.797282 0.603607i \(-0.206271\pi\)
\(938\) 4.31365e6 + 7.08912e6i 0.160080 + 0.263079i
\(939\) 1.30138e6i 0.0481660i
\(940\) 0 0
\(941\) 5.58017e6i 0.205435i −0.994711 0.102717i \(-0.967246\pi\)
0.994711 0.102717i \(-0.0327537\pi\)
\(942\) −606060. + 368780.i −0.0222530 + 0.0135407i
\(943\) 5.84573e6i 0.214072i
\(944\) 1.54261e7 1.09142e7i 0.563413 0.398624i
\(945\) 0 0
\(946\) 4.56542e6 + 7.50290e6i 0.165864 + 0.272585i
\(947\) 2.29821e7 0.832748 0.416374 0.909193i \(-0.363301\pi\)
0.416374 + 0.909193i \(0.363301\pi\)
\(948\) 601834. 1.16304e6i 0.0217498 0.0420315i
\(949\) 5.26231e7i 1.89675i
\(950\) 0 0
\(951\) 44633.7 0.00160034
\(952\) 5.14482e6 + 7.43195e7i 0.183983 + 2.65773i
\(953\) 2.98158e7i 1.06344i 0.846920 + 0.531721i \(0.178455\pi\)
−0.846920 + 0.531721i \(0.821545\pi\)
\(954\) −2.94209e7 + 1.79023e7i −1.04661 + 0.636850i
\(955\) 0 0
\(956\) −4.86051e6 + 9.39292e6i −0.172003 + 0.332396i
\(957\) −636034. −0.0224492
\(958\) 1.90066e7 1.15653e7i 0.669099 0.407138i
\(959\) −4.44200e7 −1.55967
\(960\) 0 0
\(961\) −1.76649e6 −0.0617026
\(962\) 4.36742e7 2.65752e7i 1.52156 0.925848i
\(963\) −3.67659e7 −1.27756
\(964\) 1.32364e7 2.55793e7i 0.458750 0.886534i
\(965\) 0 0
\(966\) 666009. 405259.i 0.0229635 0.0139730i
\(967\) 4.13822e6i 0.142314i −0.997465 0.0711570i \(-0.977331\pi\)
0.997465 0.0711570i \(-0.0226691\pi\)
\(968\) 406536. + 5.87262e6i 0.0139447 + 0.201439i
\(969\) −2.77346e6 −0.0948884
\(970\) 0 0
\(971\) 5.43256e7i 1.84908i 0.381081 + 0.924542i \(0.375552\pi\)
−0.381081 + 0.924542i \(0.624448\pi\)
\(972\) −1.19134e6 + 2.30227e6i −0.0404456 + 0.0781609i
\(973\) −4.03558e7 −1.36655
\(974\) 1.15010e7 + 1.89009e7i 0.388452 + 0.638389i
\(975\) 0 0
\(976\) 1.46194e7 1.03434e7i 0.491251 0.347568i
\(977\) 2.00334e7i 0.671456i 0.941959 + 0.335728i \(0.108982\pi\)
−0.941959 + 0.335728i \(0.891018\pi\)
\(978\) 49824.0 30317.3i 0.00166568 0.00101355i
\(979\) 1.36726e7i 0.455927i
\(980\) 0 0
\(981\) 3.55493e7i 1.17939i
\(982\) 1.30364e7 + 2.14243e7i 0.431400 + 0.708971i
\(983\) 2.92947e6i 0.0966953i −0.998831 0.0483476i \(-0.984604\pi\)
0.998831 0.0483476i \(-0.0153955\pi\)
\(984\) −21765.3 314410.i −0.000716599 0.0103516i
\(985\) 0 0
\(986\) 3.93531e7 2.39459e7i 1.28910 0.784402i
\(987\) −1.12132e6 −0.0366383
\(988\) 7.79825e7 + 4.03532e7i 2.54158 + 1.31518i
\(989\) 6.65688e6i 0.216411i
\(990\) 0 0
\(991\) 5.27467e7 1.70613 0.853064 0.521807i \(-0.174742\pi\)
0.853064 + 0.521807i \(0.174742\pi\)
\(992\) 2.75535e7 + 1.19234e7i 0.888990 + 0.384700i
\(993\) 1.24284e6i 0.0399984i
\(994\) 608513. + 1.00004e6i 0.0195346 + 0.0321035i
\(995\) 0 0
\(996\) 699191. 1.35118e6i 0.0223330 0.0431585i
\(997\) 1.04084e7 0.331625 0.165812 0.986157i \(-0.446975\pi\)
0.165812 + 0.986157i \(0.446975\pi\)
\(998\) −1.42361e7 2.33959e7i −0.452444 0.743555i
\(999\) 2.11171e6 0.0669454
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.6.f.d.149.10 40
4.3 odd 2 800.6.f.d.49.21 40
5.2 odd 4 200.6.d.d.101.5 yes 20
5.3 odd 4 200.6.d.c.101.16 yes 20
5.4 even 2 inner 200.6.f.d.149.31 40
8.3 odd 2 800.6.f.d.49.19 40
8.5 even 2 inner 200.6.f.d.149.32 40
20.3 even 4 800.6.d.d.401.11 20
20.7 even 4 800.6.d.b.401.10 20
20.19 odd 2 800.6.f.d.49.20 40
40.3 even 4 800.6.d.d.401.10 20
40.13 odd 4 200.6.d.c.101.15 20
40.19 odd 2 800.6.f.d.49.22 40
40.27 even 4 800.6.d.b.401.11 20
40.29 even 2 inner 200.6.f.d.149.9 40
40.37 odd 4 200.6.d.d.101.6 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.15 20 40.13 odd 4
200.6.d.c.101.16 yes 20 5.3 odd 4
200.6.d.d.101.5 yes 20 5.2 odd 4
200.6.d.d.101.6 yes 20 40.37 odd 4
200.6.f.d.149.9 40 40.29 even 2 inner
200.6.f.d.149.10 40 1.1 even 1 trivial
200.6.f.d.149.31 40 5.4 even 2 inner
200.6.f.d.149.32 40 8.5 even 2 inner
800.6.d.b.401.10 20 20.7 even 4
800.6.d.b.401.11 20 40.27 even 4
800.6.d.d.401.10 20 40.3 even 4
800.6.d.d.401.11 20 20.3 even 4
800.6.f.d.49.19 40 8.3 odd 2
800.6.f.d.49.20 40 20.19 odd 2
800.6.f.d.49.21 40 4.3 odd 2
800.6.f.d.49.22 40 40.19 odd 2