Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [200,6,Mod(149,200)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(200, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("200.149");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 200.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(32.0767639626\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
149.1 | −5.59127 | − | 0.858917i | 2.58812 | 30.5245 | + | 9.60487i | 0 | −14.4709 | − | 2.22298i | − | 27.4015i | −162.421 | − | 79.9214i | −236.302 | 0 | |||||||||
149.2 | −5.59127 | + | 0.858917i | 2.58812 | 30.5245 | − | 9.60487i | 0 | −14.4709 | + | 2.22298i | 27.4015i | −162.421 | + | 79.9214i | −236.302 | 0 | ||||||||||
149.3 | −5.36768 | − | 1.78549i | 29.6034 | 25.6240 | + | 19.1679i | 0 | −158.902 | − | 52.8566i | − | 90.3364i | −103.318 | − | 148.639i | 633.360 | 0 | |||||||||
149.4 | −5.36768 | + | 1.78549i | 29.6034 | 25.6240 | − | 19.1679i | 0 | −158.902 | + | 52.8566i | 90.3364i | −103.318 | + | 148.639i | 633.360 | 0 | ||||||||||
149.5 | −4.95437 | − | 2.73024i | −18.7068 | 17.0916 | + | 27.0532i | 0 | 92.6806 | + | 51.0741i | − | 207.924i | −10.8164 | − | 180.696i | 106.946 | 0 | |||||||||
149.6 | −4.95437 | + | 2.73024i | −18.7068 | 17.0916 | − | 27.0532i | 0 | 92.6806 | − | 51.0741i | 207.924i | −10.8164 | + | 180.696i | 106.946 | 0 | ||||||||||
149.7 | −4.94424 | − | 2.74854i | −23.5470 | 16.8910 | + | 27.1789i | 0 | 116.422 | + | 64.7200i | − | 39.5751i | −8.81071 | − | 180.805i | 311.462 | 0 | |||||||||
149.8 | −4.94424 | + | 2.74854i | −23.5470 | 16.8910 | − | 27.1789i | 0 | 116.422 | − | 64.7200i | 39.5751i | −8.81071 | + | 180.805i | 311.462 | 0 | ||||||||||
149.9 | −4.83252 | − | 2.94053i | −0.457817 | 14.7065 | + | 28.4204i | 0 | 2.21241 | + | 1.34622i | 195.837i | 12.5013 | − | 180.587i | −242.790 | 0 | ||||||||||
149.10 | −4.83252 | + | 2.94053i | −0.457817 | 14.7065 | − | 28.4204i | 0 | 2.21241 | − | 1.34622i | − | 195.837i | 12.5013 | + | 180.587i | −242.790 | 0 | |||||||||
149.11 | −3.87282 | − | 4.12326i | 18.2848 | −2.00256 | + | 31.9373i | 0 | −70.8136 | − | 75.3929i | − | 2.25573i | 139.441 | − | 115.430i | 91.3327 | 0 | |||||||||
149.12 | −3.87282 | + | 4.12326i | 18.2848 | −2.00256 | − | 31.9373i | 0 | −70.8136 | + | 75.3929i | 2.25573i | 139.441 | + | 115.430i | 91.3327 | 0 | ||||||||||
149.13 | −2.17296 | − | 5.22286i | −8.95730 | −22.5565 | + | 22.6981i | 0 | 19.4639 | + | 46.7827i | 179.198i | 167.563 | + | 68.4872i | −162.767 | 0 | ||||||||||
149.14 | −2.17296 | + | 5.22286i | −8.95730 | −22.5565 | − | 22.6981i | 0 | 19.4639 | − | 46.7827i | − | 179.198i | 167.563 | − | 68.4872i | −162.767 | 0 | |||||||||
149.15 | −2.08722 | − | 5.25771i | 10.4354 | −23.2871 | + | 21.9480i | 0 | −21.7810 | − | 54.8666i | − | 66.0164i | 164.001 | + | 76.6266i | −134.101 | 0 | |||||||||
149.16 | −2.08722 | + | 5.25771i | 10.4354 | −23.2871 | − | 21.9480i | 0 | −21.7810 | + | 54.8666i | 66.0164i | 164.001 | − | 76.6266i | −134.101 | 0 | ||||||||||
149.17 | −1.74979 | − | 5.37943i | −25.2673 | −25.8765 | + | 18.8258i | 0 | 44.2124 | + | 135.923i | 185.199i | 146.550 | + | 106.259i | 395.434 | 0 | ||||||||||
149.18 | −1.74979 | + | 5.37943i | −25.2673 | −25.8765 | − | 18.8258i | 0 | 44.2124 | − | 135.923i | − | 185.199i | 146.550 | − | 106.259i | 395.434 | 0 | |||||||||
149.19 | −0.438664 | − | 5.63982i | −17.0419 | −31.6151 | + | 4.94797i | 0 | 7.47566 | + | 96.1131i | − | 191.207i | 41.7741 | + | 176.133i | 47.4256 | 0 | |||||||||
149.20 | −0.438664 | + | 5.63982i | −17.0419 | −31.6151 | − | 4.94797i | 0 | 7.47566 | − | 96.1131i | 191.207i | 41.7741 | − | 176.133i | 47.4256 | 0 | ||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
40.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 200.6.f.d | 40 | |
4.b | odd | 2 | 1 | 800.6.f.d | 40 | ||
5.b | even | 2 | 1 | inner | 200.6.f.d | 40 | |
5.c | odd | 4 | 1 | 200.6.d.c | ✓ | 20 | |
5.c | odd | 4 | 1 | 200.6.d.d | yes | 20 | |
8.b | even | 2 | 1 | inner | 200.6.f.d | 40 | |
8.d | odd | 2 | 1 | 800.6.f.d | 40 | ||
20.d | odd | 2 | 1 | 800.6.f.d | 40 | ||
20.e | even | 4 | 1 | 800.6.d.b | 20 | ||
20.e | even | 4 | 1 | 800.6.d.d | 20 | ||
40.e | odd | 2 | 1 | 800.6.f.d | 40 | ||
40.f | even | 2 | 1 | inner | 200.6.f.d | 40 | |
40.i | odd | 4 | 1 | 200.6.d.c | ✓ | 20 | |
40.i | odd | 4 | 1 | 200.6.d.d | yes | 20 | |
40.k | even | 4 | 1 | 800.6.d.b | 20 | ||
40.k | even | 4 | 1 | 800.6.d.d | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
200.6.d.c | ✓ | 20 | 5.c | odd | 4 | 1 | |
200.6.d.c | ✓ | 20 | 40.i | odd | 4 | 1 | |
200.6.d.d | yes | 20 | 5.c | odd | 4 | 1 | |
200.6.d.d | yes | 20 | 40.i | odd | 4 | 1 | |
200.6.f.d | 40 | 1.a | even | 1 | 1 | trivial | |
200.6.f.d | 40 | 5.b | even | 2 | 1 | inner | |
200.6.f.d | 40 | 8.b | even | 2 | 1 | inner | |
200.6.f.d | 40 | 40.f | even | 2 | 1 | inner | |
800.6.d.b | 20 | 20.e | even | 4 | 1 | ||
800.6.d.b | 20 | 40.k | even | 4 | 1 | ||
800.6.d.d | 20 | 20.e | even | 4 | 1 | ||
800.6.d.d | 20 | 40.k | even | 4 | 1 | ||
800.6.f.d | 40 | 4.b | odd | 2 | 1 | ||
800.6.f.d | 40 | 8.d | odd | 2 | 1 | ||
800.6.f.d | 40 | 20.d | odd | 2 | 1 | ||
800.6.f.d | 40 | 40.e | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{20} - 3240 T_{3}^{18} + 4338819 T_{3}^{16} - 3123786848 T_{3}^{14} + 1315141752042 T_{3}^{12} + \cdots + 12\!\cdots\!83 \) acting on \(S_{6}^{\mathrm{new}}(200, [\chi])\).