Properties

Label 8000.2.a.bo.1.3
Level $8000$
Weight $2$
Character 8000.1
Self dual yes
Analytic conductor $63.880$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8000,2,Mod(1,8000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8000 = 2^{6} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8803216170\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.10025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 11x^{2} + 10x + 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1000)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.39867\) of defining polynomial
Character \(\chi\) \(=\) 8000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.39867 q^{3} -1.13558 q^{7} +2.75361 q^{9} +O(q^{10})\) \(q+2.39867 q^{3} -1.13558 q^{7} +2.75361 q^{9} -2.01670 q^{11} -2.26309 q^{13} -1.08379 q^{17} +5.58295 q^{19} -2.72387 q^{21} -8.33656 q^{23} -0.591009 q^{27} -9.11719 q^{29} +8.75193 q^{31} -4.83740 q^{33} +2.54457 q^{37} -5.42841 q^{39} +9.82934 q^{41} -2.91621 q^{43} +2.09017 q^{47} -5.71047 q^{49} -2.59965 q^{51} +10.5326 q^{53} +13.3916 q^{57} +5.53424 q^{59} +1.63474 q^{61} -3.12693 q^{63} -10.5844 q^{67} -19.9966 q^{69} -12.9496 q^{71} -13.2447 q^{73} +2.29012 q^{77} -6.84604 q^{79} -9.67846 q^{81} -2.81798 q^{83} -21.8691 q^{87} -15.1673 q^{89} +2.56991 q^{91} +20.9930 q^{93} -18.2591 q^{97} -5.55321 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 9 q^{7} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{3} - 9 q^{7} + 11 q^{9} + 5 q^{11} + 4 q^{13} - 4 q^{17} - 3 q^{21} - 11 q^{23} - 2 q^{27} - 10 q^{29} - 9 q^{31} - 19 q^{33} + 15 q^{37} - 21 q^{39} + 17 q^{41} - 12 q^{43} - 14 q^{47} + 17 q^{49} + 25 q^{51} - 6 q^{53} - 9 q^{57} + 18 q^{59} - 11 q^{61} - 52 q^{63} + q^{67} + 8 q^{69} - 26 q^{71} - 9 q^{73} - 8 q^{77} + 8 q^{79} - 4 q^{81} - 12 q^{83} - 17 q^{87} + 5 q^{89} - 33 q^{91} + 30 q^{93} - 29 q^{97} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.39867 1.38487 0.692436 0.721479i \(-0.256538\pi\)
0.692436 + 0.721479i \(0.256538\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.13558 −0.429207 −0.214604 0.976701i \(-0.568846\pi\)
−0.214604 + 0.976701i \(0.568846\pi\)
\(8\) 0 0
\(9\) 2.75361 0.917870
\(10\) 0 0
\(11\) −2.01670 −0.608059 −0.304029 0.952663i \(-0.598332\pi\)
−0.304029 + 0.952663i \(0.598332\pi\)
\(12\) 0 0
\(13\) −2.26309 −0.627669 −0.313835 0.949478i \(-0.601614\pi\)
−0.313835 + 0.949478i \(0.601614\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.08379 −0.262858 −0.131429 0.991326i \(-0.541956\pi\)
−0.131429 + 0.991326i \(0.541956\pi\)
\(18\) 0 0
\(19\) 5.58295 1.28082 0.640408 0.768035i \(-0.278765\pi\)
0.640408 + 0.768035i \(0.278765\pi\)
\(20\) 0 0
\(21\) −2.72387 −0.594397
\(22\) 0 0
\(23\) −8.33656 −1.73829 −0.869147 0.494555i \(-0.835331\pi\)
−0.869147 + 0.494555i \(0.835331\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.591009 −0.113740
\(28\) 0 0
\(29\) −9.11719 −1.69302 −0.846510 0.532372i \(-0.821301\pi\)
−0.846510 + 0.532372i \(0.821301\pi\)
\(30\) 0 0
\(31\) 8.75193 1.57189 0.785947 0.618294i \(-0.212176\pi\)
0.785947 + 0.618294i \(0.212176\pi\)
\(32\) 0 0
\(33\) −4.83740 −0.842083
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.54457 0.418324 0.209162 0.977881i \(-0.432926\pi\)
0.209162 + 0.977881i \(0.432926\pi\)
\(38\) 0 0
\(39\) −5.42841 −0.869241
\(40\) 0 0
\(41\) 9.82934 1.53509 0.767543 0.640998i \(-0.221479\pi\)
0.767543 + 0.640998i \(0.221479\pi\)
\(42\) 0 0
\(43\) −2.91621 −0.444718 −0.222359 0.974965i \(-0.571376\pi\)
−0.222359 + 0.974965i \(0.571376\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.09017 0.304883 0.152441 0.988313i \(-0.451286\pi\)
0.152441 + 0.988313i \(0.451286\pi\)
\(48\) 0 0
\(49\) −5.71047 −0.815781
\(50\) 0 0
\(51\) −2.59965 −0.364024
\(52\) 0 0
\(53\) 10.5326 1.44676 0.723380 0.690451i \(-0.242588\pi\)
0.723380 + 0.690451i \(0.242588\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 13.3916 1.77377
\(58\) 0 0
\(59\) 5.53424 0.720497 0.360249 0.932856i \(-0.382692\pi\)
0.360249 + 0.932856i \(0.382692\pi\)
\(60\) 0 0
\(61\) 1.63474 0.209307 0.104653 0.994509i \(-0.466627\pi\)
0.104653 + 0.994509i \(0.466627\pi\)
\(62\) 0 0
\(63\) −3.12693 −0.393956
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.5844 −1.29308 −0.646542 0.762878i \(-0.723786\pi\)
−0.646542 + 0.762878i \(0.723786\pi\)
\(68\) 0 0
\(69\) −19.9966 −2.40731
\(70\) 0 0
\(71\) −12.9496 −1.53684 −0.768418 0.639948i \(-0.778956\pi\)
−0.768418 + 0.639948i \(0.778956\pi\)
\(72\) 0 0
\(73\) −13.2447 −1.55018 −0.775088 0.631853i \(-0.782295\pi\)
−0.775088 + 0.631853i \(0.782295\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.29012 0.260983
\(78\) 0 0
\(79\) −6.84604 −0.770240 −0.385120 0.922866i \(-0.625840\pi\)
−0.385120 + 0.922866i \(0.625840\pi\)
\(80\) 0 0
\(81\) −9.67846 −1.07538
\(82\) 0 0
\(83\) −2.81798 −0.309314 −0.154657 0.987968i \(-0.549427\pi\)
−0.154657 + 0.987968i \(0.549427\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −21.8691 −2.34462
\(88\) 0 0
\(89\) −15.1673 −1.60773 −0.803865 0.594811i \(-0.797227\pi\)
−0.803865 + 0.594811i \(0.797227\pi\)
\(90\) 0 0
\(91\) 2.56991 0.269400
\(92\) 0 0
\(93\) 20.9930 2.17687
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.2591 −1.85394 −0.926968 0.375141i \(-0.877594\pi\)
−0.926968 + 0.375141i \(0.877594\pi\)
\(98\) 0 0
\(99\) −5.55321 −0.558119
\(100\) 0 0
\(101\) 6.04871 0.601869 0.300934 0.953645i \(-0.402701\pi\)
0.300934 + 0.953645i \(0.402701\pi\)
\(102\) 0 0
\(103\) −6.03735 −0.594878 −0.297439 0.954741i \(-0.596132\pi\)
−0.297439 + 0.954741i \(0.596132\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.36359 −0.518517 −0.259259 0.965808i \(-0.583478\pi\)
−0.259259 + 0.965808i \(0.583478\pi\)
\(108\) 0 0
\(109\) −6.59965 −0.632132 −0.316066 0.948737i \(-0.602362\pi\)
−0.316066 + 0.948737i \(0.602362\pi\)
\(110\) 0 0
\(111\) 6.10357 0.579325
\(112\) 0 0
\(113\) 9.77756 0.919795 0.459898 0.887972i \(-0.347886\pi\)
0.459898 + 0.887972i \(0.347886\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −6.23167 −0.576118
\(118\) 0 0
\(119\) 1.23073 0.112820
\(120\) 0 0
\(121\) −6.93291 −0.630265
\(122\) 0 0
\(123\) 23.5773 2.12590
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −7.20266 −0.639133 −0.319567 0.947564i \(-0.603537\pi\)
−0.319567 + 0.947564i \(0.603537\pi\)
\(128\) 0 0
\(129\) −6.99502 −0.615877
\(130\) 0 0
\(131\) 6.20904 0.542487 0.271243 0.962511i \(-0.412565\pi\)
0.271243 + 0.962511i \(0.412565\pi\)
\(132\) 0 0
\(133\) −6.33986 −0.549736
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.94550 −0.593394 −0.296697 0.954972i \(-0.595885\pi\)
−0.296697 + 0.954972i \(0.595885\pi\)
\(138\) 0 0
\(139\) −7.38695 −0.626553 −0.313276 0.949662i \(-0.601427\pi\)
−0.313276 + 0.949662i \(0.601427\pi\)
\(140\) 0 0
\(141\) 5.01362 0.422223
\(142\) 0 0
\(143\) 4.56398 0.381660
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −13.6975 −1.12975
\(148\) 0 0
\(149\) 7.09655 0.581372 0.290686 0.956819i \(-0.406116\pi\)
0.290686 + 0.956819i \(0.406116\pi\)
\(150\) 0 0
\(151\) −12.3132 −1.00203 −0.501017 0.865437i \(-0.667041\pi\)
−0.501017 + 0.865437i \(0.667041\pi\)
\(152\) 0 0
\(153\) −2.98434 −0.241269
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.4114 −0.990540 −0.495270 0.868739i \(-0.664931\pi\)
−0.495270 + 0.868739i \(0.664931\pi\)
\(158\) 0 0
\(159\) 25.2641 2.00358
\(160\) 0 0
\(161\) 9.46679 0.746088
\(162\) 0 0
\(163\) 14.2257 1.11425 0.557123 0.830430i \(-0.311905\pi\)
0.557123 + 0.830430i \(0.311905\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.7790 0.834101 0.417050 0.908883i \(-0.363064\pi\)
0.417050 + 0.908883i \(0.363064\pi\)
\(168\) 0 0
\(169\) −7.87841 −0.606032
\(170\) 0 0
\(171\) 15.3733 1.17562
\(172\) 0 0
\(173\) −9.96632 −0.757725 −0.378863 0.925453i \(-0.623685\pi\)
−0.378863 + 0.925453i \(0.623685\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.2748 0.997796
\(178\) 0 0
\(179\) 1.15622 0.0864200 0.0432100 0.999066i \(-0.486242\pi\)
0.0432100 + 0.999066i \(0.486242\pi\)
\(180\) 0 0
\(181\) 1.58191 0.117583 0.0587914 0.998270i \(-0.481275\pi\)
0.0587914 + 0.998270i \(0.481275\pi\)
\(182\) 0 0
\(183\) 3.92119 0.289863
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.18568 0.159833
\(188\) 0 0
\(189\) 0.671136 0.0488179
\(190\) 0 0
\(191\) −8.12629 −0.587998 −0.293999 0.955806i \(-0.594986\pi\)
−0.293999 + 0.955806i \(0.594986\pi\)
\(192\) 0 0
\(193\) 0.279795 0.0201401 0.0100700 0.999949i \(-0.496795\pi\)
0.0100700 + 0.999949i \(0.496795\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.4201 1.02739 0.513694 0.857974i \(-0.328277\pi\)
0.513694 + 0.857974i \(0.328277\pi\)
\(198\) 0 0
\(199\) −6.01276 −0.426233 −0.213117 0.977027i \(-0.568361\pi\)
−0.213117 + 0.977027i \(0.568361\pi\)
\(200\) 0 0
\(201\) −25.3883 −1.79076
\(202\) 0 0
\(203\) 10.3533 0.726657
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −22.9556 −1.59553
\(208\) 0 0
\(209\) −11.2591 −0.778812
\(210\) 0 0
\(211\) −21.5528 −1.48376 −0.741880 0.670533i \(-0.766065\pi\)
−0.741880 + 0.670533i \(0.766065\pi\)
\(212\) 0 0
\(213\) −31.0618 −2.12832
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −9.93848 −0.674668
\(218\) 0 0
\(219\) −31.7697 −2.14680
\(220\) 0 0
\(221\) 2.45272 0.164988
\(222\) 0 0
\(223\) −9.70409 −0.649834 −0.324917 0.945743i \(-0.605336\pi\)
−0.324917 + 0.945743i \(0.605336\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.4969 −0.696703 −0.348352 0.937364i \(-0.613259\pi\)
−0.348352 + 0.937364i \(0.613259\pi\)
\(228\) 0 0
\(229\) 17.1573 1.13378 0.566892 0.823792i \(-0.308146\pi\)
0.566892 + 0.823792i \(0.308146\pi\)
\(230\) 0 0
\(231\) 5.49323 0.361428
\(232\) 0 0
\(233\) −12.7586 −0.835843 −0.417922 0.908483i \(-0.637241\pi\)
−0.417922 + 0.908483i \(0.637241\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −16.4214 −1.06668
\(238\) 0 0
\(239\) −12.6150 −0.815994 −0.407997 0.912983i \(-0.633773\pi\)
−0.407997 + 0.912983i \(0.633773\pi\)
\(240\) 0 0
\(241\) −3.16532 −0.203896 −0.101948 0.994790i \(-0.532508\pi\)
−0.101948 + 0.994790i \(0.532508\pi\)
\(242\) 0 0
\(243\) −21.4424 −1.37553
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.6347 −0.803929
\(248\) 0 0
\(249\) −6.75940 −0.428360
\(250\) 0 0
\(251\) 28.0367 1.76966 0.884831 0.465913i \(-0.154274\pi\)
0.884831 + 0.465913i \(0.154274\pi\)
\(252\) 0 0
\(253\) 16.8124 1.05698
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.0119 1.24831 0.624155 0.781300i \(-0.285443\pi\)
0.624155 + 0.781300i \(0.285443\pi\)
\(258\) 0 0
\(259\) −2.88955 −0.179548
\(260\) 0 0
\(261\) −25.1052 −1.55397
\(262\) 0 0
\(263\) 10.9507 0.675246 0.337623 0.941281i \(-0.390377\pi\)
0.337623 + 0.941281i \(0.390377\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −36.3813 −2.22650
\(268\) 0 0
\(269\) 7.61862 0.464515 0.232258 0.972654i \(-0.425389\pi\)
0.232258 + 0.972654i \(0.425389\pi\)
\(270\) 0 0
\(271\) 28.7205 1.74465 0.872323 0.488929i \(-0.162612\pi\)
0.872323 + 0.488929i \(0.162612\pi\)
\(272\) 0 0
\(273\) 6.16437 0.373085
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 28.3774 1.70503 0.852516 0.522701i \(-0.175076\pi\)
0.852516 + 0.522701i \(0.175076\pi\)
\(278\) 0 0
\(279\) 24.0994 1.44279
\(280\) 0 0
\(281\) 31.6027 1.88526 0.942629 0.333843i \(-0.108345\pi\)
0.942629 + 0.333843i \(0.108345\pi\)
\(282\) 0 0
\(283\) −22.4226 −1.33289 −0.666443 0.745556i \(-0.732184\pi\)
−0.666443 + 0.745556i \(0.732184\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.1620 −0.658870
\(288\) 0 0
\(289\) −15.8254 −0.930906
\(290\) 0 0
\(291\) −43.7976 −2.56746
\(292\) 0 0
\(293\) 18.6799 1.09129 0.545645 0.838017i \(-0.316285\pi\)
0.545645 + 0.838017i \(0.316285\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.19189 0.0691604
\(298\) 0 0
\(299\) 18.8664 1.09107
\(300\) 0 0
\(301\) 3.31158 0.190876
\(302\) 0 0
\(303\) 14.5088 0.833511
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.72762 0.326893 0.163446 0.986552i \(-0.447739\pi\)
0.163446 + 0.986552i \(0.447739\pi\)
\(308\) 0 0
\(309\) −14.4816 −0.823829
\(310\) 0 0
\(311\) −8.65452 −0.490753 −0.245376 0.969428i \(-0.578912\pi\)
−0.245376 + 0.969428i \(0.578912\pi\)
\(312\) 0 0
\(313\) 3.34960 0.189331 0.0946653 0.995509i \(-0.469822\pi\)
0.0946653 + 0.995509i \(0.469822\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.04929 −0.452093 −0.226047 0.974116i \(-0.572580\pi\)
−0.226047 + 0.974116i \(0.572580\pi\)
\(318\) 0 0
\(319\) 18.3867 1.02946
\(320\) 0 0
\(321\) −12.8655 −0.718080
\(322\) 0 0
\(323\) −6.05075 −0.336673
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −15.8304 −0.875422
\(328\) 0 0
\(329\) −2.37355 −0.130858
\(330\) 0 0
\(331\) 18.5509 1.01965 0.509826 0.860277i \(-0.329710\pi\)
0.509826 + 0.860277i \(0.329710\pi\)
\(332\) 0 0
\(333\) 7.00674 0.383967
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.1300 −1.36892 −0.684458 0.729052i \(-0.739961\pi\)
−0.684458 + 0.729052i \(0.739961\pi\)
\(338\) 0 0
\(339\) 23.4531 1.27380
\(340\) 0 0
\(341\) −17.6500 −0.955803
\(342\) 0 0
\(343\) 14.4337 0.779346
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −25.2876 −1.35751 −0.678754 0.734366i \(-0.737480\pi\)
−0.678754 + 0.734366i \(0.737480\pi\)
\(348\) 0 0
\(349\) −2.69911 −0.144480 −0.0722400 0.997387i \(-0.523015\pi\)
−0.0722400 + 0.997387i \(0.523015\pi\)
\(350\) 0 0
\(351\) 1.33751 0.0713909
\(352\) 0 0
\(353\) 13.1225 0.698442 0.349221 0.937040i \(-0.386446\pi\)
0.349221 + 0.937040i \(0.386446\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.95210 0.156242
\(358\) 0 0
\(359\) 1.72762 0.0911804 0.0455902 0.998960i \(-0.485483\pi\)
0.0455902 + 0.998960i \(0.485483\pi\)
\(360\) 0 0
\(361\) 12.1693 0.640492
\(362\) 0 0
\(363\) −16.6298 −0.872836
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −34.4287 −1.79716 −0.898582 0.438805i \(-0.855402\pi\)
−0.898582 + 0.438805i \(0.855402\pi\)
\(368\) 0 0
\(369\) 27.0662 1.40901
\(370\) 0 0
\(371\) −11.9605 −0.620959
\(372\) 0 0
\(373\) −26.5994 −1.37726 −0.688632 0.725111i \(-0.741788\pi\)
−0.688632 + 0.725111i \(0.741788\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.6331 1.06266
\(378\) 0 0
\(379\) 13.0117 0.668367 0.334184 0.942508i \(-0.391539\pi\)
0.334184 + 0.942508i \(0.391539\pi\)
\(380\) 0 0
\(381\) −17.2768 −0.885117
\(382\) 0 0
\(383\) 17.8421 0.911689 0.455844 0.890059i \(-0.349337\pi\)
0.455844 + 0.890059i \(0.349337\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.03010 −0.408193
\(388\) 0 0
\(389\) 1.94794 0.0987643 0.0493821 0.998780i \(-0.484275\pi\)
0.0493821 + 0.998780i \(0.484275\pi\)
\(390\) 0 0
\(391\) 9.03508 0.456924
\(392\) 0 0
\(393\) 14.8934 0.751274
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 12.5726 0.631002 0.315501 0.948925i \(-0.397827\pi\)
0.315501 + 0.948925i \(0.397827\pi\)
\(398\) 0 0
\(399\) −15.2072 −0.761314
\(400\) 0 0
\(401\) 24.2160 1.20929 0.604645 0.796495i \(-0.293315\pi\)
0.604645 + 0.796495i \(0.293315\pi\)
\(402\) 0 0
\(403\) −19.8064 −0.986629
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.13163 −0.254366
\(408\) 0 0
\(409\) 27.0728 1.33867 0.669333 0.742963i \(-0.266580\pi\)
0.669333 + 0.742963i \(0.266580\pi\)
\(410\) 0 0
\(411\) −16.6599 −0.821775
\(412\) 0 0
\(413\) −6.28455 −0.309243
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −17.7188 −0.867695
\(418\) 0 0
\(419\) −33.1266 −1.61834 −0.809170 0.587574i \(-0.800083\pi\)
−0.809170 + 0.587574i \(0.800083\pi\)
\(420\) 0 0
\(421\) 37.8125 1.84287 0.921435 0.388532i \(-0.127018\pi\)
0.921435 + 0.388532i \(0.127018\pi\)
\(422\) 0 0
\(423\) 5.75551 0.279843
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.85637 −0.0898359
\(428\) 0 0
\(429\) 10.9475 0.528550
\(430\) 0 0
\(431\) 16.0656 0.773852 0.386926 0.922111i \(-0.373537\pi\)
0.386926 + 0.922111i \(0.373537\pi\)
\(432\) 0 0
\(433\) 33.0940 1.59040 0.795198 0.606350i \(-0.207367\pi\)
0.795198 + 0.606350i \(0.207367\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −46.5426 −2.22643
\(438\) 0 0
\(439\) −33.1634 −1.58280 −0.791400 0.611298i \(-0.790648\pi\)
−0.791400 + 0.611298i \(0.790648\pi\)
\(440\) 0 0
\(441\) −15.7244 −0.748781
\(442\) 0 0
\(443\) 5.78036 0.274633 0.137316 0.990527i \(-0.456152\pi\)
0.137316 + 0.990527i \(0.456152\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 17.0223 0.805126
\(448\) 0 0
\(449\) 20.6234 0.973277 0.486639 0.873603i \(-0.338223\pi\)
0.486639 + 0.873603i \(0.338223\pi\)
\(450\) 0 0
\(451\) −19.8229 −0.933422
\(452\) 0 0
\(453\) −29.5353 −1.38769
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.42094 0.440693 0.220346 0.975422i \(-0.429281\pi\)
0.220346 + 0.975422i \(0.429281\pi\)
\(458\) 0 0
\(459\) 0.640530 0.0298974
\(460\) 0 0
\(461\) −24.9744 −1.16317 −0.581586 0.813485i \(-0.697568\pi\)
−0.581586 + 0.813485i \(0.697568\pi\)
\(462\) 0 0
\(463\) −27.8110 −1.29248 −0.646242 0.763132i \(-0.723661\pi\)
−0.646242 + 0.763132i \(0.723661\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.80898 −0.176258 −0.0881292 0.996109i \(-0.528089\pi\)
−0.0881292 + 0.996109i \(0.528089\pi\)
\(468\) 0 0
\(469\) 12.0193 0.555001
\(470\) 0 0
\(471\) −29.7709 −1.37177
\(472\) 0 0
\(473\) 5.88113 0.270414
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 29.0026 1.32794
\(478\) 0 0
\(479\) −4.45272 −0.203450 −0.101725 0.994813i \(-0.532436\pi\)
−0.101725 + 0.994813i \(0.532436\pi\)
\(480\) 0 0
\(481\) −5.75859 −0.262569
\(482\) 0 0
\(483\) 22.7077 1.03324
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −9.42116 −0.426914 −0.213457 0.976952i \(-0.568472\pi\)
−0.213457 + 0.976952i \(0.568472\pi\)
\(488\) 0 0
\(489\) 34.1228 1.54309
\(490\) 0 0
\(491\) 33.0769 1.49274 0.746369 0.665533i \(-0.231796\pi\)
0.746369 + 0.665533i \(0.231796\pi\)
\(492\) 0 0
\(493\) 9.88113 0.445024
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14.7053 0.659621
\(498\) 0 0
\(499\) 32.2197 1.44235 0.721175 0.692753i \(-0.243602\pi\)
0.721175 + 0.692753i \(0.243602\pi\)
\(500\) 0 0
\(501\) 25.8551 1.15512
\(502\) 0 0
\(503\) −10.6317 −0.474042 −0.237021 0.971505i \(-0.576171\pi\)
−0.237021 + 0.971505i \(0.576171\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −18.8977 −0.839276
\(508\) 0 0
\(509\) 7.69824 0.341219 0.170609 0.985339i \(-0.445426\pi\)
0.170609 + 0.985339i \(0.445426\pi\)
\(510\) 0 0
\(511\) 15.0404 0.665347
\(512\) 0 0
\(513\) −3.29958 −0.145680
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −4.21525 −0.185387
\(518\) 0 0
\(519\) −23.9059 −1.04935
\(520\) 0 0
\(521\) −10.2597 −0.449487 −0.224744 0.974418i \(-0.572154\pi\)
−0.224744 + 0.974418i \(0.572154\pi\)
\(522\) 0 0
\(523\) −32.7292 −1.43115 −0.715575 0.698536i \(-0.753835\pi\)
−0.715575 + 0.698536i \(0.753835\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.48526 −0.413184
\(528\) 0 0
\(529\) 46.4982 2.02166
\(530\) 0 0
\(531\) 15.2391 0.661323
\(532\) 0 0
\(533\) −22.2447 −0.963525
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.77339 0.119681
\(538\) 0 0
\(539\) 11.5163 0.496043
\(540\) 0 0
\(541\) 7.94875 0.341743 0.170872 0.985293i \(-0.445342\pi\)
0.170872 + 0.985293i \(0.445342\pi\)
\(542\) 0 0
\(543\) 3.79449 0.162837
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −2.77593 −0.118690 −0.0593452 0.998238i \(-0.518901\pi\)
−0.0593452 + 0.998238i \(0.518901\pi\)
\(548\) 0 0
\(549\) 4.50143 0.192116
\(550\) 0 0
\(551\) −50.9009 −2.16845
\(552\) 0 0
\(553\) 7.77420 0.330593
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.2457 1.19681 0.598405 0.801193i \(-0.295801\pi\)
0.598405 + 0.801193i \(0.295801\pi\)
\(558\) 0 0
\(559\) 6.59965 0.279136
\(560\) 0 0
\(561\) 5.24273 0.221348
\(562\) 0 0
\(563\) 10.4749 0.441466 0.220733 0.975334i \(-0.429155\pi\)
0.220733 + 0.975334i \(0.429155\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 10.9906 0.461563
\(568\) 0 0
\(569\) 30.2564 1.26842 0.634208 0.773163i \(-0.281326\pi\)
0.634208 + 0.773163i \(0.281326\pi\)
\(570\) 0 0
\(571\) 33.0909 1.38481 0.692406 0.721508i \(-0.256551\pi\)
0.692406 + 0.721508i \(0.256551\pi\)
\(572\) 0 0
\(573\) −19.4923 −0.814301
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 37.3160 1.55349 0.776744 0.629817i \(-0.216870\pi\)
0.776744 + 0.629817i \(0.216870\pi\)
\(578\) 0 0
\(579\) 0.671136 0.0278914
\(580\) 0 0
\(581\) 3.20003 0.132760
\(582\) 0 0
\(583\) −21.2410 −0.879714
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.9409 −1.27707 −0.638534 0.769594i \(-0.720459\pi\)
−0.638534 + 0.769594i \(0.720459\pi\)
\(588\) 0 0
\(589\) 48.8616 2.01331
\(590\) 0 0
\(591\) 34.5890 1.42280
\(592\) 0 0
\(593\) 44.1444 1.81279 0.906396 0.422428i \(-0.138822\pi\)
0.906396 + 0.422428i \(0.138822\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.4226 −0.590278
\(598\) 0 0
\(599\) −6.25996 −0.255775 −0.127888 0.991789i \(-0.540820\pi\)
−0.127888 + 0.991789i \(0.540820\pi\)
\(600\) 0 0
\(601\) −5.31678 −0.216876 −0.108438 0.994103i \(-0.534585\pi\)
−0.108438 + 0.994103i \(0.534585\pi\)
\(602\) 0 0
\(603\) −29.1452 −1.18688
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −36.0584 −1.46356 −0.731782 0.681538i \(-0.761311\pi\)
−0.731782 + 0.681538i \(0.761311\pi\)
\(608\) 0 0
\(609\) 24.8340 1.00633
\(610\) 0 0
\(611\) −4.73025 −0.191365
\(612\) 0 0
\(613\) −9.04390 −0.365280 −0.182640 0.983180i \(-0.558464\pi\)
−0.182640 + 0.983180i \(0.558464\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −43.9318 −1.76863 −0.884314 0.466892i \(-0.845374\pi\)
−0.884314 + 0.466892i \(0.845374\pi\)
\(618\) 0 0
\(619\) −2.08071 −0.0836309 −0.0418154 0.999125i \(-0.513314\pi\)
−0.0418154 + 0.999125i \(0.513314\pi\)
\(620\) 0 0
\(621\) 4.92698 0.197713
\(622\) 0 0
\(623\) 17.2236 0.690050
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −27.0070 −1.07855
\(628\) 0 0
\(629\) −2.75778 −0.109960
\(630\) 0 0
\(631\) −7.90711 −0.314777 −0.157389 0.987537i \(-0.550308\pi\)
−0.157389 + 0.987537i \(0.550308\pi\)
\(632\) 0 0
\(633\) −51.6981 −2.05482
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 12.9233 0.512041
\(638\) 0 0
\(639\) −35.6582 −1.41062
\(640\) 0 0
\(641\) 11.1496 0.440381 0.220191 0.975457i \(-0.429332\pi\)
0.220191 + 0.975457i \(0.429332\pi\)
\(642\) 0 0
\(643\) −4.47544 −0.176494 −0.0882470 0.996099i \(-0.528126\pi\)
−0.0882470 + 0.996099i \(0.528126\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −44.4289 −1.74668 −0.873341 0.487109i \(-0.838051\pi\)
−0.873341 + 0.487109i \(0.838051\pi\)
\(648\) 0 0
\(649\) −11.1609 −0.438105
\(650\) 0 0
\(651\) −23.8391 −0.934328
\(652\) 0 0
\(653\) 28.7385 1.12463 0.562313 0.826925i \(-0.309912\pi\)
0.562313 + 0.826925i \(0.309912\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −36.4708 −1.42286
\(658\) 0 0
\(659\) 18.9254 0.737230 0.368615 0.929582i \(-0.379832\pi\)
0.368615 + 0.929582i \(0.379832\pi\)
\(660\) 0 0
\(661\) 35.6615 1.38707 0.693535 0.720423i \(-0.256052\pi\)
0.693535 + 0.720423i \(0.256052\pi\)
\(662\) 0 0
\(663\) 5.88326 0.228487
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 76.0060 2.94297
\(668\) 0 0
\(669\) −23.2769 −0.899937
\(670\) 0 0
\(671\) −3.29678 −0.127271
\(672\) 0 0
\(673\) −31.9521 −1.23166 −0.615831 0.787879i \(-0.711179\pi\)
−0.615831 + 0.787879i \(0.711179\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23.9709 −0.921278 −0.460639 0.887588i \(-0.652380\pi\)
−0.460639 + 0.887588i \(0.652380\pi\)
\(678\) 0 0
\(679\) 20.7346 0.795723
\(680\) 0 0
\(681\) −25.1786 −0.964845
\(682\) 0 0
\(683\) −7.07047 −0.270544 −0.135272 0.990808i \(-0.543191\pi\)
−0.135272 + 0.990808i \(0.543191\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 41.1546 1.57014
\(688\) 0 0
\(689\) −23.8362 −0.908086
\(690\) 0 0
\(691\) −1.97935 −0.0752982 −0.0376491 0.999291i \(-0.511987\pi\)
−0.0376491 + 0.999291i \(0.511987\pi\)
\(692\) 0 0
\(693\) 6.30609 0.239549
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −10.6529 −0.403509
\(698\) 0 0
\(699\) −30.6036 −1.15754
\(700\) 0 0
\(701\) 19.8745 0.750648 0.375324 0.926894i \(-0.377531\pi\)
0.375324 + 0.926894i \(0.377531\pi\)
\(702\) 0 0
\(703\) 14.2062 0.535797
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.86876 −0.258326
\(708\) 0 0
\(709\) 8.79068 0.330141 0.165070 0.986282i \(-0.447215\pi\)
0.165070 + 0.986282i \(0.447215\pi\)
\(710\) 0 0
\(711\) −18.8513 −0.706980
\(712\) 0 0
\(713\) −72.9610 −2.73241
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −30.2591 −1.13005
\(718\) 0 0
\(719\) −10.2898 −0.383743 −0.191872 0.981420i \(-0.561456\pi\)
−0.191872 + 0.981420i \(0.561456\pi\)
\(720\) 0 0
\(721\) 6.85586 0.255326
\(722\) 0 0
\(723\) −7.59254 −0.282370
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9.73934 0.361212 0.180606 0.983556i \(-0.442194\pi\)
0.180606 + 0.983556i \(0.442194\pi\)
\(728\) 0 0
\(729\) −22.3978 −0.829548
\(730\) 0 0
\(731\) 3.16056 0.116898
\(732\) 0 0
\(733\) 25.2767 0.933617 0.466808 0.884358i \(-0.345404\pi\)
0.466808 + 0.884358i \(0.345404\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.3455 0.786271
\(738\) 0 0
\(739\) −39.6691 −1.45925 −0.729626 0.683847i \(-0.760306\pi\)
−0.729626 + 0.683847i \(0.760306\pi\)
\(740\) 0 0
\(741\) −30.3065 −1.11334
\(742\) 0 0
\(743\) 18.7732 0.688721 0.344360 0.938838i \(-0.388096\pi\)
0.344360 + 0.938838i \(0.388096\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7.75962 −0.283910
\(748\) 0 0
\(749\) 6.09076 0.222551
\(750\) 0 0
\(751\) −35.1761 −1.28359 −0.641797 0.766874i \(-0.721811\pi\)
−0.641797 + 0.766874i \(0.721811\pi\)
\(752\) 0 0
\(753\) 67.2508 2.45075
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 25.9332 0.942559 0.471279 0.881984i \(-0.343792\pi\)
0.471279 + 0.881984i \(0.343792\pi\)
\(758\) 0 0
\(759\) 40.3273 1.46379
\(760\) 0 0
\(761\) −11.6131 −0.420973 −0.210486 0.977597i \(-0.567505\pi\)
−0.210486 + 0.977597i \(0.567505\pi\)
\(762\) 0 0
\(763\) 7.49440 0.271316
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.5245 −0.452234
\(768\) 0 0
\(769\) 17.6988 0.638236 0.319118 0.947715i \(-0.396613\pi\)
0.319118 + 0.947715i \(0.396613\pi\)
\(770\) 0 0
\(771\) 48.0020 1.72875
\(772\) 0 0
\(773\) −45.3363 −1.63063 −0.815316 0.579016i \(-0.803437\pi\)
−0.815316 + 0.579016i \(0.803437\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.93106 −0.248651
\(778\) 0 0
\(779\) 54.8767 1.96616
\(780\) 0 0
\(781\) 26.1155 0.934487
\(782\) 0 0
\(783\) 5.38835 0.192564
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.40446 −0.0500637 −0.0250318 0.999687i \(-0.507969\pi\)
−0.0250318 + 0.999687i \(0.507969\pi\)
\(788\) 0 0
\(789\) 26.2670 0.935129
\(790\) 0 0
\(791\) −11.1032 −0.394783
\(792\) 0 0
\(793\) −3.69956 −0.131375
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −41.1825 −1.45876 −0.729379 0.684109i \(-0.760191\pi\)
−0.729379 + 0.684109i \(0.760191\pi\)
\(798\) 0 0
\(799\) −2.26531 −0.0801408
\(800\) 0 0
\(801\) −41.7648 −1.47569
\(802\) 0 0
\(803\) 26.7106 0.942598
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.2745 0.643294
\(808\) 0 0
\(809\) 6.98976 0.245747 0.122873 0.992422i \(-0.460789\pi\)
0.122873 + 0.992422i \(0.460789\pi\)
\(810\) 0 0
\(811\) −10.9870 −0.385804 −0.192902 0.981218i \(-0.561790\pi\)
−0.192902 + 0.981218i \(0.561790\pi\)
\(812\) 0 0
\(813\) 68.8910 2.41611
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −16.2811 −0.569602
\(818\) 0 0
\(819\) 7.07654 0.247274
\(820\) 0 0
\(821\) −35.2863 −1.23150 −0.615751 0.787941i \(-0.711147\pi\)
−0.615751 + 0.787941i \(0.711147\pi\)
\(822\) 0 0
\(823\) 38.8164 1.35306 0.676528 0.736417i \(-0.263484\pi\)
0.676528 + 0.736417i \(0.263484\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −15.6781 −0.545181 −0.272590 0.962130i \(-0.587880\pi\)
−0.272590 + 0.962130i \(0.587880\pi\)
\(828\) 0 0
\(829\) −27.8171 −0.966126 −0.483063 0.875585i \(-0.660476\pi\)
−0.483063 + 0.875585i \(0.660476\pi\)
\(830\) 0 0
\(831\) 68.0679 2.36125
\(832\) 0 0
\(833\) 6.18895 0.214434
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5.17247 −0.178787
\(838\) 0 0
\(839\) 38.1703 1.31779 0.658893 0.752237i \(-0.271025\pi\)
0.658893 + 0.752237i \(0.271025\pi\)
\(840\) 0 0
\(841\) 54.1232 1.86632
\(842\) 0 0
\(843\) 75.8043 2.61084
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.87284 0.270514
\(848\) 0 0
\(849\) −53.7844 −1.84588
\(850\) 0 0
\(851\) −21.2129 −0.727170
\(852\) 0 0
\(853\) 23.4987 0.804580 0.402290 0.915512i \(-0.368214\pi\)
0.402290 + 0.915512i \(0.368214\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.7940 0.710309 0.355154 0.934808i \(-0.384428\pi\)
0.355154 + 0.934808i \(0.384428\pi\)
\(858\) 0 0
\(859\) −17.4860 −0.596616 −0.298308 0.954470i \(-0.596422\pi\)
−0.298308 + 0.954470i \(0.596422\pi\)
\(860\) 0 0
\(861\) −26.7738 −0.912450
\(862\) 0 0
\(863\) −3.93490 −0.133945 −0.0669727 0.997755i \(-0.521334\pi\)
−0.0669727 + 0.997755i \(0.521334\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −37.9599 −1.28919
\(868\) 0 0
\(869\) 13.8064 0.468351
\(870\) 0 0
\(871\) 23.9534 0.811629
\(872\) 0 0
\(873\) −50.2786 −1.70167
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.3758 1.02572 0.512859 0.858473i \(-0.328586\pi\)
0.512859 + 0.858473i \(0.328586\pi\)
\(878\) 0 0
\(879\) 44.8068 1.51130
\(880\) 0 0
\(881\) 13.4095 0.451778 0.225889 0.974153i \(-0.427471\pi\)
0.225889 + 0.974153i \(0.427471\pi\)
\(882\) 0 0
\(883\) 47.5905 1.60155 0.800774 0.598967i \(-0.204422\pi\)
0.800774 + 0.598967i \(0.204422\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.6312 0.457692 0.228846 0.973463i \(-0.426505\pi\)
0.228846 + 0.973463i \(0.426505\pi\)
\(888\) 0 0
\(889\) 8.17917 0.274320
\(890\) 0 0
\(891\) 19.5186 0.653897
\(892\) 0 0
\(893\) 11.6693 0.390499
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 45.2543 1.51100
\(898\) 0 0
\(899\) −79.7931 −2.66125
\(900\) 0 0
\(901\) −11.4151 −0.380292
\(902\) 0 0
\(903\) 7.94337 0.264339
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 12.5356 0.416239 0.208120 0.978103i \(-0.433266\pi\)
0.208120 + 0.978103i \(0.433266\pi\)
\(908\) 0 0
\(909\) 16.6558 0.552437
\(910\) 0 0
\(911\) 34.1877 1.13269 0.566344 0.824169i \(-0.308357\pi\)
0.566344 + 0.824169i \(0.308357\pi\)
\(912\) 0 0
\(913\) 5.68303 0.188081
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.05084 −0.232839
\(918\) 0 0
\(919\) −23.6793 −0.781109 −0.390554 0.920580i \(-0.627717\pi\)
−0.390554 + 0.920580i \(0.627717\pi\)
\(920\) 0 0
\(921\) 13.7387 0.452704
\(922\) 0 0
\(923\) 29.3062 0.964625
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −16.6245 −0.546020
\(928\) 0 0
\(929\) −9.48509 −0.311196 −0.155598 0.987820i \(-0.549730\pi\)
−0.155598 + 0.987820i \(0.549730\pi\)
\(930\) 0 0
\(931\) −31.8813 −1.04487
\(932\) 0 0
\(933\) −20.7593 −0.679629
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −40.5790 −1.32566 −0.662829 0.748771i \(-0.730644\pi\)
−0.662829 + 0.748771i \(0.730644\pi\)
\(938\) 0 0
\(939\) 8.03458 0.262198
\(940\) 0 0
\(941\) 8.37604 0.273051 0.136526 0.990637i \(-0.456406\pi\)
0.136526 + 0.990637i \(0.456406\pi\)
\(942\) 0 0
\(943\) −81.9429 −2.66843
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.3750 1.21453 0.607263 0.794501i \(-0.292268\pi\)
0.607263 + 0.794501i \(0.292268\pi\)
\(948\) 0 0
\(949\) 29.9740 0.972998
\(950\) 0 0
\(951\) −19.3076 −0.626091
\(952\) 0 0
\(953\) 15.5258 0.502931 0.251465 0.967866i \(-0.419088\pi\)
0.251465 + 0.967866i \(0.419088\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 44.1035 1.42566
\(958\) 0 0
\(959\) 7.88714 0.254689
\(960\) 0 0
\(961\) 45.5963 1.47085
\(962\) 0 0
\(963\) −14.7692 −0.475931
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −48.6865 −1.56565 −0.782826 0.622240i \(-0.786223\pi\)
−0.782826 + 0.622240i \(0.786223\pi\)
\(968\) 0 0
\(969\) −14.5137 −0.466248
\(970\) 0 0
\(971\) −14.4960 −0.465199 −0.232599 0.972573i \(-0.574723\pi\)
−0.232599 + 0.972573i \(0.574723\pi\)
\(972\) 0 0
\(973\) 8.38843 0.268921
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.35164 −0.235200 −0.117600 0.993061i \(-0.537520\pi\)
−0.117600 + 0.993061i \(0.537520\pi\)
\(978\) 0 0
\(979\) 30.5879 0.977595
\(980\) 0 0
\(981\) −18.1729 −0.580215
\(982\) 0 0
\(983\) −32.6724 −1.04209 −0.521044 0.853530i \(-0.674457\pi\)
−0.521044 + 0.853530i \(0.674457\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −5.69335 −0.181221
\(988\) 0 0
\(989\) 24.3112 0.773050
\(990\) 0 0
\(991\) −18.7552 −0.595780 −0.297890 0.954600i \(-0.596283\pi\)
−0.297890 + 0.954600i \(0.596283\pi\)
\(992\) 0 0
\(993\) 44.4976 1.41209
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −3.42813 −0.108570 −0.0542850 0.998525i \(-0.517288\pi\)
−0.0542850 + 0.998525i \(0.517288\pi\)
\(998\) 0 0
\(999\) −1.50386 −0.0475801
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8000.2.a.bo.1.3 4
4.3 odd 2 8000.2.a.bd.1.2 4
5.4 even 2 8000.2.a.be.1.2 4
8.3 odd 2 1000.2.a.g.1.3 yes 4
8.5 even 2 2000.2.a.n.1.2 4
20.19 odd 2 8000.2.a.bn.1.3 4
24.11 even 2 9000.2.a.bb.1.2 4
40.3 even 4 1000.2.c.c.249.6 8
40.13 odd 4 2000.2.c.i.1249.3 8
40.19 odd 2 1000.2.a.f.1.2 4
40.27 even 4 1000.2.c.c.249.3 8
40.29 even 2 2000.2.a.q.1.3 4
40.37 odd 4 2000.2.c.i.1249.6 8
120.59 even 2 9000.2.a.q.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.f.1.2 4 40.19 odd 2
1000.2.a.g.1.3 yes 4 8.3 odd 2
1000.2.c.c.249.3 8 40.27 even 4
1000.2.c.c.249.6 8 40.3 even 4
2000.2.a.n.1.2 4 8.5 even 2
2000.2.a.q.1.3 4 40.29 even 2
2000.2.c.i.1249.3 8 40.13 odd 4
2000.2.c.i.1249.6 8 40.37 odd 4
8000.2.a.bd.1.2 4 4.3 odd 2
8000.2.a.be.1.2 4 5.4 even 2
8000.2.a.bn.1.3 4 20.19 odd 2
8000.2.a.bo.1.3 4 1.1 even 1 trivial
9000.2.a.q.1.3 4 120.59 even 2
9000.2.a.bb.1.2 4 24.11 even 2