Properties

Label 9000.2.a.bb.1.2
Level $9000$
Weight $2$
Character 9000.1
Self dual yes
Analytic conductor $71.865$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9000,2,Mod(1,9000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8653618192\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.10025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 11x^{2} + 10x + 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1000)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.39867\) of defining polynomial
Character \(\chi\) \(=\) 9000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.13558 q^{7} +O(q^{10})\) \(q+1.13558 q^{7} +2.01670 q^{11} +2.26309 q^{13} +1.08379 q^{17} +5.58295 q^{19} -8.33656 q^{23} -9.11719 q^{29} -8.75193 q^{31} -2.54457 q^{37} -9.82934 q^{41} -2.91621 q^{43} +2.09017 q^{47} -5.71047 q^{49} +10.5326 q^{53} -5.53424 q^{59} -1.63474 q^{61} -10.5844 q^{67} -12.9496 q^{71} -13.2447 q^{73} +2.29012 q^{77} +6.84604 q^{79} +2.81798 q^{83} +15.1673 q^{89} +2.56991 q^{91} -18.2591 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 9 q^{7} - 5 q^{11} - 4 q^{13} + 4 q^{17} - 11 q^{23} - 10 q^{29} + 9 q^{31} - 15 q^{37} - 17 q^{41} - 12 q^{43} - 14 q^{47} + 17 q^{49} - 6 q^{53} - 18 q^{59} + 11 q^{61} + q^{67} - 26 q^{71} - 9 q^{73} - 8 q^{77} - 8 q^{79} + 12 q^{83} - 5 q^{89} - 33 q^{91} - 29 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.13558 0.429207 0.214604 0.976701i \(-0.431154\pi\)
0.214604 + 0.976701i \(0.431154\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.01670 0.608059 0.304029 0.952663i \(-0.401668\pi\)
0.304029 + 0.952663i \(0.401668\pi\)
\(12\) 0 0
\(13\) 2.26309 0.627669 0.313835 0.949478i \(-0.398386\pi\)
0.313835 + 0.949478i \(0.398386\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.08379 0.262858 0.131429 0.991326i \(-0.458044\pi\)
0.131429 + 0.991326i \(0.458044\pi\)
\(18\) 0 0
\(19\) 5.58295 1.28082 0.640408 0.768035i \(-0.278765\pi\)
0.640408 + 0.768035i \(0.278765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.33656 −1.73829 −0.869147 0.494555i \(-0.835331\pi\)
−0.869147 + 0.494555i \(0.835331\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.11719 −1.69302 −0.846510 0.532372i \(-0.821301\pi\)
−0.846510 + 0.532372i \(0.821301\pi\)
\(30\) 0 0
\(31\) −8.75193 −1.57189 −0.785947 0.618294i \(-0.787824\pi\)
−0.785947 + 0.618294i \(0.787824\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.54457 −0.418324 −0.209162 0.977881i \(-0.567074\pi\)
−0.209162 + 0.977881i \(0.567074\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.82934 −1.53509 −0.767543 0.640998i \(-0.778521\pi\)
−0.767543 + 0.640998i \(0.778521\pi\)
\(42\) 0 0
\(43\) −2.91621 −0.444718 −0.222359 0.974965i \(-0.571376\pi\)
−0.222359 + 0.974965i \(0.571376\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.09017 0.304883 0.152441 0.988313i \(-0.451286\pi\)
0.152441 + 0.988313i \(0.451286\pi\)
\(48\) 0 0
\(49\) −5.71047 −0.815781
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.5326 1.44676 0.723380 0.690451i \(-0.242588\pi\)
0.723380 + 0.690451i \(0.242588\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.53424 −0.720497 −0.360249 0.932856i \(-0.617308\pi\)
−0.360249 + 0.932856i \(0.617308\pi\)
\(60\) 0 0
\(61\) −1.63474 −0.209307 −0.104653 0.994509i \(-0.533373\pi\)
−0.104653 + 0.994509i \(0.533373\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.5844 −1.29308 −0.646542 0.762878i \(-0.723786\pi\)
−0.646542 + 0.762878i \(0.723786\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.9496 −1.53684 −0.768418 0.639948i \(-0.778956\pi\)
−0.768418 + 0.639948i \(0.778956\pi\)
\(72\) 0 0
\(73\) −13.2447 −1.55018 −0.775088 0.631853i \(-0.782295\pi\)
−0.775088 + 0.631853i \(0.782295\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.29012 0.260983
\(78\) 0 0
\(79\) 6.84604 0.770240 0.385120 0.922866i \(-0.374160\pi\)
0.385120 + 0.922866i \(0.374160\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.81798 0.309314 0.154657 0.987968i \(-0.450573\pi\)
0.154657 + 0.987968i \(0.450573\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.1673 1.60773 0.803865 0.594811i \(-0.202773\pi\)
0.803865 + 0.594811i \(0.202773\pi\)
\(90\) 0 0
\(91\) 2.56991 0.269400
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.2591 −1.85394 −0.926968 0.375141i \(-0.877594\pi\)
−0.926968 + 0.375141i \(0.877594\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.04871 0.601869 0.300934 0.953645i \(-0.402701\pi\)
0.300934 + 0.953645i \(0.402701\pi\)
\(102\) 0 0
\(103\) 6.03735 0.594878 0.297439 0.954741i \(-0.403868\pi\)
0.297439 + 0.954741i \(0.403868\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.36359 0.518517 0.259259 0.965808i \(-0.416522\pi\)
0.259259 + 0.965808i \(0.416522\pi\)
\(108\) 0 0
\(109\) 6.59965 0.632132 0.316066 0.948737i \(-0.397638\pi\)
0.316066 + 0.948737i \(0.397638\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.77756 −0.919795 −0.459898 0.887972i \(-0.652114\pi\)
−0.459898 + 0.887972i \(0.652114\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.23073 0.112820
\(120\) 0 0
\(121\) −6.93291 −0.630265
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.20266 0.639133 0.319567 0.947564i \(-0.396463\pi\)
0.319567 + 0.947564i \(0.396463\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.20904 −0.542487 −0.271243 0.962511i \(-0.587435\pi\)
−0.271243 + 0.962511i \(0.587435\pi\)
\(132\) 0 0
\(133\) 6.33986 0.549736
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.94550 0.593394 0.296697 0.954972i \(-0.404115\pi\)
0.296697 + 0.954972i \(0.404115\pi\)
\(138\) 0 0
\(139\) −7.38695 −0.626553 −0.313276 0.949662i \(-0.601427\pi\)
−0.313276 + 0.949662i \(0.601427\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.56398 0.381660
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.09655 0.581372 0.290686 0.956819i \(-0.406116\pi\)
0.290686 + 0.956819i \(0.406116\pi\)
\(150\) 0 0
\(151\) 12.3132 1.00203 0.501017 0.865437i \(-0.332959\pi\)
0.501017 + 0.865437i \(0.332959\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.4114 0.990540 0.495270 0.868739i \(-0.335069\pi\)
0.495270 + 0.868739i \(0.335069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.46679 −0.746088
\(162\) 0 0
\(163\) 14.2257 1.11425 0.557123 0.830430i \(-0.311905\pi\)
0.557123 + 0.830430i \(0.311905\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.7790 0.834101 0.417050 0.908883i \(-0.363064\pi\)
0.417050 + 0.908883i \(0.363064\pi\)
\(168\) 0 0
\(169\) −7.87841 −0.606032
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.96632 −0.757725 −0.378863 0.925453i \(-0.623685\pi\)
−0.378863 + 0.925453i \(0.623685\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.15622 −0.0864200 −0.0432100 0.999066i \(-0.513758\pi\)
−0.0432100 + 0.999066i \(0.513758\pi\)
\(180\) 0 0
\(181\) −1.58191 −0.117583 −0.0587914 0.998270i \(-0.518725\pi\)
−0.0587914 + 0.998270i \(0.518725\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.18568 0.159833
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.12629 −0.587998 −0.293999 0.955806i \(-0.594986\pi\)
−0.293999 + 0.955806i \(0.594986\pi\)
\(192\) 0 0
\(193\) 0.279795 0.0201401 0.0100700 0.999949i \(-0.496795\pi\)
0.0100700 + 0.999949i \(0.496795\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.4201 1.02739 0.513694 0.857974i \(-0.328277\pi\)
0.513694 + 0.857974i \(0.328277\pi\)
\(198\) 0 0
\(199\) 6.01276 0.426233 0.213117 0.977027i \(-0.431639\pi\)
0.213117 + 0.977027i \(0.431639\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.3533 −0.726657
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.2591 0.778812
\(210\) 0 0
\(211\) −21.5528 −1.48376 −0.741880 0.670533i \(-0.766065\pi\)
−0.741880 + 0.670533i \(0.766065\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −9.93848 −0.674668
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.45272 0.164988
\(222\) 0 0
\(223\) 9.70409 0.649834 0.324917 0.945743i \(-0.394664\pi\)
0.324917 + 0.945743i \(0.394664\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.4969 0.696703 0.348352 0.937364i \(-0.386741\pi\)
0.348352 + 0.937364i \(0.386741\pi\)
\(228\) 0 0
\(229\) −17.1573 −1.13378 −0.566892 0.823792i \(-0.691854\pi\)
−0.566892 + 0.823792i \(0.691854\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.7586 0.835843 0.417922 0.908483i \(-0.362759\pi\)
0.417922 + 0.908483i \(0.362759\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.6150 −0.815994 −0.407997 0.912983i \(-0.633773\pi\)
−0.407997 + 0.912983i \(0.633773\pi\)
\(240\) 0 0
\(241\) −3.16532 −0.203896 −0.101948 0.994790i \(-0.532508\pi\)
−0.101948 + 0.994790i \(0.532508\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.6347 0.803929
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0367 −1.76966 −0.884831 0.465913i \(-0.845726\pi\)
−0.884831 + 0.465913i \(0.845726\pi\)
\(252\) 0 0
\(253\) −16.8124 −1.05698
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.0119 −1.24831 −0.624155 0.781300i \(-0.714557\pi\)
−0.624155 + 0.781300i \(0.714557\pi\)
\(258\) 0 0
\(259\) −2.88955 −0.179548
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.9507 0.675246 0.337623 0.941281i \(-0.390377\pi\)
0.337623 + 0.941281i \(0.390377\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.61862 0.464515 0.232258 0.972654i \(-0.425389\pi\)
0.232258 + 0.972654i \(0.425389\pi\)
\(270\) 0 0
\(271\) −28.7205 −1.74465 −0.872323 0.488929i \(-0.837388\pi\)
−0.872323 + 0.488929i \(0.837388\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −28.3774 −1.70503 −0.852516 0.522701i \(-0.824924\pi\)
−0.852516 + 0.522701i \(0.824924\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −31.6027 −1.88526 −0.942629 0.333843i \(-0.891655\pi\)
−0.942629 + 0.333843i \(0.891655\pi\)
\(282\) 0 0
\(283\) −22.4226 −1.33289 −0.666443 0.745556i \(-0.732184\pi\)
−0.666443 + 0.745556i \(0.732184\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.1620 −0.658870
\(288\) 0 0
\(289\) −15.8254 −0.930906
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.6799 1.09129 0.545645 0.838017i \(-0.316285\pi\)
0.545645 + 0.838017i \(0.316285\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −18.8664 −1.09107
\(300\) 0 0
\(301\) −3.31158 −0.190876
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.72762 0.326893 0.163446 0.986552i \(-0.447739\pi\)
0.163446 + 0.986552i \(0.447739\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.65452 −0.490753 −0.245376 0.969428i \(-0.578912\pi\)
−0.245376 + 0.969428i \(0.578912\pi\)
\(312\) 0 0
\(313\) 3.34960 0.189331 0.0946653 0.995509i \(-0.469822\pi\)
0.0946653 + 0.995509i \(0.469822\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.04929 −0.452093 −0.226047 0.974116i \(-0.572580\pi\)
−0.226047 + 0.974116i \(0.572580\pi\)
\(318\) 0 0
\(319\) −18.3867 −1.02946
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.05075 0.336673
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.37355 0.130858
\(330\) 0 0
\(331\) 18.5509 1.01965 0.509826 0.860277i \(-0.329710\pi\)
0.509826 + 0.860277i \(0.329710\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.1300 −1.36892 −0.684458 0.729052i \(-0.739961\pi\)
−0.684458 + 0.729052i \(0.739961\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −17.6500 −0.955803
\(342\) 0 0
\(343\) −14.4337 −0.779346
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 25.2876 1.35751 0.678754 0.734366i \(-0.262520\pi\)
0.678754 + 0.734366i \(0.262520\pi\)
\(348\) 0 0
\(349\) 2.69911 0.144480 0.0722400 0.997387i \(-0.476985\pi\)
0.0722400 + 0.997387i \(0.476985\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.1225 −0.698442 −0.349221 0.937040i \(-0.613554\pi\)
−0.349221 + 0.937040i \(0.613554\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.72762 0.0911804 0.0455902 0.998960i \(-0.485483\pi\)
0.0455902 + 0.998960i \(0.485483\pi\)
\(360\) 0 0
\(361\) 12.1693 0.640492
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 34.4287 1.79716 0.898582 0.438805i \(-0.144598\pi\)
0.898582 + 0.438805i \(0.144598\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.9605 0.620959
\(372\) 0 0
\(373\) 26.5994 1.37726 0.688632 0.725111i \(-0.258212\pi\)
0.688632 + 0.725111i \(0.258212\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.6331 −1.06266
\(378\) 0 0
\(379\) 13.0117 0.668367 0.334184 0.942508i \(-0.391539\pi\)
0.334184 + 0.942508i \(0.391539\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.8421 0.911689 0.455844 0.890059i \(-0.349337\pi\)
0.455844 + 0.890059i \(0.349337\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.94794 0.0987643 0.0493821 0.998780i \(-0.484275\pi\)
0.0493821 + 0.998780i \(0.484275\pi\)
\(390\) 0 0
\(391\) −9.03508 −0.456924
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12.5726 −0.631002 −0.315501 0.948925i \(-0.602173\pi\)
−0.315501 + 0.948925i \(0.602173\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.2160 −1.20929 −0.604645 0.796495i \(-0.706685\pi\)
−0.604645 + 0.796495i \(0.706685\pi\)
\(402\) 0 0
\(403\) −19.8064 −0.986629
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.13163 −0.254366
\(408\) 0 0
\(409\) 27.0728 1.33867 0.669333 0.742963i \(-0.266580\pi\)
0.669333 + 0.742963i \(0.266580\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.28455 −0.309243
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 33.1266 1.61834 0.809170 0.587574i \(-0.199917\pi\)
0.809170 + 0.587574i \(0.199917\pi\)
\(420\) 0 0
\(421\) −37.8125 −1.84287 −0.921435 0.388532i \(-0.872982\pi\)
−0.921435 + 0.388532i \(0.872982\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.85637 −0.0898359
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.0656 0.773852 0.386926 0.922111i \(-0.373537\pi\)
0.386926 + 0.922111i \(0.373537\pi\)
\(432\) 0 0
\(433\) 33.0940 1.59040 0.795198 0.606350i \(-0.207367\pi\)
0.795198 + 0.606350i \(0.207367\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −46.5426 −2.22643
\(438\) 0 0
\(439\) 33.1634 1.58280 0.791400 0.611298i \(-0.209352\pi\)
0.791400 + 0.611298i \(0.209352\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.78036 −0.274633 −0.137316 0.990527i \(-0.543848\pi\)
−0.137316 + 0.990527i \(0.543848\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.6234 −0.973277 −0.486639 0.873603i \(-0.661777\pi\)
−0.486639 + 0.873603i \(0.661777\pi\)
\(450\) 0 0
\(451\) −19.8229 −0.933422
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.42094 0.440693 0.220346 0.975422i \(-0.429281\pi\)
0.220346 + 0.975422i \(0.429281\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −24.9744 −1.16317 −0.581586 0.813485i \(-0.697568\pi\)
−0.581586 + 0.813485i \(0.697568\pi\)
\(462\) 0 0
\(463\) 27.8110 1.29248 0.646242 0.763132i \(-0.276339\pi\)
0.646242 + 0.763132i \(0.276339\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.80898 0.176258 0.0881292 0.996109i \(-0.471911\pi\)
0.0881292 + 0.996109i \(0.471911\pi\)
\(468\) 0 0
\(469\) −12.0193 −0.555001
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.88113 −0.270414
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.45272 −0.203450 −0.101725 0.994813i \(-0.532436\pi\)
−0.101725 + 0.994813i \(0.532436\pi\)
\(480\) 0 0
\(481\) −5.75859 −0.262569
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.42116 0.426914 0.213457 0.976952i \(-0.431528\pi\)
0.213457 + 0.976952i \(0.431528\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −33.0769 −1.49274 −0.746369 0.665533i \(-0.768204\pi\)
−0.746369 + 0.665533i \(0.768204\pi\)
\(492\) 0 0
\(493\) −9.88113 −0.445024
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.7053 −0.659621
\(498\) 0 0
\(499\) 32.2197 1.44235 0.721175 0.692753i \(-0.243602\pi\)
0.721175 + 0.692753i \(0.243602\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.6317 −0.474042 −0.237021 0.971505i \(-0.576171\pi\)
−0.237021 + 0.971505i \(0.576171\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.69824 0.341219 0.170609 0.985339i \(-0.445426\pi\)
0.170609 + 0.985339i \(0.445426\pi\)
\(510\) 0 0
\(511\) −15.0404 −0.665347
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.21525 0.185387
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.2597 0.449487 0.224744 0.974418i \(-0.427846\pi\)
0.224744 + 0.974418i \(0.427846\pi\)
\(522\) 0 0
\(523\) −32.7292 −1.43115 −0.715575 0.698536i \(-0.753835\pi\)
−0.715575 + 0.698536i \(0.753835\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.48526 −0.413184
\(528\) 0 0
\(529\) 46.4982 2.02166
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −22.2447 −0.963525
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.5163 −0.496043
\(540\) 0 0
\(541\) −7.94875 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −2.77593 −0.118690 −0.0593452 0.998238i \(-0.518901\pi\)
−0.0593452 + 0.998238i \(0.518901\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −50.9009 −2.16845
\(552\) 0 0
\(553\) 7.77420 0.330593
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.2457 1.19681 0.598405 0.801193i \(-0.295801\pi\)
0.598405 + 0.801193i \(0.295801\pi\)
\(558\) 0 0
\(559\) −6.59965 −0.279136
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.4749 −0.441466 −0.220733 0.975334i \(-0.570845\pi\)
−0.220733 + 0.975334i \(0.570845\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.2564 −1.26842 −0.634208 0.773163i \(-0.718674\pi\)
−0.634208 + 0.773163i \(0.718674\pi\)
\(570\) 0 0
\(571\) 33.0909 1.38481 0.692406 0.721508i \(-0.256551\pi\)
0.692406 + 0.721508i \(0.256551\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 37.3160 1.55349 0.776744 0.629817i \(-0.216870\pi\)
0.776744 + 0.629817i \(0.216870\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.20003 0.132760
\(582\) 0 0
\(583\) 21.2410 0.879714
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.9409 1.27707 0.638534 0.769594i \(-0.279541\pi\)
0.638534 + 0.769594i \(0.279541\pi\)
\(588\) 0 0
\(589\) −48.8616 −2.01331
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −44.1444 −1.81279 −0.906396 0.422428i \(-0.861178\pi\)
−0.906396 + 0.422428i \(0.861178\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.25996 −0.255775 −0.127888 0.991789i \(-0.540820\pi\)
−0.127888 + 0.991789i \(0.540820\pi\)
\(600\) 0 0
\(601\) −5.31678 −0.216876 −0.108438 0.994103i \(-0.534585\pi\)
−0.108438 + 0.994103i \(0.534585\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 36.0584 1.46356 0.731782 0.681538i \(-0.238689\pi\)
0.731782 + 0.681538i \(0.238689\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.73025 0.191365
\(612\) 0 0
\(613\) 9.04390 0.365280 0.182640 0.983180i \(-0.441536\pi\)
0.182640 + 0.983180i \(0.441536\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 43.9318 1.76863 0.884314 0.466892i \(-0.154626\pi\)
0.884314 + 0.466892i \(0.154626\pi\)
\(618\) 0 0
\(619\) −2.08071 −0.0836309 −0.0418154 0.999125i \(-0.513314\pi\)
−0.0418154 + 0.999125i \(0.513314\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 17.2236 0.690050
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.75778 −0.109960
\(630\) 0 0
\(631\) 7.90711 0.314777 0.157389 0.987537i \(-0.449692\pi\)
0.157389 + 0.987537i \(0.449692\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −12.9233 −0.512041
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11.1496 −0.440381 −0.220191 0.975457i \(-0.570668\pi\)
−0.220191 + 0.975457i \(0.570668\pi\)
\(642\) 0 0
\(643\) −4.47544 −0.176494 −0.0882470 0.996099i \(-0.528126\pi\)
−0.0882470 + 0.996099i \(0.528126\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −44.4289 −1.74668 −0.873341 0.487109i \(-0.838051\pi\)
−0.873341 + 0.487109i \(0.838051\pi\)
\(648\) 0 0
\(649\) −11.1609 −0.438105
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 28.7385 1.12463 0.562313 0.826925i \(-0.309912\pi\)
0.562313 + 0.826925i \(0.309912\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.9254 −0.737230 −0.368615 0.929582i \(-0.620168\pi\)
−0.368615 + 0.929582i \(0.620168\pi\)
\(660\) 0 0
\(661\) −35.6615 −1.38707 −0.693535 0.720423i \(-0.743948\pi\)
−0.693535 + 0.720423i \(0.743948\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 76.0060 2.94297
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.29678 −0.127271
\(672\) 0 0
\(673\) −31.9521 −1.23166 −0.615831 0.787879i \(-0.711179\pi\)
−0.615831 + 0.787879i \(0.711179\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23.9709 −0.921278 −0.460639 0.887588i \(-0.652380\pi\)
−0.460639 + 0.887588i \(0.652380\pi\)
\(678\) 0 0
\(679\) −20.7346 −0.795723
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.07047 0.270544 0.135272 0.990808i \(-0.456809\pi\)
0.135272 + 0.990808i \(0.456809\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 23.8362 0.908086
\(690\) 0 0
\(691\) −1.97935 −0.0752982 −0.0376491 0.999291i \(-0.511987\pi\)
−0.0376491 + 0.999291i \(0.511987\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −10.6529 −0.403509
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19.8745 0.750648 0.375324 0.926894i \(-0.377531\pi\)
0.375324 + 0.926894i \(0.377531\pi\)
\(702\) 0 0
\(703\) −14.2062 −0.535797
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.86876 0.258326
\(708\) 0 0
\(709\) −8.79068 −0.330141 −0.165070 0.986282i \(-0.552785\pi\)
−0.165070 + 0.986282i \(0.552785\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 72.9610 2.73241
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.2898 −0.383743 −0.191872 0.981420i \(-0.561456\pi\)
−0.191872 + 0.981420i \(0.561456\pi\)
\(720\) 0 0
\(721\) 6.85586 0.255326
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −9.73934 −0.361212 −0.180606 0.983556i \(-0.557806\pi\)
−0.180606 + 0.983556i \(0.557806\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.16056 −0.116898
\(732\) 0 0
\(733\) −25.2767 −0.933617 −0.466808 0.884358i \(-0.654596\pi\)
−0.466808 + 0.884358i \(0.654596\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.3455 −0.786271
\(738\) 0 0
\(739\) −39.6691 −1.45925 −0.729626 0.683847i \(-0.760306\pi\)
−0.729626 + 0.683847i \(0.760306\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.7732 0.688721 0.344360 0.938838i \(-0.388096\pi\)
0.344360 + 0.938838i \(0.388096\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.09076 0.222551
\(750\) 0 0
\(751\) 35.1761 1.28359 0.641797 0.766874i \(-0.278189\pi\)
0.641797 + 0.766874i \(0.278189\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −25.9332 −0.942559 −0.471279 0.881984i \(-0.656208\pi\)
−0.471279 + 0.881984i \(0.656208\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.6131 0.420973 0.210486 0.977597i \(-0.432495\pi\)
0.210486 + 0.977597i \(0.432495\pi\)
\(762\) 0 0
\(763\) 7.49440 0.271316
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.5245 −0.452234
\(768\) 0 0
\(769\) 17.6988 0.638236 0.319118 0.947715i \(-0.396613\pi\)
0.319118 + 0.947715i \(0.396613\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −45.3363 −1.63063 −0.815316 0.579016i \(-0.803437\pi\)
−0.815316 + 0.579016i \(0.803437\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −54.8767 −1.96616
\(780\) 0 0
\(781\) −26.1155 −0.934487
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.40446 −0.0500637 −0.0250318 0.999687i \(-0.507969\pi\)
−0.0250318 + 0.999687i \(0.507969\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.1032 −0.394783
\(792\) 0 0
\(793\) −3.69956 −0.131375
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −41.1825 −1.45876 −0.729379 0.684109i \(-0.760191\pi\)
−0.729379 + 0.684109i \(0.760191\pi\)
\(798\) 0 0
\(799\) 2.26531 0.0801408
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −26.7106 −0.942598
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.98976 −0.245747 −0.122873 0.992422i \(-0.539211\pi\)
−0.122873 + 0.992422i \(0.539211\pi\)
\(810\) 0 0
\(811\) −10.9870 −0.385804 −0.192902 0.981218i \(-0.561790\pi\)
−0.192902 + 0.981218i \(0.561790\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −16.2811 −0.569602
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −35.2863 −1.23150 −0.615751 0.787941i \(-0.711147\pi\)
−0.615751 + 0.787941i \(0.711147\pi\)
\(822\) 0 0
\(823\) −38.8164 −1.35306 −0.676528 0.736417i \(-0.736516\pi\)
−0.676528 + 0.736417i \(0.736516\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.6781 0.545181 0.272590 0.962130i \(-0.412120\pi\)
0.272590 + 0.962130i \(0.412120\pi\)
\(828\) 0 0
\(829\) 27.8171 0.966126 0.483063 0.875585i \(-0.339524\pi\)
0.483063 + 0.875585i \(0.339524\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.18895 −0.214434
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 38.1703 1.31779 0.658893 0.752237i \(-0.271025\pi\)
0.658893 + 0.752237i \(0.271025\pi\)
\(840\) 0 0
\(841\) 54.1232 1.86632
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −7.87284 −0.270514
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 21.2129 0.727170
\(852\) 0 0
\(853\) −23.4987 −0.804580 −0.402290 0.915512i \(-0.631786\pi\)
−0.402290 + 0.915512i \(0.631786\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.7940 −0.710309 −0.355154 0.934808i \(-0.615572\pi\)
−0.355154 + 0.934808i \(0.615572\pi\)
\(858\) 0 0
\(859\) −17.4860 −0.596616 −0.298308 0.954470i \(-0.596422\pi\)
−0.298308 + 0.954470i \(0.596422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.93490 −0.133945 −0.0669727 0.997755i \(-0.521334\pi\)
−0.0669727 + 0.997755i \(0.521334\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.8064 0.468351
\(870\) 0 0
\(871\) −23.9534 −0.811629
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −30.3758 −1.02572 −0.512859 0.858473i \(-0.671414\pi\)
−0.512859 + 0.858473i \(0.671414\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −13.4095 −0.451778 −0.225889 0.974153i \(-0.572529\pi\)
−0.225889 + 0.974153i \(0.572529\pi\)
\(882\) 0 0
\(883\) 47.5905 1.60155 0.800774 0.598967i \(-0.204422\pi\)
0.800774 + 0.598967i \(0.204422\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.6312 0.457692 0.228846 0.973463i \(-0.426505\pi\)
0.228846 + 0.973463i \(0.426505\pi\)
\(888\) 0 0
\(889\) 8.17917 0.274320
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.6693 0.390499
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 79.7931 2.66125
\(900\) 0 0
\(901\) 11.4151 0.380292
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 12.5356 0.416239 0.208120 0.978103i \(-0.433266\pi\)
0.208120 + 0.978103i \(0.433266\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 34.1877 1.13269 0.566344 0.824169i \(-0.308357\pi\)
0.566344 + 0.824169i \(0.308357\pi\)
\(912\) 0 0
\(913\) 5.68303 0.188081
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.05084 −0.232839
\(918\) 0 0
\(919\) 23.6793 0.781109 0.390554 0.920580i \(-0.372283\pi\)
0.390554 + 0.920580i \(0.372283\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −29.3062 −0.964625
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.48509 0.311196 0.155598 0.987820i \(-0.450270\pi\)
0.155598 + 0.987820i \(0.450270\pi\)
\(930\) 0 0
\(931\) −31.8813 −1.04487
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −40.5790 −1.32566 −0.662829 0.748771i \(-0.730644\pi\)
−0.662829 + 0.748771i \(0.730644\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.37604 0.273051 0.136526 0.990637i \(-0.456406\pi\)
0.136526 + 0.990637i \(0.456406\pi\)
\(942\) 0 0
\(943\) 81.9429 2.66843
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.3750 −1.21453 −0.607263 0.794501i \(-0.707732\pi\)
−0.607263 + 0.794501i \(0.707732\pi\)
\(948\) 0 0
\(949\) −29.9740 −0.972998
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15.5258 −0.502931 −0.251465 0.967866i \(-0.580912\pi\)
−0.251465 + 0.967866i \(0.580912\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.88714 0.254689
\(960\) 0 0
\(961\) 45.5963 1.47085
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 48.6865 1.56565 0.782826 0.622240i \(-0.213777\pi\)
0.782826 + 0.622240i \(0.213777\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.4960 0.465199 0.232599 0.972573i \(-0.425277\pi\)
0.232599 + 0.972573i \(0.425277\pi\)
\(972\) 0 0
\(973\) −8.38843 −0.268921
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.35164 0.235200 0.117600 0.993061i \(-0.462480\pi\)
0.117600 + 0.993061i \(0.462480\pi\)
\(978\) 0 0
\(979\) 30.5879 0.977595
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −32.6724 −1.04209 −0.521044 0.853530i \(-0.674457\pi\)
−0.521044 + 0.853530i \(0.674457\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.3112 0.773050
\(990\) 0 0
\(991\) 18.7552 0.595780 0.297890 0.954600i \(-0.403717\pi\)
0.297890 + 0.954600i \(0.403717\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.42813 0.108570 0.0542850 0.998525i \(-0.482712\pi\)
0.0542850 + 0.998525i \(0.482712\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9000.2.a.bb.1.2 4
3.2 odd 2 1000.2.a.g.1.3 yes 4
5.4 even 2 9000.2.a.q.1.3 4
12.11 even 2 2000.2.a.n.1.2 4
15.2 even 4 1000.2.c.c.249.3 8
15.8 even 4 1000.2.c.c.249.6 8
15.14 odd 2 1000.2.a.f.1.2 4
24.5 odd 2 8000.2.a.bd.1.2 4
24.11 even 2 8000.2.a.bo.1.3 4
60.23 odd 4 2000.2.c.i.1249.3 8
60.47 odd 4 2000.2.c.i.1249.6 8
60.59 even 2 2000.2.a.q.1.3 4
120.29 odd 2 8000.2.a.bn.1.3 4
120.59 even 2 8000.2.a.be.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.f.1.2 4 15.14 odd 2
1000.2.a.g.1.3 yes 4 3.2 odd 2
1000.2.c.c.249.3 8 15.2 even 4
1000.2.c.c.249.6 8 15.8 even 4
2000.2.a.n.1.2 4 12.11 even 2
2000.2.a.q.1.3 4 60.59 even 2
2000.2.c.i.1249.3 8 60.23 odd 4
2000.2.c.i.1249.6 8 60.47 odd 4
8000.2.a.bd.1.2 4 24.5 odd 2
8000.2.a.be.1.2 4 120.59 even 2
8000.2.a.bn.1.3 4 120.29 odd 2
8000.2.a.bo.1.3 4 24.11 even 2
9000.2.a.q.1.3 4 5.4 even 2
9000.2.a.bb.1.2 4 1.1 even 1 trivial