Properties

Label 9000.2.a.bb.1.2
Level 90009000
Weight 22
Character 9000.1
Self dual yes
Analytic conductor 71.86571.865
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9000,2,Mod(1,9000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 9000=233253 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 71.865361819271.8653618192
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.10025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x311x2+10x+20 x^{4} - x^{3} - 11x^{2} + 10x + 20 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1000)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 2.398672.39867 of defining polynomial
Character χ\chi == 9000.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.13558q7+2.01670q11+2.26309q13+1.08379q17+5.58295q198.33656q239.11719q298.75193q312.54457q379.82934q412.91621q43+2.09017q475.71047q49+10.5326q535.53424q591.63474q6110.5844q6712.9496q7113.2447q73+2.29012q77+6.84604q79+2.81798q83+15.1673q89+2.56991q9118.2591q97+O(q100)q+1.13558 q^{7} +2.01670 q^{11} +2.26309 q^{13} +1.08379 q^{17} +5.58295 q^{19} -8.33656 q^{23} -9.11719 q^{29} -8.75193 q^{31} -2.54457 q^{37} -9.82934 q^{41} -2.91621 q^{43} +2.09017 q^{47} -5.71047 q^{49} +10.5326 q^{53} -5.53424 q^{59} -1.63474 q^{61} -10.5844 q^{67} -12.9496 q^{71} -13.2447 q^{73} +2.29012 q^{77} +6.84604 q^{79} +2.81798 q^{83} +15.1673 q^{89} +2.56991 q^{91} -18.2591 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+9q75q114q13+4q1711q2310q29+9q3115q3717q4112q4314q47+17q496q5318q59+11q61+q6726q719q73+29q97+O(q100) 4 q + 9 q^{7} - 5 q^{11} - 4 q^{13} + 4 q^{17} - 11 q^{23} - 10 q^{29} + 9 q^{31} - 15 q^{37} - 17 q^{41} - 12 q^{43} - 14 q^{47} + 17 q^{49} - 6 q^{53} - 18 q^{59} + 11 q^{61} + q^{67} - 26 q^{71} - 9 q^{73}+ \cdots - 29 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 0 0
66 0 0
77 1.13558 0.429207 0.214604 0.976701i 0.431154π-0.431154\pi
0.214604 + 0.976701i 0.431154π0.431154\pi
88 0 0
99 0 0
1010 0 0
1111 2.01670 0.608059 0.304029 0.952663i 0.401668π-0.401668\pi
0.304029 + 0.952663i 0.401668π0.401668\pi
1212 0 0
1313 2.26309 0.627669 0.313835 0.949478i 0.398386π-0.398386\pi
0.313835 + 0.949478i 0.398386π0.398386\pi
1414 0 0
1515 0 0
1616 0 0
1717 1.08379 0.262858 0.131429 0.991326i 0.458044π-0.458044\pi
0.131429 + 0.991326i 0.458044π0.458044\pi
1818 0 0
1919 5.58295 1.28082 0.640408 0.768035i 0.278765π-0.278765\pi
0.640408 + 0.768035i 0.278765π0.278765\pi
2020 0 0
2121 0 0
2222 0 0
2323 −8.33656 −1.73829 −0.869147 0.494555i 0.835331π-0.835331\pi
−0.869147 + 0.494555i 0.835331π0.835331\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 −9.11719 −1.69302 −0.846510 0.532372i 0.821301π-0.821301\pi
−0.846510 + 0.532372i 0.821301π0.821301\pi
3030 0 0
3131 −8.75193 −1.57189 −0.785947 0.618294i 0.787824π-0.787824\pi
−0.785947 + 0.618294i 0.787824π0.787824\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 −2.54457 −0.418324 −0.209162 0.977881i 0.567074π-0.567074\pi
−0.209162 + 0.977881i 0.567074π0.567074\pi
3838 0 0
3939 0 0
4040 0 0
4141 −9.82934 −1.53509 −0.767543 0.640998i 0.778521π-0.778521\pi
−0.767543 + 0.640998i 0.778521π0.778521\pi
4242 0 0
4343 −2.91621 −0.444718 −0.222359 0.974965i 0.571376π-0.571376\pi
−0.222359 + 0.974965i 0.571376π0.571376\pi
4444 0 0
4545 0 0
4646 0 0
4747 2.09017 0.304883 0.152441 0.988313i 0.451286π-0.451286\pi
0.152441 + 0.988313i 0.451286π0.451286\pi
4848 0 0
4949 −5.71047 −0.815781
5050 0 0
5151 0 0
5252 0 0
5353 10.5326 1.44676 0.723380 0.690451i 0.242588π-0.242588\pi
0.723380 + 0.690451i 0.242588π0.242588\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 −5.53424 −0.720497 −0.360249 0.932856i 0.617308π-0.617308\pi
−0.360249 + 0.932856i 0.617308π0.617308\pi
6060 0 0
6161 −1.63474 −0.209307 −0.104653 0.994509i 0.533373π-0.533373\pi
−0.104653 + 0.994509i 0.533373π0.533373\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 −10.5844 −1.29308 −0.646542 0.762878i 0.723786π-0.723786\pi
−0.646542 + 0.762878i 0.723786π0.723786\pi
6868 0 0
6969 0 0
7070 0 0
7171 −12.9496 −1.53684 −0.768418 0.639948i 0.778956π-0.778956\pi
−0.768418 + 0.639948i 0.778956π0.778956\pi
7272 0 0
7373 −13.2447 −1.55018 −0.775088 0.631853i 0.782295π-0.782295\pi
−0.775088 + 0.631853i 0.782295π0.782295\pi
7474 0 0
7575 0 0
7676 0 0
7777 2.29012 0.260983
7878 0 0
7979 6.84604 0.770240 0.385120 0.922866i 0.374160π-0.374160\pi
0.385120 + 0.922866i 0.374160π0.374160\pi
8080 0 0
8181 0 0
8282 0 0
8383 2.81798 0.309314 0.154657 0.987968i 0.450573π-0.450573\pi
0.154657 + 0.987968i 0.450573π0.450573\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 15.1673 1.60773 0.803865 0.594811i 0.202773π-0.202773\pi
0.803865 + 0.594811i 0.202773π0.202773\pi
9090 0 0
9191 2.56991 0.269400
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −18.2591 −1.85394 −0.926968 0.375141i 0.877594π-0.877594\pi
−0.926968 + 0.375141i 0.877594π0.877594\pi
9898 0 0
9999 0 0
100100 0 0
101101 6.04871 0.601869 0.300934 0.953645i 0.402701π-0.402701\pi
0.300934 + 0.953645i 0.402701π0.402701\pi
102102 0 0
103103 6.03735 0.594878 0.297439 0.954741i 0.403868π-0.403868\pi
0.297439 + 0.954741i 0.403868π0.403868\pi
104104 0 0
105105 0 0
106106 0 0
107107 5.36359 0.518517 0.259259 0.965808i 0.416522π-0.416522\pi
0.259259 + 0.965808i 0.416522π0.416522\pi
108108 0 0
109109 6.59965 0.632132 0.316066 0.948737i 0.397638π-0.397638\pi
0.316066 + 0.948737i 0.397638π0.397638\pi
110110 0 0
111111 0 0
112112 0 0
113113 −9.77756 −0.919795 −0.459898 0.887972i 0.652114π-0.652114\pi
−0.459898 + 0.887972i 0.652114π0.652114\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 1.23073 0.112820
120120 0 0
121121 −6.93291 −0.630265
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 7.20266 0.639133 0.319567 0.947564i 0.396463π-0.396463\pi
0.319567 + 0.947564i 0.396463π0.396463\pi
128128 0 0
129129 0 0
130130 0 0
131131 −6.20904 −0.542487 −0.271243 0.962511i 0.587435π-0.587435\pi
−0.271243 + 0.962511i 0.587435π0.587435\pi
132132 0 0
133133 6.33986 0.549736
134134 0 0
135135 0 0
136136 0 0
137137 6.94550 0.593394 0.296697 0.954972i 0.404115π-0.404115\pi
0.296697 + 0.954972i 0.404115π0.404115\pi
138138 0 0
139139 −7.38695 −0.626553 −0.313276 0.949662i 0.601427π-0.601427\pi
−0.313276 + 0.949662i 0.601427π0.601427\pi
140140 0 0
141141 0 0
142142 0 0
143143 4.56398 0.381660
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 7.09655 0.581372 0.290686 0.956819i 0.406116π-0.406116\pi
0.290686 + 0.956819i 0.406116π0.406116\pi
150150 0 0
151151 12.3132 1.00203 0.501017 0.865437i 0.332959π-0.332959\pi
0.501017 + 0.865437i 0.332959π0.332959\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 12.4114 0.990540 0.495270 0.868739i 0.335069π-0.335069\pi
0.495270 + 0.868739i 0.335069π0.335069\pi
158158 0 0
159159 0 0
160160 0 0
161161 −9.46679 −0.746088
162162 0 0
163163 14.2257 1.11425 0.557123 0.830430i 0.311905π-0.311905\pi
0.557123 + 0.830430i 0.311905π0.311905\pi
164164 0 0
165165 0 0
166166 0 0
167167 10.7790 0.834101 0.417050 0.908883i 0.363064π-0.363064\pi
0.417050 + 0.908883i 0.363064π0.363064\pi
168168 0 0
169169 −7.87841 −0.606032
170170 0 0
171171 0 0
172172 0 0
173173 −9.96632 −0.757725 −0.378863 0.925453i 0.623685π-0.623685\pi
−0.378863 + 0.925453i 0.623685π0.623685\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 −1.15622 −0.0864200 −0.0432100 0.999066i 0.513758π-0.513758\pi
−0.0432100 + 0.999066i 0.513758π0.513758\pi
180180 0 0
181181 −1.58191 −0.117583 −0.0587914 0.998270i 0.518725π-0.518725\pi
−0.0587914 + 0.998270i 0.518725π0.518725\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 2.18568 0.159833
188188 0 0
189189 0 0
190190 0 0
191191 −8.12629 −0.587998 −0.293999 0.955806i 0.594986π-0.594986\pi
−0.293999 + 0.955806i 0.594986π0.594986\pi
192192 0 0
193193 0.279795 0.0201401 0.0100700 0.999949i 0.496795π-0.496795\pi
0.0100700 + 0.999949i 0.496795π0.496795\pi
194194 0 0
195195 0 0
196196 0 0
197197 14.4201 1.02739 0.513694 0.857974i 0.328277π-0.328277\pi
0.513694 + 0.857974i 0.328277π0.328277\pi
198198 0 0
199199 6.01276 0.426233 0.213117 0.977027i 0.431639π-0.431639\pi
0.213117 + 0.977027i 0.431639π0.431639\pi
200200 0 0
201201 0 0
202202 0 0
203203 −10.3533 −0.726657
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 11.2591 0.778812
210210 0 0
211211 −21.5528 −1.48376 −0.741880 0.670533i 0.766065π-0.766065\pi
−0.741880 + 0.670533i 0.766065π0.766065\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 −9.93848 −0.674668
218218 0 0
219219 0 0
220220 0 0
221221 2.45272 0.164988
222222 0 0
223223 9.70409 0.649834 0.324917 0.945743i 0.394664π-0.394664\pi
0.324917 + 0.945743i 0.394664π0.394664\pi
224224 0 0
225225 0 0
226226 0 0
227227 10.4969 0.696703 0.348352 0.937364i 0.386741π-0.386741\pi
0.348352 + 0.937364i 0.386741π0.386741\pi
228228 0 0
229229 −17.1573 −1.13378 −0.566892 0.823792i 0.691854π-0.691854\pi
−0.566892 + 0.823792i 0.691854π0.691854\pi
230230 0 0
231231 0 0
232232 0 0
233233 12.7586 0.835843 0.417922 0.908483i 0.362759π-0.362759\pi
0.417922 + 0.908483i 0.362759π0.362759\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −12.6150 −0.815994 −0.407997 0.912983i 0.633773π-0.633773\pi
−0.407997 + 0.912983i 0.633773π0.633773\pi
240240 0 0
241241 −3.16532 −0.203896 −0.101948 0.994790i 0.532508π-0.532508\pi
−0.101948 + 0.994790i 0.532508π0.532508\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 12.6347 0.803929
248248 0 0
249249 0 0
250250 0 0
251251 −28.0367 −1.76966 −0.884831 0.465913i 0.845726π-0.845726\pi
−0.884831 + 0.465913i 0.845726π0.845726\pi
252252 0 0
253253 −16.8124 −1.05698
254254 0 0
255255 0 0
256256 0 0
257257 −20.0119 −1.24831 −0.624155 0.781300i 0.714557π-0.714557\pi
−0.624155 + 0.781300i 0.714557π0.714557\pi
258258 0 0
259259 −2.88955 −0.179548
260260 0 0
261261 0 0
262262 0 0
263263 10.9507 0.675246 0.337623 0.941281i 0.390377π-0.390377\pi
0.337623 + 0.941281i 0.390377π0.390377\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 7.61862 0.464515 0.232258 0.972654i 0.425389π-0.425389\pi
0.232258 + 0.972654i 0.425389π0.425389\pi
270270 0 0
271271 −28.7205 −1.74465 −0.872323 0.488929i 0.837388π-0.837388\pi
−0.872323 + 0.488929i 0.837388π0.837388\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −28.3774 −1.70503 −0.852516 0.522701i 0.824924π-0.824924\pi
−0.852516 + 0.522701i 0.824924π0.824924\pi
278278 0 0
279279 0 0
280280 0 0
281281 −31.6027 −1.88526 −0.942629 0.333843i 0.891655π-0.891655\pi
−0.942629 + 0.333843i 0.891655π0.891655\pi
282282 0 0
283283 −22.4226 −1.33289 −0.666443 0.745556i 0.732184π-0.732184\pi
−0.666443 + 0.745556i 0.732184π0.732184\pi
284284 0 0
285285 0 0
286286 0 0
287287 −11.1620 −0.658870
288288 0 0
289289 −15.8254 −0.930906
290290 0 0
291291 0 0
292292 0 0
293293 18.6799 1.09129 0.545645 0.838017i 0.316285π-0.316285\pi
0.545645 + 0.838017i 0.316285π0.316285\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 −18.8664 −1.09107
300300 0 0
301301 −3.31158 −0.190876
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 5.72762 0.326893 0.163446 0.986552i 0.447739π-0.447739\pi
0.163446 + 0.986552i 0.447739π0.447739\pi
308308 0 0
309309 0 0
310310 0 0
311311 −8.65452 −0.490753 −0.245376 0.969428i 0.578912π-0.578912\pi
−0.245376 + 0.969428i 0.578912π0.578912\pi
312312 0 0
313313 3.34960 0.189331 0.0946653 0.995509i 0.469822π-0.469822\pi
0.0946653 + 0.995509i 0.469822π0.469822\pi
314314 0 0
315315 0 0
316316 0 0
317317 −8.04929 −0.452093 −0.226047 0.974116i 0.572580π-0.572580\pi
−0.226047 + 0.974116i 0.572580π0.572580\pi
318318 0 0
319319 −18.3867 −1.02946
320320 0 0
321321 0 0
322322 0 0
323323 6.05075 0.336673
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 2.37355 0.130858
330330 0 0
331331 18.5509 1.01965 0.509826 0.860277i 0.329710π-0.329710\pi
0.509826 + 0.860277i 0.329710π0.329710\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −25.1300 −1.36892 −0.684458 0.729052i 0.739961π-0.739961\pi
−0.684458 + 0.729052i 0.739961π0.739961\pi
338338 0 0
339339 0 0
340340 0 0
341341 −17.6500 −0.955803
342342 0 0
343343 −14.4337 −0.779346
344344 0 0
345345 0 0
346346 0 0
347347 25.2876 1.35751 0.678754 0.734366i 0.262520π-0.262520\pi
0.678754 + 0.734366i 0.262520π0.262520\pi
348348 0 0
349349 2.69911 0.144480 0.0722400 0.997387i 0.476985π-0.476985\pi
0.0722400 + 0.997387i 0.476985π0.476985\pi
350350 0 0
351351 0 0
352352 0 0
353353 −13.1225 −0.698442 −0.349221 0.937040i 0.613554π-0.613554\pi
−0.349221 + 0.937040i 0.613554π0.613554\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 1.72762 0.0911804 0.0455902 0.998960i 0.485483π-0.485483\pi
0.0455902 + 0.998960i 0.485483π0.485483\pi
360360 0 0
361361 12.1693 0.640492
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 34.4287 1.79716 0.898582 0.438805i 0.144598π-0.144598\pi
0.898582 + 0.438805i 0.144598π0.144598\pi
368368 0 0
369369 0 0
370370 0 0
371371 11.9605 0.620959
372372 0 0
373373 26.5994 1.37726 0.688632 0.725111i 0.258212π-0.258212\pi
0.688632 + 0.725111i 0.258212π0.258212\pi
374374 0 0
375375 0 0
376376 0 0
377377 −20.6331 −1.06266
378378 0 0
379379 13.0117 0.668367 0.334184 0.942508i 0.391539π-0.391539\pi
0.334184 + 0.942508i 0.391539π0.391539\pi
380380 0 0
381381 0 0
382382 0 0
383383 17.8421 0.911689 0.455844 0.890059i 0.349337π-0.349337\pi
0.455844 + 0.890059i 0.349337π0.349337\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 1.94794 0.0987643 0.0493821 0.998780i 0.484275π-0.484275\pi
0.0493821 + 0.998780i 0.484275π0.484275\pi
390390 0 0
391391 −9.03508 −0.456924
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −12.5726 −0.631002 −0.315501 0.948925i 0.602173π-0.602173\pi
−0.315501 + 0.948925i 0.602173π0.602173\pi
398398 0 0
399399 0 0
400400 0 0
401401 −24.2160 −1.20929 −0.604645 0.796495i 0.706685π-0.706685\pi
−0.604645 + 0.796495i 0.706685π0.706685\pi
402402 0 0
403403 −19.8064 −0.986629
404404 0 0
405405 0 0
406406 0 0
407407 −5.13163 −0.254366
408408 0 0
409409 27.0728 1.33867 0.669333 0.742963i 0.266580π-0.266580\pi
0.669333 + 0.742963i 0.266580π0.266580\pi
410410 0 0
411411 0 0
412412 0 0
413413 −6.28455 −0.309243
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 33.1266 1.61834 0.809170 0.587574i 0.199917π-0.199917\pi
0.809170 + 0.587574i 0.199917π0.199917\pi
420420 0 0
421421 −37.8125 −1.84287 −0.921435 0.388532i 0.872982π-0.872982\pi
−0.921435 + 0.388532i 0.872982π0.872982\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −1.85637 −0.0898359
428428 0 0
429429 0 0
430430 0 0
431431 16.0656 0.773852 0.386926 0.922111i 0.373537π-0.373537\pi
0.386926 + 0.922111i 0.373537π0.373537\pi
432432 0 0
433433 33.0940 1.59040 0.795198 0.606350i 0.207367π-0.207367\pi
0.795198 + 0.606350i 0.207367π0.207367\pi
434434 0 0
435435 0 0
436436 0 0
437437 −46.5426 −2.22643
438438 0 0
439439 33.1634 1.58280 0.791400 0.611298i 0.209352π-0.209352\pi
0.791400 + 0.611298i 0.209352π0.209352\pi
440440 0 0
441441 0 0
442442 0 0
443443 −5.78036 −0.274633 −0.137316 0.990527i 0.543848π-0.543848\pi
−0.137316 + 0.990527i 0.543848π0.543848\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −20.6234 −0.973277 −0.486639 0.873603i 0.661777π-0.661777\pi
−0.486639 + 0.873603i 0.661777π0.661777\pi
450450 0 0
451451 −19.8229 −0.933422
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 9.42094 0.440693 0.220346 0.975422i 0.429281π-0.429281\pi
0.220346 + 0.975422i 0.429281π0.429281\pi
458458 0 0
459459 0 0
460460 0 0
461461 −24.9744 −1.16317 −0.581586 0.813485i 0.697568π-0.697568\pi
−0.581586 + 0.813485i 0.697568π0.697568\pi
462462 0 0
463463 27.8110 1.29248 0.646242 0.763132i 0.276339π-0.276339\pi
0.646242 + 0.763132i 0.276339π0.276339\pi
464464 0 0
465465 0 0
466466 0 0
467467 3.80898 0.176258 0.0881292 0.996109i 0.471911π-0.471911\pi
0.0881292 + 0.996109i 0.471911π0.471911\pi
468468 0 0
469469 −12.0193 −0.555001
470470 0 0
471471 0 0
472472 0 0
473473 −5.88113 −0.270414
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 −4.45272 −0.203450 −0.101725 0.994813i 0.532436π-0.532436\pi
−0.101725 + 0.994813i 0.532436π0.532436\pi
480480 0 0
481481 −5.75859 −0.262569
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 9.42116 0.426914 0.213457 0.976952i 0.431528π-0.431528\pi
0.213457 + 0.976952i 0.431528π0.431528\pi
488488 0 0
489489 0 0
490490 0 0
491491 −33.0769 −1.49274 −0.746369 0.665533i 0.768204π-0.768204\pi
−0.746369 + 0.665533i 0.768204π0.768204\pi
492492 0 0
493493 −9.88113 −0.445024
494494 0 0
495495 0 0
496496 0 0
497497 −14.7053 −0.659621
498498 0 0
499499 32.2197 1.44235 0.721175 0.692753i 0.243602π-0.243602\pi
0.721175 + 0.692753i 0.243602π0.243602\pi
500500 0 0
501501 0 0
502502 0 0
503503 −10.6317 −0.474042 −0.237021 0.971505i 0.576171π-0.576171\pi
−0.237021 + 0.971505i 0.576171π0.576171\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 7.69824 0.341219 0.170609 0.985339i 0.445426π-0.445426\pi
0.170609 + 0.985339i 0.445426π0.445426\pi
510510 0 0
511511 −15.0404 −0.665347
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 4.21525 0.185387
518518 0 0
519519 0 0
520520 0 0
521521 10.2597 0.449487 0.224744 0.974418i 0.427846π-0.427846\pi
0.224744 + 0.974418i 0.427846π0.427846\pi
522522 0 0
523523 −32.7292 −1.43115 −0.715575 0.698536i 0.753835π-0.753835\pi
−0.715575 + 0.698536i 0.753835π0.753835\pi
524524 0 0
525525 0 0
526526 0 0
527527 −9.48526 −0.413184
528528 0 0
529529 46.4982 2.02166
530530 0 0
531531 0 0
532532 0 0
533533 −22.2447 −0.963525
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −11.5163 −0.496043
540540 0 0
541541 −7.94875 −0.341743 −0.170872 0.985293i 0.554658π-0.554658\pi
−0.170872 + 0.985293i 0.554658π0.554658\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −2.77593 −0.118690 −0.0593452 0.998238i 0.518901π-0.518901\pi
−0.0593452 + 0.998238i 0.518901π0.518901\pi
548548 0 0
549549 0 0
550550 0 0
551551 −50.9009 −2.16845
552552 0 0
553553 7.77420 0.330593
554554 0 0
555555 0 0
556556 0 0
557557 28.2457 1.19681 0.598405 0.801193i 0.295801π-0.295801\pi
0.598405 + 0.801193i 0.295801π0.295801\pi
558558 0 0
559559 −6.59965 −0.279136
560560 0 0
561561 0 0
562562 0 0
563563 −10.4749 −0.441466 −0.220733 0.975334i 0.570845π-0.570845\pi
−0.220733 + 0.975334i 0.570845π0.570845\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −30.2564 −1.26842 −0.634208 0.773163i 0.718674π-0.718674\pi
−0.634208 + 0.773163i 0.718674π0.718674\pi
570570 0 0
571571 33.0909 1.38481 0.692406 0.721508i 0.256551π-0.256551\pi
0.692406 + 0.721508i 0.256551π0.256551\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 37.3160 1.55349 0.776744 0.629817i 0.216870π-0.216870\pi
0.776744 + 0.629817i 0.216870π0.216870\pi
578578 0 0
579579 0 0
580580 0 0
581581 3.20003 0.132760
582582 0 0
583583 21.2410 0.879714
584584 0 0
585585 0 0
586586 0 0
587587 30.9409 1.27707 0.638534 0.769594i 0.279541π-0.279541\pi
0.638534 + 0.769594i 0.279541π0.279541\pi
588588 0 0
589589 −48.8616 −2.01331
590590 0 0
591591 0 0
592592 0 0
593593 −44.1444 −1.81279 −0.906396 0.422428i 0.861178π-0.861178\pi
−0.906396 + 0.422428i 0.861178π0.861178\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −6.25996 −0.255775 −0.127888 0.991789i 0.540820π-0.540820\pi
−0.127888 + 0.991789i 0.540820π0.540820\pi
600600 0 0
601601 −5.31678 −0.216876 −0.108438 0.994103i 0.534585π-0.534585\pi
−0.108438 + 0.994103i 0.534585π0.534585\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 36.0584 1.46356 0.731782 0.681538i 0.238689π-0.238689\pi
0.731782 + 0.681538i 0.238689π0.238689\pi
608608 0 0
609609 0 0
610610 0 0
611611 4.73025 0.191365
612612 0 0
613613 9.04390 0.365280 0.182640 0.983180i 0.441536π-0.441536\pi
0.182640 + 0.983180i 0.441536π0.441536\pi
614614 0 0
615615 0 0
616616 0 0
617617 43.9318 1.76863 0.884314 0.466892i 0.154626π-0.154626\pi
0.884314 + 0.466892i 0.154626π0.154626\pi
618618 0 0
619619 −2.08071 −0.0836309 −0.0418154 0.999125i 0.513314π-0.513314\pi
−0.0418154 + 0.999125i 0.513314π0.513314\pi
620620 0 0
621621 0 0
622622 0 0
623623 17.2236 0.690050
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 −2.75778 −0.109960
630630 0 0
631631 7.90711 0.314777 0.157389 0.987537i 0.449692π-0.449692\pi
0.157389 + 0.987537i 0.449692π0.449692\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −12.9233 −0.512041
638638 0 0
639639 0 0
640640 0 0
641641 −11.1496 −0.440381 −0.220191 0.975457i 0.570668π-0.570668\pi
−0.220191 + 0.975457i 0.570668π0.570668\pi
642642 0 0
643643 −4.47544 −0.176494 −0.0882470 0.996099i 0.528126π-0.528126\pi
−0.0882470 + 0.996099i 0.528126π0.528126\pi
644644 0 0
645645 0 0
646646 0 0
647647 −44.4289 −1.74668 −0.873341 0.487109i 0.838051π-0.838051\pi
−0.873341 + 0.487109i 0.838051π0.838051\pi
648648 0 0
649649 −11.1609 −0.438105
650650 0 0
651651 0 0
652652 0 0
653653 28.7385 1.12463 0.562313 0.826925i 0.309912π-0.309912\pi
0.562313 + 0.826925i 0.309912π0.309912\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −18.9254 −0.737230 −0.368615 0.929582i 0.620168π-0.620168\pi
−0.368615 + 0.929582i 0.620168π0.620168\pi
660660 0 0
661661 −35.6615 −1.38707 −0.693535 0.720423i 0.743948π-0.743948\pi
−0.693535 + 0.720423i 0.743948π0.743948\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 76.0060 2.94297
668668 0 0
669669 0 0
670670 0 0
671671 −3.29678 −0.127271
672672 0 0
673673 −31.9521 −1.23166 −0.615831 0.787879i 0.711179π-0.711179\pi
−0.615831 + 0.787879i 0.711179π0.711179\pi
674674 0 0
675675 0 0
676676 0 0
677677 −23.9709 −0.921278 −0.460639 0.887588i 0.652380π-0.652380\pi
−0.460639 + 0.887588i 0.652380π0.652380\pi
678678 0 0
679679 −20.7346 −0.795723
680680 0 0
681681 0 0
682682 0 0
683683 7.07047 0.270544 0.135272 0.990808i 0.456809π-0.456809\pi
0.135272 + 0.990808i 0.456809π0.456809\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 23.8362 0.908086
690690 0 0
691691 −1.97935 −0.0752982 −0.0376491 0.999291i 0.511987π-0.511987\pi
−0.0376491 + 0.999291i 0.511987π0.511987\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −10.6529 −0.403509
698698 0 0
699699 0 0
700700 0 0
701701 19.8745 0.750648 0.375324 0.926894i 0.377531π-0.377531\pi
0.375324 + 0.926894i 0.377531π0.377531\pi
702702 0 0
703703 −14.2062 −0.535797
704704 0 0
705705 0 0
706706 0 0
707707 6.86876 0.258326
708708 0 0
709709 −8.79068 −0.330141 −0.165070 0.986282i 0.552785π-0.552785\pi
−0.165070 + 0.986282i 0.552785π0.552785\pi
710710 0 0
711711 0 0
712712 0 0
713713 72.9610 2.73241
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 −10.2898 −0.383743 −0.191872 0.981420i 0.561456π-0.561456\pi
−0.191872 + 0.981420i 0.561456π0.561456\pi
720720 0 0
721721 6.85586 0.255326
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −9.73934 −0.361212 −0.180606 0.983556i 0.557806π-0.557806\pi
−0.180606 + 0.983556i 0.557806π0.557806\pi
728728 0 0
729729 0 0
730730 0 0
731731 −3.16056 −0.116898
732732 0 0
733733 −25.2767 −0.933617 −0.466808 0.884358i 0.654596π-0.654596\pi
−0.466808 + 0.884358i 0.654596π0.654596\pi
734734 0 0
735735 0 0
736736 0 0
737737 −21.3455 −0.786271
738738 0 0
739739 −39.6691 −1.45925 −0.729626 0.683847i 0.760306π-0.760306\pi
−0.729626 + 0.683847i 0.760306π0.760306\pi
740740 0 0
741741 0 0
742742 0 0
743743 18.7732 0.688721 0.344360 0.938838i 0.388096π-0.388096\pi
0.344360 + 0.938838i 0.388096π0.388096\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 6.09076 0.222551
750750 0 0
751751 35.1761 1.28359 0.641797 0.766874i 0.278189π-0.278189\pi
0.641797 + 0.766874i 0.278189π0.278189\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −25.9332 −0.942559 −0.471279 0.881984i 0.656208π-0.656208\pi
−0.471279 + 0.881984i 0.656208π0.656208\pi
758758 0 0
759759 0 0
760760 0 0
761761 11.6131 0.420973 0.210486 0.977597i 0.432495π-0.432495\pi
0.210486 + 0.977597i 0.432495π0.432495\pi
762762 0 0
763763 7.49440 0.271316
764764 0 0
765765 0 0
766766 0 0
767767 −12.5245 −0.452234
768768 0 0
769769 17.6988 0.638236 0.319118 0.947715i 0.396613π-0.396613\pi
0.319118 + 0.947715i 0.396613π0.396613\pi
770770 0 0
771771 0 0
772772 0 0
773773 −45.3363 −1.63063 −0.815316 0.579016i 0.803437π-0.803437\pi
−0.815316 + 0.579016i 0.803437π0.803437\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −54.8767 −1.96616
780780 0 0
781781 −26.1155 −0.934487
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −1.40446 −0.0500637 −0.0250318 0.999687i 0.507969π-0.507969\pi
−0.0250318 + 0.999687i 0.507969π0.507969\pi
788788 0 0
789789 0 0
790790 0 0
791791 −11.1032 −0.394783
792792 0 0
793793 −3.69956 −0.131375
794794 0 0
795795 0 0
796796 0 0
797797 −41.1825 −1.45876 −0.729379 0.684109i 0.760191π-0.760191\pi
−0.729379 + 0.684109i 0.760191π0.760191\pi
798798 0 0
799799 2.26531 0.0801408
800800 0 0
801801 0 0
802802 0 0
803803 −26.7106 −0.942598
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −6.98976 −0.245747 −0.122873 0.992422i 0.539211π-0.539211\pi
−0.122873 + 0.992422i 0.539211π0.539211\pi
810810 0 0
811811 −10.9870 −0.385804 −0.192902 0.981218i 0.561790π-0.561790\pi
−0.192902 + 0.981218i 0.561790π0.561790\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −16.2811 −0.569602
818818 0 0
819819 0 0
820820 0 0
821821 −35.2863 −1.23150 −0.615751 0.787941i 0.711147π-0.711147\pi
−0.615751 + 0.787941i 0.711147π0.711147\pi
822822 0 0
823823 −38.8164 −1.35306 −0.676528 0.736417i 0.736516π-0.736516\pi
−0.676528 + 0.736417i 0.736516π0.736516\pi
824824 0 0
825825 0 0
826826 0 0
827827 15.6781 0.545181 0.272590 0.962130i 0.412120π-0.412120\pi
0.272590 + 0.962130i 0.412120π0.412120\pi
828828 0 0
829829 27.8171 0.966126 0.483063 0.875585i 0.339524π-0.339524\pi
0.483063 + 0.875585i 0.339524π0.339524\pi
830830 0 0
831831 0 0
832832 0 0
833833 −6.18895 −0.214434
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 38.1703 1.31779 0.658893 0.752237i 0.271025π-0.271025\pi
0.658893 + 0.752237i 0.271025π0.271025\pi
840840 0 0
841841 54.1232 1.86632
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 −7.87284 −0.270514
848848 0 0
849849 0 0
850850 0 0
851851 21.2129 0.727170
852852 0 0
853853 −23.4987 −0.804580 −0.402290 0.915512i 0.631786π-0.631786\pi
−0.402290 + 0.915512i 0.631786π0.631786\pi
854854 0 0
855855 0 0
856856 0 0
857857 −20.7940 −0.710309 −0.355154 0.934808i 0.615572π-0.615572\pi
−0.355154 + 0.934808i 0.615572π0.615572\pi
858858 0 0
859859 −17.4860 −0.596616 −0.298308 0.954470i 0.596422π-0.596422\pi
−0.298308 + 0.954470i 0.596422π0.596422\pi
860860 0 0
861861 0 0
862862 0 0
863863 −3.93490 −0.133945 −0.0669727 0.997755i 0.521334π-0.521334\pi
−0.0669727 + 0.997755i 0.521334π0.521334\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 13.8064 0.468351
870870 0 0
871871 −23.9534 −0.811629
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −30.3758 −1.02572 −0.512859 0.858473i 0.671414π-0.671414\pi
−0.512859 + 0.858473i 0.671414π0.671414\pi
878878 0 0
879879 0 0
880880 0 0
881881 −13.4095 −0.451778 −0.225889 0.974153i 0.572529π-0.572529\pi
−0.225889 + 0.974153i 0.572529π0.572529\pi
882882 0 0
883883 47.5905 1.60155 0.800774 0.598967i 0.204422π-0.204422\pi
0.800774 + 0.598967i 0.204422π0.204422\pi
884884 0 0
885885 0 0
886886 0 0
887887 13.6312 0.457692 0.228846 0.973463i 0.426505π-0.426505\pi
0.228846 + 0.973463i 0.426505π0.426505\pi
888888 0 0
889889 8.17917 0.274320
890890 0 0
891891 0 0
892892 0 0
893893 11.6693 0.390499
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 79.7931 2.66125
900900 0 0
901901 11.4151 0.380292
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 12.5356 0.416239 0.208120 0.978103i 0.433266π-0.433266\pi
0.208120 + 0.978103i 0.433266π0.433266\pi
908908 0 0
909909 0 0
910910 0 0
911911 34.1877 1.13269 0.566344 0.824169i 0.308357π-0.308357\pi
0.566344 + 0.824169i 0.308357π0.308357\pi
912912 0 0
913913 5.68303 0.188081
914914 0 0
915915 0 0
916916 0 0
917917 −7.05084 −0.232839
918918 0 0
919919 23.6793 0.781109 0.390554 0.920580i 0.372283π-0.372283\pi
0.390554 + 0.920580i 0.372283π0.372283\pi
920920 0 0
921921 0 0
922922 0 0
923923 −29.3062 −0.964625
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 9.48509 0.311196 0.155598 0.987820i 0.450270π-0.450270\pi
0.155598 + 0.987820i 0.450270π0.450270\pi
930930 0 0
931931 −31.8813 −1.04487
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −40.5790 −1.32566 −0.662829 0.748771i 0.730644π-0.730644\pi
−0.662829 + 0.748771i 0.730644π0.730644\pi
938938 0 0
939939 0 0
940940 0 0
941941 8.37604 0.273051 0.136526 0.990637i 0.456406π-0.456406\pi
0.136526 + 0.990637i 0.456406π0.456406\pi
942942 0 0
943943 81.9429 2.66843
944944 0 0
945945 0 0
946946 0 0
947947 −37.3750 −1.21453 −0.607263 0.794501i 0.707732π-0.707732\pi
−0.607263 + 0.794501i 0.707732π0.707732\pi
948948 0 0
949949 −29.9740 −0.972998
950950 0 0
951951 0 0
952952 0 0
953953 −15.5258 −0.502931 −0.251465 0.967866i 0.580912π-0.580912\pi
−0.251465 + 0.967866i 0.580912π0.580912\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 7.88714 0.254689
960960 0 0
961961 45.5963 1.47085
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 48.6865 1.56565 0.782826 0.622240i 0.213777π-0.213777\pi
0.782826 + 0.622240i 0.213777π0.213777\pi
968968 0 0
969969 0 0
970970 0 0
971971 14.4960 0.465199 0.232599 0.972573i 0.425277π-0.425277\pi
0.232599 + 0.972573i 0.425277π0.425277\pi
972972 0 0
973973 −8.38843 −0.268921
974974 0 0
975975 0 0
976976 0 0
977977 7.35164 0.235200 0.117600 0.993061i 0.462480π-0.462480\pi
0.117600 + 0.993061i 0.462480π0.462480\pi
978978 0 0
979979 30.5879 0.977595
980980 0 0
981981 0 0
982982 0 0
983983 −32.6724 −1.04209 −0.521044 0.853530i 0.674457π-0.674457\pi
−0.521044 + 0.853530i 0.674457π0.674457\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 24.3112 0.773050
990990 0 0
991991 18.7552 0.595780 0.297890 0.954600i 0.403717π-0.403717\pi
0.297890 + 0.954600i 0.403717π0.403717\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 3.42813 0.108570 0.0542850 0.998525i 0.482712π-0.482712\pi
0.0542850 + 0.998525i 0.482712π0.482712\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9000.2.a.bb.1.2 4
3.2 odd 2 1000.2.a.g.1.3 yes 4
5.4 even 2 9000.2.a.q.1.3 4
12.11 even 2 2000.2.a.n.1.2 4
15.2 even 4 1000.2.c.c.249.3 8
15.8 even 4 1000.2.c.c.249.6 8
15.14 odd 2 1000.2.a.f.1.2 4
24.5 odd 2 8000.2.a.bd.1.2 4
24.11 even 2 8000.2.a.bo.1.3 4
60.23 odd 4 2000.2.c.i.1249.3 8
60.47 odd 4 2000.2.c.i.1249.6 8
60.59 even 2 2000.2.a.q.1.3 4
120.29 odd 2 8000.2.a.bn.1.3 4
120.59 even 2 8000.2.a.be.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.f.1.2 4 15.14 odd 2
1000.2.a.g.1.3 yes 4 3.2 odd 2
1000.2.c.c.249.3 8 15.2 even 4
1000.2.c.c.249.6 8 15.8 even 4
2000.2.a.n.1.2 4 12.11 even 2
2000.2.a.q.1.3 4 60.59 even 2
2000.2.c.i.1249.3 8 60.23 odd 4
2000.2.c.i.1249.6 8 60.47 odd 4
8000.2.a.bd.1.2 4 24.5 odd 2
8000.2.a.be.1.2 4 120.59 even 2
8000.2.a.bn.1.3 4 120.29 odd 2
8000.2.a.bo.1.3 4 24.11 even 2
9000.2.a.q.1.3 4 5.4 even 2
9000.2.a.bb.1.2 4 1.1 even 1 trivial