Properties

Label 8040.2.a.bb.1.3
Level $8040$
Weight $2$
Character 8040.1
Self dual yes
Analytic conductor $64.200$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8040,2,Mod(1,8040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8040 = 2^{3} \cdot 3 \cdot 5 \cdot 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.1997232251\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 34x^{7} + 123x^{6} + 375x^{5} - 1146x^{4} - 1662x^{3} + 3086x^{2} + 3372x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.03344\) of defining polynomial
Character \(\chi\) \(=\) 8040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} -1.95262 q^{7} +1.00000 q^{9} -0.265154 q^{11} -3.83909 q^{13} +1.00000 q^{15} -0.435176 q^{17} +4.50625 q^{19} -1.95262 q^{21} +8.20289 q^{23} +1.00000 q^{25} +1.00000 q^{27} +4.01331 q^{29} -6.70915 q^{31} -0.265154 q^{33} -1.95262 q^{35} -1.27093 q^{37} -3.83909 q^{39} +6.36264 q^{41} -3.44095 q^{43} +1.00000 q^{45} +8.40121 q^{47} -3.18728 q^{49} -0.435176 q^{51} +1.15437 q^{53} -0.265154 q^{55} +4.50625 q^{57} -9.49481 q^{59} +9.06300 q^{61} -1.95262 q^{63} -3.83909 q^{65} -1.00000 q^{67} +8.20289 q^{69} -0.652581 q^{71} -2.37379 q^{73} +1.00000 q^{75} +0.517744 q^{77} -8.13215 q^{79} +1.00000 q^{81} -0.870056 q^{83} -0.435176 q^{85} +4.01331 q^{87} +16.3725 q^{89} +7.49628 q^{91} -6.70915 q^{93} +4.50625 q^{95} -6.86586 q^{97} -0.265154 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{3} + 9 q^{5} + 5 q^{7} + 9 q^{9} - 7 q^{11} - 3 q^{13} + 9 q^{15} + 7 q^{17} + 8 q^{19} + 5 q^{21} + 19 q^{23} + 9 q^{25} + 9 q^{27} + 14 q^{29} + 27 q^{31} - 7 q^{33} + 5 q^{35} + 15 q^{37}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.95262 −0.738020 −0.369010 0.929425i \(-0.620303\pi\)
−0.369010 + 0.929425i \(0.620303\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.265154 −0.0799469 −0.0399734 0.999201i \(-0.512727\pi\)
−0.0399734 + 0.999201i \(0.512727\pi\)
\(12\) 0 0
\(13\) −3.83909 −1.06477 −0.532386 0.846502i \(-0.678704\pi\)
−0.532386 + 0.846502i \(0.678704\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −0.435176 −0.105546 −0.0527729 0.998607i \(-0.516806\pi\)
−0.0527729 + 0.998607i \(0.516806\pi\)
\(18\) 0 0
\(19\) 4.50625 1.03381 0.516903 0.856044i \(-0.327085\pi\)
0.516903 + 0.856044i \(0.327085\pi\)
\(20\) 0 0
\(21\) −1.95262 −0.426096
\(22\) 0 0
\(23\) 8.20289 1.71042 0.855211 0.518280i \(-0.173428\pi\)
0.855211 + 0.518280i \(0.173428\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.01331 0.745253 0.372627 0.927981i \(-0.378457\pi\)
0.372627 + 0.927981i \(0.378457\pi\)
\(30\) 0 0
\(31\) −6.70915 −1.20500 −0.602499 0.798120i \(-0.705828\pi\)
−0.602499 + 0.798120i \(0.705828\pi\)
\(32\) 0 0
\(33\) −0.265154 −0.0461573
\(34\) 0 0
\(35\) −1.95262 −0.330053
\(36\) 0 0
\(37\) −1.27093 −0.208940 −0.104470 0.994528i \(-0.533315\pi\)
−0.104470 + 0.994528i \(0.533315\pi\)
\(38\) 0 0
\(39\) −3.83909 −0.614746
\(40\) 0 0
\(41\) 6.36264 0.993677 0.496838 0.867843i \(-0.334494\pi\)
0.496838 + 0.867843i \(0.334494\pi\)
\(42\) 0 0
\(43\) −3.44095 −0.524741 −0.262370 0.964967i \(-0.584504\pi\)
−0.262370 + 0.964967i \(0.584504\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 8.40121 1.22544 0.612721 0.790299i \(-0.290075\pi\)
0.612721 + 0.790299i \(0.290075\pi\)
\(48\) 0 0
\(49\) −3.18728 −0.455326
\(50\) 0 0
\(51\) −0.435176 −0.0609369
\(52\) 0 0
\(53\) 1.15437 0.158565 0.0792825 0.996852i \(-0.474737\pi\)
0.0792825 + 0.996852i \(0.474737\pi\)
\(54\) 0 0
\(55\) −0.265154 −0.0357533
\(56\) 0 0
\(57\) 4.50625 0.596868
\(58\) 0 0
\(59\) −9.49481 −1.23612 −0.618060 0.786131i \(-0.712081\pi\)
−0.618060 + 0.786131i \(0.712081\pi\)
\(60\) 0 0
\(61\) 9.06300 1.16040 0.580199 0.814474i \(-0.302975\pi\)
0.580199 + 0.814474i \(0.302975\pi\)
\(62\) 0 0
\(63\) −1.95262 −0.246007
\(64\) 0 0
\(65\) −3.83909 −0.476181
\(66\) 0 0
\(67\) −1.00000 −0.122169
\(68\) 0 0
\(69\) 8.20289 0.987512
\(70\) 0 0
\(71\) −0.652581 −0.0774471 −0.0387236 0.999250i \(-0.512329\pi\)
−0.0387236 + 0.999250i \(0.512329\pi\)
\(72\) 0 0
\(73\) −2.37379 −0.277831 −0.138915 0.990304i \(-0.544362\pi\)
−0.138915 + 0.990304i \(0.544362\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0.517744 0.0590024
\(78\) 0 0
\(79\) −8.13215 −0.914938 −0.457469 0.889226i \(-0.651244\pi\)
−0.457469 + 0.889226i \(0.651244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −0.870056 −0.0955010 −0.0477505 0.998859i \(-0.515205\pi\)
−0.0477505 + 0.998859i \(0.515205\pi\)
\(84\) 0 0
\(85\) −0.435176 −0.0472015
\(86\) 0 0
\(87\) 4.01331 0.430272
\(88\) 0 0
\(89\) 16.3725 1.73548 0.867740 0.497019i \(-0.165572\pi\)
0.867740 + 0.497019i \(0.165572\pi\)
\(90\) 0 0
\(91\) 7.49628 0.785823
\(92\) 0 0
\(93\) −6.70915 −0.695706
\(94\) 0 0
\(95\) 4.50625 0.462332
\(96\) 0 0
\(97\) −6.86586 −0.697122 −0.348561 0.937286i \(-0.613330\pi\)
−0.348561 + 0.937286i \(0.613330\pi\)
\(98\) 0 0
\(99\) −0.265154 −0.0266490
\(100\) 0 0
\(101\) −8.03360 −0.799373 −0.399687 0.916652i \(-0.630881\pi\)
−0.399687 + 0.916652i \(0.630881\pi\)
\(102\) 0 0
\(103\) 6.74596 0.664699 0.332349 0.943156i \(-0.392159\pi\)
0.332349 + 0.943156i \(0.392159\pi\)
\(104\) 0 0
\(105\) −1.95262 −0.190556
\(106\) 0 0
\(107\) 2.98468 0.288539 0.144270 0.989538i \(-0.453917\pi\)
0.144270 + 0.989538i \(0.453917\pi\)
\(108\) 0 0
\(109\) 11.6639 1.11720 0.558602 0.829436i \(-0.311338\pi\)
0.558602 + 0.829436i \(0.311338\pi\)
\(110\) 0 0
\(111\) −1.27093 −0.120631
\(112\) 0 0
\(113\) −10.8134 −1.01724 −0.508619 0.860992i \(-0.669844\pi\)
−0.508619 + 0.860992i \(0.669844\pi\)
\(114\) 0 0
\(115\) 8.20289 0.764924
\(116\) 0 0
\(117\) −3.83909 −0.354924
\(118\) 0 0
\(119\) 0.849733 0.0778949
\(120\) 0 0
\(121\) −10.9297 −0.993608
\(122\) 0 0
\(123\) 6.36264 0.573700
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 17.7626 1.57618 0.788090 0.615560i \(-0.211070\pi\)
0.788090 + 0.615560i \(0.211070\pi\)
\(128\) 0 0
\(129\) −3.44095 −0.302959
\(130\) 0 0
\(131\) 1.53643 0.134238 0.0671192 0.997745i \(-0.478619\pi\)
0.0671192 + 0.997745i \(0.478619\pi\)
\(132\) 0 0
\(133\) −8.79899 −0.762969
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 17.1571 1.46583 0.732915 0.680321i \(-0.238159\pi\)
0.732915 + 0.680321i \(0.238159\pi\)
\(138\) 0 0
\(139\) 14.3721 1.21902 0.609512 0.792777i \(-0.291366\pi\)
0.609512 + 0.792777i \(0.291366\pi\)
\(140\) 0 0
\(141\) 8.40121 0.707510
\(142\) 0 0
\(143\) 1.01795 0.0851252
\(144\) 0 0
\(145\) 4.01331 0.333287
\(146\) 0 0
\(147\) −3.18728 −0.262883
\(148\) 0 0
\(149\) 4.10765 0.336512 0.168256 0.985743i \(-0.446187\pi\)
0.168256 + 0.985743i \(0.446187\pi\)
\(150\) 0 0
\(151\) 15.9041 1.29425 0.647127 0.762382i \(-0.275970\pi\)
0.647127 + 0.762382i \(0.275970\pi\)
\(152\) 0 0
\(153\) −0.435176 −0.0351819
\(154\) 0 0
\(155\) −6.70915 −0.538892
\(156\) 0 0
\(157\) −4.44619 −0.354844 −0.177422 0.984135i \(-0.556776\pi\)
−0.177422 + 0.984135i \(0.556776\pi\)
\(158\) 0 0
\(159\) 1.15437 0.0915475
\(160\) 0 0
\(161\) −16.0171 −1.26233
\(162\) 0 0
\(163\) −7.18537 −0.562802 −0.281401 0.959590i \(-0.590799\pi\)
−0.281401 + 0.959590i \(0.590799\pi\)
\(164\) 0 0
\(165\) −0.265154 −0.0206422
\(166\) 0 0
\(167\) 20.4382 1.58156 0.790778 0.612103i \(-0.209676\pi\)
0.790778 + 0.612103i \(0.209676\pi\)
\(168\) 0 0
\(169\) 1.73861 0.133739
\(170\) 0 0
\(171\) 4.50625 0.344602
\(172\) 0 0
\(173\) 1.45657 0.110741 0.0553703 0.998466i \(-0.482366\pi\)
0.0553703 + 0.998466i \(0.482366\pi\)
\(174\) 0 0
\(175\) −1.95262 −0.147604
\(176\) 0 0
\(177\) −9.49481 −0.713674
\(178\) 0 0
\(179\) 11.2181 0.838483 0.419242 0.907875i \(-0.362296\pi\)
0.419242 + 0.907875i \(0.362296\pi\)
\(180\) 0 0
\(181\) 9.52874 0.708266 0.354133 0.935195i \(-0.384776\pi\)
0.354133 + 0.935195i \(0.384776\pi\)
\(182\) 0 0
\(183\) 9.06300 0.669957
\(184\) 0 0
\(185\) −1.27093 −0.0934407
\(186\) 0 0
\(187\) 0.115389 0.00843805
\(188\) 0 0
\(189\) −1.95262 −0.142032
\(190\) 0 0
\(191\) 26.0126 1.88221 0.941103 0.338121i \(-0.109791\pi\)
0.941103 + 0.338121i \(0.109791\pi\)
\(192\) 0 0
\(193\) 23.6361 1.70136 0.850680 0.525683i \(-0.176190\pi\)
0.850680 + 0.525683i \(0.176190\pi\)
\(194\) 0 0
\(195\) −3.83909 −0.274923
\(196\) 0 0
\(197\) −6.23755 −0.444407 −0.222204 0.975000i \(-0.571325\pi\)
−0.222204 + 0.975000i \(0.571325\pi\)
\(198\) 0 0
\(199\) 15.4983 1.09865 0.549323 0.835610i \(-0.314886\pi\)
0.549323 + 0.835610i \(0.314886\pi\)
\(200\) 0 0
\(201\) −1.00000 −0.0705346
\(202\) 0 0
\(203\) −7.83646 −0.550012
\(204\) 0 0
\(205\) 6.36264 0.444386
\(206\) 0 0
\(207\) 8.20289 0.570140
\(208\) 0 0
\(209\) −1.19485 −0.0826495
\(210\) 0 0
\(211\) 10.0400 0.691185 0.345592 0.938385i \(-0.387678\pi\)
0.345592 + 0.938385i \(0.387678\pi\)
\(212\) 0 0
\(213\) −0.652581 −0.0447141
\(214\) 0 0
\(215\) −3.44095 −0.234671
\(216\) 0 0
\(217\) 13.1004 0.889313
\(218\) 0 0
\(219\) −2.37379 −0.160406
\(220\) 0 0
\(221\) 1.67068 0.112382
\(222\) 0 0
\(223\) −26.5184 −1.77580 −0.887902 0.460033i \(-0.847838\pi\)
−0.887902 + 0.460033i \(0.847838\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 9.91737 0.658239 0.329119 0.944288i \(-0.393248\pi\)
0.329119 + 0.944288i \(0.393248\pi\)
\(228\) 0 0
\(229\) 13.2499 0.875579 0.437790 0.899077i \(-0.355761\pi\)
0.437790 + 0.899077i \(0.355761\pi\)
\(230\) 0 0
\(231\) 0.517744 0.0340651
\(232\) 0 0
\(233\) −10.7279 −0.702809 −0.351405 0.936224i \(-0.614296\pi\)
−0.351405 + 0.936224i \(0.614296\pi\)
\(234\) 0 0
\(235\) 8.40121 0.548035
\(236\) 0 0
\(237\) −8.13215 −0.528240
\(238\) 0 0
\(239\) 16.2197 1.04916 0.524582 0.851360i \(-0.324222\pi\)
0.524582 + 0.851360i \(0.324222\pi\)
\(240\) 0 0
\(241\) −4.04466 −0.260539 −0.130270 0.991479i \(-0.541584\pi\)
−0.130270 + 0.991479i \(0.541584\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −3.18728 −0.203628
\(246\) 0 0
\(247\) −17.2999 −1.10077
\(248\) 0 0
\(249\) −0.870056 −0.0551376
\(250\) 0 0
\(251\) 0.0940397 0.00593573 0.00296787 0.999996i \(-0.499055\pi\)
0.00296787 + 0.999996i \(0.499055\pi\)
\(252\) 0 0
\(253\) −2.17503 −0.136743
\(254\) 0 0
\(255\) −0.435176 −0.0272518
\(256\) 0 0
\(257\) −2.48830 −0.155216 −0.0776079 0.996984i \(-0.524728\pi\)
−0.0776079 + 0.996984i \(0.524728\pi\)
\(258\) 0 0
\(259\) 2.48164 0.154202
\(260\) 0 0
\(261\) 4.01331 0.248418
\(262\) 0 0
\(263\) 11.8054 0.727953 0.363977 0.931408i \(-0.381419\pi\)
0.363977 + 0.931408i \(0.381419\pi\)
\(264\) 0 0
\(265\) 1.15437 0.0709124
\(266\) 0 0
\(267\) 16.3725 1.00198
\(268\) 0 0
\(269\) 18.0241 1.09895 0.549474 0.835511i \(-0.314828\pi\)
0.549474 + 0.835511i \(0.314828\pi\)
\(270\) 0 0
\(271\) 24.8036 1.50671 0.753357 0.657612i \(-0.228433\pi\)
0.753357 + 0.657612i \(0.228433\pi\)
\(272\) 0 0
\(273\) 7.49628 0.453695
\(274\) 0 0
\(275\) −0.265154 −0.0159894
\(276\) 0 0
\(277\) −13.6414 −0.819632 −0.409816 0.912168i \(-0.634407\pi\)
−0.409816 + 0.912168i \(0.634407\pi\)
\(278\) 0 0
\(279\) −6.70915 −0.401666
\(280\) 0 0
\(281\) −10.3878 −0.619686 −0.309843 0.950788i \(-0.600277\pi\)
−0.309843 + 0.950788i \(0.600277\pi\)
\(282\) 0 0
\(283\) 21.1531 1.25742 0.628711 0.777639i \(-0.283583\pi\)
0.628711 + 0.777639i \(0.283583\pi\)
\(284\) 0 0
\(285\) 4.50625 0.266927
\(286\) 0 0
\(287\) −12.4238 −0.733354
\(288\) 0 0
\(289\) −16.8106 −0.988860
\(290\) 0 0
\(291\) −6.86586 −0.402484
\(292\) 0 0
\(293\) −8.21204 −0.479753 −0.239876 0.970803i \(-0.577107\pi\)
−0.239876 + 0.970803i \(0.577107\pi\)
\(294\) 0 0
\(295\) −9.49481 −0.552809
\(296\) 0 0
\(297\) −0.265154 −0.0153858
\(298\) 0 0
\(299\) −31.4916 −1.82121
\(300\) 0 0
\(301\) 6.71887 0.387269
\(302\) 0 0
\(303\) −8.03360 −0.461518
\(304\) 0 0
\(305\) 9.06300 0.518946
\(306\) 0 0
\(307\) −12.3029 −0.702164 −0.351082 0.936345i \(-0.614186\pi\)
−0.351082 + 0.936345i \(0.614186\pi\)
\(308\) 0 0
\(309\) 6.74596 0.383764
\(310\) 0 0
\(311\) 32.7081 1.85471 0.927353 0.374187i \(-0.122078\pi\)
0.927353 + 0.374187i \(0.122078\pi\)
\(312\) 0 0
\(313\) −9.45635 −0.534505 −0.267252 0.963627i \(-0.586116\pi\)
−0.267252 + 0.963627i \(0.586116\pi\)
\(314\) 0 0
\(315\) −1.95262 −0.110018
\(316\) 0 0
\(317\) 22.9380 1.28833 0.644164 0.764888i \(-0.277206\pi\)
0.644164 + 0.764888i \(0.277206\pi\)
\(318\) 0 0
\(319\) −1.06414 −0.0595807
\(320\) 0 0
\(321\) 2.98468 0.166588
\(322\) 0 0
\(323\) −1.96102 −0.109114
\(324\) 0 0
\(325\) −3.83909 −0.212954
\(326\) 0 0
\(327\) 11.6639 0.645018
\(328\) 0 0
\(329\) −16.4044 −0.904401
\(330\) 0 0
\(331\) 31.5109 1.73200 0.865998 0.500048i \(-0.166684\pi\)
0.865998 + 0.500048i \(0.166684\pi\)
\(332\) 0 0
\(333\) −1.27093 −0.0696466
\(334\) 0 0
\(335\) −1.00000 −0.0546358
\(336\) 0 0
\(337\) −21.1089 −1.14987 −0.574936 0.818198i \(-0.694973\pi\)
−0.574936 + 0.818198i \(0.694973\pi\)
\(338\) 0 0
\(339\) −10.8134 −0.587303
\(340\) 0 0
\(341\) 1.77896 0.0963358
\(342\) 0 0
\(343\) 19.8919 1.07406
\(344\) 0 0
\(345\) 8.20289 0.441629
\(346\) 0 0
\(347\) −27.9072 −1.49813 −0.749067 0.662494i \(-0.769498\pi\)
−0.749067 + 0.662494i \(0.769498\pi\)
\(348\) 0 0
\(349\) −20.5585 −1.10047 −0.550235 0.835010i \(-0.685462\pi\)
−0.550235 + 0.835010i \(0.685462\pi\)
\(350\) 0 0
\(351\) −3.83909 −0.204915
\(352\) 0 0
\(353\) −24.7433 −1.31695 −0.658477 0.752601i \(-0.728799\pi\)
−0.658477 + 0.752601i \(0.728799\pi\)
\(354\) 0 0
\(355\) −0.652581 −0.0346354
\(356\) 0 0
\(357\) 0.849733 0.0449727
\(358\) 0 0
\(359\) −27.2071 −1.43593 −0.717967 0.696078i \(-0.754927\pi\)
−0.717967 + 0.696078i \(0.754927\pi\)
\(360\) 0 0
\(361\) 1.30632 0.0687535
\(362\) 0 0
\(363\) −10.9297 −0.573660
\(364\) 0 0
\(365\) −2.37379 −0.124250
\(366\) 0 0
\(367\) −30.0167 −1.56686 −0.783428 0.621482i \(-0.786531\pi\)
−0.783428 + 0.621482i \(0.786531\pi\)
\(368\) 0 0
\(369\) 6.36264 0.331226
\(370\) 0 0
\(371\) −2.25404 −0.117024
\(372\) 0 0
\(373\) −16.5804 −0.858500 −0.429250 0.903186i \(-0.641222\pi\)
−0.429250 + 0.903186i \(0.641222\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −15.4075 −0.793525
\(378\) 0 0
\(379\) −15.6662 −0.804717 −0.402358 0.915482i \(-0.631809\pi\)
−0.402358 + 0.915482i \(0.631809\pi\)
\(380\) 0 0
\(381\) 17.7626 0.910008
\(382\) 0 0
\(383\) 30.2799 1.54723 0.773616 0.633655i \(-0.218446\pi\)
0.773616 + 0.633655i \(0.218446\pi\)
\(384\) 0 0
\(385\) 0.517744 0.0263867
\(386\) 0 0
\(387\) −3.44095 −0.174914
\(388\) 0 0
\(389\) 24.1719 1.22557 0.612783 0.790251i \(-0.290050\pi\)
0.612783 + 0.790251i \(0.290050\pi\)
\(390\) 0 0
\(391\) −3.56971 −0.180528
\(392\) 0 0
\(393\) 1.53643 0.0775026
\(394\) 0 0
\(395\) −8.13215 −0.409173
\(396\) 0 0
\(397\) −10.1981 −0.511830 −0.255915 0.966699i \(-0.582377\pi\)
−0.255915 + 0.966699i \(0.582377\pi\)
\(398\) 0 0
\(399\) −8.79899 −0.440501
\(400\) 0 0
\(401\) −11.8028 −0.589403 −0.294702 0.955589i \(-0.595220\pi\)
−0.294702 + 0.955589i \(0.595220\pi\)
\(402\) 0 0
\(403\) 25.7570 1.28305
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 0.336992 0.0167041
\(408\) 0 0
\(409\) −0.329324 −0.0162840 −0.00814201 0.999967i \(-0.502592\pi\)
−0.00814201 + 0.999967i \(0.502592\pi\)
\(410\) 0 0
\(411\) 17.1571 0.846297
\(412\) 0 0
\(413\) 18.5397 0.912281
\(414\) 0 0
\(415\) −0.870056 −0.0427094
\(416\) 0 0
\(417\) 14.3721 0.703803
\(418\) 0 0
\(419\) −27.6549 −1.35103 −0.675516 0.737346i \(-0.736079\pi\)
−0.675516 + 0.737346i \(0.736079\pi\)
\(420\) 0 0
\(421\) 8.35013 0.406961 0.203480 0.979079i \(-0.434775\pi\)
0.203480 + 0.979079i \(0.434775\pi\)
\(422\) 0 0
\(423\) 8.40121 0.408481
\(424\) 0 0
\(425\) −0.435176 −0.0211092
\(426\) 0 0
\(427\) −17.6966 −0.856398
\(428\) 0 0
\(429\) 1.01795 0.0491470
\(430\) 0 0
\(431\) −14.0248 −0.675553 −0.337776 0.941226i \(-0.609675\pi\)
−0.337776 + 0.941226i \(0.609675\pi\)
\(432\) 0 0
\(433\) 24.0503 1.15579 0.577893 0.816113i \(-0.303875\pi\)
0.577893 + 0.816113i \(0.303875\pi\)
\(434\) 0 0
\(435\) 4.01331 0.192424
\(436\) 0 0
\(437\) 36.9643 1.76824
\(438\) 0 0
\(439\) −5.30282 −0.253090 −0.126545 0.991961i \(-0.540389\pi\)
−0.126545 + 0.991961i \(0.540389\pi\)
\(440\) 0 0
\(441\) −3.18728 −0.151775
\(442\) 0 0
\(443\) 40.1451 1.90735 0.953675 0.300839i \(-0.0972668\pi\)
0.953675 + 0.300839i \(0.0972668\pi\)
\(444\) 0 0
\(445\) 16.3725 0.776130
\(446\) 0 0
\(447\) 4.10765 0.194285
\(448\) 0 0
\(449\) 9.47336 0.447075 0.223538 0.974695i \(-0.428239\pi\)
0.223538 + 0.974695i \(0.428239\pi\)
\(450\) 0 0
\(451\) −1.68708 −0.0794414
\(452\) 0 0
\(453\) 15.9041 0.747238
\(454\) 0 0
\(455\) 7.49628 0.351431
\(456\) 0 0
\(457\) 14.4001 0.673609 0.336805 0.941575i \(-0.390654\pi\)
0.336805 + 0.941575i \(0.390654\pi\)
\(458\) 0 0
\(459\) −0.435176 −0.0203123
\(460\) 0 0
\(461\) 17.2780 0.804717 0.402358 0.915482i \(-0.368191\pi\)
0.402358 + 0.915482i \(0.368191\pi\)
\(462\) 0 0
\(463\) −39.0020 −1.81258 −0.906289 0.422658i \(-0.861097\pi\)
−0.906289 + 0.422658i \(0.861097\pi\)
\(464\) 0 0
\(465\) −6.70915 −0.311129
\(466\) 0 0
\(467\) −20.0667 −0.928575 −0.464287 0.885685i \(-0.653689\pi\)
−0.464287 + 0.885685i \(0.653689\pi\)
\(468\) 0 0
\(469\) 1.95262 0.0901635
\(470\) 0 0
\(471\) −4.44619 −0.204869
\(472\) 0 0
\(473\) 0.912382 0.0419514
\(474\) 0 0
\(475\) 4.50625 0.206761
\(476\) 0 0
\(477\) 1.15437 0.0528550
\(478\) 0 0
\(479\) 2.61228 0.119358 0.0596791 0.998218i \(-0.480992\pi\)
0.0596791 + 0.998218i \(0.480992\pi\)
\(480\) 0 0
\(481\) 4.87922 0.222473
\(482\) 0 0
\(483\) −16.0171 −0.728804
\(484\) 0 0
\(485\) −6.86586 −0.311763
\(486\) 0 0
\(487\) 37.1890 1.68519 0.842597 0.538545i \(-0.181026\pi\)
0.842597 + 0.538545i \(0.181026\pi\)
\(488\) 0 0
\(489\) −7.18537 −0.324934
\(490\) 0 0
\(491\) −17.3174 −0.781522 −0.390761 0.920492i \(-0.627788\pi\)
−0.390761 + 0.920492i \(0.627788\pi\)
\(492\) 0 0
\(493\) −1.74650 −0.0786583
\(494\) 0 0
\(495\) −0.265154 −0.0119178
\(496\) 0 0
\(497\) 1.27424 0.0571575
\(498\) 0 0
\(499\) 7.62022 0.341128 0.170564 0.985347i \(-0.445441\pi\)
0.170564 + 0.985347i \(0.445441\pi\)
\(500\) 0 0
\(501\) 20.4382 0.913112
\(502\) 0 0
\(503\) −26.6211 −1.18697 −0.593487 0.804844i \(-0.702249\pi\)
−0.593487 + 0.804844i \(0.702249\pi\)
\(504\) 0 0
\(505\) −8.03360 −0.357491
\(506\) 0 0
\(507\) 1.73861 0.0772144
\(508\) 0 0
\(509\) −38.0975 −1.68864 −0.844320 0.535839i \(-0.819995\pi\)
−0.844320 + 0.535839i \(0.819995\pi\)
\(510\) 0 0
\(511\) 4.63510 0.205045
\(512\) 0 0
\(513\) 4.50625 0.198956
\(514\) 0 0
\(515\) 6.74596 0.297262
\(516\) 0 0
\(517\) −2.22761 −0.0979703
\(518\) 0 0
\(519\) 1.45657 0.0639361
\(520\) 0 0
\(521\) −12.1998 −0.534482 −0.267241 0.963630i \(-0.586112\pi\)
−0.267241 + 0.963630i \(0.586112\pi\)
\(522\) 0 0
\(523\) 3.78464 0.165491 0.0827454 0.996571i \(-0.473631\pi\)
0.0827454 + 0.996571i \(0.473631\pi\)
\(524\) 0 0
\(525\) −1.95262 −0.0852192
\(526\) 0 0
\(527\) 2.91966 0.127182
\(528\) 0 0
\(529\) 44.2875 1.92554
\(530\) 0 0
\(531\) −9.49481 −0.412040
\(532\) 0 0
\(533\) −24.4267 −1.05804
\(534\) 0 0
\(535\) 2.98468 0.129039
\(536\) 0 0
\(537\) 11.2181 0.484098
\(538\) 0 0
\(539\) 0.845120 0.0364019
\(540\) 0 0
\(541\) 11.7660 0.505859 0.252929 0.967485i \(-0.418606\pi\)
0.252929 + 0.967485i \(0.418606\pi\)
\(542\) 0 0
\(543\) 9.52874 0.408918
\(544\) 0 0
\(545\) 11.6639 0.499629
\(546\) 0 0
\(547\) −8.76173 −0.374624 −0.187312 0.982300i \(-0.559978\pi\)
−0.187312 + 0.982300i \(0.559978\pi\)
\(548\) 0 0
\(549\) 9.06300 0.386800
\(550\) 0 0
\(551\) 18.0850 0.770447
\(552\) 0 0
\(553\) 15.8790 0.675243
\(554\) 0 0
\(555\) −1.27093 −0.0539480
\(556\) 0 0
\(557\) −39.9639 −1.69332 −0.846661 0.532132i \(-0.821391\pi\)
−0.846661 + 0.532132i \(0.821391\pi\)
\(558\) 0 0
\(559\) 13.2101 0.558729
\(560\) 0 0
\(561\) 0.115389 0.00487171
\(562\) 0 0
\(563\) 32.0908 1.35247 0.676233 0.736688i \(-0.263611\pi\)
0.676233 + 0.736688i \(0.263611\pi\)
\(564\) 0 0
\(565\) −10.8134 −0.454923
\(566\) 0 0
\(567\) −1.95262 −0.0820023
\(568\) 0 0
\(569\) 9.40326 0.394205 0.197102 0.980383i \(-0.436847\pi\)
0.197102 + 0.980383i \(0.436847\pi\)
\(570\) 0 0
\(571\) 29.9363 1.25280 0.626398 0.779503i \(-0.284529\pi\)
0.626398 + 0.779503i \(0.284529\pi\)
\(572\) 0 0
\(573\) 26.0126 1.08669
\(574\) 0 0
\(575\) 8.20289 0.342084
\(576\) 0 0
\(577\) 25.4189 1.05820 0.529102 0.848558i \(-0.322529\pi\)
0.529102 + 0.848558i \(0.322529\pi\)
\(578\) 0 0
\(579\) 23.6361 0.982281
\(580\) 0 0
\(581\) 1.69889 0.0704817
\(582\) 0 0
\(583\) −0.306086 −0.0126768
\(584\) 0 0
\(585\) −3.83909 −0.158727
\(586\) 0 0
\(587\) −4.87534 −0.201227 −0.100613 0.994926i \(-0.532081\pi\)
−0.100613 + 0.994926i \(0.532081\pi\)
\(588\) 0 0
\(589\) −30.2331 −1.24573
\(590\) 0 0
\(591\) −6.23755 −0.256579
\(592\) 0 0
\(593\) −33.1154 −1.35989 −0.679943 0.733265i \(-0.737995\pi\)
−0.679943 + 0.733265i \(0.737995\pi\)
\(594\) 0 0
\(595\) 0.849733 0.0348357
\(596\) 0 0
\(597\) 15.4983 0.634303
\(598\) 0 0
\(599\) −31.5281 −1.28820 −0.644101 0.764940i \(-0.722769\pi\)
−0.644101 + 0.764940i \(0.722769\pi\)
\(600\) 0 0
\(601\) 4.79001 0.195389 0.0976943 0.995216i \(-0.468853\pi\)
0.0976943 + 0.995216i \(0.468853\pi\)
\(602\) 0 0
\(603\) −1.00000 −0.0407231
\(604\) 0 0
\(605\) −10.9297 −0.444355
\(606\) 0 0
\(607\) 26.5302 1.07683 0.538413 0.842681i \(-0.319024\pi\)
0.538413 + 0.842681i \(0.319024\pi\)
\(608\) 0 0
\(609\) −7.83646 −0.317550
\(610\) 0 0
\(611\) −32.2530 −1.30482
\(612\) 0 0
\(613\) −22.9635 −0.927485 −0.463743 0.885970i \(-0.653494\pi\)
−0.463743 + 0.885970i \(0.653494\pi\)
\(614\) 0 0
\(615\) 6.36264 0.256566
\(616\) 0 0
\(617\) −11.2855 −0.454338 −0.227169 0.973855i \(-0.572947\pi\)
−0.227169 + 0.973855i \(0.572947\pi\)
\(618\) 0 0
\(619\) 7.06201 0.283846 0.141923 0.989878i \(-0.454671\pi\)
0.141923 + 0.989878i \(0.454671\pi\)
\(620\) 0 0
\(621\) 8.20289 0.329171
\(622\) 0 0
\(623\) −31.9692 −1.28082
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −1.19485 −0.0477177
\(628\) 0 0
\(629\) 0.553079 0.0220527
\(630\) 0 0
\(631\) 33.5015 1.33367 0.666836 0.745204i \(-0.267648\pi\)
0.666836 + 0.745204i \(0.267648\pi\)
\(632\) 0 0
\(633\) 10.0400 0.399056
\(634\) 0 0
\(635\) 17.7626 0.704889
\(636\) 0 0
\(637\) 12.2363 0.484818
\(638\) 0 0
\(639\) −0.652581 −0.0258157
\(640\) 0 0
\(641\) −4.26082 −0.168292 −0.0841462 0.996453i \(-0.526816\pi\)
−0.0841462 + 0.996453i \(0.526816\pi\)
\(642\) 0 0
\(643\) 3.23148 0.127437 0.0637185 0.997968i \(-0.479704\pi\)
0.0637185 + 0.997968i \(0.479704\pi\)
\(644\) 0 0
\(645\) −3.44095 −0.135487
\(646\) 0 0
\(647\) −26.1199 −1.02688 −0.513439 0.858126i \(-0.671629\pi\)
−0.513439 + 0.858126i \(0.671629\pi\)
\(648\) 0 0
\(649\) 2.51759 0.0988239
\(650\) 0 0
\(651\) 13.1004 0.513445
\(652\) 0 0
\(653\) 37.3911 1.46323 0.731613 0.681720i \(-0.238768\pi\)
0.731613 + 0.681720i \(0.238768\pi\)
\(654\) 0 0
\(655\) 1.53643 0.0600333
\(656\) 0 0
\(657\) −2.37379 −0.0926103
\(658\) 0 0
\(659\) −32.7456 −1.27559 −0.637794 0.770207i \(-0.720153\pi\)
−0.637794 + 0.770207i \(0.720153\pi\)
\(660\) 0 0
\(661\) −4.79183 −0.186380 −0.0931902 0.995648i \(-0.529706\pi\)
−0.0931902 + 0.995648i \(0.529706\pi\)
\(662\) 0 0
\(663\) 1.67068 0.0648839
\(664\) 0 0
\(665\) −8.79899 −0.341210
\(666\) 0 0
\(667\) 32.9208 1.27470
\(668\) 0 0
\(669\) −26.5184 −1.02526
\(670\) 0 0
\(671\) −2.40309 −0.0927702
\(672\) 0 0
\(673\) −22.0693 −0.850709 −0.425354 0.905027i \(-0.639851\pi\)
−0.425354 + 0.905027i \(0.639851\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −5.15103 −0.197970 −0.0989850 0.995089i \(-0.531560\pi\)
−0.0989850 + 0.995089i \(0.531560\pi\)
\(678\) 0 0
\(679\) 13.4064 0.514490
\(680\) 0 0
\(681\) 9.91737 0.380034
\(682\) 0 0
\(683\) −19.5676 −0.748733 −0.374367 0.927281i \(-0.622140\pi\)
−0.374367 + 0.927281i \(0.622140\pi\)
\(684\) 0 0
\(685\) 17.1571 0.655539
\(686\) 0 0
\(687\) 13.2499 0.505516
\(688\) 0 0
\(689\) −4.43173 −0.168836
\(690\) 0 0
\(691\) 7.57437 0.288142 0.144071 0.989567i \(-0.453981\pi\)
0.144071 + 0.989567i \(0.453981\pi\)
\(692\) 0 0
\(693\) 0.517744 0.0196675
\(694\) 0 0
\(695\) 14.3721 0.545164
\(696\) 0 0
\(697\) −2.76887 −0.104878
\(698\) 0 0
\(699\) −10.7279 −0.405767
\(700\) 0 0
\(701\) −5.23090 −0.197568 −0.0987842 0.995109i \(-0.531495\pi\)
−0.0987842 + 0.995109i \(0.531495\pi\)
\(702\) 0 0
\(703\) −5.72714 −0.216003
\(704\) 0 0
\(705\) 8.40121 0.316408
\(706\) 0 0
\(707\) 15.6866 0.589954
\(708\) 0 0
\(709\) −43.1273 −1.61968 −0.809840 0.586651i \(-0.800446\pi\)
−0.809840 + 0.586651i \(0.800446\pi\)
\(710\) 0 0
\(711\) −8.13215 −0.304979
\(712\) 0 0
\(713\) −55.0344 −2.06105
\(714\) 0 0
\(715\) 1.01795 0.0380691
\(716\) 0 0
\(717\) 16.2197 0.605735
\(718\) 0 0
\(719\) −9.06250 −0.337974 −0.168987 0.985618i \(-0.554050\pi\)
−0.168987 + 0.985618i \(0.554050\pi\)
\(720\) 0 0
\(721\) −13.1723 −0.490561
\(722\) 0 0
\(723\) −4.04466 −0.150423
\(724\) 0 0
\(725\) 4.01331 0.149051
\(726\) 0 0
\(727\) 9.01479 0.334340 0.167170 0.985928i \(-0.446537\pi\)
0.167170 + 0.985928i \(0.446537\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.49742 0.0553842
\(732\) 0 0
\(733\) −36.8909 −1.36260 −0.681298 0.732007i \(-0.738584\pi\)
−0.681298 + 0.732007i \(0.738584\pi\)
\(734\) 0 0
\(735\) −3.18728 −0.117565
\(736\) 0 0
\(737\) 0.265154 0.00976706
\(738\) 0 0
\(739\) 20.3654 0.749154 0.374577 0.927196i \(-0.377788\pi\)
0.374577 + 0.927196i \(0.377788\pi\)
\(740\) 0 0
\(741\) −17.2999 −0.635528
\(742\) 0 0
\(743\) −27.9539 −1.02553 −0.512765 0.858529i \(-0.671379\pi\)
−0.512765 + 0.858529i \(0.671379\pi\)
\(744\) 0 0
\(745\) 4.10765 0.150493
\(746\) 0 0
\(747\) −0.870056 −0.0318337
\(748\) 0 0
\(749\) −5.82793 −0.212948
\(750\) 0 0
\(751\) −12.4048 −0.452658 −0.226329 0.974051i \(-0.572672\pi\)
−0.226329 + 0.974051i \(0.572672\pi\)
\(752\) 0 0
\(753\) 0.0940397 0.00342700
\(754\) 0 0
\(755\) 15.9041 0.578808
\(756\) 0 0
\(757\) −22.2592 −0.809023 −0.404512 0.914533i \(-0.632559\pi\)
−0.404512 + 0.914533i \(0.632559\pi\)
\(758\) 0 0
\(759\) −2.17503 −0.0789485
\(760\) 0 0
\(761\) −42.7567 −1.54993 −0.774964 0.632005i \(-0.782232\pi\)
−0.774964 + 0.632005i \(0.782232\pi\)
\(762\) 0 0
\(763\) −22.7752 −0.824519
\(764\) 0 0
\(765\) −0.435176 −0.0157338
\(766\) 0 0
\(767\) 36.4514 1.31619
\(768\) 0 0
\(769\) −21.9473 −0.791439 −0.395719 0.918372i \(-0.629505\pi\)
−0.395719 + 0.918372i \(0.629505\pi\)
\(770\) 0 0
\(771\) −2.48830 −0.0896139
\(772\) 0 0
\(773\) 31.2283 1.12320 0.561602 0.827408i \(-0.310185\pi\)
0.561602 + 0.827408i \(0.310185\pi\)
\(774\) 0 0
\(775\) −6.70915 −0.241000
\(776\) 0 0
\(777\) 2.48164 0.0890285
\(778\) 0 0
\(779\) 28.6717 1.02727
\(780\) 0 0
\(781\) 0.173034 0.00619165
\(782\) 0 0
\(783\) 4.01331 0.143424
\(784\) 0 0
\(785\) −4.44619 −0.158691
\(786\) 0 0
\(787\) 34.9543 1.24599 0.622994 0.782227i \(-0.285916\pi\)
0.622994 + 0.782227i \(0.285916\pi\)
\(788\) 0 0
\(789\) 11.8054 0.420284
\(790\) 0 0
\(791\) 21.1144 0.750742
\(792\) 0 0
\(793\) −34.7937 −1.23556
\(794\) 0 0
\(795\) 1.15437 0.0409413
\(796\) 0 0
\(797\) −16.1127 −0.570739 −0.285370 0.958418i \(-0.592116\pi\)
−0.285370 + 0.958418i \(0.592116\pi\)
\(798\) 0 0
\(799\) −3.65601 −0.129340
\(800\) 0 0
\(801\) 16.3725 0.578493
\(802\) 0 0
\(803\) 0.629419 0.0222117
\(804\) 0 0
\(805\) −16.0171 −0.564529
\(806\) 0 0
\(807\) 18.0241 0.634478
\(808\) 0 0
\(809\) −40.2891 −1.41649 −0.708245 0.705967i \(-0.750513\pi\)
−0.708245 + 0.705967i \(0.750513\pi\)
\(810\) 0 0
\(811\) 52.6072 1.84729 0.923645 0.383249i \(-0.125195\pi\)
0.923645 + 0.383249i \(0.125195\pi\)
\(812\) 0 0
\(813\) 24.8036 0.869901
\(814\) 0 0
\(815\) −7.18537 −0.251693
\(816\) 0 0
\(817\) −15.5058 −0.542480
\(818\) 0 0
\(819\) 7.49628 0.261941
\(820\) 0 0
\(821\) 4.85404 0.169407 0.0847035 0.996406i \(-0.473006\pi\)
0.0847035 + 0.996406i \(0.473006\pi\)
\(822\) 0 0
\(823\) 24.6992 0.860959 0.430479 0.902600i \(-0.358345\pi\)
0.430479 + 0.902600i \(0.358345\pi\)
\(824\) 0 0
\(825\) −0.265154 −0.00923147
\(826\) 0 0
\(827\) −41.8198 −1.45422 −0.727109 0.686522i \(-0.759136\pi\)
−0.727109 + 0.686522i \(0.759136\pi\)
\(828\) 0 0
\(829\) 49.4070 1.71598 0.857988 0.513671i \(-0.171715\pi\)
0.857988 + 0.513671i \(0.171715\pi\)
\(830\) 0 0
\(831\) −13.6414 −0.473215
\(832\) 0 0
\(833\) 1.38703 0.0480577
\(834\) 0 0
\(835\) 20.4382 0.707294
\(836\) 0 0
\(837\) −6.70915 −0.231902
\(838\) 0 0
\(839\) 25.8109 0.891091 0.445546 0.895259i \(-0.353010\pi\)
0.445546 + 0.895259i \(0.353010\pi\)
\(840\) 0 0
\(841\) −12.8933 −0.444598
\(842\) 0 0
\(843\) −10.3878 −0.357776
\(844\) 0 0
\(845\) 1.73861 0.0598101
\(846\) 0 0
\(847\) 21.3415 0.733303
\(848\) 0 0
\(849\) 21.1531 0.725973
\(850\) 0 0
\(851\) −10.4253 −0.357375
\(852\) 0 0
\(853\) −3.86607 −0.132372 −0.0661859 0.997807i \(-0.521083\pi\)
−0.0661859 + 0.997807i \(0.521083\pi\)
\(854\) 0 0
\(855\) 4.50625 0.154111
\(856\) 0 0
\(857\) −29.5851 −1.01061 −0.505304 0.862941i \(-0.668620\pi\)
−0.505304 + 0.862941i \(0.668620\pi\)
\(858\) 0 0
\(859\) −31.1890 −1.06415 −0.532077 0.846696i \(-0.678588\pi\)
−0.532077 + 0.846696i \(0.678588\pi\)
\(860\) 0 0
\(861\) −12.4238 −0.423402
\(862\) 0 0
\(863\) 14.2464 0.484953 0.242477 0.970157i \(-0.422040\pi\)
0.242477 + 0.970157i \(0.422040\pi\)
\(864\) 0 0
\(865\) 1.45657 0.0495247
\(866\) 0 0
\(867\) −16.8106 −0.570919
\(868\) 0 0
\(869\) 2.15627 0.0731464
\(870\) 0 0
\(871\) 3.83909 0.130083
\(872\) 0 0
\(873\) −6.86586 −0.232374
\(874\) 0 0
\(875\) −1.95262 −0.0660105
\(876\) 0 0
\(877\) −16.0045 −0.540433 −0.270216 0.962800i \(-0.587095\pi\)
−0.270216 + 0.962800i \(0.587095\pi\)
\(878\) 0 0
\(879\) −8.21204 −0.276985
\(880\) 0 0
\(881\) 37.7708 1.27253 0.636265 0.771471i \(-0.280479\pi\)
0.636265 + 0.771471i \(0.280479\pi\)
\(882\) 0 0
\(883\) −42.9590 −1.44568 −0.722842 0.691013i \(-0.757165\pi\)
−0.722842 + 0.691013i \(0.757165\pi\)
\(884\) 0 0
\(885\) −9.49481 −0.319165
\(886\) 0 0
\(887\) −23.0401 −0.773612 −0.386806 0.922161i \(-0.626422\pi\)
−0.386806 + 0.922161i \(0.626422\pi\)
\(888\) 0 0
\(889\) −34.6837 −1.16325
\(890\) 0 0
\(891\) −0.265154 −0.00888298
\(892\) 0 0
\(893\) 37.8580 1.26687
\(894\) 0 0
\(895\) 11.2181 0.374981
\(896\) 0 0
\(897\) −31.4916 −1.05148
\(898\) 0 0
\(899\) −26.9259 −0.898029
\(900\) 0 0
\(901\) −0.502355 −0.0167359
\(902\) 0 0
\(903\) 6.71887 0.223590
\(904\) 0 0
\(905\) 9.52874 0.316746
\(906\) 0 0
\(907\) −1.13418 −0.0376600 −0.0188300 0.999823i \(-0.505994\pi\)
−0.0188300 + 0.999823i \(0.505994\pi\)
\(908\) 0 0
\(909\) −8.03360 −0.266458
\(910\) 0 0
\(911\) −25.3360 −0.839418 −0.419709 0.907659i \(-0.637868\pi\)
−0.419709 + 0.907659i \(0.637868\pi\)
\(912\) 0 0
\(913\) 0.230699 0.00763501
\(914\) 0 0
\(915\) 9.06300 0.299614
\(916\) 0 0
\(917\) −3.00006 −0.0990707
\(918\) 0 0
\(919\) 20.6001 0.679534 0.339767 0.940510i \(-0.389652\pi\)
0.339767 + 0.940510i \(0.389652\pi\)
\(920\) 0 0
\(921\) −12.3029 −0.405394
\(922\) 0 0
\(923\) 2.50532 0.0824635
\(924\) 0 0
\(925\) −1.27093 −0.0417880
\(926\) 0 0
\(927\) 6.74596 0.221566
\(928\) 0 0
\(929\) 8.58650 0.281714 0.140857 0.990030i \(-0.455014\pi\)
0.140857 + 0.990030i \(0.455014\pi\)
\(930\) 0 0
\(931\) −14.3627 −0.470718
\(932\) 0 0
\(933\) 32.7081 1.07082
\(934\) 0 0
\(935\) 0.115389 0.00377361
\(936\) 0 0
\(937\) 38.6534 1.26275 0.631375 0.775477i \(-0.282491\pi\)
0.631375 + 0.775477i \(0.282491\pi\)
\(938\) 0 0
\(939\) −9.45635 −0.308596
\(940\) 0 0
\(941\) −41.0594 −1.33850 −0.669249 0.743038i \(-0.733384\pi\)
−0.669249 + 0.743038i \(0.733384\pi\)
\(942\) 0 0
\(943\) 52.1920 1.69961
\(944\) 0 0
\(945\) −1.95262 −0.0635187
\(946\) 0 0
\(947\) 41.3801 1.34467 0.672336 0.740246i \(-0.265291\pi\)
0.672336 + 0.740246i \(0.265291\pi\)
\(948\) 0 0
\(949\) 9.11319 0.295827
\(950\) 0 0
\(951\) 22.9380 0.743816
\(952\) 0 0
\(953\) 13.8455 0.448501 0.224251 0.974532i \(-0.428007\pi\)
0.224251 + 0.974532i \(0.428007\pi\)
\(954\) 0 0
\(955\) 26.0126 0.841748
\(956\) 0 0
\(957\) −1.06414 −0.0343989
\(958\) 0 0
\(959\) −33.5012 −1.08181
\(960\) 0 0
\(961\) 14.0126 0.452021
\(962\) 0 0
\(963\) 2.98468 0.0961798
\(964\) 0 0
\(965\) 23.6361 0.760872
\(966\) 0 0
\(967\) 23.2819 0.748697 0.374348 0.927288i \(-0.377866\pi\)
0.374348 + 0.927288i \(0.377866\pi\)
\(968\) 0 0
\(969\) −1.96102 −0.0629969
\(970\) 0 0
\(971\) 37.2974 1.19693 0.598465 0.801149i \(-0.295778\pi\)
0.598465 + 0.801149i \(0.295778\pi\)
\(972\) 0 0
\(973\) −28.0632 −0.899664
\(974\) 0 0
\(975\) −3.83909 −0.122949
\(976\) 0 0
\(977\) 12.0411 0.385228 0.192614 0.981275i \(-0.438303\pi\)
0.192614 + 0.981275i \(0.438303\pi\)
\(978\) 0 0
\(979\) −4.34122 −0.138746
\(980\) 0 0
\(981\) 11.6639 0.372401
\(982\) 0 0
\(983\) 31.8678 1.01642 0.508212 0.861232i \(-0.330307\pi\)
0.508212 + 0.861232i \(0.330307\pi\)
\(984\) 0 0
\(985\) −6.23755 −0.198745
\(986\) 0 0
\(987\) −16.4044 −0.522156
\(988\) 0 0
\(989\) −28.2258 −0.897528
\(990\) 0 0
\(991\) −3.85333 −0.122405 −0.0612026 0.998125i \(-0.519494\pi\)
−0.0612026 + 0.998125i \(0.519494\pi\)
\(992\) 0 0
\(993\) 31.5109 0.999968
\(994\) 0 0
\(995\) 15.4983 0.491329
\(996\) 0 0
\(997\) 5.42135 0.171696 0.0858480 0.996308i \(-0.472640\pi\)
0.0858480 + 0.996308i \(0.472640\pi\)
\(998\) 0 0
\(999\) −1.27093 −0.0402105
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8040.2.a.bb.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8040.2.a.bb.1.3 9 1.1 even 1 trivial