Properties

Label 81.3.f.a.35.3
Level $81$
Weight $3$
Character 81.35
Analytic conductor $2.207$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,3,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.20709014132\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 35.3
Character \(\chi\) \(=\) 81.35
Dual form 81.3.f.a.44.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.374063 - 0.445791i) q^{2} +(0.635786 + 3.60572i) q^{4} +(-2.62195 + 7.20376i) q^{5} +(0.231638 - 1.31369i) q^{7} +(3.86112 + 2.22922i) q^{8} +(2.23059 + 3.86350i) q^{10} +(-0.367624 - 1.01004i) q^{11} +(16.0318 - 13.4523i) q^{13} +(-0.498982 - 0.594664i) q^{14} +(-11.3241 + 4.12163i) q^{16} +(12.1867 - 7.03599i) q^{17} +(-9.79833 + 16.9712i) q^{19} +(-27.6418 - 4.87399i) q^{20} +(-0.587780 - 0.213935i) q^{22} +(1.76488 - 0.311197i) q^{23} +(-25.8684 - 21.7062i) q^{25} -12.1788i q^{26} +4.88406 q^{28} +(25.8129 - 30.7626i) q^{29} +(-2.95677 - 16.7687i) q^{31} +(-8.49804 + 23.3482i) q^{32} +(1.42201 - 8.06462i) q^{34} +(8.85613 + 5.11309i) q^{35} +(1.80012 + 3.11791i) q^{37} +(3.90042 + 10.7163i) q^{38} +(-26.1824 + 21.9697i) q^{40} +(3.09265 + 3.68568i) q^{41} +(16.1462 - 5.87675i) q^{43} +(3.40819 - 1.96772i) q^{44} +(0.521449 - 0.903176i) q^{46} +(-45.1184 - 7.95560i) q^{47} +(44.3728 + 16.1504i) q^{49} +(-19.3528 + 3.41242i) q^{50} +(58.6979 + 49.2534i) q^{52} +51.2852i q^{53} +8.23996 q^{55} +(3.82288 - 4.55593i) q^{56} +(-4.05804 - 23.0143i) q^{58} +(32.0502 - 88.0571i) q^{59} +(-3.88855 + 22.0530i) q^{61} +(-8.58136 - 4.95445i) q^{62} +(-16.8721 - 29.2233i) q^{64} +(54.8722 + 150.760i) q^{65} +(-14.9624 + 12.5549i) q^{67} +(33.1179 + 39.4684i) q^{68} +(5.59212 - 2.03537i) q^{70} +(-74.9736 + 43.2860i) q^{71} +(18.0755 - 31.3076i) q^{73} +(2.06330 + 0.363815i) q^{74} +(-67.4231 - 24.5400i) q^{76} +(-1.41203 + 0.248979i) q^{77} +(-22.3922 - 18.7892i) q^{79} -92.3828i q^{80} +2.79989 q^{82} +(76.1905 - 90.8003i) q^{83} +(18.7326 + 106.238i) q^{85} +(3.41991 - 9.39613i) q^{86} +(0.832156 - 4.71939i) q^{88} +(-104.884 - 60.5550i) q^{89} +(-13.9585 - 24.1768i) q^{91} +(2.24418 + 6.16583i) q^{92} +(-20.4237 + 17.1375i) q^{94} +(-96.5657 - 115.083i) q^{95} +(9.05396 - 3.29537i) q^{97} +(23.7979 - 13.7397i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 6 q^{2} - 6 q^{4} + 15 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 6 q^{11} - 6 q^{13} + 15 q^{14} - 18 q^{16} + 9 q^{17} - 3 q^{19} - 213 q^{20} - 42 q^{22} - 120 q^{23} - 15 q^{25} - 12 q^{28} + 168 q^{29}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.374063 0.445791i 0.187032 0.222895i −0.664378 0.747396i \(-0.731304\pi\)
0.851410 + 0.524501i \(0.175748\pi\)
\(3\) 0 0
\(4\) 0.635786 + 3.60572i 0.158947 + 0.901431i
\(5\) −2.62195 + 7.20376i −0.524391 + 1.44075i 0.341196 + 0.939992i \(0.389168\pi\)
−0.865586 + 0.500760i \(0.833054\pi\)
\(6\) 0 0
\(7\) 0.231638 1.31369i 0.0330912 0.187669i −0.963782 0.266693i \(-0.914069\pi\)
0.996873 + 0.0790234i \(0.0251802\pi\)
\(8\) 3.86112 + 2.22922i 0.482640 + 0.278652i
\(9\) 0 0
\(10\) 2.23059 + 3.86350i 0.223059 + 0.386350i
\(11\) −0.367624 1.01004i −0.0334203 0.0918217i 0.921860 0.387523i \(-0.126669\pi\)
−0.955281 + 0.295701i \(0.904447\pi\)
\(12\) 0 0
\(13\) 16.0318 13.4523i 1.23321 1.03479i 0.235190 0.971949i \(-0.424429\pi\)
0.998024 0.0628396i \(-0.0200156\pi\)
\(14\) −0.498982 0.594664i −0.0356416 0.0424760i
\(15\) 0 0
\(16\) −11.3241 + 4.12163i −0.707756 + 0.257602i
\(17\) 12.1867 7.03599i 0.716864 0.413881i −0.0967335 0.995310i \(-0.530839\pi\)
0.813597 + 0.581429i \(0.197506\pi\)
\(18\) 0 0
\(19\) −9.79833 + 16.9712i −0.515702 + 0.893221i 0.484132 + 0.874995i \(0.339135\pi\)
−0.999834 + 0.0182265i \(0.994198\pi\)
\(20\) −27.6418 4.87399i −1.38209 0.243699i
\(21\) 0 0
\(22\) −0.587780 0.213935i −0.0267173 0.00972430i
\(23\) 1.76488 0.311197i 0.0767341 0.0135303i −0.135149 0.990825i \(-0.543151\pi\)
0.211883 + 0.977295i \(0.432040\pi\)
\(24\) 0 0
\(25\) −25.8684 21.7062i −1.03474 0.868246i
\(26\) 12.1788i 0.468416i
\(27\) 0 0
\(28\) 4.88406 0.174431
\(29\) 25.8129 30.7626i 0.890099 1.06078i −0.107681 0.994185i \(-0.534343\pi\)
0.997780 0.0665930i \(-0.0212129\pi\)
\(30\) 0 0
\(31\) −2.95677 16.7687i −0.0953798 0.540926i −0.994630 0.103492i \(-0.966998\pi\)
0.899250 0.437434i \(-0.144113\pi\)
\(32\) −8.49804 + 23.3482i −0.265564 + 0.729630i
\(33\) 0 0
\(34\) 1.42201 8.06462i 0.0418238 0.237195i
\(35\) 8.85613 + 5.11309i 0.253032 + 0.146088i
\(36\) 0 0
\(37\) 1.80012 + 3.11791i 0.0486520 + 0.0842678i 0.889326 0.457274i \(-0.151174\pi\)
−0.840674 + 0.541542i \(0.817841\pi\)
\(38\) 3.90042 + 10.7163i 0.102643 + 0.282008i
\(39\) 0 0
\(40\) −26.1824 + 21.9697i −0.654561 + 0.549241i
\(41\) 3.09265 + 3.68568i 0.0754305 + 0.0898946i 0.802440 0.596733i \(-0.203535\pi\)
−0.727009 + 0.686627i \(0.759090\pi\)
\(42\) 0 0
\(43\) 16.1462 5.87675i 0.375494 0.136669i −0.147377 0.989080i \(-0.547083\pi\)
0.522871 + 0.852412i \(0.324861\pi\)
\(44\) 3.40819 1.96772i 0.0774588 0.0447209i
\(45\) 0 0
\(46\) 0.521449 0.903176i 0.0113359 0.0196343i
\(47\) −45.1184 7.95560i −0.959966 0.169268i −0.328356 0.944554i \(-0.606495\pi\)
−0.631610 + 0.775286i \(0.717606\pi\)
\(48\) 0 0
\(49\) 44.3728 + 16.1504i 0.905568 + 0.329600i
\(50\) −19.3528 + 3.41242i −0.387056 + 0.0682485i
\(51\) 0 0
\(52\) 58.6979 + 49.2534i 1.12881 + 0.947180i
\(53\) 51.2852i 0.967645i 0.875166 + 0.483822i \(0.160752\pi\)
−0.875166 + 0.483822i \(0.839248\pi\)
\(54\) 0 0
\(55\) 8.23996 0.149818
\(56\) 3.82288 4.55593i 0.0682656 0.0813558i
\(57\) 0 0
\(58\) −4.05804 23.0143i −0.0699662 0.396798i
\(59\) 32.0502 88.0571i 0.543223 1.49249i −0.299473 0.954105i \(-0.596811\pi\)
0.842697 0.538389i \(-0.180967\pi\)
\(60\) 0 0
\(61\) −3.88855 + 22.0530i −0.0637467 + 0.361525i 0.936203 + 0.351461i \(0.114315\pi\)
−0.999949 + 0.0100647i \(0.996796\pi\)
\(62\) −8.58136 4.95445i −0.138409 0.0799105i
\(63\) 0 0
\(64\) −16.8721 29.2233i −0.263627 0.456615i
\(65\) 54.8722 + 150.760i 0.844188 + 2.31939i
\(66\) 0 0
\(67\) −14.9624 + 12.5549i −0.223319 + 0.187387i −0.747582 0.664169i \(-0.768785\pi\)
0.524263 + 0.851556i \(0.324341\pi\)
\(68\) 33.1179 + 39.4684i 0.487029 + 0.580418i
\(69\) 0 0
\(70\) 5.59212 2.03537i 0.0798875 0.0290767i
\(71\) −74.9736 + 43.2860i −1.05597 + 0.609663i −0.924314 0.381633i \(-0.875362\pi\)
−0.131653 + 0.991296i \(0.542028\pi\)
\(72\) 0 0
\(73\) 18.0755 31.3076i 0.247609 0.428871i −0.715253 0.698866i \(-0.753689\pi\)
0.962862 + 0.269994i \(0.0870218\pi\)
\(74\) 2.06330 + 0.363815i 0.0278824 + 0.00491641i
\(75\) 0 0
\(76\) −67.4231 24.5400i −0.887146 0.322895i
\(77\) −1.41203 + 0.248979i −0.0183380 + 0.00323349i
\(78\) 0 0
\(79\) −22.3922 18.7892i −0.283445 0.237839i 0.489969 0.871740i \(-0.337008\pi\)
−0.773414 + 0.633901i \(0.781453\pi\)
\(80\) 92.3828i 1.15479i
\(81\) 0 0
\(82\) 2.79989 0.0341450
\(83\) 76.1905 90.8003i 0.917957 1.09398i −0.0773297 0.997006i \(-0.524639\pi\)
0.995287 0.0969733i \(-0.0309162\pi\)
\(84\) 0 0
\(85\) 18.7326 + 106.238i 0.220384 + 1.24986i
\(86\) 3.41991 9.39613i 0.0397664 0.109257i
\(87\) 0 0
\(88\) 0.832156 4.71939i 0.00945632 0.0536294i
\(89\) −104.884 60.5550i −1.17848 0.680394i −0.222815 0.974861i \(-0.571524\pi\)
−0.955662 + 0.294467i \(0.904858\pi\)
\(90\) 0 0
\(91\) −13.9585 24.1768i −0.153390 0.265679i
\(92\) 2.24418 + 6.16583i 0.0243932 + 0.0670199i
\(93\) 0 0
\(94\) −20.4237 + 17.1375i −0.217273 + 0.182314i
\(95\) −96.5657 115.083i −1.01648 1.21139i
\(96\) 0 0
\(97\) 9.05396 3.29537i 0.0933398 0.0339729i −0.294928 0.955519i \(-0.595296\pi\)
0.388268 + 0.921547i \(0.373074\pi\)
\(98\) 23.7979 13.7397i 0.242836 0.140201i
\(99\) 0 0
\(100\) 61.8196 107.075i 0.618196 1.07075i
\(101\) −3.79771 0.669639i −0.0376011 0.00663009i 0.154816 0.987943i \(-0.450522\pi\)
−0.192417 + 0.981313i \(0.561633\pi\)
\(102\) 0 0
\(103\) −115.073 41.8832i −1.11722 0.406633i −0.283580 0.958948i \(-0.591522\pi\)
−0.833635 + 0.552315i \(0.813744\pi\)
\(104\) 91.8886 16.2024i 0.883544 0.155793i
\(105\) 0 0
\(106\) 22.8625 + 19.1839i 0.215684 + 0.180980i
\(107\) 80.0804i 0.748415i 0.927345 + 0.374207i \(0.122085\pi\)
−0.927345 + 0.374207i \(0.877915\pi\)
\(108\) 0 0
\(109\) −96.8098 −0.888163 −0.444081 0.895986i \(-0.646470\pi\)
−0.444081 + 0.895986i \(0.646470\pi\)
\(110\) 3.08227 3.67330i 0.0280206 0.0333937i
\(111\) 0 0
\(112\) 2.79144 + 15.8310i 0.0249236 + 0.141349i
\(113\) −22.1070 + 60.7386i −0.195637 + 0.537509i −0.998259 0.0589789i \(-0.981216\pi\)
0.802622 + 0.596488i \(0.203438\pi\)
\(114\) 0 0
\(115\) −2.38566 + 13.5297i −0.0207449 + 0.117650i
\(116\) 127.333 + 73.5156i 1.09770 + 0.633755i
\(117\) 0 0
\(118\) −27.2663 47.2266i −0.231070 0.400225i
\(119\) −6.42017 17.6393i −0.0539510 0.148229i
\(120\) 0 0
\(121\) 91.8063 77.0347i 0.758730 0.636650i
\(122\) 8.37648 + 9.98271i 0.0686597 + 0.0818255i
\(123\) 0 0
\(124\) 58.5834 21.3226i 0.472447 0.171957i
\(125\) 58.2161 33.6111i 0.465729 0.268889i
\(126\) 0 0
\(127\) −82.7295 + 143.292i −0.651414 + 1.12828i 0.331366 + 0.943502i \(0.392490\pi\)
−0.982780 + 0.184779i \(0.940843\pi\)
\(128\) −117.215 20.6682i −0.915744 0.161470i
\(129\) 0 0
\(130\) 87.7332 + 31.9323i 0.674871 + 0.245633i
\(131\) −36.1521 + 6.37458i −0.275970 + 0.0486610i −0.309920 0.950763i \(-0.600302\pi\)
0.0339502 + 0.999424i \(0.489191\pi\)
\(132\) 0 0
\(133\) 20.0252 + 16.8031i 0.150565 + 0.126339i
\(134\) 11.3664i 0.0848241i
\(135\) 0 0
\(136\) 62.7390 0.461316
\(137\) −74.9644 + 89.3391i −0.547185 + 0.652110i −0.966783 0.255600i \(-0.917727\pi\)
0.419597 + 0.907710i \(0.362171\pi\)
\(138\) 0 0
\(139\) −17.1095 97.0328i −0.123090 0.698078i −0.982424 0.186663i \(-0.940233\pi\)
0.859334 0.511415i \(-0.170878\pi\)
\(140\) −12.8058 + 35.1836i −0.0914699 + 0.251311i
\(141\) 0 0
\(142\) −8.74834 + 49.6143i −0.0616080 + 0.349396i
\(143\) −19.4810 11.2473i −0.136230 0.0786527i
\(144\) 0 0
\(145\) 153.926 + 266.608i 1.06156 + 1.83867i
\(146\) −7.19529 19.7689i −0.0492828 0.135403i
\(147\) 0 0
\(148\) −10.0978 + 8.47307i −0.0682285 + 0.0572505i
\(149\) 89.3217 + 106.449i 0.599474 + 0.714426i 0.977397 0.211411i \(-0.0678060\pi\)
−0.377923 + 0.925837i \(0.623362\pi\)
\(150\) 0 0
\(151\) −122.547 + 44.6035i −0.811571 + 0.295388i −0.714272 0.699868i \(-0.753242\pi\)
−0.0972982 + 0.995255i \(0.531020\pi\)
\(152\) −75.6650 + 43.6852i −0.497796 + 0.287403i
\(153\) 0 0
\(154\) −0.417195 + 0.722604i −0.00270906 + 0.00469223i
\(155\) 128.550 + 22.6669i 0.829356 + 0.146238i
\(156\) 0 0
\(157\) 219.522 + 79.8994i 1.39823 + 0.508913i 0.927652 0.373446i \(-0.121824\pi\)
0.470576 + 0.882359i \(0.344046\pi\)
\(158\) −16.7522 + 2.95386i −0.106026 + 0.0186953i
\(159\) 0 0
\(160\) −145.913 122.436i −0.911957 0.765223i
\(161\) 2.39059i 0.0148484i
\(162\) 0 0
\(163\) 65.8701 0.404111 0.202056 0.979374i \(-0.435238\pi\)
0.202056 + 0.979374i \(0.435238\pi\)
\(164\) −11.3233 + 13.4945i −0.0690443 + 0.0822838i
\(165\) 0 0
\(166\) −11.9779 67.9300i −0.0721560 0.409217i
\(167\) −57.3115 + 157.462i −0.343182 + 0.942886i 0.641283 + 0.767305i \(0.278403\pi\)
−0.984465 + 0.175581i \(0.943820\pi\)
\(168\) 0 0
\(169\) 46.7081 264.895i 0.276379 1.56742i
\(170\) 54.3671 + 31.3889i 0.319807 + 0.184640i
\(171\) 0 0
\(172\) 31.4555 + 54.4825i 0.182881 + 0.316759i
\(173\) −90.8802 249.691i −0.525319 1.44330i −0.864525 0.502590i \(-0.832380\pi\)
0.339206 0.940712i \(-0.389842\pi\)
\(174\) 0 0
\(175\) −34.5072 + 28.9550i −0.197184 + 0.165457i
\(176\) 8.32602 + 9.92256i 0.0473069 + 0.0563782i
\(177\) 0 0
\(178\) −66.2283 + 24.1051i −0.372069 + 0.135422i
\(179\) 213.546 123.291i 1.19299 0.688776i 0.234010 0.972234i \(-0.424815\pi\)
0.958985 + 0.283458i \(0.0914818\pi\)
\(180\) 0 0
\(181\) 0.670719 1.16172i 0.00370563 0.00641834i −0.864167 0.503206i \(-0.832154\pi\)
0.867872 + 0.496787i \(0.165487\pi\)
\(182\) −15.9991 2.82108i −0.0879074 0.0155004i
\(183\) 0 0
\(184\) 7.50815 + 2.73274i 0.0408052 + 0.0148519i
\(185\) −27.1805 + 4.79266i −0.146922 + 0.0259062i
\(186\) 0 0
\(187\) −11.5867 9.72242i −0.0619611 0.0519916i
\(188\) 167.743i 0.892248i
\(189\) 0 0
\(190\) −87.4244 −0.460128
\(191\) −29.8515 + 35.5757i −0.156291 + 0.186260i −0.838508 0.544890i \(-0.816572\pi\)
0.682217 + 0.731150i \(0.261016\pi\)
\(192\) 0 0
\(193\) −24.7371 140.291i −0.128171 0.726896i −0.979374 0.202058i \(-0.935237\pi\)
0.851202 0.524838i \(-0.175874\pi\)
\(194\) 1.91770 5.26885i 0.00988508 0.0271590i
\(195\) 0 0
\(196\) −30.0222 + 170.264i −0.153174 + 0.868695i
\(197\) 46.8442 + 27.0455i 0.237788 + 0.137287i 0.614160 0.789182i \(-0.289495\pi\)
−0.376372 + 0.926469i \(0.622828\pi\)
\(198\) 0 0
\(199\) −164.437 284.813i −0.826317 1.43122i −0.900909 0.434009i \(-0.857099\pi\)
0.0745915 0.997214i \(-0.476235\pi\)
\(200\) −51.4932 141.476i −0.257466 0.707382i
\(201\) 0 0
\(202\) −1.71910 + 1.44250i −0.00851041 + 0.00714108i
\(203\) −34.4331 41.0358i −0.169621 0.202147i
\(204\) 0 0
\(205\) −34.6595 + 12.6150i −0.169071 + 0.0615368i
\(206\) −61.7158 + 35.6316i −0.299591 + 0.172969i
\(207\) 0 0
\(208\) −126.100 + 218.412i −0.606250 + 1.05006i
\(209\) 20.7437 + 3.65767i 0.0992520 + 0.0175008i
\(210\) 0 0
\(211\) −89.0532 32.4127i −0.422053 0.153615i 0.122258 0.992498i \(-0.460987\pi\)
−0.544311 + 0.838884i \(0.683209\pi\)
\(212\) −184.920 + 32.6064i −0.872265 + 0.153804i
\(213\) 0 0
\(214\) 35.6991 + 29.9551i 0.166818 + 0.139977i
\(215\) 131.722i 0.612662i
\(216\) 0 0
\(217\) −22.7137 −0.104671
\(218\) −36.2130 + 43.1569i −0.166114 + 0.197968i
\(219\) 0 0
\(220\) 5.23886 + 29.7110i 0.0238130 + 0.135050i
\(221\) 100.724 276.738i 0.455766 1.25221i
\(222\) 0 0
\(223\) −14.1117 + 80.0312i −0.0632810 + 0.358884i 0.936681 + 0.350183i \(0.113881\pi\)
−0.999962 + 0.00870098i \(0.997230\pi\)
\(224\) 28.7037 + 16.5721i 0.128141 + 0.0739825i
\(225\) 0 0
\(226\) 18.8073 + 32.5752i 0.0832180 + 0.144138i
\(227\) −57.3885 157.674i −0.252813 0.694597i −0.999565 0.0294950i \(-0.990610\pi\)
0.746752 0.665102i \(-0.231612\pi\)
\(228\) 0 0
\(229\) 56.2458 47.1958i 0.245615 0.206095i −0.511666 0.859184i \(-0.670972\pi\)
0.757281 + 0.653089i \(0.226527\pi\)
\(230\) 5.13905 + 6.12448i 0.0223437 + 0.0266282i
\(231\) 0 0
\(232\) 168.243 61.2354i 0.725185 0.263946i
\(233\) 159.041 91.8223i 0.682579 0.394087i −0.118247 0.992984i \(-0.537728\pi\)
0.800826 + 0.598897i \(0.204394\pi\)
\(234\) 0 0
\(235\) 175.609 304.163i 0.747271 1.29431i
\(236\) 337.887 + 59.5785i 1.43172 + 0.252451i
\(237\) 0 0
\(238\) −10.2650 3.73615i −0.0431302 0.0156981i
\(239\) 8.71524 1.53673i 0.0364655 0.00642984i −0.155386 0.987854i \(-0.549662\pi\)
0.191851 + 0.981424i \(0.438551\pi\)
\(240\) 0 0
\(241\) −12.1911 10.2295i −0.0505853 0.0424461i 0.617145 0.786850i \(-0.288289\pi\)
−0.667730 + 0.744404i \(0.732734\pi\)
\(242\) 69.7423i 0.288191i
\(243\) 0 0
\(244\) −81.9894 −0.336022
\(245\) −232.687 + 277.306i −0.949743 + 1.13186i
\(246\) 0 0
\(247\) 71.2164 + 403.888i 0.288325 + 1.63517i
\(248\) 25.9646 71.3372i 0.104696 0.287650i
\(249\) 0 0
\(250\) 6.79298 38.5249i 0.0271719 0.154100i
\(251\) −228.852 132.128i −0.911762 0.526406i −0.0307645 0.999527i \(-0.509794\pi\)
−0.880998 + 0.473121i \(0.843128\pi\)
\(252\) 0 0
\(253\) −0.963134 1.66820i −0.00380685 0.00659366i
\(254\) 32.9321 + 90.4802i 0.129654 + 0.356221i
\(255\) 0 0
\(256\) 50.3387 42.2392i 0.196635 0.164997i
\(257\) 219.915 + 262.084i 0.855699 + 1.01978i 0.999544 + 0.0301818i \(0.00960864\pi\)
−0.143846 + 0.989600i \(0.545947\pi\)
\(258\) 0 0
\(259\) 4.51293 1.64257i 0.0174244 0.00634198i
\(260\) −508.713 + 293.705i −1.95659 + 1.12964i
\(261\) 0 0
\(262\) −10.6814 + 18.5008i −0.0407688 + 0.0706136i
\(263\) 374.609 + 66.0536i 1.42437 + 0.251154i 0.832117 0.554600i \(-0.187129\pi\)
0.592250 + 0.805754i \(0.298240\pi\)
\(264\) 0 0
\(265\) −369.446 134.467i −1.39414 0.507424i
\(266\) 14.9813 2.64162i 0.0563209 0.00993089i
\(267\) 0 0
\(268\) −54.7824 45.9679i −0.204412 0.171522i
\(269\) 88.9301i 0.330595i 0.986244 + 0.165297i \(0.0528584\pi\)
−0.986244 + 0.165297i \(0.947142\pi\)
\(270\) 0 0
\(271\) 487.123 1.79750 0.898751 0.438460i \(-0.144476\pi\)
0.898751 + 0.438460i \(0.144476\pi\)
\(272\) −109.003 + 129.905i −0.400748 + 0.477593i
\(273\) 0 0
\(274\) 11.7851 + 66.8369i 0.0430115 + 0.243930i
\(275\) −12.4142 + 34.1078i −0.0451426 + 0.124028i
\(276\) 0 0
\(277\) −15.1883 + 86.1369i −0.0548312 + 0.310963i −0.999872 0.0159886i \(-0.994910\pi\)
0.945041 + 0.326952i \(0.106022\pi\)
\(278\) −49.6564 28.6691i −0.178620 0.103126i
\(279\) 0 0
\(280\) 22.7964 + 39.4845i 0.0814157 + 0.141016i
\(281\) 55.1861 + 151.623i 0.196392 + 0.539582i 0.998326 0.0578296i \(-0.0184180\pi\)
−0.801935 + 0.597412i \(0.796196\pi\)
\(282\) 0 0
\(283\) −105.120 + 88.2058i −0.371447 + 0.311681i −0.809334 0.587349i \(-0.800172\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(284\) −203.745 242.813i −0.717411 0.854977i
\(285\) 0 0
\(286\) −12.3011 + 4.47722i −0.0430107 + 0.0156546i
\(287\) 5.55820 3.20903i 0.0193666 0.0111813i
\(288\) 0 0
\(289\) −45.4898 + 78.7907i −0.157404 + 0.272632i
\(290\) 176.429 + 31.1093i 0.608377 + 0.107273i
\(291\) 0 0
\(292\) 124.379 + 45.2701i 0.425954 + 0.155035i
\(293\) 382.393 67.4262i 1.30510 0.230124i 0.522492 0.852644i \(-0.325002\pi\)
0.782604 + 0.622520i \(0.213891\pi\)
\(294\) 0 0
\(295\) 550.308 + 461.763i 1.86545 + 1.56530i
\(296\) 16.0515i 0.0542280i
\(297\) 0 0
\(298\) 80.8661 0.271363
\(299\) 24.1079 28.7307i 0.0806285 0.0960893i
\(300\) 0 0
\(301\) −3.98012 22.5724i −0.0132230 0.0749913i
\(302\) −25.9565 + 71.3150i −0.0859487 + 0.236142i
\(303\) 0 0
\(304\) 41.0081 232.569i 0.134895 0.765029i
\(305\) −148.669 85.8342i −0.487440 0.281424i
\(306\) 0 0
\(307\) −207.323 359.093i −0.675318 1.16969i −0.976376 0.216080i \(-0.930673\pi\)
0.301057 0.953606i \(-0.402660\pi\)
\(308\) −1.79550 4.93309i −0.00582954 0.0160165i
\(309\) 0 0
\(310\) 58.1906 48.8277i 0.187712 0.157509i
\(311\) −280.533 334.326i −0.902036 1.07500i −0.996834 0.0795082i \(-0.974665\pi\)
0.0947982 0.995497i \(-0.469779\pi\)
\(312\) 0 0
\(313\) 386.486 140.669i 1.23478 0.449423i 0.359548 0.933127i \(-0.382931\pi\)
0.875232 + 0.483703i \(0.160709\pi\)
\(314\) 117.733 67.9734i 0.374947 0.216476i
\(315\) 0 0
\(316\) 53.5122 92.6858i 0.169342 0.293310i
\(317\) −402.773 71.0197i −1.27058 0.224037i −0.502602 0.864518i \(-0.667624\pi\)
−0.767974 + 0.640481i \(0.778735\pi\)
\(318\) 0 0
\(319\) −40.5608 14.7629i −0.127150 0.0462788i
\(320\) 254.756 44.9203i 0.796112 0.140376i
\(321\) 0 0
\(322\) −1.06570 0.894231i −0.00330964 0.00277711i
\(323\) 275.764i 0.853757i
\(324\) 0 0
\(325\) −706.713 −2.17450
\(326\) 24.6396 29.3643i 0.0755815 0.0900745i
\(327\) 0 0
\(328\) 3.72491 + 21.1250i 0.0113564 + 0.0644056i
\(329\) −20.9023 + 57.4286i −0.0635329 + 0.174555i
\(330\) 0 0
\(331\) −56.8942 + 322.663i −0.171886 + 0.974812i 0.769792 + 0.638295i \(0.220360\pi\)
−0.941677 + 0.336517i \(0.890751\pi\)
\(332\) 375.841 + 216.992i 1.13205 + 0.653591i
\(333\) 0 0
\(334\) 48.7570 + 84.4496i 0.145979 + 0.252843i
\(335\) −51.2120 140.704i −0.152872 0.420011i
\(336\) 0 0
\(337\) −430.977 + 361.633i −1.27886 + 1.07309i −0.285464 + 0.958389i \(0.592148\pi\)
−0.993400 + 0.114705i \(0.963408\pi\)
\(338\) −100.616 119.909i −0.297680 0.354761i
\(339\) 0 0
\(340\) −371.155 + 135.089i −1.09163 + 0.397321i
\(341\) −15.8500 + 9.15103i −0.0464811 + 0.0268359i
\(342\) 0 0
\(343\) 64.1768 111.157i 0.187104 0.324074i
\(344\) 75.4431 + 13.3027i 0.219311 + 0.0386705i
\(345\) 0 0
\(346\) −145.305 52.8867i −0.419957 0.152852i
\(347\) −240.215 + 42.3563i −0.692261 + 0.122064i −0.508700 0.860944i \(-0.669874\pi\)
−0.183561 + 0.983008i \(0.558763\pi\)
\(348\) 0 0
\(349\) −282.886 237.369i −0.810561 0.680141i 0.140181 0.990126i \(-0.455232\pi\)
−0.950742 + 0.309985i \(0.899676\pi\)
\(350\) 26.2140i 0.0748971i
\(351\) 0 0
\(352\) 26.7066 0.0758711
\(353\) −60.3702 + 71.9464i −0.171020 + 0.203814i −0.844746 0.535167i \(-0.820249\pi\)
0.673726 + 0.738982i \(0.264693\pi\)
\(354\) 0 0
\(355\) −115.245 653.586i −0.324633 1.84109i
\(356\) 151.661 416.684i 0.426013 1.17046i
\(357\) 0 0
\(358\) 24.9177 141.315i 0.0696026 0.394736i
\(359\) −89.5202 51.6845i −0.249360 0.143968i 0.370111 0.928987i \(-0.379320\pi\)
−0.619471 + 0.785019i \(0.712653\pi\)
\(360\) 0 0
\(361\) −11.5145 19.9437i −0.0318962 0.0552458i
\(362\) −0.266993 0.733557i −0.000737550 0.00202640i
\(363\) 0 0
\(364\) 78.3002 65.7016i 0.215110 0.180499i
\(365\) 178.139 + 212.298i 0.488053 + 0.581639i
\(366\) 0 0
\(367\) 85.2083 31.0133i 0.232175 0.0845048i −0.223313 0.974747i \(-0.571687\pi\)
0.455488 + 0.890242i \(0.349465\pi\)
\(368\) −18.7031 + 10.7982i −0.0508236 + 0.0293430i
\(369\) 0 0
\(370\) −8.03070 + 13.9096i −0.0217046 + 0.0375935i
\(371\) 67.3726 + 11.8796i 0.181597 + 0.0320205i
\(372\) 0 0
\(373\) 406.838 + 148.077i 1.09072 + 0.396989i 0.823887 0.566754i \(-0.191801\pi\)
0.266831 + 0.963743i \(0.414023\pi\)
\(374\) −8.66833 + 1.52846i −0.0231774 + 0.00408679i
\(375\) 0 0
\(376\) −156.473 131.296i −0.416151 0.349192i
\(377\) 840.420i 2.22923i
\(378\) 0 0
\(379\) 333.700 0.880476 0.440238 0.897881i \(-0.354894\pi\)
0.440238 + 0.897881i \(0.354894\pi\)
\(380\) 353.561 421.357i 0.930423 1.10883i
\(381\) 0 0
\(382\) 4.69296 + 26.6151i 0.0122852 + 0.0696730i
\(383\) −203.470 + 559.030i −0.531254 + 1.45961i 0.326325 + 0.945258i \(0.394190\pi\)
−0.857579 + 0.514352i \(0.828033\pi\)
\(384\) 0 0
\(385\) 1.90869 10.8247i 0.00495764 0.0281162i
\(386\) −71.7937 41.4501i −0.185994 0.107384i
\(387\) 0 0
\(388\) 17.6386 + 30.5509i 0.0454603 + 0.0787395i
\(389\) −106.062 291.404i −0.272654 0.749111i −0.998145 0.0608795i \(-0.980609\pi\)
0.725491 0.688232i \(-0.241613\pi\)
\(390\) 0 0
\(391\) 19.3185 16.2102i 0.0494079 0.0414582i
\(392\) 135.326 + 161.275i 0.345219 + 0.411416i
\(393\) 0 0
\(394\) 29.5793 10.7660i 0.0750744 0.0273248i
\(395\) 194.064 112.043i 0.491302 0.283653i
\(396\) 0 0
\(397\) −69.0323 + 119.567i −0.173885 + 0.301177i −0.939775 0.341794i \(-0.888965\pi\)
0.765890 + 0.642972i \(0.222299\pi\)
\(398\) −188.477 33.2336i −0.473561 0.0835015i
\(399\) 0 0
\(400\) 382.401 + 139.183i 0.956003 + 0.347956i
\(401\) −266.978 + 47.0754i −0.665780 + 0.117395i −0.496317 0.868142i \(-0.665314\pi\)
−0.169463 + 0.985537i \(0.554203\pi\)
\(402\) 0 0
\(403\) −272.979 229.057i −0.677368 0.568379i
\(404\) 14.1192i 0.0349486i
\(405\) 0 0
\(406\) −31.1735 −0.0767821
\(407\) 2.48744 2.96441i 0.00611164 0.00728357i
\(408\) 0 0
\(409\) 50.3565 + 285.586i 0.123121 + 0.698254i 0.982406 + 0.186757i \(0.0597976\pi\)
−0.859285 + 0.511497i \(0.829091\pi\)
\(410\) −7.34118 + 20.1697i −0.0179053 + 0.0491944i
\(411\) 0 0
\(412\) 77.8573 441.551i 0.188974 1.07173i
\(413\) −108.255 62.5013i −0.262120 0.151335i
\(414\) 0 0
\(415\) 454.335 + 786.932i 1.09478 + 1.89622i
\(416\) 177.847 + 488.630i 0.427517 + 1.17459i
\(417\) 0 0
\(418\) 9.38999 7.87914i 0.0224641 0.0188496i
\(419\) 215.521 + 256.848i 0.514371 + 0.613003i 0.959240 0.282592i \(-0.0911944\pi\)
−0.444870 + 0.895595i \(0.646750\pi\)
\(420\) 0 0
\(421\) −566.754 + 206.282i −1.34621 + 0.489980i −0.911763 0.410717i \(-0.865278\pi\)
−0.434447 + 0.900697i \(0.643056\pi\)
\(422\) −47.7608 + 27.5747i −0.113177 + 0.0653429i
\(423\) 0 0
\(424\) −114.326 + 198.018i −0.269636 + 0.467024i
\(425\) −467.974 82.5165i −1.10112 0.194156i
\(426\) 0 0
\(427\) 28.0700 + 10.2167i 0.0657378 + 0.0239266i
\(428\) −288.748 + 50.9140i −0.674644 + 0.118958i
\(429\) 0 0
\(430\) 58.7206 + 49.2724i 0.136560 + 0.114587i
\(431\) 773.546i 1.79477i 0.441247 + 0.897385i \(0.354536\pi\)
−0.441247 + 0.897385i \(0.645464\pi\)
\(432\) 0 0
\(433\) 71.6603 0.165497 0.0827486 0.996570i \(-0.473630\pi\)
0.0827486 + 0.996570i \(0.473630\pi\)
\(434\) −8.49636 + 10.1256i −0.0195769 + 0.0233308i
\(435\) 0 0
\(436\) −61.5503 349.069i −0.141170 0.800617i
\(437\) −12.0115 + 33.0014i −0.0274863 + 0.0755181i
\(438\) 0 0
\(439\) −118.933 + 674.503i −0.270918 + 1.53645i 0.480717 + 0.876876i \(0.340376\pi\)
−0.751636 + 0.659579i \(0.770735\pi\)
\(440\) 31.8155 + 18.3687i 0.0723079 + 0.0417470i
\(441\) 0 0
\(442\) −85.6900 148.419i −0.193869 0.335790i
\(443\) 155.729 + 427.863i 0.351534 + 0.965831i 0.981878 + 0.189515i \(0.0606916\pi\)
−0.630344 + 0.776316i \(0.717086\pi\)
\(444\) 0 0
\(445\) 711.226 596.789i 1.59826 1.34110i
\(446\) 30.3985 + 36.2276i 0.0681582 + 0.0812278i
\(447\) 0 0
\(448\) −42.2985 + 15.3954i −0.0944163 + 0.0343647i
\(449\) 456.689 263.670i 1.01713 0.587238i 0.103856 0.994592i \(-0.466882\pi\)
0.913270 + 0.407355i \(0.133549\pi\)
\(450\) 0 0
\(451\) 2.58574 4.47864i 0.00573336 0.00993046i
\(452\) −233.062 41.0951i −0.515623 0.0909183i
\(453\) 0 0
\(454\) −91.7564 33.3966i −0.202107 0.0735608i
\(455\) 210.762 37.1631i 0.463214 0.0816770i
\(456\) 0 0
\(457\) −112.672 94.5433i −0.246548 0.206878i 0.511136 0.859500i \(-0.329225\pi\)
−0.757684 + 0.652622i \(0.773669\pi\)
\(458\) 42.7281i 0.0932928i
\(459\) 0 0
\(460\) −50.3013 −0.109351
\(461\) 230.109 274.233i 0.499152 0.594866i −0.456368 0.889791i \(-0.650850\pi\)
0.955521 + 0.294924i \(0.0952945\pi\)
\(462\) 0 0
\(463\) 71.1591 + 403.563i 0.153691 + 0.871627i 0.959972 + 0.280095i \(0.0903659\pi\)
−0.806281 + 0.591533i \(0.798523\pi\)
\(464\) −165.515 + 454.750i −0.356714 + 0.980064i
\(465\) 0 0
\(466\) 18.5578 105.246i 0.0398235 0.225850i
\(467\) 778.946 + 449.725i 1.66798 + 0.963008i 0.968726 + 0.248132i \(0.0798167\pi\)
0.699252 + 0.714876i \(0.253517\pi\)
\(468\) 0 0
\(469\) 13.0274 + 22.5641i 0.0277769 + 0.0481110i
\(470\) −69.9044 192.061i −0.148733 0.408640i
\(471\) 0 0
\(472\) 320.048 268.552i 0.678068 0.568966i
\(473\) −11.8715 14.1479i −0.0250983 0.0299110i
\(474\) 0 0
\(475\) 621.847 226.334i 1.30915 0.476492i
\(476\) 59.5205 34.3642i 0.125043 0.0721937i
\(477\) 0 0
\(478\) 2.57499 4.46001i 0.00538701 0.00933057i
\(479\) −822.620 145.050i −1.71737 0.302819i −0.773662 0.633599i \(-0.781577\pi\)
−0.943708 + 0.330780i \(0.892688\pi\)
\(480\) 0 0
\(481\) 70.8021 + 25.7699i 0.147198 + 0.0535756i
\(482\) −9.12045 + 1.60818i −0.0189221 + 0.00333647i
\(483\) 0 0
\(484\) 336.135 + 282.051i 0.694494 + 0.582749i
\(485\) 73.8629i 0.152295i
\(486\) 0 0
\(487\) −601.667 −1.23546 −0.617728 0.786392i \(-0.711947\pi\)
−0.617728 + 0.786392i \(0.711947\pi\)
\(488\) −64.1752 + 76.4810i −0.131506 + 0.156723i
\(489\) 0 0
\(490\) 36.5807 + 207.460i 0.0746545 + 0.423387i
\(491\) 146.639 402.888i 0.298655 0.820547i −0.696071 0.717973i \(-0.745070\pi\)
0.994725 0.102574i \(-0.0327077\pi\)
\(492\) 0 0
\(493\) 98.1282 556.513i 0.199043 1.12883i
\(494\) 206.689 + 119.332i 0.418399 + 0.241563i
\(495\) 0 0
\(496\) 102.597 + 177.704i 0.206849 + 0.358274i
\(497\) 39.4975 + 108.519i 0.0794719 + 0.218347i
\(498\) 0 0
\(499\) −435.651 + 365.554i −0.873048 + 0.732574i −0.964738 0.263214i \(-0.915218\pi\)
0.0916899 + 0.995788i \(0.470773\pi\)
\(500\) 158.205 + 188.542i 0.316411 + 0.377084i
\(501\) 0 0
\(502\) −144.507 + 52.5961i −0.287862 + 0.104773i
\(503\) −178.281 + 102.930i −0.354435 + 0.204633i −0.666637 0.745383i \(-0.732267\pi\)
0.312202 + 0.950016i \(0.398933\pi\)
\(504\) 0 0
\(505\) 14.7813 25.6020i 0.0292700 0.0506971i
\(506\) −1.10394 0.194654i −0.00218170 0.000384692i
\(507\) 0 0
\(508\) −569.269 207.197i −1.12061 0.407868i
\(509\) −663.268 + 116.952i −1.30308 + 0.229768i −0.781753 0.623589i \(-0.785674\pi\)
−0.521327 + 0.853357i \(0.674563\pi\)
\(510\) 0 0
\(511\) −36.9414 30.9975i −0.0722924 0.0606605i
\(512\) 514.334i 1.00456i
\(513\) 0 0
\(514\) 199.097 0.387347
\(515\) 603.433 719.144i 1.17172 1.39640i
\(516\) 0 0
\(517\) 8.55115 + 48.4960i 0.0165399 + 0.0938027i
\(518\) 0.955876 2.62625i 0.00184532 0.00506998i
\(519\) 0 0
\(520\) −124.209 + 704.425i −0.238864 + 1.35466i
\(521\) −678.655 391.821i −1.30260 0.752056i −0.321751 0.946824i \(-0.604271\pi\)
−0.980849 + 0.194768i \(0.937605\pi\)
\(522\) 0 0
\(523\) −231.463 400.906i −0.442569 0.766551i 0.555311 0.831643i \(-0.312599\pi\)
−0.997879 + 0.0650916i \(0.979266\pi\)
\(524\) −45.9700 126.301i −0.0877290 0.241033i
\(525\) 0 0
\(526\) 169.573 142.289i 0.322383 0.270511i
\(527\) −154.018 183.551i −0.292254 0.348294i
\(528\) 0 0
\(529\) −494.079 + 179.830i −0.933988 + 0.339944i
\(530\) −198.140 + 114.396i −0.373850 + 0.215842i
\(531\) 0 0
\(532\) −47.8556 + 82.8884i −0.0899542 + 0.155805i
\(533\) 99.1614 + 17.4848i 0.186044 + 0.0328046i
\(534\) 0 0
\(535\) −576.880 209.967i −1.07828 0.392462i
\(536\) −85.7591 + 15.1217i −0.159998 + 0.0282120i
\(537\) 0 0
\(538\) 39.6442 + 33.2654i 0.0736881 + 0.0618317i
\(539\) 50.7555i 0.0941661i
\(540\) 0 0
\(541\) 595.277 1.10033 0.550164 0.835057i \(-0.314565\pi\)
0.550164 + 0.835057i \(0.314565\pi\)
\(542\) 182.215 217.155i 0.336190 0.400655i
\(543\) 0 0
\(544\) 60.7145 + 344.329i 0.111607 + 0.632957i
\(545\) 253.831 697.394i 0.465744 1.27962i
\(546\) 0 0
\(547\) 175.350 994.459i 0.320567 1.81802i −0.218588 0.975817i \(-0.570145\pi\)
0.539154 0.842207i \(-0.318744\pi\)
\(548\) −369.793 213.500i −0.674805 0.389599i
\(549\) 0 0
\(550\) 10.5612 + 18.2926i 0.0192022 + 0.0332593i
\(551\) 269.155 + 739.497i 0.488485 + 1.34210i
\(552\) 0 0
\(553\) −29.8701 + 25.0639i −0.0540146 + 0.0453236i
\(554\) 32.7177 + 38.9914i 0.0590572 + 0.0703816i
\(555\) 0 0
\(556\) 338.995 123.384i 0.609704 0.221914i
\(557\) −53.4658 + 30.8685i −0.0959889 + 0.0554192i −0.547226 0.836985i \(-0.684316\pi\)
0.451237 + 0.892404i \(0.350983\pi\)
\(558\) 0 0
\(559\) 179.797 311.418i 0.321641 0.557099i
\(560\) −121.362 21.3994i −0.216718 0.0382132i
\(561\) 0 0
\(562\) 88.2351 + 32.1149i 0.157002 + 0.0571440i
\(563\) 955.335 168.451i 1.69686 0.299203i 0.760267 0.649611i \(-0.225068\pi\)
0.936597 + 0.350408i \(0.113957\pi\)
\(564\) 0 0
\(565\) −379.582 318.507i −0.671827 0.563730i
\(566\) 79.8559i 0.141088i
\(567\) 0 0
\(568\) −385.976 −0.679535
\(569\) 61.7612 73.6041i 0.108543 0.129357i −0.709037 0.705171i \(-0.750870\pi\)
0.817581 + 0.575814i \(0.195315\pi\)
\(570\) 0 0
\(571\) −112.283 636.787i −0.196642 1.11521i −0.910061 0.414475i \(-0.863965\pi\)
0.713419 0.700738i \(-0.247146\pi\)
\(572\) 28.1691 77.3938i 0.0492466 0.135304i
\(573\) 0 0
\(574\) 0.648561 3.67817i 0.00112990 0.00640797i
\(575\) −52.4096 30.2587i −0.0911471 0.0526238i
\(576\) 0 0
\(577\) −126.992 219.957i −0.220091 0.381208i 0.734745 0.678344i \(-0.237302\pi\)
−0.954835 + 0.297136i \(0.903969\pi\)
\(578\) 18.1081 + 49.7516i 0.0313289 + 0.0860755i
\(579\) 0 0
\(580\) −863.450 + 724.520i −1.48871 + 1.24917i
\(581\) −101.634 121.123i −0.174930 0.208474i
\(582\) 0 0
\(583\) 51.8000 18.8537i 0.0888507 0.0323390i
\(584\) 139.583 80.5883i 0.239012 0.137994i
\(585\) 0 0
\(586\) 112.981 195.689i 0.192801 0.333940i
\(587\) 220.174 + 38.8225i 0.375083 + 0.0661372i 0.358012 0.933717i \(-0.383455\pi\)
0.0170710 + 0.999854i \(0.494566\pi\)
\(588\) 0 0
\(589\) 313.557 + 114.125i 0.532354 + 0.193761i
\(590\) 411.700 72.5938i 0.697796 0.123040i
\(591\) 0 0
\(592\) −33.2357 27.8880i −0.0561413 0.0471082i
\(593\) 69.9992i 0.118042i 0.998257 + 0.0590212i \(0.0187980\pi\)
−0.998257 + 0.0590212i \(0.981202\pi\)
\(594\) 0 0
\(595\) 143.903 0.241853
\(596\) −327.038 + 389.748i −0.548721 + 0.653940i
\(597\) 0 0
\(598\) −3.79001 21.4942i −0.00633780 0.0359435i
\(599\) −143.261 + 393.606i −0.239167 + 0.657105i 0.760800 + 0.648986i \(0.224807\pi\)
−0.999967 + 0.00811910i \(0.997416\pi\)
\(600\) 0 0
\(601\) −137.993 + 782.595i −0.229605 + 1.30216i 0.624078 + 0.781362i \(0.285475\pi\)
−0.853683 + 0.520793i \(0.825636\pi\)
\(602\) −11.5514 6.66919i −0.0191883 0.0110784i
\(603\) 0 0
\(604\) −238.742 413.513i −0.395268 0.684624i
\(605\) 314.227 + 863.332i 0.519384 + 1.42700i
\(606\) 0 0
\(607\) 251.711 211.211i 0.414681 0.347959i −0.411454 0.911430i \(-0.634979\pi\)
0.826135 + 0.563472i \(0.190535\pi\)
\(608\) −312.980 372.995i −0.514770 0.613479i
\(609\) 0 0
\(610\) −93.8758 + 34.1680i −0.153895 + 0.0560131i
\(611\) −830.349 + 479.402i −1.35900 + 0.784619i
\(612\) 0 0
\(613\) −367.664 + 636.812i −0.599778 + 1.03885i 0.393076 + 0.919506i \(0.371411\pi\)
−0.992853 + 0.119340i \(0.961922\pi\)
\(614\) −237.632 41.9010i −0.387023 0.0682427i
\(615\) 0 0
\(616\) −6.00704 2.18638i −0.00975169 0.00354932i
\(617\) 331.915 58.5257i 0.537951 0.0948552i 0.101929 0.994792i \(-0.467498\pi\)
0.436021 + 0.899936i \(0.356387\pi\)
\(618\) 0 0
\(619\) 900.806 + 755.866i 1.45526 + 1.22111i 0.928627 + 0.371015i \(0.120990\pi\)
0.526633 + 0.850093i \(0.323454\pi\)
\(620\) 477.928i 0.770851i
\(621\) 0 0
\(622\) −253.977 −0.408323
\(623\) −103.846 + 123.758i −0.166686 + 0.198649i
\(624\) 0 0
\(625\) −57.1109 323.892i −0.0913775 0.518227i
\(626\) 81.8610 224.911i 0.130768 0.359283i
\(627\) 0 0
\(628\) −148.526 + 842.334i −0.236507 + 1.34130i
\(629\) 43.8751 + 25.3313i 0.0697537 + 0.0402723i
\(630\) 0 0
\(631\) 107.380 + 185.988i 0.170175 + 0.294751i 0.938481 0.345332i \(-0.112234\pi\)
−0.768306 + 0.640082i \(0.778900\pi\)
\(632\) −44.5734 122.464i −0.0705276 0.193773i
\(633\) 0 0
\(634\) −182.322 + 152.987i −0.287575 + 0.241304i
\(635\) −815.326 971.668i −1.28398 1.53019i
\(636\) 0 0
\(637\) 928.634 337.995i 1.45782 0.530605i
\(638\) −21.7535 + 12.5594i −0.0340964 + 0.0196855i
\(639\) 0 0
\(640\) 456.222 790.199i 0.712846 1.23469i
\(641\) 979.635 + 172.736i 1.52829 + 0.269479i 0.873685 0.486491i \(-0.161724\pi\)
0.654606 + 0.755970i \(0.272835\pi\)
\(642\) 0 0
\(643\) 797.989 + 290.444i 1.24104 + 0.451702i 0.877365 0.479824i \(-0.159300\pi\)
0.363675 + 0.931526i \(0.381522\pi\)
\(644\) 8.61980 1.51990i 0.0133848 0.00236010i
\(645\) 0 0
\(646\) 122.933 + 103.153i 0.190299 + 0.159680i
\(647\) 350.755i 0.542125i −0.962562 0.271063i \(-0.912625\pi\)
0.962562 0.271063i \(-0.0873751\pi\)
\(648\) 0 0
\(649\) −100.723 −0.155198
\(650\) −264.355 + 315.046i −0.406700 + 0.484687i
\(651\) 0 0
\(652\) 41.8793 + 237.509i 0.0642321 + 0.364278i
\(653\) −96.2871 + 264.547i −0.147453 + 0.405125i −0.991327 0.131417i \(-0.958047\pi\)
0.843874 + 0.536542i \(0.180270\pi\)
\(654\) 0 0
\(655\) 48.8681 277.145i 0.0746078 0.423122i
\(656\) −50.2125 28.9902i −0.0765434 0.0441924i
\(657\) 0 0
\(658\) 17.7824 + 30.8000i 0.0270249 + 0.0468085i
\(659\) −34.4733 94.7146i −0.0523115 0.143725i 0.910785 0.412881i \(-0.135477\pi\)
−0.963097 + 0.269156i \(0.913255\pi\)
\(660\) 0 0
\(661\) −555.119 + 465.801i −0.839818 + 0.704691i −0.957523 0.288358i \(-0.906891\pi\)
0.117705 + 0.993049i \(0.462446\pi\)
\(662\) 122.558 + 146.059i 0.185133 + 0.220633i
\(663\) 0 0
\(664\) 496.594 180.745i 0.747882 0.272207i
\(665\) −173.551 + 100.199i −0.260978 + 0.150676i
\(666\) 0 0
\(667\) 35.9835 62.3252i 0.0539483 0.0934412i
\(668\) −604.202 106.537i −0.904494 0.159487i
\(669\) 0 0
\(670\) −81.8810 29.8022i −0.122210 0.0444810i
\(671\) 23.7039 4.17964i 0.0353263 0.00622898i
\(672\) 0 0
\(673\) 313.428 + 262.997i 0.465717 + 0.390783i 0.845229 0.534404i \(-0.179464\pi\)
−0.379512 + 0.925187i \(0.623908\pi\)
\(674\) 327.399i 0.485755i
\(675\) 0 0
\(676\) 984.833 1.45685
\(677\) 217.703 259.448i 0.321570 0.383232i −0.580907 0.813970i \(-0.697302\pi\)
0.902477 + 0.430738i \(0.141747\pi\)
\(678\) 0 0
\(679\) −2.23184 12.6574i −0.00328695 0.0186412i
\(680\) −164.499 + 451.956i −0.241910 + 0.664642i
\(681\) 0 0
\(682\) −1.84947 + 10.4889i −0.00271183 + 0.0153796i
\(683\) 269.651 + 155.683i 0.394804 + 0.227940i 0.684239 0.729257i \(-0.260134\pi\)
−0.289436 + 0.957197i \(0.593468\pi\)
\(684\) 0 0
\(685\) −447.024 774.268i −0.652590 1.13032i
\(686\) −25.5468 70.1893i −0.0372403 0.102317i
\(687\) 0 0
\(688\) −158.620 + 133.098i −0.230552 + 0.193456i
\(689\) 689.901 + 822.192i 1.00131 + 1.19331i
\(690\) 0 0
\(691\) −777.773 + 283.086i −1.12558 + 0.409676i −0.836684 0.547686i \(-0.815509\pi\)
−0.288891 + 0.957362i \(0.593287\pi\)
\(692\) 842.537 486.439i 1.21754 0.702947i
\(693\) 0 0
\(694\) −70.9733 + 122.929i −0.102267 + 0.177132i
\(695\) 743.861 + 131.163i 1.07030 + 0.188723i
\(696\) 0 0
\(697\) 63.6215 + 23.1563i 0.0912791 + 0.0332229i
\(698\) −211.634 + 37.3168i −0.303201 + 0.0534625i
\(699\) 0 0
\(700\) −126.343 106.014i −0.180490 0.151449i
\(701\) 215.718i 0.307729i 0.988092 + 0.153864i \(0.0491718\pi\)
−0.988092 + 0.153864i \(0.950828\pi\)
\(702\) 0 0
\(703\) −70.5529 −0.100360
\(704\) −23.3141 + 27.7847i −0.0331166 + 0.0394669i
\(705\) 0 0
\(706\) 9.49079 + 53.8250i 0.0134430 + 0.0762393i
\(707\) −1.75939 + 4.83389i −0.00248853 + 0.00683718i
\(708\) 0 0
\(709\) 179.173 1016.14i 0.252712 1.43320i −0.549167 0.835713i \(-0.685055\pi\)
0.801878 0.597487i \(-0.203834\pi\)
\(710\) −334.472 193.107i −0.471087 0.271982i
\(711\) 0 0
\(712\) −269.981 467.620i −0.379186 0.656770i
\(713\) −10.4367 28.6747i −0.0146378 0.0402169i
\(714\) 0 0
\(715\) 132.101 110.846i 0.184757 0.155030i
\(716\) 580.322 + 691.601i 0.810506 + 0.965924i
\(717\) 0 0
\(718\) −56.5267 + 20.5740i −0.0787280 + 0.0286546i
\(719\) −539.953 + 311.742i −0.750978 + 0.433578i −0.826047 0.563601i \(-0.809416\pi\)
0.0750689 + 0.997178i \(0.476082\pi\)
\(720\) 0 0
\(721\) −81.6768 + 141.468i −0.113283 + 0.196211i
\(722\) −13.1979 2.32714i −0.0182796 0.00322319i
\(723\) 0 0
\(724\) 4.61527 + 1.67982i 0.00637469 + 0.00232020i
\(725\) −1335.47 + 235.480i −1.84203 + 0.324800i
\(726\) 0 0
\(727\) −575.569 482.959i −0.791704 0.664318i 0.154463 0.987999i \(-0.450635\pi\)
−0.946167 + 0.323680i \(0.895080\pi\)
\(728\) 124.466i 0.170970i
\(729\) 0 0
\(730\) 161.276 0.220926
\(731\) 155.420 185.223i 0.212614 0.253383i
\(732\) 0 0
\(733\) 130.291 + 738.919i 0.177751 + 1.00807i 0.934921 + 0.354857i \(0.115470\pi\)
−0.757170 + 0.653218i \(0.773419\pi\)
\(734\) 18.0478 49.5860i 0.0245883 0.0675558i
\(735\) 0 0
\(736\) −7.73218 + 43.8514i −0.0105057 + 0.0595807i
\(737\) 18.1815 + 10.4971i 0.0246696 + 0.0142430i
\(738\) 0 0
\(739\) 676.597 + 1171.90i 0.915557 + 1.58579i 0.806083 + 0.591802i \(0.201583\pi\)
0.109474 + 0.993990i \(0.465083\pi\)
\(740\) −34.5620 94.9583i −0.0467054 0.128322i
\(741\) 0 0
\(742\) 30.4974 25.5904i 0.0411017 0.0344884i
\(743\) −545.577 650.194i −0.734290 0.875092i 0.261646 0.965164i \(-0.415735\pi\)
−0.995935 + 0.0900717i \(0.971290\pi\)
\(744\) 0 0
\(745\) −1001.03 + 364.346i −1.34367 + 0.489056i
\(746\) 218.194 125.975i 0.292486 0.168867i
\(747\) 0 0
\(748\) 27.6897 47.9599i 0.0370183 0.0641175i
\(749\) 105.200 + 18.5497i 0.140455 + 0.0247659i
\(750\) 0 0
\(751\) −757.303 275.636i −1.00839 0.367025i −0.215577 0.976487i \(-0.569163\pi\)
−0.792816 + 0.609462i \(0.791386\pi\)
\(752\) 543.715 95.8717i 0.723026 0.127489i
\(753\) 0 0
\(754\) −374.652 314.370i −0.496886 0.416936i
\(755\) 999.749i 1.32417i
\(756\) 0 0
\(757\) −171.631 −0.226725 −0.113363 0.993554i \(-0.536162\pi\)
−0.113363 + 0.993554i \(0.536162\pi\)
\(758\) 124.825 148.761i 0.164677 0.196254i
\(759\) 0 0
\(760\) −116.308 659.613i −0.153036 0.867912i
\(761\) 462.136 1269.71i 0.607275 1.66847i −0.128880 0.991660i \(-0.541138\pi\)
0.736154 0.676814i \(-0.236640\pi\)
\(762\) 0 0
\(763\) −22.4248 + 127.178i −0.0293904 + 0.166681i
\(764\) −147.255 85.0178i −0.192742 0.111280i
\(765\) 0 0
\(766\) 173.100 + 299.818i 0.225979 + 0.391407i
\(767\) −670.746 1842.86i −0.874506 2.40268i
\(768\) 0 0
\(769\) 770.979 646.928i 1.00257 0.841259i 0.0152349 0.999884i \(-0.495150\pi\)
0.987339 + 0.158625i \(0.0507060\pi\)
\(770\) −4.11159 4.90001i −0.00533973 0.00636365i
\(771\) 0 0
\(772\) 490.123 178.390i 0.634874 0.231075i
\(773\) −24.6722 + 14.2445i −0.0319175 + 0.0184276i −0.515874 0.856665i \(-0.672533\pi\)
0.483956 + 0.875092i \(0.339199\pi\)
\(774\) 0 0
\(775\) −287.497 + 497.960i −0.370964 + 0.642528i
\(776\) 42.3045 + 7.45943i 0.0545161 + 0.00961266i
\(777\) 0 0
\(778\) −169.579 61.7219i −0.217968 0.0793340i
\(779\) −92.8532 + 16.3725i −0.119195 + 0.0210174i
\(780\) 0 0
\(781\) 71.2827 + 59.8133i 0.0912710 + 0.0765855i
\(782\) 14.6756i 0.0187668i
\(783\) 0 0
\(784\) −569.048 −0.725827
\(785\) −1151.15 + 1371.89i −1.46644 + 1.74763i
\(786\) 0 0
\(787\) 34.7237 + 196.928i 0.0441216 + 0.250226i 0.998889 0.0471280i \(-0.0150069\pi\)
−0.954767 + 0.297354i \(0.903896\pi\)
\(788\) −67.7357 + 186.102i −0.0859590 + 0.236170i
\(789\) 0 0
\(790\) 22.6445 128.423i 0.0286639 0.162561i
\(791\) 74.6706 + 43.1111i 0.0944002 + 0.0545020i
\(792\) 0 0
\(793\) 234.323 + 405.859i 0.295489 + 0.511802i
\(794\) 27.4797 + 75.4997i 0.0346091 + 0.0950878i
\(795\) 0 0
\(796\) 922.411 773.995i 1.15881 0.972356i
\(797\) 675.871 + 805.471i 0.848018 + 1.01063i 0.999753 + 0.0222076i \(0.00706948\pi\)
−0.151735 + 0.988421i \(0.548486\pi\)
\(798\) 0 0
\(799\) −605.819 + 220.500i −0.758222 + 0.275970i
\(800\) 726.630 419.520i 0.908287 0.524400i
\(801\) 0 0
\(802\) −78.8807 + 136.625i −0.0983550 + 0.170356i
\(803\) −38.2669 6.74748i −0.0476549 0.00840284i
\(804\) 0 0
\(805\) 17.2212 + 6.26801i 0.0213928 + 0.00778635i
\(806\) −204.223 + 36.0100i −0.253378 + 0.0446774i
\(807\) 0 0
\(808\) −13.1706 11.0515i −0.0163003 0.0136776i
\(809\) 482.349i 0.596229i 0.954530 + 0.298114i \(0.0963577\pi\)
−0.954530 + 0.298114i \(0.903642\pi\)
\(810\) 0 0
\(811\) −1202.48 −1.48272 −0.741358 0.671110i \(-0.765818\pi\)
−0.741358 + 0.671110i \(0.765818\pi\)
\(812\) 126.072 150.246i 0.155261 0.185032i
\(813\) 0 0
\(814\) −0.391050 2.21775i −0.000480405 0.00272451i
\(815\) −172.708 + 474.512i −0.211912 + 0.582224i
\(816\) 0 0
\(817\) −58.4707 + 331.604i −0.0715675 + 0.405880i
\(818\) 146.148 + 84.3786i 0.178665 + 0.103152i
\(819\) 0 0
\(820\) −67.5224 116.952i −0.0823444 0.142625i
\(821\) −443.863 1219.50i −0.540637 1.48539i −0.846016 0.533157i \(-0.821006\pi\)
0.305380 0.952231i \(-0.401217\pi\)
\(822\) 0 0
\(823\) 810.125 679.776i 0.984356 0.825973i −0.000384609 1.00000i \(-0.500122\pi\)
0.984741 + 0.174027i \(0.0556780\pi\)
\(824\) −350.944 418.239i −0.425903 0.507572i
\(825\) 0 0
\(826\) −68.3568 + 24.8799i −0.0827565 + 0.0301209i
\(827\) 767.759 443.266i 0.928367 0.535993i 0.0420722 0.999115i \(-0.486604\pi\)
0.886295 + 0.463122i \(0.153271\pi\)
\(828\) 0 0
\(829\) −406.625 + 704.295i −0.490500 + 0.849572i −0.999940 0.0109347i \(-0.996519\pi\)
0.509440 + 0.860506i \(0.329853\pi\)
\(830\) 520.757 + 91.8235i 0.627418 + 0.110631i
\(831\) 0 0
\(832\) −663.610 241.534i −0.797608 0.290306i
\(833\) 654.391 115.387i 0.785584 0.138520i
\(834\) 0 0
\(835\) −984.050 825.716i −1.17850 0.988881i
\(836\) 77.1214i 0.0922505i
\(837\) 0 0
\(838\) 195.119 0.232839
\(839\) −960.723 + 1144.94i −1.14508 + 1.36465i −0.224325 + 0.974514i \(0.572018\pi\)
−0.920756 + 0.390140i \(0.872427\pi\)
\(840\) 0 0
\(841\) −133.994 759.917i −0.159327 0.903588i
\(842\) −120.043 + 329.816i −0.142569 + 0.391706i
\(843\) 0 0
\(844\) 60.2525 341.709i 0.0713892 0.404868i
\(845\) 1785.77 + 1031.02i 2.11334 + 1.22014i
\(846\) 0 0
\(847\) −79.9335 138.449i −0.0943725 0.163458i
\(848\) −211.379 580.758i −0.249267 0.684856i
\(849\) 0 0
\(850\) −211.837 + 177.752i −0.249220 + 0.209120i
\(851\) 4.14729 + 4.94255i 0.00487344 + 0.00580793i
\(852\) 0 0
\(853\) 786.440 286.241i 0.921969 0.335569i 0.162947 0.986635i \(-0.447900\pi\)
0.759022 + 0.651065i \(0.225678\pi\)
\(854\) 15.0545 8.69169i 0.0176282 0.0101776i
\(855\) 0 0
\(856\) −178.517 + 309.200i −0.208547 + 0.361215i
\(857\) −781.650 137.826i −0.912077 0.160824i −0.302131 0.953266i \(-0.597698\pi\)
−0.609947 + 0.792443i \(0.708809\pi\)
\(858\) 0 0
\(859\) 925.160 + 336.731i 1.07702 + 0.392003i 0.818798 0.574082i \(-0.194641\pi\)
0.258222 + 0.966086i \(0.416863\pi\)
\(860\) −474.954 + 83.7472i −0.552272 + 0.0973805i
\(861\) 0 0
\(862\) 344.840 + 289.355i 0.400046 + 0.335679i
\(863\) 217.563i 0.252101i 0.992024 + 0.126050i \(0.0402301\pi\)
−0.992024 + 0.126050i \(0.959770\pi\)
\(864\) 0 0
\(865\) 2037.00 2.35491
\(866\) 26.8055 31.9455i 0.0309532 0.0368886i
\(867\) 0 0
\(868\) −14.4411 81.8994i −0.0166372 0.0943541i
\(869\) −10.7460 + 29.5243i −0.0123659 + 0.0339750i
\(870\) 0 0
\(871\) −70.9814 + 402.555i −0.0814941 + 0.462176i
\(872\) −373.794 215.810i −0.428663 0.247489i
\(873\) 0 0
\(874\) 10.2187 + 17.6992i 0.0116918 + 0.0202508i
\(875\) −30.6694 84.2634i −0.0350507 0.0963010i
\(876\) 0 0
\(877\) −237.821 + 199.556i −0.271176 + 0.227544i −0.768227 0.640178i \(-0.778861\pi\)
0.497051 + 0.867721i \(0.334416\pi\)
\(878\) 256.199 + 305.326i 0.291798 + 0.347752i
\(879\) 0 0
\(880\) −93.3102 + 33.9621i −0.106034 + 0.0385933i
\(881\) −1349.01 + 778.850i −1.53122 + 0.884053i −0.531918 + 0.846796i \(0.678529\pi\)
−0.999306 + 0.0372567i \(0.988138\pi\)
\(882\) 0 0
\(883\) 412.908 715.177i 0.467619 0.809940i −0.531696 0.846935i \(-0.678445\pi\)
0.999315 + 0.0369949i \(0.0117785\pi\)
\(884\) 1061.88 + 187.238i 1.20122 + 0.211808i
\(885\) 0 0
\(886\) 248.990 + 90.6250i 0.281027 + 0.102286i
\(887\) −402.913 + 71.0445i −0.454243 + 0.0800953i −0.396089 0.918212i \(-0.629633\pi\)
−0.0581543 + 0.998308i \(0.518522\pi\)
\(888\) 0 0
\(889\) 169.077 + 141.872i 0.190188 + 0.159587i
\(890\) 540.295i 0.607073i
\(891\) 0 0
\(892\) −297.542 −0.333568
\(893\) 577.101 687.762i 0.646250 0.770171i
\(894\) 0 0
\(895\) 328.250 + 1861.60i 0.366760 + 2.08000i
\(896\) −54.3031 + 149.196i −0.0606061 + 0.166514i
\(897\) 0 0
\(898\) 53.2890 302.217i 0.0593419 0.336545i
\(899\) −592.171 341.890i −0.658700 0.380301i
\(900\) 0 0
\(901\) 360.842 + 624.996i 0.400490 + 0.693669i
\(902\) −1.02931 2.82799i −0.00114114 0.00313525i
\(903\) 0 0
\(904\) −220.757 + 185.237i −0.244201 + 0.204909i
\(905\) 6.61015 + 7.87768i 0.00730404 + 0.00870461i
\(906\) 0 0
\(907\) −370.613 + 134.892i −0.408614 + 0.148723i −0.538145 0.842852i \(-0.680875\pi\)
0.129532 + 0.991575i \(0.458653\pi\)
\(908\) 532.041 307.174i 0.585948 0.338297i
\(909\) 0 0
\(910\) 62.2714 107.857i 0.0684301 0.118524i
\(911\) 217.128 + 38.2855i 0.238340 + 0.0420258i 0.291542 0.956558i \(-0.405832\pi\)
−0.0532022 + 0.998584i \(0.516943\pi\)
\(912\) 0 0
\(913\) −119.721 43.5749i −0.131129 0.0477272i
\(914\) −84.2931 + 14.8631i −0.0922244 + 0.0162617i
\(915\) 0 0
\(916\) 205.935 + 172.800i 0.224820 + 0.188647i
\(917\) 48.9691i 0.0534014i
\(918\) 0 0
\(919\) −873.180 −0.950142 −0.475071 0.879948i \(-0.657578\pi\)
−0.475071 + 0.879948i \(0.657578\pi\)
\(920\) −39.3720 + 46.9218i −0.0427957 + 0.0510019i
\(921\) 0 0
\(922\) −36.1755 205.161i −0.0392359 0.222518i
\(923\) −619.665 + 1702.52i −0.671360 + 1.84455i
\(924\) 0 0
\(925\) 21.1115 119.729i 0.0228232 0.129437i
\(926\) 206.523 + 119.236i 0.223027 + 0.128765i
\(927\) 0 0
\(928\) 498.891 + 864.105i 0.537598 + 0.931147i
\(929\) −13.2277 36.3427i −0.0142386 0.0391202i 0.932370 0.361506i \(-0.117737\pi\)
−0.946608 + 0.322386i \(0.895515\pi\)
\(930\) 0 0
\(931\) −708.871 + 594.813i −0.761408 + 0.638897i
\(932\) 432.202 + 515.078i 0.463736 + 0.552659i
\(933\) 0 0
\(934\) 491.858 179.022i 0.526614 0.191672i
\(935\) 100.418 57.9763i 0.107399 0.0620067i
\(936\) 0 0
\(937\) 402.676 697.456i 0.429750 0.744350i −0.567100 0.823649i \(-0.691935\pi\)
0.996851 + 0.0792991i \(0.0252682\pi\)
\(938\) 14.9319 + 2.63290i 0.0159189 + 0.00280693i
\(939\) 0 0
\(940\) 1208.38 + 439.813i 1.28551 + 0.467887i
\(941\) −1320.90 + 232.910i −1.40372 + 0.247513i −0.823670 0.567070i \(-0.808077\pi\)
−0.580047 + 0.814583i \(0.696966\pi\)
\(942\) 0 0
\(943\) 6.60514 + 5.54237i 0.00700439 + 0.00587738i
\(944\) 1129.27i 1.19626i
\(945\) 0 0
\(946\) −10.7477 −0.0113612
\(947\) −379.824 + 452.656i −0.401081 + 0.477990i −0.928349 0.371709i \(-0.878772\pi\)
0.527268 + 0.849699i \(0.323216\pi\)
\(948\) 0 0
\(949\) −131.376 745.072i −0.138437 0.785113i
\(950\) 131.712 361.877i 0.138645 0.380923i
\(951\) 0 0
\(952\) 14.5327 82.4193i 0.0152655 0.0865749i
\(953\) 314.082 + 181.335i 0.329572 + 0.190278i 0.655651 0.755064i \(-0.272394\pi\)
−0.326079 + 0.945342i \(0.605728\pi\)
\(954\) 0 0
\(955\) −178.009 308.321i −0.186397 0.322849i
\(956\) 11.0821 + 30.4477i 0.0115921 + 0.0318491i
\(957\) 0 0
\(958\) −372.374 + 312.459i −0.388699 + 0.326157i
\(959\) 99.9989 + 119.174i 0.104274 + 0.124269i
\(960\) 0 0
\(961\) 630.598 229.519i 0.656189 0.238833i
\(962\) 37.9724 21.9234i 0.0394724 0.0227894i
\(963\) 0 0
\(964\) 29.1339 50.4614i 0.0302219 0.0523458i
\(965\) 1075.48 + 189.636i 1.11449 + 0.196514i
\(966\) 0 0
\(967\) −27.9723 10.1811i −0.0289269 0.0105285i 0.327516 0.944846i \(-0.393788\pi\)
−0.356443 + 0.934317i \(0.616011\pi\)
\(968\) 526.202 92.7836i 0.543597 0.0958509i
\(969\) 0 0
\(970\) 32.9274 + 27.6294i 0.0339458 + 0.0284839i
\(971\) 1095.66i 1.12839i −0.825643 0.564193i \(-0.809188\pi\)
0.825643 0.564193i \(-0.190812\pi\)
\(972\) 0 0
\(973\) −131.434 −0.135081
\(974\) −225.061 + 268.218i −0.231069 + 0.275377i
\(975\) 0 0
\(976\) −46.8603 265.758i −0.0480126 0.272293i
\(977\) 212.328 583.365i 0.217326 0.597099i −0.782342 0.622849i \(-0.785975\pi\)
0.999668 + 0.0257502i \(0.00819743\pi\)
\(978\) 0 0
\(979\) −22.6049 + 128.199i −0.0230898 + 0.130949i
\(980\) −1147.83 662.698i −1.17125 0.676222i
\(981\) 0 0
\(982\) −124.752 216.076i −0.127038 0.220037i
\(983\) 207.764 + 570.827i 0.211357 + 0.580699i 0.999390 0.0349345i \(-0.0111223\pi\)
−0.788032 + 0.615634i \(0.788900\pi\)
\(984\) 0 0
\(985\) −317.653 + 266.542i −0.322490 + 0.270601i
\(986\) −211.382 251.916i −0.214384 0.255492i
\(987\) 0 0
\(988\) −1411.03 + 513.573i −1.42817 + 0.519811i
\(989\) 26.6674 15.3964i 0.0269640 0.0155677i
\(990\) 0 0
\(991\) 269.816 467.335i 0.272266 0.471579i −0.697176 0.716900i \(-0.745560\pi\)
0.969442 + 0.245322i \(0.0788935\pi\)
\(992\) 416.645 + 73.4658i 0.420005 + 0.0740583i
\(993\) 0 0
\(994\) 63.1511 + 22.9851i 0.0635323 + 0.0231239i
\(995\) 2482.87 437.798i 2.49535 0.439998i
\(996\) 0 0
\(997\) 508.600 + 426.766i 0.510130 + 0.428050i 0.861175 0.508309i \(-0.169729\pi\)
−0.351045 + 0.936359i \(0.614174\pi\)
\(998\) 330.950i 0.331613i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.3.f.a.35.3 30
3.2 odd 2 27.3.f.a.11.3 yes 30
9.2 odd 6 243.3.f.c.26.3 30
9.4 even 3 243.3.f.a.188.3 30
9.5 odd 6 243.3.f.d.188.3 30
9.7 even 3 243.3.f.b.26.3 30
12.11 even 2 432.3.bc.a.65.2 30
27.4 even 9 243.3.f.c.215.3 30
27.5 odd 18 inner 81.3.f.a.44.3 30
27.7 even 9 729.3.b.a.728.13 30
27.13 even 9 243.3.f.d.53.3 30
27.14 odd 18 243.3.f.a.53.3 30
27.20 odd 18 729.3.b.a.728.18 30
27.22 even 9 27.3.f.a.5.3 30
27.23 odd 18 243.3.f.b.215.3 30
108.103 odd 18 432.3.bc.a.113.2 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.3 30 27.22 even 9
27.3.f.a.11.3 yes 30 3.2 odd 2
81.3.f.a.35.3 30 1.1 even 1 trivial
81.3.f.a.44.3 30 27.5 odd 18 inner
243.3.f.a.53.3 30 27.14 odd 18
243.3.f.a.188.3 30 9.4 even 3
243.3.f.b.26.3 30 9.7 even 3
243.3.f.b.215.3 30 27.23 odd 18
243.3.f.c.26.3 30 9.2 odd 6
243.3.f.c.215.3 30 27.4 even 9
243.3.f.d.53.3 30 27.13 even 9
243.3.f.d.188.3 30 9.5 odd 6
432.3.bc.a.65.2 30 12.11 even 2
432.3.bc.a.113.2 30 108.103 odd 18
729.3.b.a.728.13 30 27.7 even 9
729.3.b.a.728.18 30 27.20 odd 18