Properties

Label 729.3.b.a.728.13
Level $729$
Weight $3$
Character 729.728
Analytic conductor $19.864$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,3,Mod(728,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.728");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 729.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8638112719\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 728.13
Character \(\chi\) \(=\) 729.728
Dual form 729.3.b.a.728.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.581939i q^{2} +3.66135 q^{4} -7.66608i q^{5} +1.33395 q^{7} -4.45844i q^{8} -4.46119 q^{10} +1.07486i q^{11} +20.9280 q^{13} -0.776278i q^{14} +12.0509 q^{16} +14.0720i q^{17} +19.5967 q^{19} -28.0682i q^{20} +0.625503 q^{22} -1.79211i q^{23} -33.7688 q^{25} -12.1788i q^{26} +4.88406 q^{28} -40.1577i q^{29} -17.0274 q^{31} -24.8466i q^{32} +8.18903 q^{34} -10.2262i q^{35} -3.60025 q^{37} -11.4041i q^{38} -34.1787 q^{40} +4.81131i q^{41} -17.1825 q^{43} +3.93544i q^{44} -1.04290 q^{46} -45.8144i q^{47} -47.2206 q^{49} +19.6514i q^{50} +76.6247 q^{52} +51.2852i q^{53} +8.23996 q^{55} -5.94734i q^{56} -23.3693 q^{58} +93.7084i q^{59} -22.3932 q^{61} +9.90890i q^{62} +33.7442 q^{64} -160.436i q^{65} -19.5320 q^{67} +51.5224i q^{68} -5.95101 q^{70} -86.5721i q^{71} -36.1509 q^{73} +2.09513i q^{74} +71.7502 q^{76} +1.43381i q^{77} -29.2309 q^{79} -92.3828i q^{80} +2.79989 q^{82} -118.531i q^{83} +107.877 q^{85} +9.99915i q^{86} +4.79219 q^{88} +121.110i q^{89} +27.9169 q^{91} -6.56154i q^{92} -26.6612 q^{94} -150.230i q^{95} -9.63502 q^{97} +27.4795i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 48 q^{4} + 6 q^{10} + 48 q^{16} + 6 q^{19} - 24 q^{22} - 30 q^{25} - 12 q^{28} + 6 q^{37} - 24 q^{40} + 6 q^{46} - 42 q^{49} + 96 q^{52} - 12 q^{55} + 48 q^{58} + 18 q^{61} + 102 q^{64} - 90 q^{67}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.581939i − 0.290969i −0.989361 0.145485i \(-0.953526\pi\)
0.989361 0.145485i \(-0.0464742\pi\)
\(3\) 0 0
\(4\) 3.66135 0.915337
\(5\) − 7.66608i − 1.53322i −0.642115 0.766608i \(-0.721943\pi\)
0.642115 0.766608i \(-0.278057\pi\)
\(6\) 0 0
\(7\) 1.33395 0.190565 0.0952823 0.995450i \(-0.469625\pi\)
0.0952823 + 0.995450i \(0.469625\pi\)
\(8\) − 4.45844i − 0.557304i
\(9\) 0 0
\(10\) −4.46119 −0.446119
\(11\) 1.07486i 0.0977146i 0.998806 + 0.0488573i \(0.0155579\pi\)
−0.998806 + 0.0488573i \(0.984442\pi\)
\(12\) 0 0
\(13\) 20.9280 1.60985 0.804923 0.593379i \(-0.202207\pi\)
0.804923 + 0.593379i \(0.202207\pi\)
\(14\) − 0.776278i − 0.0554485i
\(15\) 0 0
\(16\) 12.0509 0.753178
\(17\) 14.0720i 0.827763i 0.910331 + 0.413881i \(0.135827\pi\)
−0.910331 + 0.413881i \(0.864173\pi\)
\(18\) 0 0
\(19\) 19.5967 1.03140 0.515702 0.856768i \(-0.327531\pi\)
0.515702 + 0.856768i \(0.327531\pi\)
\(20\) − 28.0682i − 1.40341i
\(21\) 0 0
\(22\) 0.625503 0.0284319
\(23\) − 1.79211i − 0.0779178i −0.999241 0.0389589i \(-0.987596\pi\)
0.999241 0.0389589i \(-0.0124041\pi\)
\(24\) 0 0
\(25\) −33.7688 −1.35075
\(26\) − 12.1788i − 0.468416i
\(27\) 0 0
\(28\) 4.88406 0.174431
\(29\) − 40.1577i − 1.38475i −0.721539 0.692374i \(-0.756565\pi\)
0.721539 0.692374i \(-0.243435\pi\)
\(30\) 0 0
\(31\) −17.0274 −0.549271 −0.274635 0.961548i \(-0.588557\pi\)
−0.274635 + 0.961548i \(0.588557\pi\)
\(32\) − 24.8466i − 0.776456i
\(33\) 0 0
\(34\) 8.18903 0.240854
\(35\) − 10.2262i − 0.292177i
\(36\) 0 0
\(37\) −3.60025 −0.0973040 −0.0486520 0.998816i \(-0.515493\pi\)
−0.0486520 + 0.998816i \(0.515493\pi\)
\(38\) − 11.4041i − 0.300107i
\(39\) 0 0
\(40\) −34.1787 −0.854468
\(41\) 4.81131i 0.117349i 0.998277 + 0.0586745i \(0.0186874\pi\)
−0.998277 + 0.0586745i \(0.981313\pi\)
\(42\) 0 0
\(43\) −17.1825 −0.399593 −0.199796 0.979837i \(-0.564028\pi\)
−0.199796 + 0.979837i \(0.564028\pi\)
\(44\) 3.93544i 0.0894417i
\(45\) 0 0
\(46\) −1.04290 −0.0226717
\(47\) − 45.8144i − 0.974775i −0.873186 0.487388i \(-0.837950\pi\)
0.873186 0.487388i \(-0.162050\pi\)
\(48\) 0 0
\(49\) −47.2206 −0.963685
\(50\) 19.6514i 0.393027i
\(51\) 0 0
\(52\) 76.6247 1.47355
\(53\) 51.2852i 0.967645i 0.875166 + 0.483822i \(0.160752\pi\)
−0.875166 + 0.483822i \(0.839248\pi\)
\(54\) 0 0
\(55\) 8.23996 0.149818
\(56\) − 5.94734i − 0.106202i
\(57\) 0 0
\(58\) −23.3693 −0.402919
\(59\) 93.7084i 1.58828i 0.607736 + 0.794139i \(0.292078\pi\)
−0.607736 + 0.794139i \(0.707922\pi\)
\(60\) 0 0
\(61\) −22.3932 −0.367102 −0.183551 0.983010i \(-0.558759\pi\)
−0.183551 + 0.983010i \(0.558759\pi\)
\(62\) 9.90890i 0.159821i
\(63\) 0 0
\(64\) 33.7442 0.527253
\(65\) − 160.436i − 2.46824i
\(66\) 0 0
\(67\) −19.5320 −0.291522 −0.145761 0.989320i \(-0.546563\pi\)
−0.145761 + 0.989320i \(0.546563\pi\)
\(68\) 51.5224i 0.757682i
\(69\) 0 0
\(70\) −5.95101 −0.0850145
\(71\) − 86.5721i − 1.21933i −0.792661 0.609663i \(-0.791305\pi\)
0.792661 0.609663i \(-0.208695\pi\)
\(72\) 0 0
\(73\) −36.1509 −0.495218 −0.247609 0.968860i \(-0.579645\pi\)
−0.247609 + 0.968860i \(0.579645\pi\)
\(74\) 2.09513i 0.0283125i
\(75\) 0 0
\(76\) 71.7502 0.944081
\(77\) 1.43381i 0.0186209i
\(78\) 0 0
\(79\) −29.2309 −0.370011 −0.185006 0.982737i \(-0.559230\pi\)
−0.185006 + 0.982737i \(0.559230\pi\)
\(80\) − 92.3828i − 1.15479i
\(81\) 0 0
\(82\) 2.79989 0.0341450
\(83\) − 118.531i − 1.42809i −0.700101 0.714044i \(-0.746862\pi\)
0.700101 0.714044i \(-0.253138\pi\)
\(84\) 0 0
\(85\) 107.877 1.26914
\(86\) 9.99915i 0.116269i
\(87\) 0 0
\(88\) 4.79219 0.0544568
\(89\) 121.110i 1.36079i 0.732847 + 0.680394i \(0.238191\pi\)
−0.732847 + 0.680394i \(0.761809\pi\)
\(90\) 0 0
\(91\) 27.9169 0.306780
\(92\) − 6.56154i − 0.0713211i
\(93\) 0 0
\(94\) −26.6612 −0.283630
\(95\) − 150.230i − 1.58136i
\(96\) 0 0
\(97\) −9.63502 −0.0993301 −0.0496651 0.998766i \(-0.515815\pi\)
−0.0496651 + 0.998766i \(0.515815\pi\)
\(98\) 27.4795i 0.280403i
\(99\) 0 0
\(100\) −123.639 −1.23639
\(101\) − 3.85630i − 0.0381812i −0.999818 0.0190906i \(-0.993923\pi\)
0.999818 0.0190906i \(-0.00607709\pi\)
\(102\) 0 0
\(103\) 122.458 1.18892 0.594458 0.804127i \(-0.297367\pi\)
0.594458 + 0.804127i \(0.297367\pi\)
\(104\) − 93.3061i − 0.897174i
\(105\) 0 0
\(106\) 29.8448 0.281555
\(107\) 80.0804i 0.748415i 0.927345 + 0.374207i \(0.122085\pi\)
−0.927345 + 0.374207i \(0.877915\pi\)
\(108\) 0 0
\(109\) −96.8098 −0.888163 −0.444081 0.895986i \(-0.646470\pi\)
−0.444081 + 0.895986i \(0.646470\pi\)
\(110\) − 4.79516i − 0.0435923i
\(111\) 0 0
\(112\) 16.0753 0.143529
\(113\) − 64.6366i − 0.572005i −0.958229 0.286003i \(-0.907673\pi\)
0.958229 0.286003i \(-0.0923266\pi\)
\(114\) 0 0
\(115\) −13.7385 −0.119465
\(116\) − 147.031i − 1.26751i
\(117\) 0 0
\(118\) 54.5326 0.462140
\(119\) 18.7713i 0.157742i
\(120\) 0 0
\(121\) 119.845 0.990452
\(122\) 13.0315i 0.106816i
\(123\) 0 0
\(124\) −62.3432 −0.502768
\(125\) 67.2222i 0.537778i
\(126\) 0 0
\(127\) 165.459 1.30283 0.651414 0.758723i \(-0.274176\pi\)
0.651414 + 0.758723i \(0.274176\pi\)
\(128\) − 119.023i − 0.929871i
\(129\) 0 0
\(130\) −93.3638 −0.718183
\(131\) 36.7098i 0.280227i 0.990135 + 0.140114i \(0.0447468\pi\)
−0.990135 + 0.140114i \(0.955253\pi\)
\(132\) 0 0
\(133\) 26.1410 0.196549
\(134\) 11.3664i 0.0848241i
\(135\) 0 0
\(136\) 62.7390 0.461316
\(137\) 116.624i 0.851269i 0.904895 + 0.425635i \(0.139949\pi\)
−0.904895 + 0.425635i \(0.860051\pi\)
\(138\) 0 0
\(139\) −98.5297 −0.708847 −0.354423 0.935085i \(-0.615323\pi\)
−0.354423 + 0.935085i \(0.615323\pi\)
\(140\) − 37.4416i − 0.267440i
\(141\) 0 0
\(142\) −50.3797 −0.354786
\(143\) 22.4947i 0.157305i
\(144\) 0 0
\(145\) −307.852 −2.12312
\(146\) 21.0376i 0.144093i
\(147\) 0 0
\(148\) −13.1818 −0.0890660
\(149\) 138.960i 0.932617i 0.884622 + 0.466308i \(0.154416\pi\)
−0.884622 + 0.466308i \(0.845584\pi\)
\(150\) 0 0
\(151\) 130.412 0.863655 0.431828 0.901956i \(-0.357869\pi\)
0.431828 + 0.901956i \(0.357869\pi\)
\(152\) − 87.3704i − 0.574805i
\(153\) 0 0
\(154\) 0.834391 0.00541812
\(155\) 130.533i 0.842150i
\(156\) 0 0
\(157\) −233.610 −1.48796 −0.743982 0.668200i \(-0.767065\pi\)
−0.743982 + 0.668200i \(0.767065\pi\)
\(158\) 17.0106i 0.107662i
\(159\) 0 0
\(160\) −190.476 −1.19048
\(161\) − 2.39059i − 0.0148484i
\(162\) 0 0
\(163\) 65.8701 0.404111 0.202056 0.979374i \(-0.435238\pi\)
0.202056 + 0.979374i \(0.435238\pi\)
\(164\) 17.6159i 0.107414i
\(165\) 0 0
\(166\) −68.9780 −0.415530
\(167\) − 167.568i − 1.00340i −0.865042 0.501699i \(-0.832708\pi\)
0.865042 0.501699i \(-0.167292\pi\)
\(168\) 0 0
\(169\) 268.981 1.59160
\(170\) − 62.7777i − 0.369281i
\(171\) 0 0
\(172\) −62.9110 −0.365762
\(173\) 265.716i 1.53593i 0.640492 + 0.767965i \(0.278731\pi\)
−0.640492 + 0.767965i \(0.721269\pi\)
\(174\) 0 0
\(175\) −45.0459 −0.257405
\(176\) 12.9530i 0.0735965i
\(177\) 0 0
\(178\) 70.4786 0.395947
\(179\) 246.582i 1.37755i 0.724974 + 0.688776i \(0.241852\pi\)
−0.724974 + 0.688776i \(0.758148\pi\)
\(180\) 0 0
\(181\) −1.34144 −0.00741126 −0.00370563 0.999993i \(-0.501180\pi\)
−0.00370563 + 0.999993i \(0.501180\pi\)
\(182\) − 16.2460i − 0.0892635i
\(183\) 0 0
\(184\) −7.99001 −0.0434239
\(185\) 27.5998i 0.149188i
\(186\) 0 0
\(187\) −15.1254 −0.0808845
\(188\) − 167.743i − 0.892248i
\(189\) 0 0
\(190\) −87.4244 −0.460128
\(191\) 46.4407i 0.243145i 0.992583 + 0.121573i \(0.0387937\pi\)
−0.992583 + 0.121573i \(0.961206\pi\)
\(192\) 0 0
\(193\) −142.455 −0.738110 −0.369055 0.929408i \(-0.620319\pi\)
−0.369055 + 0.929408i \(0.620319\pi\)
\(194\) 5.60699i 0.0289020i
\(195\) 0 0
\(196\) −172.891 −0.882096
\(197\) − 54.0910i − 0.274574i −0.990531 0.137287i \(-0.956162\pi\)
0.990531 0.137287i \(-0.0438382\pi\)
\(198\) 0 0
\(199\) 328.874 1.65263 0.826317 0.563205i \(-0.190432\pi\)
0.826317 + 0.563205i \(0.190432\pi\)
\(200\) 150.556i 0.752780i
\(201\) 0 0
\(202\) −2.24413 −0.0111095
\(203\) − 53.5684i − 0.263884i
\(204\) 0 0
\(205\) 36.8839 0.179921
\(206\) − 71.2633i − 0.345938i
\(207\) 0 0
\(208\) 252.200 1.21250
\(209\) 21.0637i 0.100783i
\(210\) 0 0
\(211\) 94.7684 0.449139 0.224570 0.974458i \(-0.427902\pi\)
0.224570 + 0.974458i \(0.427902\pi\)
\(212\) 187.773i 0.885721i
\(213\) 0 0
\(214\) 46.6019 0.217766
\(215\) 131.722i 0.612662i
\(216\) 0 0
\(217\) −22.7137 −0.104671
\(218\) 56.3374i 0.258428i
\(219\) 0 0
\(220\) 30.1694 0.137134
\(221\) 294.498i 1.33257i
\(222\) 0 0
\(223\) −81.2658 −0.364421 −0.182210 0.983260i \(-0.558325\pi\)
−0.182210 + 0.983260i \(0.558325\pi\)
\(224\) − 33.1442i − 0.147965i
\(225\) 0 0
\(226\) −37.6146 −0.166436
\(227\) 167.793i 0.739175i 0.929196 + 0.369588i \(0.120501\pi\)
−0.929196 + 0.369588i \(0.879499\pi\)
\(228\) 0 0
\(229\) 73.4237 0.320627 0.160314 0.987066i \(-0.448749\pi\)
0.160314 + 0.987066i \(0.448749\pi\)
\(230\) 7.99494i 0.0347606i
\(231\) 0 0
\(232\) −179.040 −0.771726
\(233\) 183.645i 0.788174i 0.919073 + 0.394087i \(0.128939\pi\)
−0.919073 + 0.394087i \(0.871061\pi\)
\(234\) 0 0
\(235\) −351.217 −1.49454
\(236\) 343.099i 1.45381i
\(237\) 0 0
\(238\) 10.9238 0.0458982
\(239\) − 8.84969i − 0.0370280i −0.999829 0.0185140i \(-0.994106\pi\)
0.999829 0.0185140i \(-0.00589352\pi\)
\(240\) 0 0
\(241\) −15.9143 −0.0660344 −0.0330172 0.999455i \(-0.510512\pi\)
−0.0330172 + 0.999455i \(0.510512\pi\)
\(242\) − 69.7423i − 0.288191i
\(243\) 0 0
\(244\) −81.9894 −0.336022
\(245\) 361.997i 1.47754i
\(246\) 0 0
\(247\) 410.119 1.66040
\(248\) 75.9155i 0.306111i
\(249\) 0 0
\(250\) 39.1192 0.156477
\(251\) 264.256i 1.05281i 0.850233 + 0.526406i \(0.176461\pi\)
−0.850233 + 0.526406i \(0.823539\pi\)
\(252\) 0 0
\(253\) 1.92627 0.00761371
\(254\) − 96.2870i − 0.379083i
\(255\) 0 0
\(256\) 65.7125 0.256689
\(257\) 342.126i 1.33123i 0.746295 + 0.665615i \(0.231831\pi\)
−0.746295 + 0.665615i \(0.768169\pi\)
\(258\) 0 0
\(259\) −4.80256 −0.0185427
\(260\) − 587.411i − 2.25927i
\(261\) 0 0
\(262\) 21.3628 0.0815376
\(263\) 380.388i 1.44634i 0.690670 + 0.723170i \(0.257316\pi\)
−0.690670 + 0.723170i \(0.742684\pi\)
\(264\) 0 0
\(265\) 393.156 1.48361
\(266\) − 15.2125i − 0.0571897i
\(267\) 0 0
\(268\) −71.5134 −0.266841
\(269\) 88.9301i 0.330595i 0.986244 + 0.165297i \(0.0528584\pi\)
−0.986244 + 0.165297i \(0.947142\pi\)
\(270\) 0 0
\(271\) 487.123 1.79750 0.898751 0.438460i \(-0.144476\pi\)
0.898751 + 0.438460i \(0.144476\pi\)
\(272\) 169.579i 0.623453i
\(273\) 0 0
\(274\) 67.8680 0.247693
\(275\) − 36.2967i − 0.131988i
\(276\) 0 0
\(277\) −87.4657 −0.315761 −0.157880 0.987458i \(-0.550466\pi\)
−0.157880 + 0.987458i \(0.550466\pi\)
\(278\) 57.3383i 0.206253i
\(279\) 0 0
\(280\) −45.5928 −0.162831
\(281\) − 161.353i − 0.574211i −0.957899 0.287106i \(-0.907307\pi\)
0.957899 0.287106i \(-0.0926931\pi\)
\(282\) 0 0
\(283\) −137.224 −0.484890 −0.242445 0.970165i \(-0.577949\pi\)
−0.242445 + 0.970165i \(0.577949\pi\)
\(284\) − 316.971i − 1.11609i
\(285\) 0 0
\(286\) 13.0905 0.0457711
\(287\) 6.41806i 0.0223626i
\(288\) 0 0
\(289\) 90.9797 0.314808
\(290\) 179.151i 0.617762i
\(291\) 0 0
\(292\) −132.361 −0.453291
\(293\) − 388.292i − 1.32523i −0.748961 0.662615i \(-0.769447\pi\)
0.748961 0.662615i \(-0.230553\pi\)
\(294\) 0 0
\(295\) 718.376 2.43517
\(296\) 16.0515i 0.0542280i
\(297\) 0 0
\(298\) 80.8661 0.271363
\(299\) − 37.5053i − 0.125436i
\(300\) 0 0
\(301\) −22.9206 −0.0761482
\(302\) − 75.8918i − 0.251297i
\(303\) 0 0
\(304\) 236.156 0.776830
\(305\) 171.668i 0.562847i
\(306\) 0 0
\(307\) 414.645 1.35064 0.675318 0.737526i \(-0.264006\pi\)
0.675318 + 0.737526i \(0.264006\pi\)
\(308\) 5.24968i 0.0170444i
\(309\) 0 0
\(310\) 75.9624 0.245040
\(311\) − 436.432i − 1.40332i −0.712512 0.701659i \(-0.752443\pi\)
0.712512 0.701659i \(-0.247557\pi\)
\(312\) 0 0
\(313\) −411.290 −1.31403 −0.657013 0.753880i \(-0.728180\pi\)
−0.657013 + 0.753880i \(0.728180\pi\)
\(314\) 135.947i 0.432952i
\(315\) 0 0
\(316\) −107.024 −0.338685
\(317\) − 408.986i − 1.29018i −0.764108 0.645089i \(-0.776820\pi\)
0.764108 0.645089i \(-0.223180\pi\)
\(318\) 0 0
\(319\) 43.1639 0.135310
\(320\) − 258.686i − 0.808393i
\(321\) 0 0
\(322\) −1.39118 −0.00432042
\(323\) 275.764i 0.853757i
\(324\) 0 0
\(325\) −706.713 −2.17450
\(326\) − 38.3324i − 0.117584i
\(327\) 0 0
\(328\) 21.4509 0.0653991
\(329\) − 61.1143i − 0.185758i
\(330\) 0 0
\(331\) −327.640 −0.989850 −0.494925 0.868936i \(-0.664805\pi\)
−0.494925 + 0.868936i \(0.664805\pi\)
\(332\) − 433.984i − 1.30718i
\(333\) 0 0
\(334\) −97.5140 −0.291958
\(335\) 149.734i 0.446967i
\(336\) 0 0
\(337\) −562.601 −1.66944 −0.834719 0.550676i \(-0.814370\pi\)
−0.834719 + 0.550676i \(0.814370\pi\)
\(338\) − 156.531i − 0.463108i
\(339\) 0 0
\(340\) 394.975 1.16169
\(341\) − 18.3021i − 0.0536717i
\(342\) 0 0
\(343\) −128.354 −0.374209
\(344\) 76.6070i 0.222695i
\(345\) 0 0
\(346\) 154.630 0.446909
\(347\) 243.920i 0.702940i 0.936199 + 0.351470i \(0.114318\pi\)
−0.936199 + 0.351470i \(0.885682\pi\)
\(348\) 0 0
\(349\) −369.281 −1.05811 −0.529056 0.848587i \(-0.677454\pi\)
−0.529056 + 0.848587i \(0.677454\pi\)
\(350\) 26.2140i 0.0748971i
\(351\) 0 0
\(352\) 26.7066 0.0758711
\(353\) 93.9193i 0.266060i 0.991112 + 0.133030i \(0.0424707\pi\)
−0.991112 + 0.133030i \(0.957529\pi\)
\(354\) 0 0
\(355\) −663.669 −1.86949
\(356\) 443.426i 1.24558i
\(357\) 0 0
\(358\) 143.495 0.400825
\(359\) 103.369i 0.287936i 0.989582 + 0.143968i \(0.0459862\pi\)
−0.989582 + 0.143968i \(0.954014\pi\)
\(360\) 0 0
\(361\) 23.0290 0.0637923
\(362\) 0.780635i 0.00215645i
\(363\) 0 0
\(364\) 102.214 0.280807
\(365\) 277.136i 0.759276i
\(366\) 0 0
\(367\) −90.6767 −0.247076 −0.123538 0.992340i \(-0.539424\pi\)
−0.123538 + 0.992340i \(0.539424\pi\)
\(368\) − 21.5965i − 0.0586860i
\(369\) 0 0
\(370\) 16.0614 0.0434092
\(371\) 68.4119i 0.184399i
\(372\) 0 0
\(373\) −432.948 −1.16072 −0.580359 0.814361i \(-0.697088\pi\)
−0.580359 + 0.814361i \(0.697088\pi\)
\(374\) 8.80206i 0.0235349i
\(375\) 0 0
\(376\) −204.261 −0.543247
\(377\) − 840.420i − 2.22923i
\(378\) 0 0
\(379\) 333.700 0.880476 0.440238 0.897881i \(-0.354894\pi\)
0.440238 + 0.897881i \(0.354894\pi\)
\(380\) − 550.043i − 1.44748i
\(381\) 0 0
\(382\) 27.0257 0.0707478
\(383\) − 594.908i − 1.55328i −0.629942 0.776642i \(-0.716921\pi\)
0.629942 0.776642i \(-0.283079\pi\)
\(384\) 0 0
\(385\) 10.9917 0.0285499
\(386\) 82.9002i 0.214767i
\(387\) 0 0
\(388\) −35.2772 −0.0909205
\(389\) 310.106i 0.797188i 0.917128 + 0.398594i \(0.130502\pi\)
−0.917128 + 0.398594i \(0.869498\pi\)
\(390\) 0 0
\(391\) 25.2185 0.0644975
\(392\) 210.530i 0.537066i
\(393\) 0 0
\(394\) −31.4776 −0.0798925
\(395\) 224.086i 0.567307i
\(396\) 0 0
\(397\) 138.065 0.347770 0.173885 0.984766i \(-0.444368\pi\)
0.173885 + 0.984766i \(0.444368\pi\)
\(398\) − 191.385i − 0.480866i
\(399\) 0 0
\(400\) −406.943 −1.01736
\(401\) 271.096i 0.676050i 0.941137 + 0.338025i \(0.109759\pi\)
−0.941137 + 0.338025i \(0.890241\pi\)
\(402\) 0 0
\(403\) −356.349 −0.884241
\(404\) − 14.1192i − 0.0349486i
\(405\) 0 0
\(406\) −31.1735 −0.0767821
\(407\) − 3.86977i − 0.00950802i
\(408\) 0 0
\(409\) 289.991 0.709025 0.354513 0.935051i \(-0.384647\pi\)
0.354513 + 0.935051i \(0.384647\pi\)
\(410\) − 21.4642i − 0.0523516i
\(411\) 0 0
\(412\) 448.363 1.08826
\(413\) 125.003i 0.302670i
\(414\) 0 0
\(415\) −908.671 −2.18957
\(416\) − 519.990i − 1.24997i
\(417\) 0 0
\(418\) 12.2578 0.0293248
\(419\) 335.292i 0.800218i 0.916467 + 0.400109i \(0.131028\pi\)
−0.916467 + 0.400109i \(0.868972\pi\)
\(420\) 0 0
\(421\) 603.128 1.43261 0.716303 0.697789i \(-0.245833\pi\)
0.716303 + 0.697789i \(0.245833\pi\)
\(422\) − 55.1494i − 0.130686i
\(423\) 0 0
\(424\) 228.652 0.539273
\(425\) − 475.193i − 1.11810i
\(426\) 0 0
\(427\) −29.8715 −0.0699567
\(428\) 293.202i 0.685051i
\(429\) 0 0
\(430\) 76.6543 0.178266
\(431\) 773.546i 1.79477i 0.441247 + 0.897385i \(0.354536\pi\)
−0.441247 + 0.897385i \(0.645464\pi\)
\(432\) 0 0
\(433\) 71.6603 0.165497 0.0827486 0.996570i \(-0.473630\pi\)
0.0827486 + 0.996570i \(0.473630\pi\)
\(434\) 13.2180i 0.0304562i
\(435\) 0 0
\(436\) −354.454 −0.812968
\(437\) − 35.1194i − 0.0803647i
\(438\) 0 0
\(439\) −684.909 −1.56016 −0.780078 0.625682i \(-0.784821\pi\)
−0.780078 + 0.625682i \(0.784821\pi\)
\(440\) − 36.7373i − 0.0834940i
\(441\) 0 0
\(442\) 171.380 0.387737
\(443\) − 455.322i − 1.02782i −0.857845 0.513908i \(-0.828197\pi\)
0.857845 0.513908i \(-0.171803\pi\)
\(444\) 0 0
\(445\) 928.439 2.08638
\(446\) 47.2917i 0.106035i
\(447\) 0 0
\(448\) 45.0131 0.100476
\(449\) 527.340i 1.17448i 0.809414 + 0.587238i \(0.199785\pi\)
−0.809414 + 0.587238i \(0.800215\pi\)
\(450\) 0 0
\(451\) −5.17149 −0.0114667
\(452\) − 236.657i − 0.523578i
\(453\) 0 0
\(454\) 97.6451 0.215077
\(455\) − 214.013i − 0.470359i
\(456\) 0 0
\(457\) −147.083 −0.321845 −0.160923 0.986967i \(-0.551447\pi\)
−0.160923 + 0.986967i \(0.551447\pi\)
\(458\) − 42.7281i − 0.0932928i
\(459\) 0 0
\(460\) −50.3013 −0.109351
\(461\) − 357.986i − 0.776543i −0.921545 0.388272i \(-0.873072\pi\)
0.921545 0.388272i \(-0.126928\pi\)
\(462\) 0 0
\(463\) 409.789 0.885074 0.442537 0.896750i \(-0.354079\pi\)
0.442537 + 0.896750i \(0.354079\pi\)
\(464\) − 483.934i − 1.04296i
\(465\) 0 0
\(466\) 106.870 0.229335
\(467\) − 899.449i − 1.92602i −0.269475 0.963008i \(-0.586850\pi\)
0.269475 0.963008i \(-0.413150\pi\)
\(468\) 0 0
\(469\) −26.0547 −0.0555538
\(470\) 204.387i 0.434866i
\(471\) 0 0
\(472\) 417.793 0.885155
\(473\) − 18.4688i − 0.0390460i
\(474\) 0 0
\(475\) −661.755 −1.39317
\(476\) 68.7284i 0.144387i
\(477\) 0 0
\(478\) −5.14998 −0.0107740
\(479\) − 835.310i − 1.74386i −0.489628 0.871932i \(-0.662867\pi\)
0.489628 0.871932i \(-0.337133\pi\)
\(480\) 0 0
\(481\) −75.3460 −0.156645
\(482\) 9.26114i 0.0192140i
\(483\) 0 0
\(484\) 438.793 0.906597
\(485\) 73.8629i 0.152295i
\(486\) 0 0
\(487\) −601.667 −1.23546 −0.617728 0.786392i \(-0.711947\pi\)
−0.617728 + 0.786392i \(0.711947\pi\)
\(488\) 99.8388i 0.204588i
\(489\) 0 0
\(490\) 210.660 0.429918
\(491\) 428.745i 0.873207i 0.899654 + 0.436604i \(0.143819\pi\)
−0.899654 + 0.436604i \(0.856181\pi\)
\(492\) 0 0
\(493\) 565.098 1.14624
\(494\) − 238.664i − 0.483126i
\(495\) 0 0
\(496\) −205.195 −0.413699
\(497\) − 115.483i − 0.232360i
\(498\) 0 0
\(499\) −568.702 −1.13968 −0.569841 0.821755i \(-0.692995\pi\)
−0.569841 + 0.821755i \(0.692995\pi\)
\(500\) 246.124i 0.492248i
\(501\) 0 0
\(502\) 153.781 0.306336
\(503\) − 205.861i − 0.409266i −0.978839 0.204633i \(-0.934400\pi\)
0.978839 0.204633i \(-0.0656001\pi\)
\(504\) 0 0
\(505\) −29.5627 −0.0585400
\(506\) − 1.12097i − 0.00221536i
\(507\) 0 0
\(508\) 605.803 1.19253
\(509\) 673.500i 1.32318i 0.749865 + 0.661591i \(0.230118\pi\)
−0.749865 + 0.661591i \(0.769882\pi\)
\(510\) 0 0
\(511\) −48.2236 −0.0943710
\(512\) − 514.334i − 1.00456i
\(513\) 0 0
\(514\) 199.097 0.387347
\(515\) − 938.776i − 1.82287i
\(516\) 0 0
\(517\) 49.2441 0.0952498
\(518\) 2.79480i 0.00539536i
\(519\) 0 0
\(520\) −715.292 −1.37556
\(521\) 783.643i 1.50411i 0.659099 + 0.752056i \(0.270938\pi\)
−0.659099 + 0.752056i \(0.729062\pi\)
\(522\) 0 0
\(523\) 462.927 0.885137 0.442569 0.896735i \(-0.354067\pi\)
0.442569 + 0.896735i \(0.354067\pi\)
\(524\) 134.407i 0.256502i
\(525\) 0 0
\(526\) 221.362 0.420841
\(527\) − 239.609i − 0.454666i
\(528\) 0 0
\(529\) 525.788 0.993929
\(530\) − 228.793i − 0.431685i
\(531\) 0 0
\(532\) 95.7113 0.179908
\(533\) 100.691i 0.188914i
\(534\) 0 0
\(535\) 613.903 1.14748
\(536\) 87.0821i 0.162467i
\(537\) 0 0
\(538\) 51.7518 0.0961930
\(539\) − 50.7555i − 0.0941661i
\(540\) 0 0
\(541\) 595.277 1.10033 0.550164 0.835057i \(-0.314565\pi\)
0.550164 + 0.835057i \(0.314565\pi\)
\(542\) − 283.476i − 0.523018i
\(543\) 0 0
\(544\) 349.641 0.642722
\(545\) 742.151i 1.36175i
\(546\) 0 0
\(547\) 1009.80 1.84607 0.923035 0.384716i \(-0.125701\pi\)
0.923035 + 0.384716i \(0.125701\pi\)
\(548\) 427.001i 0.779198i
\(549\) 0 0
\(550\) −21.1225 −0.0384045
\(551\) − 786.957i − 1.42823i
\(552\) 0 0
\(553\) −38.9926 −0.0705110
\(554\) 50.8997i 0.0918766i
\(555\) 0 0
\(556\) −360.751 −0.648833
\(557\) − 61.7370i − 0.110838i −0.998463 0.0554192i \(-0.982350\pi\)
0.998463 0.0554192i \(-0.0176495\pi\)
\(558\) 0 0
\(559\) −359.595 −0.643282
\(560\) − 123.234i − 0.220061i
\(561\) 0 0
\(562\) −93.8978 −0.167078
\(563\) − 970.072i − 1.72304i −0.507723 0.861521i \(-0.669512\pi\)
0.507723 0.861521i \(-0.330488\pi\)
\(564\) 0 0
\(565\) −495.510 −0.877008
\(566\) 79.8559i 0.141088i
\(567\) 0 0
\(568\) −385.976 −0.679535
\(569\) − 96.0833i − 0.168864i −0.996429 0.0844318i \(-0.973093\pi\)
0.996429 0.0844318i \(-0.0269075\pi\)
\(570\) 0 0
\(571\) −646.610 −1.13242 −0.566208 0.824262i \(-0.691590\pi\)
−0.566208 + 0.824262i \(0.691590\pi\)
\(572\) 82.3608i 0.143987i
\(573\) 0 0
\(574\) 3.73492 0.00650682
\(575\) 60.5174i 0.105248i
\(576\) 0 0
\(577\) 253.985 0.440181 0.220091 0.975479i \(-0.429365\pi\)
0.220091 + 0.975479i \(0.429365\pi\)
\(578\) − 52.9446i − 0.0915996i
\(579\) 0 0
\(580\) −1127.15 −1.94337
\(581\) − 158.115i − 0.272143i
\(582\) 0 0
\(583\) −55.1244 −0.0945530
\(584\) 161.177i 0.275987i
\(585\) 0 0
\(586\) −225.962 −0.385601
\(587\) 223.570i 0.380869i 0.981700 + 0.190435i \(0.0609897\pi\)
−0.981700 + 0.190435i \(0.939010\pi\)
\(588\) 0 0
\(589\) −333.680 −0.566519
\(590\) − 418.051i − 0.708561i
\(591\) 0 0
\(592\) −43.3861 −0.0732873
\(593\) 69.9992i 0.118042i 0.998257 + 0.0590212i \(0.0187980\pi\)
−0.998257 + 0.0590212i \(0.981202\pi\)
\(594\) 0 0
\(595\) 143.903 0.241853
\(596\) 508.780i 0.853658i
\(597\) 0 0
\(598\) −21.8258 −0.0364979
\(599\) − 418.867i − 0.699277i −0.936885 0.349638i \(-0.886304\pi\)
0.936885 0.349638i \(-0.113696\pi\)
\(600\) 0 0
\(601\) −794.668 −1.32224 −0.661122 0.750279i \(-0.729919\pi\)
−0.661122 + 0.750279i \(0.729919\pi\)
\(602\) 13.3384i 0.0221568i
\(603\) 0 0
\(604\) 477.484 0.790536
\(605\) − 918.739i − 1.51858i
\(606\) 0 0
\(607\) 328.586 0.541328 0.270664 0.962674i \(-0.412757\pi\)
0.270664 + 0.962674i \(0.412757\pi\)
\(608\) − 486.910i − 0.800839i
\(609\) 0 0
\(610\) 99.9005 0.163771
\(611\) − 958.805i − 1.56924i
\(612\) 0 0
\(613\) 735.328 1.19956 0.599778 0.800167i \(-0.295256\pi\)
0.599778 + 0.800167i \(0.295256\pi\)
\(614\) − 241.298i − 0.392994i
\(615\) 0 0
\(616\) 6.39256 0.0103775
\(617\) − 337.036i − 0.546249i −0.961979 0.273125i \(-0.911943\pi\)
0.961979 0.273125i \(-0.0880571\pi\)
\(618\) 0 0
\(619\) 1175.92 1.89971 0.949853 0.312696i \(-0.101232\pi\)
0.949853 + 0.312696i \(0.101232\pi\)
\(620\) 477.928i 0.770851i
\(621\) 0 0
\(622\) −253.977 −0.408323
\(623\) 161.555i 0.259318i
\(624\) 0 0
\(625\) −328.889 −0.526222
\(626\) 239.346i 0.382341i
\(627\) 0 0
\(628\) −855.328 −1.36199
\(629\) − 50.6626i − 0.0805447i
\(630\) 0 0
\(631\) −214.760 −0.340349 −0.170175 0.985414i \(-0.554433\pi\)
−0.170175 + 0.985414i \(0.554433\pi\)
\(632\) 130.324i 0.206209i
\(633\) 0 0
\(634\) −238.005 −0.375402
\(635\) − 1268.42i − 1.99752i
\(636\) 0 0
\(637\) −988.232 −1.55138
\(638\) − 25.1188i − 0.0393711i
\(639\) 0 0
\(640\) −912.443 −1.42569
\(641\) 994.747i 1.55187i 0.630814 + 0.775934i \(0.282721\pi\)
−0.630814 + 0.775934i \(0.717279\pi\)
\(642\) 0 0
\(643\) −849.202 −1.32069 −0.660344 0.750964i \(-0.729589\pi\)
−0.660344 + 0.750964i \(0.729589\pi\)
\(644\) − 8.75277i − 0.0135913i
\(645\) 0 0
\(646\) 160.478 0.248417
\(647\) − 350.755i − 0.542125i −0.962562 0.271063i \(-0.912625\pi\)
0.962562 0.271063i \(-0.0873751\pi\)
\(648\) 0 0
\(649\) −100.723 −0.155198
\(650\) 411.264i 0.632713i
\(651\) 0 0
\(652\) 241.173 0.369898
\(653\) − 281.525i − 0.431125i −0.976490 0.215562i \(-0.930842\pi\)
0.976490 0.215562i \(-0.0691585\pi\)
\(654\) 0 0
\(655\) 281.420 0.429649
\(656\) 57.9804i 0.0883848i
\(657\) 0 0
\(658\) −35.5648 −0.0540498
\(659\) 100.793i 0.152949i 0.997072 + 0.0764743i \(0.0243663\pi\)
−0.997072 + 0.0764743i \(0.975634\pi\)
\(660\) 0 0
\(661\) −724.657 −1.09630 −0.548152 0.836379i \(-0.684668\pi\)
−0.548152 + 0.836379i \(0.684668\pi\)
\(662\) 190.667i 0.288016i
\(663\) 0 0
\(664\) −528.464 −0.795880
\(665\) − 200.399i − 0.301352i
\(666\) 0 0
\(667\) −71.9670 −0.107897
\(668\) − 613.523i − 0.918447i
\(669\) 0 0
\(670\) 87.1359 0.130054
\(671\) − 24.0696i − 0.0358712i
\(672\) 0 0
\(673\) 409.151 0.607950 0.303975 0.952680i \(-0.401686\pi\)
0.303975 + 0.952680i \(0.401686\pi\)
\(674\) 327.399i 0.485755i
\(675\) 0 0
\(676\) 984.833 1.45685
\(677\) − 338.685i − 0.500274i −0.968210 0.250137i \(-0.919524\pi\)
0.968210 0.250137i \(-0.0804756\pi\)
\(678\) 0 0
\(679\) −12.8527 −0.0189288
\(680\) − 480.962i − 0.707297i
\(681\) 0 0
\(682\) −10.6507 −0.0156168
\(683\) − 311.366i − 0.455880i −0.973675 0.227940i \(-0.926801\pi\)
0.973675 0.227940i \(-0.0731990\pi\)
\(684\) 0 0
\(685\) 894.048 1.30518
\(686\) 74.6939i 0.108883i
\(687\) 0 0
\(688\) −207.064 −0.300964
\(689\) 1073.30i 1.55776i
\(690\) 0 0
\(691\) 827.688 1.19781 0.598906 0.800819i \(-0.295602\pi\)
0.598906 + 0.800819i \(0.295602\pi\)
\(692\) 972.878i 1.40589i
\(693\) 0 0
\(694\) 141.947 0.204534
\(695\) 755.337i 1.08682i
\(696\) 0 0
\(697\) −67.7046 −0.0971372
\(698\) 214.899i 0.307878i
\(699\) 0 0
\(700\) −164.929 −0.235613
\(701\) 215.718i 0.307729i 0.988092 + 0.153864i \(0.0491718\pi\)
−0.988092 + 0.153864i \(0.950828\pi\)
\(702\) 0 0
\(703\) −70.5529 −0.100360
\(704\) 36.2703i 0.0515203i
\(705\) 0 0
\(706\) 54.6553 0.0774154
\(707\) − 5.14411i − 0.00727597i
\(708\) 0 0
\(709\) 1031.81 1.45531 0.727655 0.685944i \(-0.240610\pi\)
0.727655 + 0.685944i \(0.240610\pi\)
\(710\) 386.215i 0.543964i
\(711\) 0 0
\(712\) 539.961 0.758373
\(713\) 30.5149i 0.0427980i
\(714\) 0 0
\(715\) 172.446 0.241183
\(716\) 902.821i 1.26092i
\(717\) 0 0
\(718\) 60.1545 0.0837806
\(719\) − 623.485i − 0.867155i −0.901116 0.433578i \(-0.857251\pi\)
0.901116 0.433578i \(-0.142749\pi\)
\(720\) 0 0
\(721\) 163.354 0.226565
\(722\) − 13.4015i − 0.0185616i
\(723\) 0 0
\(724\) −4.91147 −0.00678380
\(725\) 1356.08i 1.87045i
\(726\) 0 0
\(727\) −751.352 −1.03350 −0.516748 0.856138i \(-0.672858\pi\)
−0.516748 + 0.856138i \(0.672858\pi\)
\(728\) − 124.466i − 0.170970i
\(729\) 0 0
\(730\) 161.276 0.220926
\(731\) − 241.791i − 0.330768i
\(732\) 0 0
\(733\) 750.318 1.02363 0.511813 0.859097i \(-0.328974\pi\)
0.511813 + 0.859097i \(0.328974\pi\)
\(734\) 52.7683i 0.0718914i
\(735\) 0 0
\(736\) −44.5278 −0.0604998
\(737\) − 20.9942i − 0.0284860i
\(738\) 0 0
\(739\) −1353.19 −1.83111 −0.915557 0.402187i \(-0.868250\pi\)
−0.915557 + 0.402187i \(0.868250\pi\)
\(740\) 101.052i 0.136557i
\(741\) 0 0
\(742\) 39.8116 0.0536544
\(743\) − 848.767i − 1.14235i −0.820828 0.571176i \(-0.806487\pi\)
0.820828 0.571176i \(-0.193513\pi\)
\(744\) 0 0
\(745\) 1065.28 1.42990
\(746\) 251.949i 0.337733i
\(747\) 0 0
\(748\) −55.3793 −0.0740366
\(749\) 106.823i 0.142621i
\(750\) 0 0
\(751\) 805.905 1.07311 0.536555 0.843866i \(-0.319726\pi\)
0.536555 + 0.843866i \(0.319726\pi\)
\(752\) − 552.103i − 0.734180i
\(753\) 0 0
\(754\) −489.073 −0.648638
\(755\) − 999.749i − 1.32417i
\(756\) 0 0
\(757\) −171.631 −0.226725 −0.113363 0.993554i \(-0.536162\pi\)
−0.113363 + 0.993554i \(0.536162\pi\)
\(758\) − 194.193i − 0.256191i
\(759\) 0 0
\(760\) −669.789 −0.881301
\(761\) 1351.20i 1.77555i 0.460275 + 0.887776i \(0.347751\pi\)
−0.460275 + 0.887776i \(0.652249\pi\)
\(762\) 0 0
\(763\) −129.140 −0.169252
\(764\) 170.036i 0.222560i
\(765\) 0 0
\(766\) −346.200 −0.451958
\(767\) 1961.13i 2.55688i
\(768\) 0 0
\(769\) 1006.44 1.30877 0.654384 0.756163i \(-0.272928\pi\)
0.654384 + 0.756163i \(0.272928\pi\)
\(770\) − 6.39651i − 0.00830715i
\(771\) 0 0
\(772\) −521.578 −0.675619
\(773\) − 28.4890i − 0.0368552i −0.999830 0.0184276i \(-0.994134\pi\)
0.999830 0.0184276i \(-0.00586601\pi\)
\(774\) 0 0
\(775\) 574.994 0.741928
\(776\) 42.9571i 0.0553571i
\(777\) 0 0
\(778\) 180.463 0.231957
\(779\) 94.2856i 0.121034i
\(780\) 0 0
\(781\) 93.0529 0.119146
\(782\) − 14.6756i − 0.0187668i
\(783\) 0 0
\(784\) −569.048 −0.725827
\(785\) 1790.87i 2.28137i
\(786\) 0 0
\(787\) 199.966 0.254086 0.127043 0.991897i \(-0.459451\pi\)
0.127043 + 0.991897i \(0.459451\pi\)
\(788\) − 198.046i − 0.251327i
\(789\) 0 0
\(790\) 130.404 0.165069
\(791\) − 86.2221i − 0.109004i
\(792\) 0 0
\(793\) −468.646 −0.590978
\(794\) − 80.3451i − 0.101190i
\(795\) 0 0
\(796\) 1204.12 1.51272
\(797\) 1051.47i 1.31928i 0.751581 + 0.659641i \(0.229292\pi\)
−0.751581 + 0.659641i \(0.770708\pi\)
\(798\) 0 0
\(799\) 644.700 0.806883
\(800\) 839.040i 1.04880i
\(801\) 0 0
\(802\) 157.761 0.196710
\(803\) − 38.8572i − 0.0483900i
\(804\) 0 0
\(805\) −18.3264 −0.0227658
\(806\) 207.373i 0.257287i
\(807\) 0 0
\(808\) −17.1931 −0.0212785
\(809\) 482.349i 0.596229i 0.954530 + 0.298114i \(0.0963577\pi\)
−0.954530 + 0.298114i \(0.903642\pi\)
\(810\) 0 0
\(811\) −1202.48 −1.48272 −0.741358 0.671110i \(-0.765818\pi\)
−0.741358 + 0.671110i \(0.765818\pi\)
\(812\) − 196.133i − 0.241543i
\(813\) 0 0
\(814\) −2.25197 −0.00276654
\(815\) − 504.965i − 0.619589i
\(816\) 0 0
\(817\) −336.719 −0.412141
\(818\) − 168.757i − 0.206305i
\(819\) 0 0
\(820\) 135.045 0.164689
\(821\) 1297.77i 1.58072i 0.612645 + 0.790358i \(0.290106\pi\)
−0.612645 + 0.790358i \(0.709894\pi\)
\(822\) 0 0
\(823\) 1057.54 1.28499 0.642493 0.766292i \(-0.277900\pi\)
0.642493 + 0.766292i \(0.277900\pi\)
\(824\) − 545.973i − 0.662588i
\(825\) 0 0
\(826\) 72.7438 0.0880676
\(827\) 886.532i 1.07199i 0.844222 + 0.535993i \(0.180063\pi\)
−0.844222 + 0.535993i \(0.819937\pi\)
\(828\) 0 0
\(829\) 813.250 0.981001 0.490500 0.871441i \(-0.336814\pi\)
0.490500 + 0.871441i \(0.336814\pi\)
\(830\) 528.791i 0.637097i
\(831\) 0 0
\(832\) 706.199 0.848797
\(833\) − 664.486i − 0.797703i
\(834\) 0 0
\(835\) −1284.59 −1.53843
\(836\) 77.1214i 0.0922505i
\(837\) 0 0
\(838\) 195.119 0.232839
\(839\) 1494.62i 1.78143i 0.454563 + 0.890715i \(0.349795\pi\)
−0.454563 + 0.890715i \(0.650205\pi\)
\(840\) 0 0
\(841\) −771.640 −0.917527
\(842\) − 350.983i − 0.416845i
\(843\) 0 0
\(844\) 346.980 0.411114
\(845\) − 2062.03i − 2.44027i
\(846\) 0 0
\(847\) 159.867 0.188745
\(848\) 618.030i 0.728809i
\(849\) 0 0
\(850\) −276.533 −0.325333
\(851\) 6.45204i 0.00758172i
\(852\) 0 0
\(853\) −836.912 −0.981139 −0.490569 0.871402i \(-0.663211\pi\)
−0.490569 + 0.871402i \(0.663211\pi\)
\(854\) 17.3834i 0.0203553i
\(855\) 0 0
\(856\) 357.033 0.417095
\(857\) − 793.709i − 0.926148i −0.886320 0.463074i \(-0.846746\pi\)
0.886320 0.463074i \(-0.153254\pi\)
\(858\) 0 0
\(859\) −984.535 −1.14614 −0.573070 0.819506i \(-0.694248\pi\)
−0.573070 + 0.819506i \(0.694248\pi\)
\(860\) 482.281i 0.560792i
\(861\) 0 0
\(862\) 450.157 0.522223
\(863\) 217.563i 0.252101i 0.992024 + 0.126050i \(0.0402301\pi\)
−0.992024 + 0.126050i \(0.959770\pi\)
\(864\) 0 0
\(865\) 2037.00 2.35491
\(866\) − 41.7019i − 0.0481546i
\(867\) 0 0
\(868\) −83.1628 −0.0958097
\(869\) − 31.4191i − 0.0361555i
\(870\) 0 0
\(871\) −408.765 −0.469306
\(872\) 431.620i 0.494977i
\(873\) 0 0
\(874\) −20.4373 −0.0233837
\(875\) 89.6712i 0.102481i
\(876\) 0 0
\(877\) −310.454 −0.353995 −0.176998 0.984211i \(-0.556638\pi\)
−0.176998 + 0.984211i \(0.556638\pi\)
\(878\) 398.575i 0.453958i
\(879\) 0 0
\(880\) 99.2986 0.112839
\(881\) − 1557.70i − 1.76811i −0.467388 0.884053i \(-0.654805\pi\)
0.467388 0.884053i \(-0.345195\pi\)
\(882\) 0 0
\(883\) −825.815 −0.935238 −0.467619 0.883930i \(-0.654888\pi\)
−0.467619 + 0.883930i \(0.654888\pi\)
\(884\) 1078.26i 1.21975i
\(885\) 0 0
\(886\) −264.970 −0.299063
\(887\) 409.129i 0.461250i 0.973043 + 0.230625i \(0.0740771\pi\)
−0.973043 + 0.230625i \(0.925923\pi\)
\(888\) 0 0
\(889\) 220.714 0.248273
\(890\) − 540.295i − 0.607073i
\(891\) 0 0
\(892\) −297.542 −0.333568
\(893\) − 897.810i − 1.00539i
\(894\) 0 0
\(895\) 1890.32 2.11208
\(896\) − 158.772i − 0.177200i
\(897\) 0 0
\(898\) 306.879 0.341736
\(899\) 683.781i 0.760601i
\(900\) 0 0
\(901\) −721.683 −0.800980
\(902\) 3.00949i 0.00333646i
\(903\) 0 0
\(904\) −288.178 −0.318781
\(905\) 10.2836i 0.0113631i
\(906\) 0 0
\(907\) 394.398 0.434838 0.217419 0.976078i \(-0.430236\pi\)
0.217419 + 0.976078i \(0.430236\pi\)
\(908\) 614.348i 0.676594i
\(909\) 0 0
\(910\) −124.543 −0.136860
\(911\) 220.477i 0.242017i 0.992651 + 0.121008i \(0.0386128\pi\)
−0.992651 + 0.121008i \(0.961387\pi\)
\(912\) 0 0
\(913\) 127.405 0.139545
\(914\) 85.5935i 0.0936471i
\(915\) 0 0
\(916\) 268.830 0.293482
\(917\) 48.9691i 0.0534014i
\(918\) 0 0
\(919\) −873.180 −0.950142 −0.475071 0.879948i \(-0.657578\pi\)
−0.475071 + 0.879948i \(0.657578\pi\)
\(920\) 61.2520i 0.0665783i
\(921\) 0 0
\(922\) −208.326 −0.225950
\(923\) − 1811.78i − 1.96293i
\(924\) 0 0
\(925\) 121.576 0.131434
\(926\) − 238.472i − 0.257529i
\(927\) 0 0
\(928\) −997.782 −1.07520
\(929\) 38.6751i 0.0416309i 0.999783 + 0.0208154i \(0.00662624\pi\)
−0.999783 + 0.0208154i \(0.993374\pi\)
\(930\) 0 0
\(931\) −925.365 −0.993948
\(932\) 672.387i 0.721445i
\(933\) 0 0
\(934\) −523.424 −0.560411
\(935\) 115.953i 0.124013i
\(936\) 0 0
\(937\) −805.352 −0.859501 −0.429750 0.902948i \(-0.641398\pi\)
−0.429750 + 0.902948i \(0.641398\pi\)
\(938\) 15.1623i 0.0161645i
\(939\) 0 0
\(940\) −1285.93 −1.36801
\(941\) 1341.27i 1.42537i 0.701483 + 0.712686i \(0.252521\pi\)
−0.701483 + 0.712686i \(0.747479\pi\)
\(942\) 0 0
\(943\) 8.62240 0.00914358
\(944\) 1129.27i 1.19626i
\(945\) 0 0
\(946\) −10.7477 −0.0113612
\(947\) 590.901i 0.623971i 0.950087 + 0.311986i \(0.100994\pi\)
−0.950087 + 0.311986i \(0.899006\pi\)
\(948\) 0 0
\(949\) −756.566 −0.797225
\(950\) 385.101i 0.405370i
\(951\) 0 0
\(952\) 83.6908 0.0879105
\(953\) − 362.670i − 0.380556i −0.981730 0.190278i \(-0.939061\pi\)
0.981730 0.190278i \(-0.0609390\pi\)
\(954\) 0 0
\(955\) 356.018 0.372794
\(956\) − 32.4018i − 0.0338931i
\(957\) 0 0
\(958\) −486.100 −0.507411
\(959\) 155.571i 0.162222i
\(960\) 0 0
\(961\) −671.068 −0.698302
\(962\) 43.8468i 0.0455788i
\(963\) 0 0
\(964\) −58.2677 −0.0604437
\(965\) 1092.07i 1.13168i
\(966\) 0 0
\(967\) 29.7675 0.0307834 0.0153917 0.999882i \(-0.495100\pi\)
0.0153917 + 0.999882i \(0.495100\pi\)
\(968\) − 534.320i − 0.551983i
\(969\) 0 0
\(970\) 42.9837 0.0443131
\(971\) − 1095.66i − 1.12839i −0.825643 0.564193i \(-0.809188\pi\)
0.825643 0.564193i \(-0.190812\pi\)
\(972\) 0 0
\(973\) −131.434 −0.135081
\(974\) 350.133i 0.359480i
\(975\) 0 0
\(976\) −269.858 −0.276494
\(977\) 620.804i 0.635419i 0.948188 + 0.317710i \(0.102914\pi\)
−0.948188 + 0.317710i \(0.897086\pi\)
\(978\) 0 0
\(979\) −130.176 −0.132969
\(980\) 1325.40i 1.35244i
\(981\) 0 0
\(982\) 249.503 0.254077
\(983\) − 607.462i − 0.617967i −0.951067 0.308984i \(-0.900011\pi\)
0.951067 0.308984i \(-0.0999889\pi\)
\(984\) 0 0
\(985\) −414.666 −0.420981
\(986\) − 328.852i − 0.333522i
\(987\) 0 0
\(988\) 1501.59 1.51983
\(989\) 30.7929i 0.0311354i
\(990\) 0 0
\(991\) −539.632 −0.544532 −0.272266 0.962222i \(-0.587773\pi\)
−0.272266 + 0.962222i \(0.587773\pi\)
\(992\) 423.073i 0.426485i
\(993\) 0 0
\(994\) −67.2040 −0.0676097
\(995\) − 2521.18i − 2.53385i
\(996\) 0 0
\(997\) 663.930 0.665927 0.332964 0.942940i \(-0.391951\pi\)
0.332964 + 0.942940i \(0.391951\pi\)
\(998\) 330.950i 0.331613i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.3.b.a.728.13 30
3.2 odd 2 inner 729.3.b.a.728.18 30
27.2 odd 18 243.3.f.a.53.3 30
27.4 even 9 81.3.f.a.35.3 30
27.5 odd 18 243.3.f.c.26.3 30
27.7 even 9 27.3.f.a.5.3 30
27.11 odd 18 243.3.f.b.215.3 30
27.13 even 9 243.3.f.a.188.3 30
27.14 odd 18 243.3.f.d.188.3 30
27.16 even 9 243.3.f.c.215.3 30
27.20 odd 18 81.3.f.a.44.3 30
27.22 even 9 243.3.f.b.26.3 30
27.23 odd 18 27.3.f.a.11.3 yes 30
27.25 even 9 243.3.f.d.53.3 30
108.7 odd 18 432.3.bc.a.113.2 30
108.23 even 18 432.3.bc.a.65.2 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.3 30 27.7 even 9
27.3.f.a.11.3 yes 30 27.23 odd 18
81.3.f.a.35.3 30 27.4 even 9
81.3.f.a.44.3 30 27.20 odd 18
243.3.f.a.53.3 30 27.2 odd 18
243.3.f.a.188.3 30 27.13 even 9
243.3.f.b.26.3 30 27.22 even 9
243.3.f.b.215.3 30 27.11 odd 18
243.3.f.c.26.3 30 27.5 odd 18
243.3.f.c.215.3 30 27.16 even 9
243.3.f.d.53.3 30 27.25 even 9
243.3.f.d.188.3 30 27.14 odd 18
432.3.bc.a.65.2 30 108.23 even 18
432.3.bc.a.113.2 30 108.7 odd 18
729.3.b.a.728.13 30 1.1 even 1 trivial
729.3.b.a.728.18 30 3.2 odd 2 inner