Properties

Label 81.7.d.b.26.1
Level $81$
Weight $7$
Character 81.26
Analytic conductor $18.634$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,7,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6343807732\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 81.26
Dual form 81.7.d.b.53.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.19615 - 3.00000i) q^{2} +(-14.0000 - 24.2487i) q^{4} +(-207.846 + 120.000i) q^{5} +(-149.500 + 258.942i) q^{7} +552.000i q^{8} +1440.00 q^{10} +(540.400 + 312.000i) q^{11} +(-1247.50 - 2160.73i) q^{13} +(1553.65 - 897.000i) q^{14} +(760.000 - 1316.36i) q^{16} +1872.00i q^{17} -2509.00 q^{19} +(5819.69 + 3360.00i) q^{20} +(-1872.00 - 3242.40i) q^{22} +(-12429.2 + 7176.00i) q^{23} +(20987.5 - 36351.4i) q^{25} +14970.0i q^{26} +8372.00 q^{28} +(-20535.2 - 11856.0i) q^{29} +(-2665.00 - 4615.92i) q^{31} +(22696.8 - 13104.0i) q^{32} +(5616.00 - 9727.20i) q^{34} -71760.0i q^{35} +32591.0 q^{37} +(13037.1 + 7527.00i) q^{38} +(-66240.0 - 114731. i) q^{40} +(57282.4 - 33072.0i) q^{41} +(35315.0 - 61167.4i) q^{43} -17472.0i q^{44} +86112.0 q^{46} +(-3450.25 - 1992.00i) q^{47} +(14124.0 + 24463.5i) q^{49} +(-218108. + 125925. i) q^{50} +(-34930.0 + 60500.5i) q^{52} +190944. i q^{53} -149760. q^{55} +(-142936. - 82524.0i) q^{56} +(71136.0 + 123211. i) q^{58} +(205560. - 118680. i) q^{59} +(30900.5 - 53521.2i) q^{61} +31980.0i q^{62} -254528. q^{64} +(518576. + 299400. i) q^{65} +(215130. + 372617. i) q^{67} +(45393.6 - 26208.0i) q^{68} +(-215280. + 372876. i) q^{70} -251712. i q^{71} +251615. q^{73} +(-169348. - 97773.0i) q^{74} +(35126.0 + 60840.0i) q^{76} +(-161580. + 93288.0i) q^{77} +(-330414. + 572293. i) q^{79} +364800. i q^{80} -396864. q^{82} +(-690964. - 398928. i) q^{83} +(-224640. - 389088. i) q^{85} +(-367004. + 211890. i) q^{86} +(-172224. + 298301. i) q^{88} -270576. i q^{89} +746005. q^{91} +(348018. + 200928. i) q^{92} +(11952.0 + 20701.5i) q^{94} +(521486. - 301080. i) q^{95} +(-110364. + 191155. i) q^{97} -169488. i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{4} - 598 q^{7} + 5760 q^{10} - 4990 q^{13} + 3040 q^{16} - 10036 q^{19} - 7488 q^{22} + 83950 q^{25} + 33488 q^{28} - 10660 q^{31} + 22464 q^{34} + 130364 q^{37} - 264960 q^{40} + 141260 q^{43}+ \cdots - 441454 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.19615 3.00000i −0.649519 0.375000i 0.138753 0.990327i \(-0.455691\pi\)
−0.788272 + 0.615327i \(0.789024\pi\)
\(3\) 0 0
\(4\) −14.0000 24.2487i −0.218750 0.378886i
\(5\) −207.846 + 120.000i −1.66277 + 0.960000i −0.691384 + 0.722487i \(0.742999\pi\)
−0.971384 + 0.237513i \(0.923668\pi\)
\(6\) 0 0
\(7\) −149.500 + 258.942i −0.435860 + 0.754932i −0.997365 0.0725413i \(-0.976889\pi\)
0.561505 + 0.827473i \(0.310222\pi\)
\(8\) 552.000i 1.07812i
\(9\) 0 0
\(10\) 1440.00 1.44000
\(11\) 540.400 + 312.000i 0.406010 + 0.234410i 0.689074 0.724691i \(-0.258017\pi\)
−0.283064 + 0.959101i \(0.591351\pi\)
\(12\) 0 0
\(13\) −1247.50 2160.73i −0.567820 0.983493i −0.996781 0.0801699i \(-0.974454\pi\)
0.428961 0.903323i \(-0.358880\pi\)
\(14\) 1553.65 897.000i 0.566199 0.326895i
\(15\) 0 0
\(16\) 760.000 1316.36i 0.185547 0.321377i
\(17\) 1872.00i 0.381030i 0.981684 + 0.190515i \(0.0610158\pi\)
−0.981684 + 0.190515i \(0.938984\pi\)
\(18\) 0 0
\(19\) −2509.00 −0.365797 −0.182898 0.983132i \(-0.558548\pi\)
−0.182898 + 0.983132i \(0.558548\pi\)
\(20\) 5819.69 + 3360.00i 0.727461 + 0.420000i
\(21\) 0 0
\(22\) −1872.00 3242.40i −0.175808 0.304508i
\(23\) −12429.2 + 7176.00i −1.02155 + 0.589792i −0.914552 0.404467i \(-0.867457\pi\)
−0.106997 + 0.994259i \(0.534124\pi\)
\(24\) 0 0
\(25\) 20987.5 36351.4i 1.34320 2.32649i
\(26\) 14970.0i 0.851730i
\(27\) 0 0
\(28\) 8372.00 0.381378
\(29\) −20535.2 11856.0i −0.841986 0.486121i 0.0159529 0.999873i \(-0.494922\pi\)
−0.857939 + 0.513752i \(0.828255\pi\)
\(30\) 0 0
\(31\) −2665.00 4615.92i −0.0894565 0.154943i 0.817825 0.575467i \(-0.195180\pi\)
−0.907282 + 0.420524i \(0.861846\pi\)
\(32\) 22696.8 13104.0i 0.692651 0.399902i
\(33\) 0 0
\(34\) 5616.00 9727.20i 0.142886 0.247486i
\(35\) 71760.0i 1.67370i
\(36\) 0 0
\(37\) 32591.0 0.643417 0.321708 0.946839i \(-0.395743\pi\)
0.321708 + 0.946839i \(0.395743\pi\)
\(38\) 13037.1 + 7527.00i 0.237592 + 0.137174i
\(39\) 0 0
\(40\) −66240.0 114731.i −1.03500 1.79267i
\(41\) 57282.4 33072.0i 0.831131 0.479854i −0.0231087 0.999733i \(-0.507356\pi\)
0.854240 + 0.519879i \(0.174023\pi\)
\(42\) 0 0
\(43\) 35315.0 61167.4i 0.444175 0.769333i −0.553820 0.832637i \(-0.686830\pi\)
0.997994 + 0.0633035i \(0.0201636\pi\)
\(44\) 17472.0i 0.205109i
\(45\) 0 0
\(46\) 86112.0 0.884688
\(47\) −3450.25 1992.00i −0.0332320 0.0191865i 0.483292 0.875459i \(-0.339441\pi\)
−0.516524 + 0.856273i \(0.672774\pi\)
\(48\) 0 0
\(49\) 14124.0 + 24463.5i 0.120052 + 0.207936i
\(50\) −218108. + 125925.i −1.74487 + 1.00740i
\(51\) 0 0
\(52\) −34930.0 + 60500.5i −0.248421 + 0.430278i
\(53\) 190944.i 1.28256i 0.767306 + 0.641281i \(0.221597\pi\)
−0.767306 + 0.641281i \(0.778403\pi\)
\(54\) 0 0
\(55\) −149760. −0.900135
\(56\) −142936. 82524.0i −0.813911 0.469912i
\(57\) 0 0
\(58\) 71136.0 + 123211.i 0.364591 + 0.631489i
\(59\) 205560. 118680.i 1.00088 0.577858i 0.0923717 0.995725i \(-0.470555\pi\)
0.908509 + 0.417866i \(0.137222\pi\)
\(60\) 0 0
\(61\) 30900.5 53521.2i 0.136137 0.235796i −0.789894 0.613243i \(-0.789865\pi\)
0.926031 + 0.377447i \(0.123198\pi\)
\(62\) 31980.0i 0.134185i
\(63\) 0 0
\(64\) −254528. −0.970947
\(65\) 518576. + 299400.i 1.88831 + 1.09021i
\(66\) 0 0
\(67\) 215130. + 372617.i 0.715282 + 1.23891i 0.962850 + 0.270035i \(0.0870353\pi\)
−0.247568 + 0.968871i \(0.579631\pi\)
\(68\) 45393.6 26208.0i 0.144367 0.0833503i
\(69\) 0 0
\(70\) −215280. + 372876.i −0.627638 + 1.08710i
\(71\) 251712.i 0.703281i −0.936135 0.351640i \(-0.885624\pi\)
0.936135 0.351640i \(-0.114376\pi\)
\(72\) 0 0
\(73\) 251615. 0.646797 0.323398 0.946263i \(-0.395175\pi\)
0.323398 + 0.946263i \(0.395175\pi\)
\(74\) −169348. 97773.0i −0.417912 0.241281i
\(75\) 0 0
\(76\) 35126.0 + 60840.0i 0.0800180 + 0.138595i
\(77\) −161580. + 93288.0i −0.353927 + 0.204340i
\(78\) 0 0
\(79\) −330414. + 572293.i −0.670157 + 1.16075i 0.307702 + 0.951483i \(0.400440\pi\)
−0.977859 + 0.209263i \(0.932893\pi\)
\(80\) 364800.i 0.712500i
\(81\) 0 0
\(82\) −396864. −0.719781
\(83\) −690964. 398928.i −1.20843 0.697686i −0.246012 0.969267i \(-0.579120\pi\)
−0.962416 + 0.271580i \(0.912454\pi\)
\(84\) 0 0
\(85\) −224640. 389088.i −0.365789 0.633565i
\(86\) −367004. + 211890.i −0.577000 + 0.333131i
\(87\) 0 0
\(88\) −172224. + 298301.i −0.252724 + 0.437730i
\(89\) 270576.i 0.383813i −0.981413 0.191906i \(-0.938533\pi\)
0.981413 0.191906i \(-0.0614670\pi\)
\(90\) 0 0
\(91\) 746005. 0.989960
\(92\) 348018. + 200928.i 0.446928 + 0.258034i
\(93\) 0 0
\(94\) 11952.0 + 20701.5i 0.0143899 + 0.0249240i
\(95\) 521486. 301080.i 0.608235 0.351165i
\(96\) 0 0
\(97\) −110364. + 191155.i −0.120923 + 0.209445i −0.920132 0.391608i \(-0.871919\pi\)
0.799209 + 0.601054i \(0.205252\pi\)
\(98\) 169488.i 0.180078i
\(99\) 0 0
\(100\) −1.17530e6 −1.17530
\(101\) −250746. 144768.i −0.243371 0.140510i 0.373354 0.927689i \(-0.378208\pi\)
−0.616725 + 0.787179i \(0.711541\pi\)
\(102\) 0 0
\(103\) 297102. + 514597.i 0.271891 + 0.470929i 0.969346 0.245700i \(-0.0790177\pi\)
−0.697455 + 0.716628i \(0.745684\pi\)
\(104\) 1.19272e6 688620.i 1.06033 0.612181i
\(105\) 0 0
\(106\) 572832. 992174.i 0.480961 0.833049i
\(107\) 1.99368e6i 1.62744i −0.581259 0.813718i \(-0.697440\pi\)
0.581259 0.813718i \(-0.302560\pi\)
\(108\) 0 0
\(109\) 1.51135e6 1.16704 0.583521 0.812098i \(-0.301674\pi\)
0.583521 + 0.812098i \(0.301674\pi\)
\(110\) 778176. + 449280.i 0.584655 + 0.337551i
\(111\) 0 0
\(112\) 227240. + 393591.i 0.161745 + 0.280150i
\(113\) −1.42936e6 + 825240.i −0.990617 + 0.571933i −0.905459 0.424435i \(-0.860473\pi\)
−0.0851580 + 0.996367i \(0.527140\pi\)
\(114\) 0 0
\(115\) 1.72224e6 2.98301e6i 1.13240 1.96138i
\(116\) 663936.i 0.425356i
\(117\) 0 0
\(118\) −1.42416e6 −0.866788
\(119\) −484739. 279864.i −0.287652 0.166076i
\(120\) 0 0
\(121\) −691092. 1.19701e6i −0.390104 0.675679i
\(122\) −321127. + 185403.i −0.176847 + 0.102103i
\(123\) 0 0
\(124\) −74620.0 + 129246.i −0.0391372 + 0.0677877i
\(125\) 6.32400e6i 3.23789i
\(126\) 0 0
\(127\) 1.41135e6 0.689005 0.344502 0.938785i \(-0.388048\pi\)
0.344502 + 0.938785i \(0.388048\pi\)
\(128\) −130029. 75072.0i −0.0620024 0.0357971i
\(129\) 0 0
\(130\) −1.79640e6 3.11146e6i −0.817660 1.41623i
\(131\) −279927. + 161616.i −0.124518 + 0.0718903i −0.560965 0.827839i \(-0.689570\pi\)
0.436447 + 0.899730i \(0.356236\pi\)
\(132\) 0 0
\(133\) 375096. 649684.i 0.159436 0.276152i
\(134\) 2.58157e6i 1.07292i
\(135\) 0 0
\(136\) −1.03334e6 −0.410798
\(137\) 1.85195e6 + 1.06922e6i 0.720224 + 0.415822i 0.814835 0.579693i \(-0.196827\pi\)
−0.0946111 + 0.995514i \(0.530161\pi\)
\(138\) 0 0
\(139\) 55614.5 + 96327.1i 0.0207083 + 0.0358678i 0.876194 0.481959i \(-0.160075\pi\)
−0.855486 + 0.517827i \(0.826741\pi\)
\(140\) −1.74009e6 + 1.00464e6i −0.634143 + 0.366122i
\(141\) 0 0
\(142\) −755136. + 1.30793e6i −0.263730 + 0.456794i
\(143\) 1.55688e6i 0.532411i
\(144\) 0 0
\(145\) 5.69088e6 1.86670
\(146\) −1.30743e6 754845.i −0.420107 0.242549i
\(147\) 0 0
\(148\) −456274. 790290.i −0.140747 0.243782i
\(149\) 2.97619e6 1.71830e6i 0.899708 0.519447i 0.0226029 0.999745i \(-0.492805\pi\)
0.877106 + 0.480298i \(0.159471\pi\)
\(150\) 0 0
\(151\) 1.96966e6 3.41156e6i 0.572086 0.990881i −0.424266 0.905538i \(-0.639468\pi\)
0.996352 0.0853436i \(-0.0271988\pi\)
\(152\) 1.38497e6i 0.394375i
\(153\) 0 0
\(154\) 1.11946e6 0.306510
\(155\) 1.10782e6 + 639600.i 0.297491 + 0.171757i
\(156\) 0 0
\(157\) −215533. 373314.i −0.0556948 0.0964663i 0.836834 0.547457i \(-0.184404\pi\)
−0.892529 + 0.450991i \(0.851071\pi\)
\(158\) 3.43376e6 1.98248e6i 0.870559 0.502618i
\(159\) 0 0
\(160\) −3.14496e6 + 5.44723e6i −0.767813 + 1.32989i
\(161\) 4.29125e6i 1.02827i
\(162\) 0 0
\(163\) −7.94353e6 −1.83422 −0.917109 0.398637i \(-0.869483\pi\)
−0.917109 + 0.398637i \(0.869483\pi\)
\(164\) −1.60391e6 926016.i −0.363620 0.209936i
\(165\) 0 0
\(166\) 2.39357e6 + 4.14578e6i 0.523265 + 0.906321i
\(167\) −3.06428e6 + 1.76916e6i −0.657928 + 0.379855i −0.791487 0.611186i \(-0.790693\pi\)
0.133559 + 0.991041i \(0.457359\pi\)
\(168\) 0 0
\(169\) −699108. + 1.21089e6i −0.144839 + 0.250868i
\(170\) 2.69568e6i 0.548683i
\(171\) 0 0
\(172\) −1.97764e6 −0.388653
\(173\) −1.53149e6 884208.i −0.295785 0.170772i 0.344763 0.938690i \(-0.387959\pi\)
−0.640548 + 0.767918i \(0.721293\pi\)
\(174\) 0 0
\(175\) 6.27526e6 + 1.08691e7i 1.17089 + 2.02805i
\(176\) 821408. 474240.i 0.150668 0.0869882i
\(177\) 0 0
\(178\) −811728. + 1.40595e6i −0.143930 + 0.249294i
\(179\) 3.82637e6i 0.667156i 0.942722 + 0.333578i \(0.108256\pi\)
−0.942722 + 0.333578i \(0.891744\pi\)
\(180\) 0 0
\(181\) −2.32721e6 −0.392464 −0.196232 0.980558i \(-0.562871\pi\)
−0.196232 + 0.980558i \(0.562871\pi\)
\(182\) −3.87636e6 2.23802e6i −0.642998 0.371235i
\(183\) 0 0
\(184\) −3.96115e6 6.86092e6i −0.635870 1.10136i
\(185\) −6.77391e6 + 3.91092e6i −1.06985 + 0.617680i
\(186\) 0 0
\(187\) −584064. + 1.01163e6i −0.0893173 + 0.154702i
\(188\) 111552.i 0.0167882i
\(189\) 0 0
\(190\) −3.61296e6 −0.526747
\(191\) −4.47073e6 2.58118e6i −0.641620 0.370440i 0.143618 0.989633i \(-0.454126\pi\)
−0.785238 + 0.619193i \(0.787460\pi\)
\(192\) 0 0
\(193\) 1.73777e6 + 3.00990e6i 0.241724 + 0.418678i 0.961205 0.275833i \(-0.0889538\pi\)
−0.719481 + 0.694512i \(0.755620\pi\)
\(194\) 1.14693e6 662181.i 0.157084 0.0906925i
\(195\) 0 0
\(196\) 395472. 684978.i 0.0525228 0.0909721i
\(197\) 7.36920e6i 0.963877i −0.876205 0.481939i \(-0.839933\pi\)
0.876205 0.481939i \(-0.160067\pi\)
\(198\) 0 0
\(199\) 8.43100e6 1.06984 0.534921 0.844902i \(-0.320341\pi\)
0.534921 + 0.844902i \(0.320341\pi\)
\(200\) 2.00660e7 + 1.15851e7i 2.50825 + 1.44814i
\(201\) 0 0
\(202\) 868608. + 1.50447e6i 0.105383 + 0.182528i
\(203\) 6.14002e6 3.54494e6i 0.733976 0.423761i
\(204\) 0 0
\(205\) −7.93728e6 + 1.37478e7i −0.921319 + 1.59577i
\(206\) 3.56523e6i 0.407836i
\(207\) 0 0
\(208\) −3.79240e6 −0.421429
\(209\) −1.35586e6 782808.i −0.148517 0.0857465i
\(210\) 0 0
\(211\) −2.05006e6 3.55081e6i −0.218233 0.377990i 0.736035 0.676943i \(-0.236696\pi\)
−0.954268 + 0.298953i \(0.903362\pi\)
\(212\) 4.63015e6 2.67322e6i 0.485945 0.280560i
\(213\) 0 0
\(214\) −5.98104e6 + 1.03595e7i −0.610289 + 1.05705i
\(215\) 1.69512e7i 1.70563i
\(216\) 0 0
\(217\) 1.59367e6 0.155962
\(218\) −7.85323e6 4.53406e6i −0.758016 0.437641i
\(219\) 0 0
\(220\) 2.09664e6 + 3.63149e6i 0.196905 + 0.341049i
\(221\) 4.04489e6 2.33532e6i 0.374740 0.216356i
\(222\) 0 0
\(223\) 7.26818e6 1.25889e7i 0.655407 1.13520i −0.326384 0.945237i \(-0.605830\pi\)
0.981792 0.189962i \(-0.0608363\pi\)
\(224\) 7.83619e6i 0.697206i
\(225\) 0 0
\(226\) 9.90288e6 0.857899
\(227\) 5.12266e6 + 2.95757e6i 0.437943 + 0.252847i 0.702725 0.711462i \(-0.251967\pi\)
−0.264782 + 0.964308i \(0.585300\pi\)
\(228\) 0 0
\(229\) −9.58496e6 1.66016e7i −0.798149 1.38243i −0.920820 0.389988i \(-0.872479\pi\)
0.122671 0.992447i \(-0.460854\pi\)
\(230\) −1.78980e7 + 1.03334e7i −1.47103 + 0.849301i
\(231\) 0 0
\(232\) 6.54451e6 1.13354e7i 0.524099 0.907766i
\(233\) 7.40563e6i 0.585456i −0.956196 0.292728i \(-0.905437\pi\)
0.956196 0.292728i \(-0.0945631\pi\)
\(234\) 0 0
\(235\) 956160. 0.0736762
\(236\) −5.75567e6 3.32304e6i −0.437885 0.252813i
\(237\) 0 0
\(238\) 1.67918e6 + 2.90843e6i 0.124557 + 0.215739i
\(239\) −1.28766e7 + 7.43434e6i −0.943212 + 0.544563i −0.890966 0.454071i \(-0.849971\pi\)
−0.0522459 + 0.998634i \(0.516638\pi\)
\(240\) 0 0
\(241\) 2.11498e6 3.66325e6i 0.151097 0.261707i −0.780534 0.625113i \(-0.785053\pi\)
0.931631 + 0.363406i \(0.118386\pi\)
\(242\) 8.29311e6i 0.585156i
\(243\) 0 0
\(244\) −1.73043e6 −0.119120
\(245\) −5.87124e6 3.38976e6i −0.399237 0.230500i
\(246\) 0 0
\(247\) 3.12998e6 + 5.42128e6i 0.207707 + 0.359758i
\(248\) 2.54799e6 1.47108e6i 0.167048 0.0964453i
\(249\) 0 0
\(250\) 1.89720e7 3.28605e7i 1.21421 2.10307i
\(251\) 1.32500e7i 0.837906i −0.908008 0.418953i \(-0.862397\pi\)
0.908008 0.418953i \(-0.137603\pi\)
\(252\) 0 0
\(253\) −8.95565e6 −0.553013
\(254\) −7.33357e6 4.23404e6i −0.447522 0.258377i
\(255\) 0 0
\(256\) 8.59533e6 + 1.48875e7i 0.512321 + 0.887367i
\(257\) 2.78576e7 1.60836e7i 1.64114 0.947510i 0.660705 0.750646i \(-0.270257\pi\)
0.980431 0.196865i \(-0.0630760\pi\)
\(258\) 0 0
\(259\) −4.87235e6 + 8.43917e6i −0.280440 + 0.485736i
\(260\) 1.67664e7i 0.953937i
\(261\) 0 0
\(262\) 1.93939e6 0.107835
\(263\) 2.52540e7 + 1.45804e7i 1.38823 + 0.801497i 0.993116 0.117134i \(-0.0373708\pi\)
0.395117 + 0.918631i \(0.370704\pi\)
\(264\) 0 0
\(265\) −2.29133e7 3.96870e7i −1.23126 2.13260i
\(266\) −3.89811e6 + 2.25057e6i −0.207114 + 0.119577i
\(267\) 0 0
\(268\) 6.02365e6 1.04333e7i 0.312936 0.542021i
\(269\) 1.84710e7i 0.948930i −0.880274 0.474465i \(-0.842642\pi\)
0.880274 0.474465i \(-0.157358\pi\)
\(270\) 0 0
\(271\) −2.27473e7 −1.14294 −0.571468 0.820624i \(-0.693626\pi\)
−0.571468 + 0.820624i \(0.693626\pi\)
\(272\) 2.46422e6 + 1.42272e6i 0.122454 + 0.0706989i
\(273\) 0 0
\(274\) −6.41534e6 1.11117e7i −0.311866 0.540168i
\(275\) 2.26833e7 1.30962e7i 1.09071 0.629720i
\(276\) 0 0
\(277\) 1.08882e7 1.88590e7i 0.512293 0.887317i −0.487606 0.873064i \(-0.662130\pi\)
0.999898 0.0142530i \(-0.00453704\pi\)
\(278\) 667374.i 0.0310624i
\(279\) 0 0
\(280\) 3.96115e7 1.80446
\(281\) −2.61503e7 1.50979e7i −1.17858 0.680451i −0.222891 0.974843i \(-0.571549\pi\)
−0.955685 + 0.294393i \(0.904883\pi\)
\(282\) 0 0
\(283\) 9.88938e6 + 1.71289e7i 0.436325 + 0.755736i 0.997403 0.0720265i \(-0.0229466\pi\)
−0.561078 + 0.827763i \(0.689613\pi\)
\(284\) −6.10369e6 + 3.52397e6i −0.266463 + 0.153843i
\(285\) 0 0
\(286\) −4.67064e6 + 8.08979e6i −0.199654 + 0.345811i
\(287\) 1.97771e7i 0.836596i
\(288\) 0 0
\(289\) 2.06332e7 0.854816
\(290\) −2.95707e7 1.70726e7i −1.21246 0.700014i
\(291\) 0 0
\(292\) −3.52261e6 6.10134e6i −0.141487 0.245062i
\(293\) −1.72782e7 + 9.97558e6i −0.686904 + 0.396584i −0.802451 0.596718i \(-0.796471\pi\)
0.115547 + 0.993302i \(0.463138\pi\)
\(294\) 0 0
\(295\) −2.84832e7 + 4.93343e7i −1.10949 + 1.92169i
\(296\) 1.79902e7i 0.693684i
\(297\) 0 0
\(298\) −2.06196e7 −0.779170
\(299\) 3.10108e7 + 1.79041e7i 1.16011 + 0.669791i
\(300\) 0 0
\(301\) 1.05592e7 + 1.82890e7i 0.387196 + 0.670643i
\(302\) −2.04693e7 + 1.18180e7i −0.743161 + 0.429064i
\(303\) 0 0
\(304\) −1.90684e6 + 3.30274e6i −0.0678724 + 0.117559i
\(305\) 1.48322e7i 0.522766i
\(306\) 0 0
\(307\) 2.43404e7 0.841226 0.420613 0.907240i \(-0.361815\pi\)
0.420613 + 0.907240i \(0.361815\pi\)
\(308\) 4.52423e6 + 2.61206e6i 0.154843 + 0.0893988i
\(309\) 0 0
\(310\) −3.83760e6 6.64692e6i −0.128817 0.223118i
\(311\) −4.60253e7 + 2.65727e7i −1.53009 + 0.883395i −0.530728 + 0.847542i \(0.678081\pi\)
−0.999357 + 0.0358529i \(0.988585\pi\)
\(312\) 0 0
\(313\) 1.58934e6 2.75282e6i 0.0518303 0.0897728i −0.838946 0.544214i \(-0.816828\pi\)
0.890777 + 0.454442i \(0.150161\pi\)
\(314\) 2.58640e6i 0.0835422i
\(315\) 0 0
\(316\) 1.85032e7 0.586387
\(317\) 3.20922e7 + 1.85284e7i 1.00745 + 0.581649i 0.910443 0.413635i \(-0.135741\pi\)
0.0970027 + 0.995284i \(0.469074\pi\)
\(318\) 0 0
\(319\) −7.39814e6 1.28140e7i −0.227903 0.394740i
\(320\) 5.29027e7 3.05434e7i 1.61446 0.932109i
\(321\) 0 0
\(322\) −1.28737e7 + 2.22980e7i −0.385600 + 0.667879i
\(323\) 4.69685e6i 0.139380i
\(324\) 0 0
\(325\) −1.04728e8 −3.05078
\(326\) 4.12758e7 + 2.38306e7i 1.19136 + 0.687832i
\(327\) 0 0
\(328\) 1.82557e7 + 3.16199e7i 0.517342 + 0.896063i
\(329\) 1.03162e6 595608.i 0.0289690 0.0167253i
\(330\) 0 0
\(331\) −2.73374e6 + 4.73497e6i −0.0753829 + 0.130567i −0.901253 0.433294i \(-0.857351\pi\)
0.825870 + 0.563861i \(0.190685\pi\)
\(332\) 2.23400e7i 0.610476i
\(333\) 0 0
\(334\) 2.12299e7 0.569782
\(335\) −8.94281e7 5.16313e7i −2.37870 1.37334i
\(336\) 0 0
\(337\) 2.04610e7 + 3.54394e7i 0.534609 + 0.925971i 0.999182 + 0.0404357i \(0.0128746\pi\)
−0.464573 + 0.885535i \(0.653792\pi\)
\(338\) 7.26534e6 4.19465e6i 0.188151 0.108629i
\(339\) 0 0
\(340\) −6.28992e6 + 1.08945e7i −0.160033 + 0.277185i
\(341\) 3.32592e6i 0.0838781i
\(342\) 0 0
\(343\) −4.36232e7 −1.08102
\(344\) 3.37644e7 + 1.94939e7i 0.829437 + 0.478876i
\(345\) 0 0
\(346\) 5.30525e6 + 9.18896e6i 0.128079 + 0.221839i
\(347\) 4.64593e7 2.68233e7i 1.11195 0.641983i 0.172614 0.984990i \(-0.444779\pi\)
0.939333 + 0.343007i \(0.111446\pi\)
\(348\) 0 0
\(349\) −8.04437e6 + 1.39333e7i −0.189241 + 0.327775i −0.944997 0.327078i \(-0.893936\pi\)
0.755756 + 0.654853i \(0.227269\pi\)
\(350\) 7.53032e7i 1.75634i
\(351\) 0 0
\(352\) 1.63538e7 0.374965
\(353\) −3.56049e6 2.05565e6i −0.0809441 0.0467331i 0.458982 0.888446i \(-0.348214\pi\)
−0.539926 + 0.841713i \(0.681548\pi\)
\(354\) 0 0
\(355\) 3.02054e7 + 5.23174e7i 0.675150 + 1.16939i
\(356\) −6.56112e6 + 3.78806e6i −0.145421 + 0.0839590i
\(357\) 0 0
\(358\) 1.14791e7 1.98824e7i 0.250184 0.433331i
\(359\) 1.41496e7i 0.305816i 0.988240 + 0.152908i \(0.0488638\pi\)
−0.988240 + 0.152908i \(0.951136\pi\)
\(360\) 0 0
\(361\) −4.07508e7 −0.866193
\(362\) 1.20925e7 + 6.98163e6i 0.254913 + 0.147174i
\(363\) 0 0
\(364\) −1.04441e7 1.80897e7i −0.216554 0.375082i
\(365\) −5.22972e7 + 3.01938e7i −1.07547 + 0.620925i
\(366\) 0 0
\(367\) −2.06695e7 + 3.58006e7i −0.418150 + 0.724257i −0.995753 0.0920605i \(-0.970655\pi\)
0.577603 + 0.816317i \(0.303988\pi\)
\(368\) 2.18150e7i 0.437736i
\(369\) 0 0
\(370\) 4.69310e7 0.926520
\(371\) −4.94433e7 2.85461e7i −0.968247 0.559018i
\(372\) 0 0
\(373\) −2.91690e7 5.05222e7i −0.562076 0.973545i −0.997315 0.0732299i \(-0.976669\pi\)
0.435239 0.900315i \(-0.356664\pi\)
\(374\) 6.06977e6 3.50438e6i 0.116027 0.0669880i
\(375\) 0 0
\(376\) 1.09958e6 1.90454e6i 0.0206854 0.0358282i
\(377\) 5.91614e7i 1.10412i
\(378\) 0 0
\(379\) 7.49065e7 1.37595 0.687974 0.725735i \(-0.258500\pi\)
0.687974 + 0.725735i \(0.258500\pi\)
\(380\) −1.46016e7 8.43024e6i −0.266103 0.153635i
\(381\) 0 0
\(382\) 1.54871e7 + 2.68244e7i 0.277830 + 0.481215i
\(383\) −2.46336e7 + 1.42222e7i −0.438461 + 0.253146i −0.702945 0.711244i \(-0.748132\pi\)
0.264483 + 0.964390i \(0.414799\pi\)
\(384\) 0 0
\(385\) 2.23891e7 3.87791e7i 0.392333 0.679541i
\(386\) 2.08532e7i 0.362586i
\(387\) 0 0
\(388\) 6.18036e6 0.105808
\(389\) 5.29457e7 + 3.05682e7i 0.899460 + 0.519303i 0.877025 0.480445i \(-0.159525\pi\)
0.0224348 + 0.999748i \(0.492858\pi\)
\(390\) 0 0
\(391\) −1.34335e7 2.32675e7i −0.224728 0.389241i
\(392\) −1.35038e7 + 7.79645e6i −0.224181 + 0.129431i
\(393\) 0 0
\(394\) −2.21076e7 + 3.82915e7i −0.361454 + 0.626057i
\(395\) 1.58598e8i 2.57340i
\(396\) 0 0
\(397\) −3.70144e7 −0.591561 −0.295780 0.955256i \(-0.595580\pi\)
−0.295780 + 0.955256i \(0.595580\pi\)
\(398\) −4.38087e7 2.52930e7i −0.694883 0.401191i
\(399\) 0 0
\(400\) −3.19010e7 5.52542e7i −0.498453 0.863346i
\(401\) −1.80800e7 + 1.04385e7i −0.280391 + 0.161884i −0.633600 0.773660i \(-0.718424\pi\)
0.353209 + 0.935544i \(0.385090\pi\)
\(402\) 0 0
\(403\) −6.64918e6 + 1.15167e7i −0.101590 + 0.175960i
\(404\) 8.10701e6i 0.122947i
\(405\) 0 0
\(406\) −4.25393e7 −0.635642
\(407\) 1.76122e7 + 1.01684e7i 0.261234 + 0.150824i
\(408\) 0 0
\(409\) −4.55265e7 7.88542e7i −0.665418 1.15254i −0.979172 0.203033i \(-0.934920\pi\)
0.313754 0.949504i \(-0.398413\pi\)
\(410\) 8.24866e7 4.76237e7i 1.19683 0.690989i
\(411\) 0 0
\(412\) 8.31887e6 1.44087e7i 0.118952 0.206031i
\(413\) 7.09706e7i 1.00746i
\(414\) 0 0
\(415\) 1.91485e8 2.67912
\(416\) −5.66285e7 3.26945e7i −0.786602 0.454145i
\(417\) 0 0
\(418\) 4.69685e6 + 8.13518e6i 0.0643099 + 0.111388i
\(419\) 9.97756e7 5.76055e7i 1.35638 0.783108i 0.367249 0.930123i \(-0.380300\pi\)
0.989134 + 0.147014i \(0.0469663\pi\)
\(420\) 0 0
\(421\) 6.57948e7 1.13960e8i 0.881750 1.52724i 0.0323553 0.999476i \(-0.489699\pi\)
0.849394 0.527759i \(-0.176967\pi\)
\(422\) 2.46007e7i 0.327349i
\(423\) 0 0
\(424\) −1.05401e8 −1.38276
\(425\) 6.80499e7 + 3.92886e7i 0.886463 + 0.511799i
\(426\) 0 0
\(427\) 9.23925e6 + 1.60028e7i 0.118673 + 0.205548i
\(428\) −4.83442e7 + 2.79115e7i −0.616613 + 0.356002i
\(429\) 0 0
\(430\) 5.08536e7 8.80810e7i 0.639612 1.10784i
\(431\) 7.15543e7i 0.893725i 0.894603 + 0.446863i \(0.147459\pi\)
−0.894603 + 0.446863i \(0.852541\pi\)
\(432\) 0 0
\(433\) 1.83937e7 0.226572 0.113286 0.993562i \(-0.463862\pi\)
0.113286 + 0.993562i \(0.463862\pi\)
\(434\) −8.28095e6 4.78101e6i −0.101300 0.0584858i
\(435\) 0 0
\(436\) −2.11590e7 3.66484e7i −0.255291 0.442176i
\(437\) 3.11849e7 1.80046e7i 0.373680 0.215744i
\(438\) 0 0
\(439\) 4.95305e7 8.57894e7i 0.585436 1.01400i −0.409385 0.912362i \(-0.634257\pi\)
0.994821 0.101643i \(-0.0324100\pi\)
\(440\) 8.26675e7i 0.970458i
\(441\) 0 0
\(442\) −2.80238e7 −0.324534
\(443\) 1.17257e8 + 6.76984e7i 1.34874 + 0.778695i 0.988071 0.154000i \(-0.0492155\pi\)
0.360668 + 0.932694i \(0.382549\pi\)
\(444\) 0 0
\(445\) 3.24691e7 + 5.62382e7i 0.368460 + 0.638192i
\(446\) −7.55332e7 + 4.36091e7i −0.851399 + 0.491555i
\(447\) 0 0
\(448\) 3.80519e7 6.59079e7i 0.423197 0.732999i
\(449\) 6.85948e7i 0.757796i 0.925438 + 0.378898i \(0.123697\pi\)
−0.925438 + 0.378898i \(0.876303\pi\)
\(450\) 0 0
\(451\) 4.12739e7 0.449930
\(452\) 4.00220e7 + 2.31067e7i 0.433395 + 0.250221i
\(453\) 0 0
\(454\) −1.77454e7 3.07359e7i −0.189635 0.328457i
\(455\) −1.55054e8 + 8.95206e7i −1.64607 + 0.950361i
\(456\) 0 0
\(457\) −3.56324e7 + 6.17172e7i −0.373334 + 0.646633i −0.990076 0.140532i \(-0.955119\pi\)
0.616743 + 0.787165i \(0.288452\pi\)
\(458\) 1.15020e8i 1.19722i
\(459\) 0 0
\(460\) −9.64454e7 −0.990851
\(461\) −1.35584e8 7.82797e7i −1.38391 0.798999i −0.391287 0.920269i \(-0.627970\pi\)
−0.992620 + 0.121270i \(0.961303\pi\)
\(462\) 0 0
\(463\) 276906. + 479616.i 0.00278991 + 0.00483227i 0.867417 0.497582i \(-0.165779\pi\)
−0.864627 + 0.502414i \(0.832445\pi\)
\(464\) −3.12135e7 + 1.80211e7i −0.312456 + 0.180396i
\(465\) 0 0
\(466\) −2.22169e7 + 3.84808e7i −0.219546 + 0.380265i
\(467\) 3.14739e7i 0.309030i −0.987990 0.154515i \(-0.950619\pi\)
0.987990 0.154515i \(-0.0493815\pi\)
\(468\) 0 0
\(469\) −1.28648e8 −1.24705
\(470\) −4.96835e6 2.86848e6i −0.0478541 0.0276286i
\(471\) 0 0
\(472\) 6.55114e7 + 1.13469e8i 0.623004 + 1.07907i
\(473\) 3.81684e7 2.20366e7i 0.360679 0.208238i
\(474\) 0 0
\(475\) −5.26576e7 + 9.12057e7i −0.491338 + 0.851023i
\(476\) 1.56724e7i 0.145316i
\(477\) 0 0
\(478\) 8.92120e7 0.816845
\(479\) −5.78365e7 3.33919e7i −0.526254 0.303833i 0.213236 0.977001i \(-0.431600\pi\)
−0.739490 + 0.673168i \(0.764933\pi\)
\(480\) 0 0
\(481\) −4.06573e7 7.04205e7i −0.365345 0.632796i
\(482\) −2.19795e7 + 1.26899e7i −0.196280 + 0.113322i
\(483\) 0 0
\(484\) −1.93506e7 + 3.35162e7i −0.170670 + 0.295610i
\(485\) 5.29745e7i 0.464346i
\(486\) 0 0
\(487\) 2.00508e8 1.73598 0.867992 0.496579i \(-0.165411\pi\)
0.867992 + 0.496579i \(0.165411\pi\)
\(488\) 2.95437e7 + 1.70571e7i 0.254218 + 0.146773i
\(489\) 0 0
\(490\) 2.03386e7 + 3.52274e7i 0.172875 + 0.299428i
\(491\) 7.46373e7 4.30919e7i 0.630538 0.364042i −0.150422 0.988622i \(-0.548063\pi\)
0.780961 + 0.624580i \(0.214730\pi\)
\(492\) 0 0
\(493\) 2.21944e7 3.84419e7i 0.185227 0.320822i
\(494\) 3.75597e7i 0.311560i
\(495\) 0 0
\(496\) −8.10160e6 −0.0663935
\(497\) 6.51787e7 + 3.76309e7i 0.530929 + 0.306532i
\(498\) 0 0
\(499\) −5.33365e6 9.23816e6i −0.0429263 0.0743505i 0.843764 0.536714i \(-0.180335\pi\)
−0.886690 + 0.462364i \(0.847001\pi\)
\(500\) 1.53349e8 8.85360e7i 1.22679 0.708288i
\(501\) 0 0
\(502\) −3.97500e7 + 6.88491e7i −0.314215 + 0.544236i
\(503\) 1.07893e8i 0.847790i −0.905711 0.423895i \(-0.860663\pi\)
0.905711 0.423895i \(-0.139337\pi\)
\(504\) 0 0
\(505\) 6.94886e7 0.539560
\(506\) 4.65349e7 + 2.68669e7i 0.359193 + 0.207380i
\(507\) 0 0
\(508\) −1.97588e7 3.42233e7i −0.150720 0.261054i
\(509\) 1.33397e8 7.70167e7i 1.01156 0.584025i 0.0999128 0.994996i \(-0.468144\pi\)
0.911648 + 0.410971i \(0.134810\pi\)
\(510\) 0 0
\(511\) −3.76164e7 + 6.51536e7i −0.281913 + 0.488288i
\(512\) 9.35347e7i 0.696888i
\(513\) 0 0
\(514\) −1.93003e8 −1.42127
\(515\) −1.23503e8 7.13046e7i −0.904183 0.522030i
\(516\) 0 0
\(517\) −1.24301e6 2.15295e6i −0.00899502 0.0155798i
\(518\) 5.06350e7 2.92341e7i 0.364302 0.210330i
\(519\) 0 0
\(520\) −1.65269e8 + 2.86254e8i −1.17539 + 2.03583i
\(521\) 1.85442e8i 1.31128i −0.755074 0.655640i \(-0.772399\pi\)
0.755074 0.655640i \(-0.227601\pi\)
\(522\) 0 0
\(523\) −1.46950e7 −0.102723 −0.0513613 0.998680i \(-0.516356\pi\)
−0.0513613 + 0.998680i \(0.516356\pi\)
\(524\) 7.83796e6 + 4.52525e6i 0.0544765 + 0.0314520i
\(525\) 0 0
\(526\) −8.74823e7 1.51524e8i −0.601122 1.04117i
\(527\) 8.64099e6 4.98888e6i 0.0590380 0.0340856i
\(528\) 0 0
\(529\) 2.89720e7 5.01810e7i 0.195709 0.338979i
\(530\) 2.74959e8i 1.84689i
\(531\) 0 0
\(532\) −2.10053e7 −0.139507
\(533\) −1.42920e8 8.25146e7i −0.943865 0.544941i
\(534\) 0 0
\(535\) 2.39242e8 + 4.14379e8i 1.56234 + 2.70605i
\(536\) −2.05685e8 + 1.18752e8i −1.33570 + 0.771164i
\(537\) 0 0
\(538\) −5.54131e7 + 9.59783e7i −0.355849 + 0.616348i
\(539\) 1.76268e7i 0.112566i
\(540\) 0 0
\(541\) −1.03570e7 −0.0654098 −0.0327049 0.999465i \(-0.510412\pi\)
−0.0327049 + 0.999465i \(0.510412\pi\)
\(542\) 1.18198e8 + 6.82419e7i 0.742359 + 0.428601i
\(543\) 0 0
\(544\) 2.45307e7 + 4.24884e7i 0.152375 + 0.263921i
\(545\) −3.14129e8 + 1.81362e8i −1.94052 + 1.12036i
\(546\) 0 0
\(547\) −4.01598e7 + 6.95589e7i −0.245375 + 0.425002i −0.962237 0.272213i \(-0.912244\pi\)
0.716862 + 0.697215i \(0.245578\pi\)
\(548\) 5.98765e7i 0.363844i
\(549\) 0 0
\(550\) −1.57154e8 −0.944579
\(551\) 5.15228e7 + 2.97467e7i 0.307996 + 0.177821i
\(552\) 0 0
\(553\) −9.87936e7 1.71116e8i −0.584189 1.01185i
\(554\) −1.13154e8 + 6.53294e7i −0.665488 + 0.384220i
\(555\) 0 0
\(556\) 1.55721e6 2.69716e6i 0.00905986 0.0156921i
\(557\) 3.87935e7i 0.224488i −0.993681 0.112244i \(-0.964196\pi\)
0.993681 0.112244i \(-0.0358038\pi\)
\(558\) 0 0
\(559\) −1.76222e8 −1.00884
\(560\) −9.44619e7 5.45376e7i −0.537889 0.310550i
\(561\) 0 0
\(562\) 9.05872e7 + 1.56902e8i 0.510338 + 0.883932i
\(563\) 2.12726e8 1.22818e8i 1.19205 0.688233i 0.233282 0.972409i \(-0.425054\pi\)
0.958772 + 0.284177i \(0.0917202\pi\)
\(564\) 0 0
\(565\) 1.98058e8 3.43046e8i 1.09811 1.90198i
\(566\) 1.18673e8i 0.654487i
\(567\) 0 0
\(568\) 1.38945e8 0.758225
\(569\) 2.91854e7 + 1.68502e7i 0.158427 + 0.0914677i 0.577117 0.816661i \(-0.304178\pi\)
−0.418691 + 0.908129i \(0.637511\pi\)
\(570\) 0 0
\(571\) 1.18485e8 + 2.05222e8i 0.636435 + 1.10234i 0.986209 + 0.165504i \(0.0529250\pi\)
−0.349774 + 0.936834i \(0.613742\pi\)
\(572\) −3.77523e7 + 2.17963e7i −0.201723 + 0.116465i
\(573\) 0 0
\(574\) 5.93312e7 1.02765e8i 0.313724 0.543385i
\(575\) 6.02425e8i 3.16883i
\(576\) 0 0
\(577\) 4.09015e6 0.0212918 0.0106459 0.999943i \(-0.496611\pi\)
0.0106459 + 0.999943i \(0.496611\pi\)
\(578\) −1.07213e8 6.18996e7i −0.555219 0.320556i
\(579\) 0 0
\(580\) −7.96723e7 1.37997e8i −0.408341 0.707268i
\(581\) 2.06598e8 1.19279e8i 1.05341 0.608187i
\(582\) 0 0
\(583\) −5.95745e7 + 1.03186e8i −0.300646 + 0.520734i
\(584\) 1.38891e8i 0.697328i
\(585\) 0 0
\(586\) 1.19707e8 0.594876
\(587\) 3.15888e8 + 1.82378e8i 1.56178 + 0.901692i 0.997078 + 0.0763950i \(0.0243410\pi\)
0.564699 + 0.825297i \(0.308992\pi\)
\(588\) 0 0
\(589\) 6.68648e6 + 1.15813e7i 0.0327229 + 0.0566778i
\(590\) 2.96006e8 1.70899e8i 1.44127 0.832116i
\(591\) 0 0
\(592\) 2.47692e7 4.29014e7i 0.119384 0.206779i
\(593\) 3.38297e8i 1.62231i −0.584832 0.811154i \(-0.698840\pi\)
0.584832 0.811154i \(-0.301160\pi\)
\(594\) 0 0
\(595\) 1.34335e8 0.637731
\(596\) −8.33333e7 4.81125e7i −0.393622 0.227258i
\(597\) 0 0
\(598\) −1.07425e8 1.86065e8i −0.502343 0.870084i
\(599\) −2.18701e8 + 1.26267e8i −1.01758 + 0.587502i −0.913403 0.407056i \(-0.866555\pi\)
−0.104181 + 0.994558i \(0.533222\pi\)
\(600\) 0 0
\(601\) −1.33928e8 + 2.31971e8i −0.616949 + 1.06859i 0.373090 + 0.927795i \(0.378298\pi\)
−0.990039 + 0.140792i \(0.955035\pi\)
\(602\) 1.26710e8i 0.580794i
\(603\) 0 0
\(604\) −1.10301e8 −0.500575
\(605\) 2.87282e8 + 1.65862e8i 1.29730 + 0.748999i
\(606\) 0 0
\(607\) 1.36076e8 + 2.35691e8i 0.608438 + 1.05385i 0.991498 + 0.130122i \(0.0415370\pi\)
−0.383060 + 0.923724i \(0.625130\pi\)
\(608\) −5.69463e7 + 3.28779e7i −0.253370 + 0.146283i
\(609\) 0 0
\(610\) 4.44967e7 7.70706e7i 0.196037 0.339546i
\(611\) 9.94008e6i 0.0435779i
\(612\) 0 0
\(613\) −4.91383e7 −0.213323 −0.106662 0.994295i \(-0.534016\pi\)
−0.106662 + 0.994295i \(0.534016\pi\)
\(614\) −1.26476e8 7.30212e7i −0.546392 0.315460i
\(615\) 0 0
\(616\) −5.14950e7 8.91919e7i −0.220304 0.381578i
\(617\) 1.07978e8 6.23412e7i 0.459706 0.265412i −0.252214 0.967671i \(-0.581159\pi\)
0.711921 + 0.702260i \(0.247826\pi\)
\(618\) 0 0
\(619\) 2.26787e8 3.92806e8i 0.956193 1.65617i 0.224578 0.974456i \(-0.427900\pi\)
0.731615 0.681718i \(-0.238767\pi\)
\(620\) 3.58176e7i 0.150287i
\(621\) 0 0
\(622\) 3.18873e8 1.32509
\(623\) 7.00634e7 + 4.04511e7i 0.289752 + 0.167289i
\(624\) 0 0
\(625\) −4.30950e8 7.46428e8i −1.76517 3.05737i
\(626\) −1.65169e7 + 9.53604e6i −0.0673296 + 0.0388727i
\(627\) 0 0
\(628\) −6.03492e6 + 1.04528e7i −0.0243665 + 0.0422040i
\(629\) 6.10104e7i 0.245161i
\(630\) 0 0
\(631\) −5.31523e7 −0.211560 −0.105780 0.994390i \(-0.533734\pi\)
−0.105780 + 0.994390i \(0.533734\pi\)
\(632\) −3.15906e8 1.82388e8i −1.25143 0.722513i
\(633\) 0 0
\(634\) −1.11171e8 1.92553e8i −0.436237 0.755584i
\(635\) −2.93343e8 + 1.69362e8i −1.14566 + 0.661445i
\(636\) 0 0
\(637\) 3.52394e7 6.10364e7i 0.136336 0.236141i
\(638\) 8.87777e7i 0.341855i
\(639\) 0 0
\(640\) 3.60346e7 0.137461
\(641\) −3.16482e8 1.82721e8i −1.20164 0.693768i −0.240721 0.970594i \(-0.577384\pi\)
−0.960920 + 0.276826i \(0.910717\pi\)
\(642\) 0 0
\(643\) −7.62806e7 1.32122e8i −0.286933 0.496983i 0.686143 0.727467i \(-0.259303\pi\)
−0.973076 + 0.230484i \(0.925969\pi\)
\(644\) −1.04057e8 + 6.00775e7i −0.389596 + 0.224933i
\(645\) 0 0
\(646\) −1.40905e7 + 2.44055e7i −0.0522673 + 0.0905296i
\(647\) 1.22990e7i 0.0454107i −0.999742 0.0227054i \(-0.992772\pi\)
0.999742 0.0227054i \(-0.00722796\pi\)
\(648\) 0 0
\(649\) 1.48113e8 0.541824
\(650\) 5.44181e8 + 3.14183e8i 1.98154 + 1.14404i
\(651\) 0 0
\(652\) 1.11209e8 + 1.92620e8i 0.401235 + 0.694960i
\(653\) −4.95449e7 + 2.86048e7i −0.177934 + 0.102730i −0.586322 0.810078i \(-0.699425\pi\)
0.408387 + 0.912809i \(0.366091\pi\)
\(654\) 0 0
\(655\) 3.87878e7 6.71825e7i 0.138029 0.239074i
\(656\) 1.00539e8i 0.356141i
\(657\) 0 0
\(658\) −7.14730e6 −0.0250879
\(659\) −1.99266e8 1.15046e8i −0.696269 0.401991i 0.109687 0.993966i \(-0.465015\pi\)
−0.805956 + 0.591975i \(0.798348\pi\)
\(660\) 0 0
\(661\) −2.40523e7 4.16598e7i −0.0832822 0.144249i 0.821376 0.570388i \(-0.193207\pi\)
−0.904658 + 0.426138i \(0.859874\pi\)
\(662\) 2.84098e7 1.64024e7i 0.0979253 0.0565372i
\(663\) 0 0
\(664\) 2.20208e8 3.81412e8i 0.752193 1.30284i
\(665\) 1.80046e8i 0.612235i
\(666\) 0 0
\(667\) 3.40315e8 1.14684
\(668\) 8.57997e7 + 4.95365e7i 0.287843 + 0.166187i
\(669\) 0 0
\(670\) 3.09788e8 + 5.36568e8i 1.03001 + 1.78402i
\(671\) 3.33973e7 1.92819e7i 0.110546 0.0638238i
\(672\) 0 0
\(673\) −1.15326e8 + 1.99751e8i −0.378341 + 0.655305i −0.990821 0.135181i \(-0.956839\pi\)
0.612480 + 0.790486i \(0.290172\pi\)
\(674\) 2.45532e8i 0.801914i
\(675\) 0 0
\(676\) 3.91500e7 0.126734
\(677\) −4.88652e8 2.82123e8i −1.57483 0.909228i −0.995564 0.0940888i \(-0.970006\pi\)
−0.579265 0.815139i \(-0.696660\pi\)
\(678\) 0 0
\(679\) −3.29987e7 5.71554e7i −0.105411 0.182578i
\(680\) 2.14777e8 1.24001e8i 0.683062 0.394366i
\(681\) 0 0
\(682\) −9.97776e6 + 1.72820e7i −0.0314543 + 0.0544804i
\(683\) 2.05363e8i 0.644555i −0.946645 0.322278i \(-0.895552\pi\)
0.946645 0.322278i \(-0.104448\pi\)
\(684\) 0 0
\(685\) −5.13228e8 −1.59675
\(686\) 2.26673e8 + 1.30870e8i 0.702145 + 0.405384i
\(687\) 0 0
\(688\) −5.36788e7 9.29744e7i −0.164830 0.285495i
\(689\) 4.12579e8 2.38203e8i 1.26139 0.728264i
\(690\) 0 0
\(691\) 5.43345e7 9.41101e7i 0.164680 0.285234i −0.771861 0.635791i \(-0.780674\pi\)
0.936542 + 0.350556i \(0.114007\pi\)
\(692\) 4.95156e7i 0.149425i
\(693\) 0 0
\(694\) −3.21879e8 −0.962974
\(695\) −2.31185e7 1.33475e7i −0.0688661 0.0397599i
\(696\) 0 0
\(697\) 6.19108e7 + 1.07233e8i 0.182839 + 0.316686i
\(698\) 8.35995e7 4.82662e7i 0.245831 0.141931i
\(699\) 0 0
\(700\) 1.75707e8 3.04334e8i 0.512266 0.887271i
\(701\) 1.08271e8i 0.314310i 0.987574 + 0.157155i \(0.0502321\pi\)
−0.987574 + 0.157155i \(0.949768\pi\)
\(702\) 0 0
\(703\) −8.17708e7 −0.235360
\(704\) −1.37547e8 7.94127e7i −0.394215 0.227600i
\(705\) 0 0
\(706\) 1.23339e7 + 2.13629e7i 0.0350498 + 0.0607081i
\(707\) 7.49729e7 4.32856e7i 0.212152 0.122486i
\(708\) 0 0
\(709\) −8.42675e7 + 1.45956e8i −0.236440 + 0.409527i −0.959690 0.281060i \(-0.909314\pi\)
0.723250 + 0.690586i \(0.242647\pi\)
\(710\) 3.62465e8i 1.01272i
\(711\) 0 0
\(712\) 1.49358e8 0.413798
\(713\) 6.62476e7 + 3.82481e7i 0.182769 + 0.105522i
\(714\) 0 0
\(715\) 1.86826e8 + 3.23591e8i 0.511115 + 0.885276i
\(716\) 9.27845e7 5.35692e7i 0.252776 0.145940i
\(717\) 0 0
\(718\) 4.24488e7 7.35234e7i 0.114681 0.198633i
\(719\) 6.10328e8i 1.64201i −0.570918 0.821007i \(-0.693413\pi\)
0.570918 0.821007i \(-0.306587\pi\)
\(720\) 0 0
\(721\) −1.77667e8 −0.474025
\(722\) 2.11747e8 + 1.22252e8i 0.562609 + 0.324822i
\(723\) 0 0
\(724\) 3.25809e7 + 5.64318e7i 0.0858515 + 0.148699i
\(725\) −8.61965e8 + 4.97656e8i −2.26191 + 1.30591i
\(726\) 0 0
\(727\) −3.07962e8 + 5.33407e8i −0.801483 + 1.38821i 0.117156 + 0.993113i \(0.462622\pi\)
−0.918640 + 0.395096i \(0.870711\pi\)
\(728\) 4.11795e8i 1.06730i
\(729\) 0 0
\(730\) 3.62326e8 0.931388
\(731\) 1.14505e8 + 6.61097e7i 0.293139 + 0.169244i
\(732\) 0 0
\(733\) −1.82521e8 3.16136e8i −0.463449 0.802716i 0.535681 0.844420i \(-0.320055\pi\)
−0.999130 + 0.0417037i \(0.986721\pi\)
\(734\) 2.14804e8 1.24017e8i 0.543193 0.313612i
\(735\) 0 0
\(736\) −1.88069e8 + 3.25744e8i −0.471718 + 0.817040i
\(737\) 2.68483e8i 0.670678i
\(738\) 0 0
\(739\) −7.10760e8 −1.76112 −0.880562 0.473931i \(-0.842835\pi\)
−0.880562 + 0.473931i \(0.842835\pi\)
\(740\) 1.89670e8 + 1.09506e8i 0.468061 + 0.270235i
\(741\) 0 0
\(742\) 1.71277e8 + 2.96660e8i 0.419263 + 0.726185i
\(743\) −1.83073e8 + 1.05697e8i −0.446331 + 0.257689i −0.706279 0.707933i \(-0.749628\pi\)
0.259949 + 0.965622i \(0.416294\pi\)
\(744\) 0 0
\(745\) −4.12393e8 + 7.14286e8i −0.997338 + 1.72744i
\(746\) 3.50028e8i 0.843115i
\(747\) 0 0
\(748\) 3.27076e7 0.0781526
\(749\) 5.16247e8 + 2.98055e8i 1.22860 + 0.709335i
\(750\) 0 0
\(751\) 9.53126e7 + 1.65086e8i 0.225025 + 0.389754i 0.956327 0.292299i \(-0.0944203\pi\)
−0.731302 + 0.682054i \(0.761087\pi\)
\(752\) −5.24437e6 + 3.02784e6i −0.0123322 + 0.00711999i
\(753\) 0 0
\(754\) 1.77484e8 3.07412e8i 0.414043 0.717144i
\(755\) 9.45438e8i 2.19681i
\(756\) 0 0
\(757\) 6.27405e8 1.44631 0.723153 0.690688i \(-0.242692\pi\)
0.723153 + 0.690688i \(0.242692\pi\)
\(758\) −3.89226e8 2.24720e8i −0.893704 0.515980i
\(759\) 0 0
\(760\) 1.66196e8 + 2.87860e8i 0.378600 + 0.655754i
\(761\) 6.91991e7 3.99521e7i 0.157017 0.0906537i −0.419433 0.907786i \(-0.637771\pi\)
0.576450 + 0.817133i \(0.304438\pi\)
\(762\) 0 0
\(763\) −2.25947e8 + 3.91352e8i −0.508667 + 0.881038i
\(764\) 1.44546e8i 0.324135i
\(765\) 0 0
\(766\) 1.70666e8 0.379719
\(767\) −5.12872e8 2.96107e8i −1.13664 0.656239i
\(768\) 0 0
\(769\) −3.32237e8 5.75452e8i −0.730583 1.26541i −0.956634 0.291291i \(-0.905915\pi\)
0.226052 0.974115i \(-0.427418\pi\)
\(770\) −2.32675e8 + 1.34335e8i −0.509656 + 0.294250i
\(771\) 0 0
\(772\) 4.86575e7 8.42773e7i 0.105754 0.183172i
\(773\) 6.85987e6i 0.0148517i 0.999972 + 0.00742587i \(0.00236375\pi\)
−0.999972 + 0.00742587i \(0.997636\pi\)
\(774\) 0 0
\(775\) −2.23727e8 −0.480632
\(776\) −1.05518e8 6.09207e7i −0.225808 0.130371i
\(777\) 0 0
\(778\) −1.83409e8 3.17674e8i −0.389477 0.674595i
\(779\) −1.43722e8 + 8.29776e7i −0.304025 + 0.175529i
\(780\) 0 0
\(781\) 7.85341e7 1.36025e8i 0.164856 0.285539i
\(782\) 1.61202e8i 0.337093i
\(783\) 0 0
\(784\) 4.29370e7 0.0891011
\(785\) 8.95954e7 + 5.17279e7i 0.185215 + 0.106934i
\(786\) 0 0
\(787\) 1.52795e8 + 2.64648e8i 0.313462 + 0.542932i 0.979109 0.203335i \(-0.0651779\pi\)
−0.665648 + 0.746266i \(0.731845\pi\)
\(788\) −1.78694e8 + 1.03169e8i −0.365200 + 0.210848i
\(789\) 0 0
\(790\) −4.75795e8 + 8.24102e8i −0.965026 + 1.67147i
\(791\) 4.93494e8i 0.997131i
\(792\) 0 0
\(793\) −1.54193e8 −0.309205
\(794\) 1.92332e8 + 1.11043e8i 0.384230 + 0.221835i
\(795\) 0 0
\(796\) −1.18034e8 2.04441e8i −0.234028 0.405348i
\(797\) 1.74456e8 1.00722e8i 0.344597 0.198953i −0.317706 0.948189i \(-0.602913\pi\)
0.662303 + 0.749236i \(0.269579\pi\)
\(798\) 0 0
\(799\) 3.72902e6 6.45886e6i 0.00731063 0.0126624i
\(800\) 1.10008e9i 2.14860i
\(801\) 0 0
\(802\) 1.25262e8 0.242826
\(803\) 1.35973e8 + 7.85039e7i 0.262606 + 0.151616i
\(804\) 0 0
\(805\) 5.14950e8 + 8.91919e8i 0.987137 + 1.70977i
\(806\) 6.91003e7 3.98950e7i 0.131970 0.0761928i
\(807\) 0 0
\(808\) 7.99119e7 1.38412e8i 0.151488 0.262385i
\(809\) 1.11534e8i 0.210650i 0.994438 + 0.105325i \(0.0335882\pi\)
−0.994438 + 0.105325i \(0.966412\pi\)
\(810\) 0 0
\(811\) −1.72124e8 −0.322685 −0.161343 0.986898i \(-0.551582\pi\)
−0.161343 + 0.986898i \(0.551582\pi\)
\(812\) −1.71921e8 9.92584e7i −0.321115 0.185396i
\(813\) 0 0
\(814\) −6.10104e7 1.05673e8i −0.113118 0.195925i
\(815\) 1.65103e9 9.53224e8i 3.04988 1.76085i
\(816\) 0 0
\(817\) −8.86053e7 + 1.53469e8i −0.162478 + 0.281420i
\(818\) 5.46318e8i 0.998126i
\(819\) 0 0
\(820\) 4.44488e8 0.806154
\(821\) 7.46933e8 + 4.31242e8i 1.34975 + 0.779276i 0.988213 0.153084i \(-0.0489204\pi\)
0.361532 + 0.932360i \(0.382254\pi\)
\(822\) 0 0
\(823\) 2.94505e6 + 5.10097e6i 0.00528315 + 0.00915068i 0.868655 0.495418i \(-0.164985\pi\)
−0.863372 + 0.504568i \(0.831652\pi\)
\(824\) −2.84057e8 + 1.64001e8i −0.507720 + 0.293132i
\(825\) 0 0
\(826\) 2.12912e8 3.68774e8i 0.377798 0.654366i
\(827\) 7.60618e8i 1.34478i −0.740199 0.672388i \(-0.765269\pi\)
0.740199 0.672388i \(-0.234731\pi\)
\(828\) 0 0
\(829\) −1.06302e9 −1.86585 −0.932926 0.360067i \(-0.882754\pi\)
−0.932926 + 0.360067i \(0.882754\pi\)
\(830\) −9.94988e8 5.74456e8i −1.74014 1.00467i
\(831\) 0 0
\(832\) 3.17524e8 + 5.49967e8i 0.551323 + 0.954920i
\(833\) −4.57956e7 + 2.64401e7i −0.0792299 + 0.0457434i
\(834\) 0 0
\(835\) 4.24598e8 7.35426e8i 0.729321 1.26322i
\(836\) 4.38372e7i 0.0750282i
\(837\) 0 0
\(838\) −6.91266e8 −1.17466
\(839\) 4.04427e8 + 2.33496e8i 0.684786 + 0.395361i 0.801656 0.597786i \(-0.203953\pi\)
−0.116870 + 0.993147i \(0.537286\pi\)
\(840\) 0 0
\(841\) −1.62822e7 2.82016e7i −0.0273732 0.0474117i
\(842\) −6.83760e8 + 3.94769e8i −1.14543 + 0.661312i
\(843\) 0 0
\(844\) −5.74017e7 + 9.94227e7i −0.0954767 + 0.165371i
\(845\) 3.35572e8i 0.556180i
\(846\) 0 0
\(847\) 4.13273e8 0.680122
\(848\) 2.51351e8 + 1.45117e8i 0.412185 + 0.237975i
\(849\) 0 0
\(850\) −2.35732e8 4.08299e8i −0.383850 0.664847i
\(851\) −4.05080e8 + 2.33873e8i −0.657282 + 0.379482i
\(852\) 0 0
\(853\) 5.10268e8 8.83809e8i 0.822150 1.42400i −0.0819289 0.996638i \(-0.526108\pi\)
0.904078 0.427367i \(-0.140559\pi\)
\(854\) 1.10871e8i 0.178010i
\(855\) 0 0
\(856\) 1.10051e9 1.75458
\(857\) 5.46885e7 + 3.15744e7i 0.0868867 + 0.0501641i 0.542814 0.839853i \(-0.317359\pi\)
−0.455927 + 0.890017i \(0.650692\pi\)
\(858\) 0 0
\(859\) −5.17778e8 8.96818e8i −0.816892 1.41490i −0.907962 0.419053i \(-0.862362\pi\)
0.0910701 0.995844i \(-0.470971\pi\)
\(860\) 4.11045e8 2.37317e8i 0.646240 0.373107i
\(861\) 0 0
\(862\) 2.14663e8 3.71807e8i 0.335147 0.580492i
\(863\) 4.60575e8i 0.716585i −0.933609 0.358292i \(-0.883359\pi\)
0.933609 0.358292i \(-0.116641\pi\)
\(864\) 0 0
\(865\) 4.24420e8 0.655764
\(866\) −9.55765e7 5.51811e7i −0.147163 0.0849643i
\(867\) 0 0
\(868\) −2.23114e7 3.86444e7i −0.0341167 0.0590919i
\(869\) −3.57111e8 + 2.06178e8i −0.544181 + 0.314183i
\(870\) 0 0
\(871\) 5.36751e8 9.29679e8i 0.812303 1.40695i
\(872\) 8.34267e8i 1.25822i
\(873\) 0 0
\(874\) −2.16055e8 −0.323616
\(875\) −1.63755e9 9.45438e8i −2.44438 1.41127i
\(876\) 0 0
\(877\) 4.52290e8 + 7.83389e8i 0.670530 + 1.16139i 0.977754 + 0.209754i \(0.0672664\pi\)
−0.307224 + 0.951637i \(0.599400\pi\)
\(878\) −5.14736e8 + 2.97183e8i −0.760504 + 0.439077i
\(879\) 0 0
\(880\) −1.13818e8 + 1.97138e8i −0.167017 + 0.289282i
\(881\) 1.06708e9i 1.56051i 0.625460 + 0.780257i \(0.284912\pi\)
−0.625460 + 0.780257i \(0.715088\pi\)
\(882\) 0 0
\(883\) −8.52780e7 −0.123867 −0.0619334 0.998080i \(-0.519727\pi\)
−0.0619334 + 0.998080i \(0.519727\pi\)
\(884\) −1.13257e8 6.53890e7i −0.163949 0.0946559i
\(885\) 0 0
\(886\) −4.06190e8 7.03542e8i −0.584021 1.01155i
\(887\) 2.10625e8 1.21604e8i 0.301814 0.174252i −0.341444 0.939902i \(-0.610916\pi\)
0.643258 + 0.765650i \(0.277582\pi\)
\(888\) 0 0
\(889\) −2.10996e8 + 3.65456e8i −0.300310 + 0.520152i
\(890\) 3.89629e8i 0.552690i
\(891\) 0 0
\(892\) −4.07018e8 −0.573481
\(893\) 8.65667e6 + 4.99793e6i 0.0121562 + 0.00701836i
\(894\) 0 0
\(895\) −4.59164e8 7.95296e8i −0.640470 1.10933i
\(896\) 3.88785e7 2.24465e7i 0.0540488 0.0312051i
\(897\) 0 0
\(898\) 2.05784e8 3.56429e8i 0.284174 0.492203i
\(899\) 1.26385e8i 0.173947i
\(900\) 0 0
\(901\) −3.57447e8 −0.488695
\(902\) −2.14465e8 1.23822e8i −0.292238 0.168724i
\(903\) 0 0
\(904\) −4.55532e8 7.89005e8i −0.616615 1.06801i
\(905\) 4.83701e8 2.79265e8i 0.652577 0.376765i
\(906\) 0 0
\(907\) −4.31213e8 + 7.46882e8i −0.577922 + 1.00099i 0.417795 + 0.908541i \(0.362803\pi\)
−0.995717 + 0.0924497i \(0.970530\pi\)
\(908\) 1.65624e8i 0.221241i
\(909\) 0 0
\(910\) 1.07425e9 1.42554
\(911\) 9.92770e8 + 5.73176e8i 1.31309 + 0.758111i 0.982606 0.185702i \(-0.0594559\pi\)
0.330480 + 0.943813i \(0.392789\pi\)
\(912\) 0 0
\(913\) −2.48931e8 4.31161e8i −0.327090 0.566536i
\(914\) 3.70303e8 2.13795e8i 0.484974 0.280000i
\(915\) 0 0
\(916\) −2.68379e8 + 4.64846e8i −0.349190 + 0.604815i
\(917\) 9.66464e7i 0.125336i
\(918\) 0 0
\(919\) 8.23240e8 1.06067 0.530335 0.847788i \(-0.322066\pi\)
0.530335 + 0.847788i \(0.322066\pi\)
\(920\) 1.64662e9 + 9.50676e8i 2.11461 + 1.22087i
\(921\) 0 0
\(922\) 4.69678e8 + 8.13506e8i 0.599249 + 1.03793i
\(923\) −5.43883e8 + 3.14011e8i −0.691672 + 0.399337i
\(924\) 0 0
\(925\) 6.84004e8 1.18473e9i 0.864238 1.49690i
\(926\) 3.32288e6i 0.00418486i
\(927\) 0 0
\(928\) −6.21444e8 −0.777603
\(929\) −6.31105e8 3.64369e8i −0.787144 0.454458i 0.0518119 0.998657i \(-0.483500\pi\)
−0.838956 + 0.544199i \(0.816834\pi\)
\(930\) 0 0
\(931\) −3.54371e7 6.13789e7i −0.0439146 0.0760624i
\(932\) −1.79577e8 + 1.03679e8i −0.221821 + 0.128069i
\(933\) 0 0
\(934\) −9.44218e7 + 1.63543e8i −0.115886 + 0.200721i
\(935\) 2.80351e8i 0.342978i
\(936\) 0 0
\(937\) 5.88557e8 0.715434 0.357717 0.933830i \(-0.383555\pi\)
0.357717 + 0.933830i \(0.383555\pi\)
\(938\) 6.68475e8 + 3.85944e8i 0.809984 + 0.467645i
\(939\) 0 0
\(940\) −1.33862e7 2.31856e7i −0.0161167 0.0279149i
\(941\) 8.43199e8 4.86821e8i 1.01196 0.584253i 0.100192 0.994968i \(-0.468054\pi\)
0.911764 + 0.410715i \(0.134721\pi\)
\(942\) 0 0
\(943\) −4.74649e8 + 8.22117e8i −0.566028 + 0.980389i
\(944\) 3.60787e8i 0.428879i
\(945\) 0 0
\(946\) −2.64439e8 −0.312357
\(947\) 3.38266e8 + 1.95298e8i 0.398299 + 0.229958i 0.685750 0.727838i \(-0.259475\pi\)
−0.287451 + 0.957795i \(0.592808\pi\)
\(948\) 0 0
\(949\) −3.13890e8 5.43673e8i −0.367264 0.636120i
\(950\) 5.47234e8 3.15946e8i 0.638267 0.368504i
\(951\) 0 0
\(952\) 1.54485e8 2.67576e8i 0.179050 0.310124i
\(953\) 4.41062e7i 0.0509590i 0.999675 + 0.0254795i \(0.00811125\pi\)
−0.999675 + 0.0254795i \(0.991889\pi\)
\(954\) 0 0
\(955\) 1.23896e9 1.42249
\(956\) 3.60546e8 + 2.08161e8i 0.412655 + 0.238247i
\(957\) 0 0
\(958\) 2.00352e8 + 3.47019e8i 0.227875 + 0.394691i
\(959\) −5.53733e8 + 3.19698e8i −0.627834 + 0.362480i
\(960\) 0 0
\(961\) 4.29547e8 7.43998e8i 0.483995 0.838304i
\(962\) 4.87887e8i 0.548017i
\(963\) 0 0
\(964\) −1.18439e8 −0.132209
\(965\) −7.22377e8 4.17064e8i −0.803863 0.464110i
\(966\) 0 0
\(967\) 4.81689e8 + 8.34310e8i 0.532705 + 0.922673i 0.999271 + 0.0381861i \(0.0121580\pi\)
−0.466565 + 0.884487i \(0.654509\pi\)
\(968\) 6.60748e8 3.81483e8i 0.728467 0.420581i
\(969\) 0 0
\(970\) −1.58923e8 + 2.75263e8i −0.174130 + 0.301601i
\(971\) 7.36207e8i 0.804160i 0.915605 + 0.402080i \(0.131713\pi\)
−0.915605 + 0.402080i \(0.868287\pi\)
\(972\) 0 0
\(973\) −3.32575e7 −0.0361036
\(974\) −1.04187e9 6.01525e8i −1.12755 0.650994i
\(975\) 0 0
\(976\) −4.69688e7 8.13523e7i −0.0505196 0.0875025i
\(977\) −1.39341e9 + 8.04484e8i −1.49415 + 0.862648i −0.999977 0.00671600i \(-0.997862\pi\)
−0.494172 + 0.869364i \(0.664529\pi\)
\(978\) 0 0
\(979\) 8.44197e7 1.46219e8i 0.0899696 0.155832i
\(980\) 1.89827e8i 0.201687i
\(981\) 0 0
\(982\) −5.17103e8 −0.546062
\(983\) −3.87093e8 2.23488e8i −0.407526 0.235285i 0.282200 0.959356i \(-0.408936\pi\)
−0.689726 + 0.724070i \(0.742269\pi\)
\(984\) 0 0
\(985\) 8.84304e8 + 1.53166e9i 0.925322 + 1.60270i
\(986\) −2.30651e8 + 1.33167e8i −0.240616 + 0.138920i
\(987\) 0 0
\(988\) 8.76394e7 1.51796e8i 0.0908716 0.157394i
\(989\) 1.01368e9i 1.04788i
\(990\) 0 0
\(991\) −1.40384e9 −1.44244 −0.721220 0.692706i \(-0.756418\pi\)
−0.721220 + 0.692706i \(0.756418\pi\)
\(992\) −1.20974e8 6.98443e7i −0.123924 0.0715478i
\(993\) 0 0
\(994\) −2.25786e8 3.91072e8i −0.229899 0.398197i
\(995\) −1.75235e9 + 1.01172e9i −1.77890 + 1.02705i
\(996\) 0 0
\(997\) −6.65711e8 + 1.15304e9i −0.671738 + 1.16348i 0.305673 + 0.952137i \(0.401119\pi\)
−0.977411 + 0.211348i \(0.932215\pi\)
\(998\) 6.40038e7i 0.0643894i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.7.d.b.26.1 4
3.2 odd 2 inner 81.7.d.b.26.2 4
9.2 odd 6 27.7.b.b.26.1 2
9.4 even 3 inner 81.7.d.b.53.2 4
9.5 odd 6 inner 81.7.d.b.53.1 4
9.7 even 3 27.7.b.b.26.2 yes 2
36.7 odd 6 432.7.e.d.161.1 2
36.11 even 6 432.7.e.d.161.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.7.b.b.26.1 2 9.2 odd 6
27.7.b.b.26.2 yes 2 9.7 even 3
81.7.d.b.26.1 4 1.1 even 1 trivial
81.7.d.b.26.2 4 3.2 odd 2 inner
81.7.d.b.53.1 4 9.5 odd 6 inner
81.7.d.b.53.2 4 9.4 even 3 inner
432.7.e.d.161.1 2 36.7 odd 6
432.7.e.d.161.2 2 36.11 even 6