Properties

Label 81.8.a.d.1.1
Level $81$
Weight $8$
Character 81.1
Self dual yes
Analytic conductor $25.303$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3031870642\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 156x^{4} + 388x^{3} + 5992x^{2} - 18174x + 6597 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{9} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.423455\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.7742 q^{2} +263.020 q^{4} +473.605 q^{5} -1026.85 q^{7} -2669.91 q^{8} -9365.17 q^{10} -2226.85 q^{11} -3322.33 q^{13} +20305.1 q^{14} +19128.8 q^{16} +36094.5 q^{17} -37646.7 q^{19} +124567. q^{20} +44034.3 q^{22} -70860.6 q^{23} +146177. q^{25} +65696.4 q^{26} -270081. q^{28} -28859.0 q^{29} +15630.3 q^{31} -36508.7 q^{32} -713739. q^{34} -486321. q^{35} +41084.0 q^{37} +744433. q^{38} -1.26448e6 q^{40} -63463.6 q^{41} -151661. q^{43} -585706. q^{44} +1.40121e6 q^{46} -714732. q^{47} +230874. q^{49} -2.89054e6 q^{50} -873837. q^{52} +490289. q^{53} -1.05465e6 q^{55} +2.74159e6 q^{56} +570665. q^{58} -1.33623e6 q^{59} -1.79614e6 q^{61} -309077. q^{62} -1.72655e6 q^{64} -1.57347e6 q^{65} +2.54568e6 q^{67} +9.49355e6 q^{68} +9.61661e6 q^{70} -700407. q^{71} -4.69075e6 q^{73} -812403. q^{74} -9.90181e6 q^{76} +2.28664e6 q^{77} -4.98011e6 q^{79} +9.05950e6 q^{80} +1.25494e6 q^{82} +3.39027e6 q^{83} +1.70945e7 q^{85} +2.99898e6 q^{86} +5.94549e6 q^{88} +1.27747e6 q^{89} +3.41152e6 q^{91} -1.86377e7 q^{92} +1.41333e7 q^{94} -1.78297e7 q^{95} +7.65707e6 q^{97} -4.56536e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 438 q^{4} - 1932 q^{7} - 14922 q^{10} - 11886 q^{13} + 7314 q^{16} - 67164 q^{19} - 23364 q^{22} + 42324 q^{25} - 693348 q^{28} - 470832 q^{31} - 1834866 q^{34} - 1026258 q^{37} - 3091374 q^{40} - 1502268 q^{43}+ \cdots + 26307948 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −19.7742 −1.74781 −0.873905 0.486097i \(-0.838420\pi\)
−0.873905 + 0.486097i \(0.838420\pi\)
\(3\) 0 0
\(4\) 263.020 2.05484
\(5\) 473.605 1.69442 0.847211 0.531256i \(-0.178280\pi\)
0.847211 + 0.531256i \(0.178280\pi\)
\(6\) 0 0
\(7\) −1026.85 −1.13152 −0.565761 0.824569i \(-0.691418\pi\)
−0.565761 + 0.824569i \(0.691418\pi\)
\(8\) −2669.91 −1.84366
\(9\) 0 0
\(10\) −9365.17 −2.96153
\(11\) −2226.85 −0.504449 −0.252224 0.967669i \(-0.581162\pi\)
−0.252224 + 0.967669i \(0.581162\pi\)
\(12\) 0 0
\(13\) −3322.33 −0.419412 −0.209706 0.977765i \(-0.567251\pi\)
−0.209706 + 0.977765i \(0.567251\pi\)
\(14\) 20305.1 1.97769
\(15\) 0 0
\(16\) 19128.8 1.16753
\(17\) 36094.5 1.78184 0.890921 0.454158i \(-0.150060\pi\)
0.890921 + 0.454158i \(0.150060\pi\)
\(18\) 0 0
\(19\) −37646.7 −1.25918 −0.629592 0.776926i \(-0.716778\pi\)
−0.629592 + 0.776926i \(0.716778\pi\)
\(20\) 124567. 3.48177
\(21\) 0 0
\(22\) 44034.3 0.881681
\(23\) −70860.6 −1.21439 −0.607194 0.794554i \(-0.707705\pi\)
−0.607194 + 0.794554i \(0.707705\pi\)
\(24\) 0 0
\(25\) 146177. 1.87107
\(26\) 65696.4 0.733052
\(27\) 0 0
\(28\) −270081. −2.32510
\(29\) −28859.0 −0.219730 −0.109865 0.993947i \(-0.535042\pi\)
−0.109865 + 0.993947i \(0.535042\pi\)
\(30\) 0 0
\(31\) 15630.3 0.0942326 0.0471163 0.998889i \(-0.484997\pi\)
0.0471163 + 0.998889i \(0.484997\pi\)
\(32\) −36508.7 −0.196957
\(33\) 0 0
\(34\) −713739. −3.11432
\(35\) −486321. −1.91728
\(36\) 0 0
\(37\) 41084.0 0.133342 0.0666709 0.997775i \(-0.478762\pi\)
0.0666709 + 0.997775i \(0.478762\pi\)
\(38\) 744433. 2.20081
\(39\) 0 0
\(40\) −1.26448e6 −3.12394
\(41\) −63463.6 −0.143807 −0.0719037 0.997412i \(-0.522907\pi\)
−0.0719037 + 0.997412i \(0.522907\pi\)
\(42\) 0 0
\(43\) −151661. −0.290894 −0.145447 0.989366i \(-0.546462\pi\)
−0.145447 + 0.989366i \(0.546462\pi\)
\(44\) −585706. −1.03656
\(45\) 0 0
\(46\) 1.40121e6 2.12252
\(47\) −714732. −1.00415 −0.502077 0.864823i \(-0.667431\pi\)
−0.502077 + 0.864823i \(0.667431\pi\)
\(48\) 0 0
\(49\) 230874. 0.280343
\(50\) −2.89054e6 −3.27027
\(51\) 0 0
\(52\) −873837. −0.861824
\(53\) 490289. 0.452363 0.226181 0.974085i \(-0.427376\pi\)
0.226181 + 0.974085i \(0.427376\pi\)
\(54\) 0 0
\(55\) −1.05465e6 −0.854749
\(56\) 2.74159e6 2.08614
\(57\) 0 0
\(58\) 570665. 0.384046
\(59\) −1.33623e6 −0.847030 −0.423515 0.905889i \(-0.639204\pi\)
−0.423515 + 0.905889i \(0.639204\pi\)
\(60\) 0 0
\(61\) −1.79614e6 −1.01318 −0.506588 0.862188i \(-0.669094\pi\)
−0.506588 + 0.862188i \(0.669094\pi\)
\(62\) −309077. −0.164701
\(63\) 0 0
\(64\) −1.72655e6 −0.823284
\(65\) −1.57347e6 −0.710660
\(66\) 0 0
\(67\) 2.54568e6 1.03405 0.517026 0.855970i \(-0.327039\pi\)
0.517026 + 0.855970i \(0.327039\pi\)
\(68\) 9.49355e6 3.66140
\(69\) 0 0
\(70\) 9.61661e6 3.35104
\(71\) −700407. −0.232245 −0.116122 0.993235i \(-0.537047\pi\)
−0.116122 + 0.993235i \(0.537047\pi\)
\(72\) 0 0
\(73\) −4.69075e6 −1.41128 −0.705638 0.708572i \(-0.749340\pi\)
−0.705638 + 0.708572i \(0.749340\pi\)
\(74\) −812403. −0.233056
\(75\) 0 0
\(76\) −9.90181e6 −2.58742
\(77\) 2.28664e6 0.570795
\(78\) 0 0
\(79\) −4.98011e6 −1.13643 −0.568217 0.822879i \(-0.692367\pi\)
−0.568217 + 0.822879i \(0.692367\pi\)
\(80\) 9.05950e6 1.97829
\(81\) 0 0
\(82\) 1.25494e6 0.251348
\(83\) 3.39027e6 0.650820 0.325410 0.945573i \(-0.394498\pi\)
0.325410 + 0.945573i \(0.394498\pi\)
\(84\) 0 0
\(85\) 1.70945e7 3.01919
\(86\) 2.99898e6 0.508427
\(87\) 0 0
\(88\) 5.94549e6 0.930032
\(89\) 1.27747e6 0.192081 0.0960405 0.995377i \(-0.469382\pi\)
0.0960405 + 0.995377i \(0.469382\pi\)
\(90\) 0 0
\(91\) 3.41152e6 0.474574
\(92\) −1.86377e7 −2.49537
\(93\) 0 0
\(94\) 1.41333e7 1.75507
\(95\) −1.78297e7 −2.13359
\(96\) 0 0
\(97\) 7.65707e6 0.851847 0.425924 0.904759i \(-0.359949\pi\)
0.425924 + 0.904759i \(0.359949\pi\)
\(98\) −4.56536e6 −0.489986
\(99\) 0 0
\(100\) 3.84474e7 3.84474
\(101\) −1.70415e7 −1.64582 −0.822911 0.568171i \(-0.807651\pi\)
−0.822911 + 0.568171i \(0.807651\pi\)
\(102\) 0 0
\(103\) −1.75683e7 −1.58416 −0.792082 0.610414i \(-0.791003\pi\)
−0.792082 + 0.610414i \(0.791003\pi\)
\(104\) 8.87030e6 0.773253
\(105\) 0 0
\(106\) −9.69508e6 −0.790644
\(107\) −1.16418e7 −0.918710 −0.459355 0.888253i \(-0.651919\pi\)
−0.459355 + 0.888253i \(0.651919\pi\)
\(108\) 0 0
\(109\) −2.29184e7 −1.69509 −0.847544 0.530725i \(-0.821920\pi\)
−0.847544 + 0.530725i \(0.821920\pi\)
\(110\) 2.08549e7 1.49394
\(111\) 0 0
\(112\) −1.96424e7 −1.32108
\(113\) 342408. 0.0223239 0.0111619 0.999938i \(-0.496447\pi\)
0.0111619 + 0.999938i \(0.496447\pi\)
\(114\) 0 0
\(115\) −3.35600e7 −2.05769
\(116\) −7.59049e6 −0.451510
\(117\) 0 0
\(118\) 2.64229e7 1.48045
\(119\) −3.70635e7 −2.01619
\(120\) 0 0
\(121\) −1.45283e7 −0.745531
\(122\) 3.55172e7 1.77084
\(123\) 0 0
\(124\) 4.11107e6 0.193633
\(125\) 3.22298e7 1.47595
\(126\) 0 0
\(127\) −1.04923e7 −0.454524 −0.227262 0.973834i \(-0.572977\pi\)
−0.227262 + 0.973834i \(0.572977\pi\)
\(128\) 3.88143e7 1.63590
\(129\) 0 0
\(130\) 3.11142e7 1.24210
\(131\) −6.65490e6 −0.258638 −0.129319 0.991603i \(-0.541279\pi\)
−0.129319 + 0.991603i \(0.541279\pi\)
\(132\) 0 0
\(133\) 3.86574e7 1.42479
\(134\) −5.03388e7 −1.80733
\(135\) 0 0
\(136\) −9.63688e7 −3.28511
\(137\) 4.00135e7 1.32949 0.664744 0.747071i \(-0.268540\pi\)
0.664744 + 0.747071i \(0.268540\pi\)
\(138\) 0 0
\(139\) 1.88262e7 0.594581 0.297291 0.954787i \(-0.403917\pi\)
0.297291 + 0.954787i \(0.403917\pi\)
\(140\) −1.27912e8 −3.93970
\(141\) 0 0
\(142\) 1.38500e7 0.405920
\(143\) 7.39833e6 0.211572
\(144\) 0 0
\(145\) −1.36678e7 −0.372315
\(146\) 9.27559e7 2.46664
\(147\) 0 0
\(148\) 1.08059e7 0.273996
\(149\) 2.58112e7 0.639229 0.319614 0.947548i \(-0.396447\pi\)
0.319614 + 0.947548i \(0.396447\pi\)
\(150\) 0 0
\(151\) −9.13502e6 −0.215919 −0.107959 0.994155i \(-0.534432\pi\)
−0.107959 + 0.994155i \(0.534432\pi\)
\(152\) 1.00513e8 2.32151
\(153\) 0 0
\(154\) −4.52165e7 −0.997641
\(155\) 7.40259e6 0.159670
\(156\) 0 0
\(157\) −3.30247e7 −0.681067 −0.340533 0.940232i \(-0.610608\pi\)
−0.340533 + 0.940232i \(0.610608\pi\)
\(158\) 9.84778e7 1.98627
\(159\) 0 0
\(160\) −1.72907e7 −0.333729
\(161\) 7.27631e7 1.37411
\(162\) 0 0
\(163\) 9.98787e7 1.80641 0.903205 0.429210i \(-0.141208\pi\)
0.903205 + 0.429210i \(0.141208\pi\)
\(164\) −1.66922e7 −0.295501
\(165\) 0 0
\(166\) −6.70399e7 −1.13751
\(167\) −1.22615e7 −0.203721 −0.101860 0.994799i \(-0.532480\pi\)
−0.101860 + 0.994799i \(0.532480\pi\)
\(168\) 0 0
\(169\) −5.17107e7 −0.824094
\(170\) −3.38031e8 −5.27698
\(171\) 0 0
\(172\) −3.98898e7 −0.597740
\(173\) −2.40046e7 −0.352479 −0.176240 0.984347i \(-0.556393\pi\)
−0.176240 + 0.984347i \(0.556393\pi\)
\(174\) 0 0
\(175\) −1.50102e8 −2.11715
\(176\) −4.25970e7 −0.588958
\(177\) 0 0
\(178\) −2.52609e7 −0.335721
\(179\) 1.35827e8 1.77011 0.885054 0.465488i \(-0.154121\pi\)
0.885054 + 0.465488i \(0.154121\pi\)
\(180\) 0 0
\(181\) −7.74602e7 −0.970965 −0.485482 0.874246i \(-0.661356\pi\)
−0.485482 + 0.874246i \(0.661356\pi\)
\(182\) −6.74602e7 −0.829465
\(183\) 0 0
\(184\) 1.89191e8 2.23892
\(185\) 1.94576e7 0.225937
\(186\) 0 0
\(187\) −8.03770e7 −0.898848
\(188\) −1.87988e8 −2.06338
\(189\) 0 0
\(190\) 3.52568e8 3.72911
\(191\) −3.78490e7 −0.393041 −0.196520 0.980500i \(-0.562964\pi\)
−0.196520 + 0.980500i \(0.562964\pi\)
\(192\) 0 0
\(193\) −4.31117e7 −0.431663 −0.215831 0.976431i \(-0.569246\pi\)
−0.215831 + 0.976431i \(0.569246\pi\)
\(194\) −1.51413e8 −1.48887
\(195\) 0 0
\(196\) 6.07245e7 0.576060
\(197\) 1.35255e8 1.26044 0.630221 0.776416i \(-0.282964\pi\)
0.630221 + 0.776416i \(0.282964\pi\)
\(198\) 0 0
\(199\) 9.83246e7 0.884456 0.442228 0.896903i \(-0.354188\pi\)
0.442228 + 0.896903i \(0.354188\pi\)
\(200\) −3.90279e8 −3.44961
\(201\) 0 0
\(202\) 3.36982e8 2.87658
\(203\) 2.96339e7 0.248629
\(204\) 0 0
\(205\) −3.00567e7 −0.243670
\(206\) 3.47400e8 2.76882
\(207\) 0 0
\(208\) −6.35520e7 −0.489675
\(209\) 8.38336e7 0.635193
\(210\) 0 0
\(211\) −6.82781e7 −0.500372 −0.250186 0.968198i \(-0.580492\pi\)
−0.250186 + 0.968198i \(0.580492\pi\)
\(212\) 1.28956e8 0.929533
\(213\) 0 0
\(214\) 2.30208e8 1.60573
\(215\) −7.18275e7 −0.492897
\(216\) 0 0
\(217\) −1.60499e7 −0.106626
\(218\) 4.53194e8 2.96269
\(219\) 0 0
\(220\) −2.77393e8 −1.75637
\(221\) −1.19918e8 −0.747325
\(222\) 0 0
\(223\) 2.91860e8 1.76241 0.881207 0.472731i \(-0.156732\pi\)
0.881207 + 0.472731i \(0.156732\pi\)
\(224\) 3.74889e7 0.222862
\(225\) 0 0
\(226\) −6.77085e6 −0.0390179
\(227\) −2.38586e8 −1.35380 −0.676901 0.736074i \(-0.736677\pi\)
−0.676901 + 0.736074i \(0.736677\pi\)
\(228\) 0 0
\(229\) −1.53030e8 −0.842080 −0.421040 0.907042i \(-0.638335\pi\)
−0.421040 + 0.907042i \(0.638335\pi\)
\(230\) 6.63622e8 3.59644
\(231\) 0 0
\(232\) 7.70509e7 0.405107
\(233\) −2.54013e8 −1.31556 −0.657779 0.753211i \(-0.728504\pi\)
−0.657779 + 0.753211i \(0.728504\pi\)
\(234\) 0 0
\(235\) −3.38501e8 −1.70146
\(236\) −3.51454e8 −1.74051
\(237\) 0 0
\(238\) 7.32902e8 3.52392
\(239\) 3.16138e8 1.49791 0.748953 0.662624i \(-0.230557\pi\)
0.748953 + 0.662624i \(0.230557\pi\)
\(240\) 0 0
\(241\) 2.15535e7 0.0991878 0.0495939 0.998769i \(-0.484207\pi\)
0.0495939 + 0.998769i \(0.484207\pi\)
\(242\) 2.87286e8 1.30305
\(243\) 0 0
\(244\) −4.72419e8 −2.08192
\(245\) 1.09343e8 0.475019
\(246\) 0 0
\(247\) 1.25074e8 0.528116
\(248\) −4.17314e7 −0.173733
\(249\) 0 0
\(250\) −6.37320e8 −2.57969
\(251\) 1.38647e8 0.553419 0.276709 0.960954i \(-0.410756\pi\)
0.276709 + 0.960954i \(0.410756\pi\)
\(252\) 0 0
\(253\) 1.57796e8 0.612596
\(254\) 2.07476e8 0.794421
\(255\) 0 0
\(256\) −5.46524e8 −2.03596
\(257\) −4.54276e8 −1.66938 −0.834688 0.550723i \(-0.814352\pi\)
−0.834688 + 0.550723i \(0.814352\pi\)
\(258\) 0 0
\(259\) −4.21870e7 −0.150879
\(260\) −4.13854e8 −1.46029
\(261\) 0 0
\(262\) 1.31595e8 0.452050
\(263\) 1.48149e8 0.502174 0.251087 0.967965i \(-0.419212\pi\)
0.251087 + 0.967965i \(0.419212\pi\)
\(264\) 0 0
\(265\) 2.32204e8 0.766493
\(266\) −7.64420e8 −2.49027
\(267\) 0 0
\(268\) 6.69564e8 2.12481
\(269\) 2.17316e8 0.680703 0.340352 0.940298i \(-0.389454\pi\)
0.340352 + 0.940298i \(0.389454\pi\)
\(270\) 0 0
\(271\) −3.83874e8 −1.17165 −0.585823 0.810439i \(-0.699229\pi\)
−0.585823 + 0.810439i \(0.699229\pi\)
\(272\) 6.90443e8 2.08035
\(273\) 0 0
\(274\) −7.91236e8 −2.32369
\(275\) −3.25515e8 −0.943857
\(276\) 0 0
\(277\) −4.16650e8 −1.17786 −0.588928 0.808185i \(-0.700450\pi\)
−0.588928 + 0.808185i \(0.700450\pi\)
\(278\) −3.72274e8 −1.03921
\(279\) 0 0
\(280\) 1.29843e9 3.53481
\(281\) −6.34305e8 −1.70540 −0.852700 0.522401i \(-0.825036\pi\)
−0.852700 + 0.522401i \(0.825036\pi\)
\(282\) 0 0
\(283\) 7.08806e8 1.85898 0.929490 0.368847i \(-0.120247\pi\)
0.929490 + 0.368847i \(0.120247\pi\)
\(284\) −1.84221e8 −0.477226
\(285\) 0 0
\(286\) −1.46296e8 −0.369787
\(287\) 6.51675e7 0.162721
\(288\) 0 0
\(289\) 8.92471e8 2.17496
\(290\) 2.70270e8 0.650736
\(291\) 0 0
\(292\) −1.23376e9 −2.89995
\(293\) 3.64597e7 0.0846791 0.0423395 0.999103i \(-0.486519\pi\)
0.0423395 + 0.999103i \(0.486519\pi\)
\(294\) 0 0
\(295\) −6.32845e8 −1.43523
\(296\) −1.09690e8 −0.245837
\(297\) 0 0
\(298\) −5.10396e8 −1.11725
\(299\) 2.35422e8 0.509328
\(300\) 0 0
\(301\) 1.55733e8 0.329153
\(302\) 1.80638e8 0.377385
\(303\) 0 0
\(304\) −7.20135e8 −1.47013
\(305\) −8.50661e8 −1.71675
\(306\) 0 0
\(307\) −7.16485e8 −1.41326 −0.706631 0.707583i \(-0.749786\pi\)
−0.706631 + 0.707583i \(0.749786\pi\)
\(308\) 6.01431e8 1.17289
\(309\) 0 0
\(310\) −1.46380e8 −0.279073
\(311\) 2.62929e8 0.495652 0.247826 0.968805i \(-0.420284\pi\)
0.247826 + 0.968805i \(0.420284\pi\)
\(312\) 0 0
\(313\) 2.99480e8 0.552029 0.276015 0.961153i \(-0.410986\pi\)
0.276015 + 0.961153i \(0.410986\pi\)
\(314\) 6.53037e8 1.19038
\(315\) 0 0
\(316\) −1.30987e9 −2.33519
\(317\) −1.77518e8 −0.312993 −0.156497 0.987679i \(-0.550020\pi\)
−0.156497 + 0.987679i \(0.550020\pi\)
\(318\) 0 0
\(319\) 6.42648e7 0.110842
\(320\) −8.17705e8 −1.39499
\(321\) 0 0
\(322\) −1.43883e9 −2.40168
\(323\) −1.35884e9 −2.24367
\(324\) 0 0
\(325\) −4.85648e8 −0.784747
\(326\) −1.97502e9 −3.15726
\(327\) 0 0
\(328\) 1.69442e8 0.265132
\(329\) 7.33921e8 1.13622
\(330\) 0 0
\(331\) 8.18919e8 1.24120 0.620602 0.784126i \(-0.286888\pi\)
0.620602 + 0.784126i \(0.286888\pi\)
\(332\) 8.91707e8 1.33733
\(333\) 0 0
\(334\) 2.42461e8 0.356065
\(335\) 1.20565e9 1.75212
\(336\) 0 0
\(337\) 1.13506e9 1.61553 0.807763 0.589508i \(-0.200678\pi\)
0.807763 + 0.589508i \(0.200678\pi\)
\(338\) 1.02254e9 1.44036
\(339\) 0 0
\(340\) 4.49620e9 6.20396
\(341\) −3.48064e7 −0.0475355
\(342\) 0 0
\(343\) 6.08581e8 0.814308
\(344\) 4.04920e8 0.536309
\(345\) 0 0
\(346\) 4.74673e8 0.616067
\(347\) 5.23134e8 0.672140 0.336070 0.941837i \(-0.390902\pi\)
0.336070 + 0.941837i \(0.390902\pi\)
\(348\) 0 0
\(349\) 2.23584e8 0.281548 0.140774 0.990042i \(-0.455041\pi\)
0.140774 + 0.990042i \(0.455041\pi\)
\(350\) 2.96814e9 3.70038
\(351\) 0 0
\(352\) 8.12996e7 0.0993548
\(353\) 3.85474e8 0.466427 0.233214 0.972426i \(-0.425076\pi\)
0.233214 + 0.972426i \(0.425076\pi\)
\(354\) 0 0
\(355\) −3.31717e8 −0.393521
\(356\) 3.35999e8 0.394696
\(357\) 0 0
\(358\) −2.68587e9 −3.09381
\(359\) 1.05112e9 1.19901 0.599504 0.800372i \(-0.295365\pi\)
0.599504 + 0.800372i \(0.295365\pi\)
\(360\) 0 0
\(361\) 5.23400e8 0.585542
\(362\) 1.53171e9 1.69706
\(363\) 0 0
\(364\) 8.97298e8 0.975173
\(365\) −2.22156e9 −2.39130
\(366\) 0 0
\(367\) 1.93592e8 0.204435 0.102218 0.994762i \(-0.467406\pi\)
0.102218 + 0.994762i \(0.467406\pi\)
\(368\) −1.35548e9 −1.41783
\(369\) 0 0
\(370\) −3.84758e8 −0.394895
\(371\) −5.03453e8 −0.511859
\(372\) 0 0
\(373\) −3.53893e8 −0.353094 −0.176547 0.984292i \(-0.556493\pi\)
−0.176547 + 0.984292i \(0.556493\pi\)
\(374\) 1.58939e9 1.57102
\(375\) 0 0
\(376\) 1.90827e9 1.85132
\(377\) 9.58792e7 0.0921572
\(378\) 0 0
\(379\) −4.69956e8 −0.443425 −0.221712 0.975112i \(-0.571165\pi\)
−0.221712 + 0.975112i \(0.571165\pi\)
\(380\) −4.68955e9 −4.38418
\(381\) 0 0
\(382\) 7.48434e8 0.686961
\(383\) 1.53089e9 1.39235 0.696177 0.717871i \(-0.254883\pi\)
0.696177 + 0.717871i \(0.254883\pi\)
\(384\) 0 0
\(385\) 1.08296e9 0.967168
\(386\) 8.52500e8 0.754465
\(387\) 0 0
\(388\) 2.01396e9 1.75041
\(389\) −8.33450e8 −0.717887 −0.358943 0.933359i \(-0.616863\pi\)
−0.358943 + 0.933359i \(0.616863\pi\)
\(390\) 0 0
\(391\) −2.55767e9 −2.16385
\(392\) −6.16413e8 −0.516857
\(393\) 0 0
\(394\) −2.67457e9 −2.20301
\(395\) −2.35861e9 −1.92560
\(396\) 0 0
\(397\) 8.58150e8 0.688330 0.344165 0.938909i \(-0.388162\pi\)
0.344165 + 0.938909i \(0.388162\pi\)
\(398\) −1.94429e9 −1.54586
\(399\) 0 0
\(400\) 2.79619e9 2.18452
\(401\) 2.07167e8 0.160441 0.0802205 0.996777i \(-0.474438\pi\)
0.0802205 + 0.996777i \(0.474438\pi\)
\(402\) 0 0
\(403\) −5.19289e7 −0.0395223
\(404\) −4.48225e9 −3.38190
\(405\) 0 0
\(406\) −5.85986e8 −0.434557
\(407\) −9.14879e7 −0.0672641
\(408\) 0 0
\(409\) −4.47164e8 −0.323173 −0.161586 0.986859i \(-0.551661\pi\)
−0.161586 + 0.986859i \(0.551661\pi\)
\(410\) 5.94348e8 0.425890
\(411\) 0 0
\(412\) −4.62082e9 −3.25521
\(413\) 1.37210e9 0.958433
\(414\) 0 0
\(415\) 1.60565e9 1.10276
\(416\) 1.21294e8 0.0826062
\(417\) 0 0
\(418\) −1.65774e9 −1.11020
\(419\) −8.04489e8 −0.534283 −0.267141 0.963657i \(-0.586079\pi\)
−0.267141 + 0.963657i \(0.586079\pi\)
\(420\) 0 0
\(421\) 1.19625e9 0.781333 0.390666 0.920532i \(-0.372245\pi\)
0.390666 + 0.920532i \(0.372245\pi\)
\(422\) 1.35015e9 0.874555
\(423\) 0 0
\(424\) −1.30903e9 −0.834003
\(425\) 5.27618e9 3.33395
\(426\) 0 0
\(427\) 1.84436e9 1.14643
\(428\) −3.06203e9 −1.88780
\(429\) 0 0
\(430\) 1.42033e9 0.861490
\(431\) −8.02879e8 −0.483036 −0.241518 0.970396i \(-0.577645\pi\)
−0.241518 + 0.970396i \(0.577645\pi\)
\(432\) 0 0
\(433\) 2.54405e9 1.50597 0.752987 0.658035i \(-0.228612\pi\)
0.752987 + 0.658035i \(0.228612\pi\)
\(434\) 3.17375e8 0.186363
\(435\) 0 0
\(436\) −6.02800e9 −3.48314
\(437\) 2.66767e9 1.52914
\(438\) 0 0
\(439\) −8.00679e8 −0.451682 −0.225841 0.974164i \(-0.572513\pi\)
−0.225841 + 0.974164i \(0.572513\pi\)
\(440\) 2.81581e9 1.57587
\(441\) 0 0
\(442\) 2.37127e9 1.30618
\(443\) −1.07872e9 −0.589517 −0.294758 0.955572i \(-0.595239\pi\)
−0.294758 + 0.955572i \(0.595239\pi\)
\(444\) 0 0
\(445\) 6.05015e8 0.325466
\(446\) −5.77131e9 −3.08036
\(447\) 0 0
\(448\) 1.77291e9 0.931565
\(449\) 1.67071e9 0.871042 0.435521 0.900179i \(-0.356564\pi\)
0.435521 + 0.900179i \(0.356564\pi\)
\(450\) 0 0
\(451\) 1.41324e8 0.0725434
\(452\) 9.00600e7 0.0458720
\(453\) 0 0
\(454\) 4.71786e9 2.36619
\(455\) 1.61572e9 0.804128
\(456\) 0 0
\(457\) 1.81152e9 0.887844 0.443922 0.896065i \(-0.353587\pi\)
0.443922 + 0.896065i \(0.353587\pi\)
\(458\) 3.02605e9 1.47180
\(459\) 0 0
\(460\) −8.82693e9 −4.22822
\(461\) 9.08114e8 0.431705 0.215852 0.976426i \(-0.430747\pi\)
0.215852 + 0.976426i \(0.430747\pi\)
\(462\) 0 0
\(463\) −2.96452e9 −1.38810 −0.694051 0.719926i \(-0.744176\pi\)
−0.694051 + 0.719926i \(0.744176\pi\)
\(464\) −5.52038e8 −0.256541
\(465\) 0 0
\(466\) 5.02291e9 2.29935
\(467\) −1.15258e9 −0.523675 −0.261837 0.965112i \(-0.584328\pi\)
−0.261837 + 0.965112i \(0.584328\pi\)
\(468\) 0 0
\(469\) −2.61403e9 −1.17005
\(470\) 6.69359e9 2.97383
\(471\) 0 0
\(472\) 3.56760e9 1.56164
\(473\) 3.37727e8 0.146741
\(474\) 0 0
\(475\) −5.50308e9 −2.35602
\(476\) −9.74843e9 −4.14296
\(477\) 0 0
\(478\) −6.25139e9 −2.61805
\(479\) −5.66663e8 −0.235587 −0.117793 0.993038i \(-0.537582\pi\)
−0.117793 + 0.993038i \(0.537582\pi\)
\(480\) 0 0
\(481\) −1.36494e8 −0.0559251
\(482\) −4.26204e8 −0.173361
\(483\) 0 0
\(484\) −3.82123e9 −1.53195
\(485\) 3.62643e9 1.44339
\(486\) 0 0
\(487\) 3.19934e9 1.25519 0.627595 0.778540i \(-0.284040\pi\)
0.627595 + 0.778540i \(0.284040\pi\)
\(488\) 4.79552e9 1.86795
\(489\) 0 0
\(490\) −2.16218e9 −0.830243
\(491\) 2.13235e9 0.812966 0.406483 0.913658i \(-0.366755\pi\)
0.406483 + 0.913658i \(0.366755\pi\)
\(492\) 0 0
\(493\) −1.04165e9 −0.391524
\(494\) −2.47325e9 −0.923047
\(495\) 0 0
\(496\) 2.98989e8 0.110019
\(497\) 7.19212e8 0.262790
\(498\) 0 0
\(499\) 1.04291e9 0.375747 0.187874 0.982193i \(-0.439840\pi\)
0.187874 + 0.982193i \(0.439840\pi\)
\(500\) 8.47708e9 3.03285
\(501\) 0 0
\(502\) −2.74164e9 −0.967271
\(503\) 2.59463e9 0.909051 0.454526 0.890734i \(-0.349809\pi\)
0.454526 + 0.890734i \(0.349809\pi\)
\(504\) 0 0
\(505\) −8.07094e9 −2.78872
\(506\) −3.12029e9 −1.07070
\(507\) 0 0
\(508\) −2.75967e9 −0.933973
\(509\) −5.04285e9 −1.69498 −0.847488 0.530815i \(-0.821886\pi\)
−0.847488 + 0.530815i \(0.821886\pi\)
\(510\) 0 0
\(511\) 4.81669e9 1.59689
\(512\) 5.83885e9 1.92257
\(513\) 0 0
\(514\) 8.98296e9 2.91775
\(515\) −8.32046e9 −2.68424
\(516\) 0 0
\(517\) 1.59160e9 0.506545
\(518\) 8.34215e8 0.263708
\(519\) 0 0
\(520\) 4.20102e9 1.31022
\(521\) −3.81880e9 −1.18303 −0.591514 0.806295i \(-0.701469\pi\)
−0.591514 + 0.806295i \(0.701469\pi\)
\(522\) 0 0
\(523\) −1.81806e9 −0.555715 −0.277857 0.960622i \(-0.589624\pi\)
−0.277857 + 0.960622i \(0.589624\pi\)
\(524\) −1.75037e9 −0.531460
\(525\) 0 0
\(526\) −2.92953e9 −0.877704
\(527\) 5.64167e8 0.167908
\(528\) 0 0
\(529\) 1.61640e9 0.474738
\(530\) −4.59164e9 −1.33968
\(531\) 0 0
\(532\) 1.01677e10 2.92772
\(533\) 2.10847e8 0.0603145
\(534\) 0 0
\(535\) −5.51364e9 −1.55668
\(536\) −6.79673e9 −1.90644
\(537\) 0 0
\(538\) −4.29724e9 −1.18974
\(539\) −5.14123e8 −0.141419
\(540\) 0 0
\(541\) 3.76234e9 1.02157 0.510784 0.859709i \(-0.329355\pi\)
0.510784 + 0.859709i \(0.329355\pi\)
\(542\) 7.59081e9 2.04781
\(543\) 0 0
\(544\) −1.31776e9 −0.350947
\(545\) −1.08543e10 −2.87220
\(546\) 0 0
\(547\) −5.99456e9 −1.56604 −0.783018 0.621999i \(-0.786321\pi\)
−0.783018 + 0.621999i \(0.786321\pi\)
\(548\) 1.05243e10 2.73189
\(549\) 0 0
\(550\) 6.43680e9 1.64968
\(551\) 1.08645e9 0.276680
\(552\) 0 0
\(553\) 5.11382e9 1.28590
\(554\) 8.23893e9 2.05867
\(555\) 0 0
\(556\) 4.95166e9 1.22177
\(557\) 4.74153e9 1.16259 0.581294 0.813694i \(-0.302547\pi\)
0.581294 + 0.813694i \(0.302547\pi\)
\(558\) 0 0
\(559\) 5.03867e8 0.122004
\(560\) −9.30273e9 −2.23847
\(561\) 0 0
\(562\) 1.25429e10 2.98072
\(563\) −3.33143e7 −0.00786776 −0.00393388 0.999992i \(-0.501252\pi\)
−0.00393388 + 0.999992i \(0.501252\pi\)
\(564\) 0 0
\(565\) 1.62166e8 0.0378260
\(566\) −1.40161e10 −3.24914
\(567\) 0 0
\(568\) 1.87002e9 0.428181
\(569\) −3.70701e9 −0.843589 −0.421794 0.906692i \(-0.638600\pi\)
−0.421794 + 0.906692i \(0.638600\pi\)
\(570\) 0 0
\(571\) 6.83721e9 1.53692 0.768462 0.639896i \(-0.221022\pi\)
0.768462 + 0.639896i \(0.221022\pi\)
\(572\) 1.94591e9 0.434746
\(573\) 0 0
\(574\) −1.28864e9 −0.284406
\(575\) −1.03582e10 −2.27220
\(576\) 0 0
\(577\) 4.39006e9 0.951382 0.475691 0.879612i \(-0.342198\pi\)
0.475691 + 0.879612i \(0.342198\pi\)
\(578\) −1.76479e10 −3.80142
\(579\) 0 0
\(580\) −3.59490e9 −0.765048
\(581\) −3.48129e9 −0.736417
\(582\) 0 0
\(583\) −1.09180e9 −0.228194
\(584\) 1.25239e10 2.60192
\(585\) 0 0
\(586\) −7.20961e8 −0.148003
\(587\) 8.19912e8 0.167315 0.0836573 0.996495i \(-0.473340\pi\)
0.0836573 + 0.996495i \(0.473340\pi\)
\(588\) 0 0
\(589\) −5.88428e8 −0.118656
\(590\) 1.25140e10 2.50850
\(591\) 0 0
\(592\) 7.85886e8 0.155680
\(593\) 4.33599e9 0.853880 0.426940 0.904280i \(-0.359592\pi\)
0.426940 + 0.904280i \(0.359592\pi\)
\(594\) 0 0
\(595\) −1.75535e10 −3.41628
\(596\) 6.78885e9 1.31351
\(597\) 0 0
\(598\) −4.65528e9 −0.890209
\(599\) 9.92412e9 1.88668 0.943339 0.331829i \(-0.107666\pi\)
0.943339 + 0.331829i \(0.107666\pi\)
\(600\) 0 0
\(601\) 1.94494e9 0.365465 0.182733 0.983163i \(-0.441506\pi\)
0.182733 + 0.983163i \(0.441506\pi\)
\(602\) −3.07949e9 −0.575296
\(603\) 0 0
\(604\) −2.40269e9 −0.443678
\(605\) −6.88068e9 −1.26325
\(606\) 0 0
\(607\) −7.99592e9 −1.45114 −0.725568 0.688151i \(-0.758423\pi\)
−0.725568 + 0.688151i \(0.758423\pi\)
\(608\) 1.37443e9 0.248005
\(609\) 0 0
\(610\) 1.68211e10 3.00055
\(611\) 2.37457e9 0.421154
\(612\) 0 0
\(613\) 5.19028e8 0.0910079 0.0455040 0.998964i \(-0.485511\pi\)
0.0455040 + 0.998964i \(0.485511\pi\)
\(614\) 1.41679e10 2.47011
\(615\) 0 0
\(616\) −6.10511e9 −1.05235
\(617\) 2.33763e9 0.400662 0.200331 0.979728i \(-0.435798\pi\)
0.200331 + 0.979728i \(0.435798\pi\)
\(618\) 0 0
\(619\) −6.75307e9 −1.14442 −0.572208 0.820109i \(-0.693913\pi\)
−0.572208 + 0.820109i \(0.693913\pi\)
\(620\) 1.94703e9 0.328096
\(621\) 0 0
\(622\) −5.19921e9 −0.866306
\(623\) −1.31176e9 −0.217344
\(624\) 0 0
\(625\) 3.84414e9 0.629823
\(626\) −5.92198e9 −0.964842
\(627\) 0 0
\(628\) −8.68613e9 −1.39948
\(629\) 1.48290e9 0.237594
\(630\) 0 0
\(631\) −9.84840e9 −1.56050 −0.780249 0.625469i \(-0.784908\pi\)
−0.780249 + 0.625469i \(0.784908\pi\)
\(632\) 1.32964e10 2.09520
\(633\) 0 0
\(634\) 3.51028e9 0.547052
\(635\) −4.96920e9 −0.770155
\(636\) 0 0
\(637\) −7.67040e8 −0.117579
\(638\) −1.27079e9 −0.193732
\(639\) 0 0
\(640\) 1.83827e10 2.77191
\(641\) −1.92918e9 −0.289314 −0.144657 0.989482i \(-0.546208\pi\)
−0.144657 + 0.989482i \(0.546208\pi\)
\(642\) 0 0
\(643\) 3.69430e9 0.548017 0.274009 0.961727i \(-0.411650\pi\)
0.274009 + 0.961727i \(0.411650\pi\)
\(644\) 1.91381e10 2.82357
\(645\) 0 0
\(646\) 2.68699e10 3.92150
\(647\) 1.04870e10 1.52225 0.761127 0.648602i \(-0.224646\pi\)
0.761127 + 0.648602i \(0.224646\pi\)
\(648\) 0 0
\(649\) 2.97558e9 0.427283
\(650\) 9.60330e9 1.37159
\(651\) 0 0
\(652\) 2.62700e10 3.71188
\(653\) −6.76210e9 −0.950354 −0.475177 0.879890i \(-0.657616\pi\)
−0.475177 + 0.879890i \(0.657616\pi\)
\(654\) 0 0
\(655\) −3.15180e9 −0.438242
\(656\) −1.21398e9 −0.167899
\(657\) 0 0
\(658\) −1.45127e10 −1.98590
\(659\) −6.22939e8 −0.0847904 −0.0423952 0.999101i \(-0.513499\pi\)
−0.0423952 + 0.999101i \(0.513499\pi\)
\(660\) 0 0
\(661\) 1.52850e9 0.205854 0.102927 0.994689i \(-0.467179\pi\)
0.102927 + 0.994689i \(0.467179\pi\)
\(662\) −1.61935e10 −2.16939
\(663\) 0 0
\(664\) −9.05169e9 −1.19989
\(665\) 1.83084e10 2.41420
\(666\) 0 0
\(667\) 2.04497e9 0.266837
\(668\) −3.22501e9 −0.418614
\(669\) 0 0
\(670\) −2.38407e10 −3.06237
\(671\) 3.99973e9 0.511096
\(672\) 0 0
\(673\) −1.12950e10 −1.42835 −0.714176 0.699966i \(-0.753198\pi\)
−0.714176 + 0.699966i \(0.753198\pi\)
\(674\) −2.24449e10 −2.82363
\(675\) 0 0
\(676\) −1.36009e10 −1.69338
\(677\) 8.05475e9 0.997681 0.498841 0.866694i \(-0.333759\pi\)
0.498841 + 0.866694i \(0.333759\pi\)
\(678\) 0 0
\(679\) −7.86265e9 −0.963884
\(680\) −4.56408e10 −5.56637
\(681\) 0 0
\(682\) 6.88268e8 0.0830831
\(683\) −1.53230e10 −1.84023 −0.920113 0.391652i \(-0.871904\pi\)
−0.920113 + 0.391652i \(0.871904\pi\)
\(684\) 0 0
\(685\) 1.89506e10 2.25272
\(686\) −1.20342e10 −1.42326
\(687\) 0 0
\(688\) −2.90109e9 −0.339627
\(689\) −1.62890e9 −0.189726
\(690\) 0 0
\(691\) 3.65174e9 0.421043 0.210521 0.977589i \(-0.432484\pi\)
0.210521 + 0.977589i \(0.432484\pi\)
\(692\) −6.31369e9 −0.724289
\(693\) 0 0
\(694\) −1.03446e10 −1.17477
\(695\) 8.91620e9 1.00747
\(696\) 0 0
\(697\) −2.29068e9 −0.256242
\(698\) −4.42121e9 −0.492093
\(699\) 0 0
\(700\) −3.94797e10 −4.35041
\(701\) −1.42036e10 −1.55735 −0.778675 0.627427i \(-0.784108\pi\)
−0.778675 + 0.627427i \(0.784108\pi\)
\(702\) 0 0
\(703\) −1.54667e9 −0.167902
\(704\) 3.84478e9 0.415305
\(705\) 0 0
\(706\) −7.62245e9 −0.815226
\(707\) 1.74990e10 1.86228
\(708\) 0 0
\(709\) 1.16843e10 1.23123 0.615617 0.788045i \(-0.288907\pi\)
0.615617 + 0.788045i \(0.288907\pi\)
\(710\) 6.55943e9 0.687800
\(711\) 0 0
\(712\) −3.41071e9 −0.354132
\(713\) −1.10757e9 −0.114435
\(714\) 0 0
\(715\) 3.50389e9 0.358492
\(716\) 3.57251e10 3.63729
\(717\) 0 0
\(718\) −2.07851e10 −2.09564
\(719\) 8.68481e9 0.871383 0.435691 0.900096i \(-0.356504\pi\)
0.435691 + 0.900096i \(0.356504\pi\)
\(720\) 0 0
\(721\) 1.80400e10 1.79252
\(722\) −1.03498e10 −1.02342
\(723\) 0 0
\(724\) −2.03735e10 −1.99518
\(725\) −4.21853e9 −0.411129
\(726\) 0 0
\(727\) 3.49630e9 0.337472 0.168736 0.985661i \(-0.446031\pi\)
0.168736 + 0.985661i \(0.446031\pi\)
\(728\) −9.10845e9 −0.874953
\(729\) 0 0
\(730\) 4.39297e10 4.17954
\(731\) −5.47412e9 −0.518327
\(732\) 0 0
\(733\) −9.31103e9 −0.873240 −0.436620 0.899646i \(-0.643825\pi\)
−0.436620 + 0.899646i \(0.643825\pi\)
\(734\) −3.82812e9 −0.357314
\(735\) 0 0
\(736\) 2.58703e9 0.239182
\(737\) −5.66885e9 −0.521626
\(738\) 0 0
\(739\) −7.46338e9 −0.680268 −0.340134 0.940377i \(-0.610472\pi\)
−0.340134 + 0.940377i \(0.610472\pi\)
\(740\) 5.11773e9 0.464265
\(741\) 0 0
\(742\) 9.95538e9 0.894631
\(743\) 7.68972e9 0.687781 0.343890 0.939010i \(-0.388255\pi\)
0.343890 + 0.939010i \(0.388255\pi\)
\(744\) 0 0
\(745\) 1.22243e10 1.08312
\(746\) 6.99795e9 0.617141
\(747\) 0 0
\(748\) −2.11407e10 −1.84699
\(749\) 1.19544e10 1.03954
\(750\) 0 0
\(751\) −1.94830e10 −1.67848 −0.839238 0.543764i \(-0.816998\pi\)
−0.839238 + 0.543764i \(0.816998\pi\)
\(752\) −1.36720e10 −1.17238
\(753\) 0 0
\(754\) −1.89594e9 −0.161073
\(755\) −4.32639e9 −0.365857
\(756\) 0 0
\(757\) −4.45370e9 −0.373152 −0.186576 0.982441i \(-0.559739\pi\)
−0.186576 + 0.982441i \(0.559739\pi\)
\(758\) 9.29301e9 0.775022
\(759\) 0 0
\(760\) 4.76035e10 3.93361
\(761\) −1.84866e10 −1.52058 −0.760292 0.649581i \(-0.774944\pi\)
−0.760292 + 0.649581i \(0.774944\pi\)
\(762\) 0 0
\(763\) 2.35338e10 1.91803
\(764\) −9.95503e9 −0.807636
\(765\) 0 0
\(766\) −3.02722e10 −2.43357
\(767\) 4.43939e9 0.355254
\(768\) 0 0
\(769\) −1.10733e9 −0.0878079 −0.0439039 0.999036i \(-0.513980\pi\)
−0.0439039 + 0.999036i \(0.513980\pi\)
\(770\) −2.14148e10 −1.69043
\(771\) 0 0
\(772\) −1.13392e10 −0.886998
\(773\) 1.36030e10 1.05927 0.529633 0.848227i \(-0.322330\pi\)
0.529633 + 0.848227i \(0.322330\pi\)
\(774\) 0 0
\(775\) 2.28479e9 0.176315
\(776\) −2.04437e10 −1.57052
\(777\) 0 0
\(778\) 1.64808e10 1.25473
\(779\) 2.38919e9 0.181080
\(780\) 0 0
\(781\) 1.55970e9 0.117156
\(782\) 5.05760e10 3.78199
\(783\) 0 0
\(784\) 4.41635e9 0.327308
\(785\) −1.56407e10 −1.15401
\(786\) 0 0
\(787\) −1.99593e10 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(788\) 3.55748e10 2.59001
\(789\) 0 0
\(790\) 4.66396e10 3.36558
\(791\) −3.51601e8 −0.0252599
\(792\) 0 0
\(793\) 5.96736e9 0.424938
\(794\) −1.69692e10 −1.20307
\(795\) 0 0
\(796\) 2.58613e10 1.81742
\(797\) −1.23171e10 −0.861799 −0.430899 0.902400i \(-0.641804\pi\)
−0.430899 + 0.902400i \(0.641804\pi\)
\(798\) 0 0
\(799\) −2.57979e10 −1.78925
\(800\) −5.33674e9 −0.368520
\(801\) 0 0
\(802\) −4.09657e9 −0.280421
\(803\) 1.04456e10 0.711917
\(804\) 0 0
\(805\) 3.44610e10 2.32832
\(806\) 1.02685e9 0.0690774
\(807\) 0 0
\(808\) 4.54992e10 3.03434
\(809\) 1.27792e10 0.848559 0.424280 0.905531i \(-0.360527\pi\)
0.424280 + 0.905531i \(0.360527\pi\)
\(810\) 0 0
\(811\) −2.84223e9 −0.187105 −0.0935526 0.995614i \(-0.529822\pi\)
−0.0935526 + 0.995614i \(0.529822\pi\)
\(812\) 7.79429e9 0.510893
\(813\) 0 0
\(814\) 1.80910e9 0.117565
\(815\) 4.73031e10 3.06082
\(816\) 0 0
\(817\) 5.70953e9 0.366288
\(818\) 8.84231e9 0.564845
\(819\) 0 0
\(820\) −7.90550e9 −0.500704
\(821\) 1.77841e10 1.12158 0.560791 0.827957i \(-0.310497\pi\)
0.560791 + 0.827957i \(0.310497\pi\)
\(822\) 0 0
\(823\) 4.86118e9 0.303978 0.151989 0.988382i \(-0.451432\pi\)
0.151989 + 0.988382i \(0.451432\pi\)
\(824\) 4.69058e10 2.92066
\(825\) 0 0
\(826\) −2.71323e10 −1.67516
\(827\) −2.39461e10 −1.47220 −0.736099 0.676874i \(-0.763334\pi\)
−0.736099 + 0.676874i \(0.763334\pi\)
\(828\) 0 0
\(829\) −1.19577e10 −0.728968 −0.364484 0.931210i \(-0.618755\pi\)
−0.364484 + 0.931210i \(0.618755\pi\)
\(830\) −3.17504e10 −1.92742
\(831\) 0 0
\(832\) 5.73617e9 0.345295
\(833\) 8.33329e9 0.499527
\(834\) 0 0
\(835\) −5.80711e9 −0.345189
\(836\) 2.20499e10 1.30522
\(837\) 0 0
\(838\) 1.59081e10 0.933825
\(839\) −9.87176e9 −0.577069 −0.288535 0.957469i \(-0.593168\pi\)
−0.288535 + 0.957469i \(0.593168\pi\)
\(840\) 0 0
\(841\) −1.64170e10 −0.951719
\(842\) −2.36550e10 −1.36562
\(843\) 0 0
\(844\) −1.79585e10 −1.02818
\(845\) −2.44905e10 −1.39636
\(846\) 0 0
\(847\) 1.49184e10 0.843586
\(848\) 9.37864e9 0.528146
\(849\) 0 0
\(850\) −1.04332e11 −5.82710
\(851\) −2.91123e9 −0.161929
\(852\) 0 0
\(853\) 1.23979e10 0.683952 0.341976 0.939709i \(-0.388904\pi\)
0.341976 + 0.939709i \(0.388904\pi\)
\(854\) −3.64708e10 −2.00375
\(855\) 0 0
\(856\) 3.10826e10 1.69379
\(857\) 3.52007e10 1.91037 0.955186 0.296007i \(-0.0956551\pi\)
0.955186 + 0.296007i \(0.0956551\pi\)
\(858\) 0 0
\(859\) 1.30137e10 0.700528 0.350264 0.936651i \(-0.386092\pi\)
0.350264 + 0.936651i \(0.386092\pi\)
\(860\) −1.88920e10 −1.01282
\(861\) 0 0
\(862\) 1.58763e10 0.844256
\(863\) −3.11852e10 −1.65162 −0.825811 0.563947i \(-0.809282\pi\)
−0.825811 + 0.563947i \(0.809282\pi\)
\(864\) 0 0
\(865\) −1.13687e10 −0.597249
\(866\) −5.03065e10 −2.63216
\(867\) 0 0
\(868\) −4.22145e9 −0.219100
\(869\) 1.10900e10 0.573273
\(870\) 0 0
\(871\) −8.45758e9 −0.433693
\(872\) 6.11901e10 3.12517
\(873\) 0 0
\(874\) −5.27510e10 −2.67264
\(875\) −3.30951e10 −1.67008
\(876\) 0 0
\(877\) 2.03806e10 1.02028 0.510140 0.860092i \(-0.329594\pi\)
0.510140 + 0.860092i \(0.329594\pi\)
\(878\) 1.58328e10 0.789454
\(879\) 0 0
\(880\) −2.01742e10 −0.997944
\(881\) 1.59058e10 0.783681 0.391841 0.920033i \(-0.371838\pi\)
0.391841 + 0.920033i \(0.371838\pi\)
\(882\) 0 0
\(883\) 3.50773e10 1.71460 0.857302 0.514814i \(-0.172139\pi\)
0.857302 + 0.514814i \(0.172139\pi\)
\(884\) −3.15407e10 −1.53563
\(885\) 0 0
\(886\) 2.13309e10 1.03036
\(887\) −2.89660e10 −1.39366 −0.696828 0.717238i \(-0.745406\pi\)
−0.696828 + 0.717238i \(0.745406\pi\)
\(888\) 0 0
\(889\) 1.07740e10 0.514304
\(890\) −1.19637e10 −0.568853
\(891\) 0 0
\(892\) 7.67649e10 3.62148
\(893\) 2.69073e10 1.26441
\(894\) 0 0
\(895\) 6.43283e10 2.99931
\(896\) −3.98564e10 −1.85106
\(897\) 0 0
\(898\) −3.30370e10 −1.52242
\(899\) −4.51075e8 −0.0207057
\(900\) 0 0
\(901\) 1.76967e10 0.806039
\(902\) −2.79457e9 −0.126792
\(903\) 0 0
\(904\) −9.14197e8 −0.0411576
\(905\) −3.66856e10 −1.64522
\(906\) 0 0
\(907\) −2.43657e10 −1.08431 −0.542155 0.840278i \(-0.682392\pi\)
−0.542155 + 0.840278i \(0.682392\pi\)
\(908\) −6.27529e10 −2.78185
\(909\) 0 0
\(910\) −3.19495e10 −1.40546
\(911\) −2.76976e9 −0.121374 −0.0606872 0.998157i \(-0.519329\pi\)
−0.0606872 + 0.998157i \(0.519329\pi\)
\(912\) 0 0
\(913\) −7.54962e9 −0.328305
\(914\) −3.58214e10 −1.55178
\(915\) 0 0
\(916\) −4.02500e10 −1.73034
\(917\) 6.83358e9 0.292655
\(918\) 0 0
\(919\) 6.03812e9 0.256624 0.128312 0.991734i \(-0.459044\pi\)
0.128312 + 0.991734i \(0.459044\pi\)
\(920\) 8.96019e10 3.79367
\(921\) 0 0
\(922\) −1.79572e10 −0.754538
\(923\) 2.32698e9 0.0974062
\(924\) 0 0
\(925\) 6.00553e9 0.249491
\(926\) 5.86211e10 2.42614
\(927\) 0 0
\(928\) 1.05361e9 0.0432774
\(929\) −3.05571e9 −0.125042 −0.0625212 0.998044i \(-0.519914\pi\)
−0.0625212 + 0.998044i \(0.519914\pi\)
\(930\) 0 0
\(931\) −8.69165e9 −0.353003
\(932\) −6.68104e10 −2.70326
\(933\) 0 0
\(934\) 2.27914e10 0.915284
\(935\) −3.80670e10 −1.52303
\(936\) 0 0
\(937\) −4.12174e10 −1.63679 −0.818393 0.574658i \(-0.805135\pi\)
−0.818393 + 0.574658i \(0.805135\pi\)
\(938\) 5.16903e10 2.04503
\(939\) 0 0
\(940\) −8.90324e10 −3.49623
\(941\) 2.44849e10 0.957933 0.478967 0.877833i \(-0.341011\pi\)
0.478967 + 0.877833i \(0.341011\pi\)
\(942\) 0 0
\(943\) 4.49707e9 0.174638
\(944\) −2.55604e10 −0.988931
\(945\) 0 0
\(946\) −6.67828e9 −0.256475
\(947\) −3.75033e10 −1.43498 −0.717488 0.696571i \(-0.754708\pi\)
−0.717488 + 0.696571i \(0.754708\pi\)
\(948\) 0 0
\(949\) 1.55842e10 0.591906
\(950\) 1.08819e11 4.11787
\(951\) 0 0
\(952\) 9.89561e10 3.71718
\(953\) −1.27579e10 −0.477480 −0.238740 0.971084i \(-0.576734\pi\)
−0.238740 + 0.971084i \(0.576734\pi\)
\(954\) 0 0
\(955\) −1.79255e10 −0.665977
\(956\) 8.31505e10 3.07796
\(957\) 0 0
\(958\) 1.12053e10 0.411761
\(959\) −4.10878e10 −1.50435
\(960\) 0 0
\(961\) −2.72683e10 −0.991120
\(962\) 2.69907e9 0.0977464
\(963\) 0 0
\(964\) 5.66899e9 0.203815
\(965\) −2.04179e10 −0.731419
\(966\) 0 0
\(967\) −2.16883e10 −0.771316 −0.385658 0.922642i \(-0.626026\pi\)
−0.385658 + 0.922642i \(0.626026\pi\)
\(968\) 3.87892e10 1.37451
\(969\) 0 0
\(970\) −7.17098e10 −2.52277
\(971\) 4.12029e10 1.44431 0.722155 0.691732i \(-0.243152\pi\)
0.722155 + 0.691732i \(0.243152\pi\)
\(972\) 0 0
\(973\) −1.93317e10 −0.672782
\(974\) −6.32645e10 −2.19383
\(975\) 0 0
\(976\) −3.43579e10 −1.18291
\(977\) −4.70697e8 −0.0161477 −0.00807384 0.999967i \(-0.502570\pi\)
−0.00807384 + 0.999967i \(0.502570\pi\)
\(978\) 0 0
\(979\) −2.84473e9 −0.0968950
\(980\) 2.87594e10 0.976089
\(981\) 0 0
\(982\) −4.21655e10 −1.42091
\(983\) 6.80573e9 0.228527 0.114264 0.993450i \(-0.463549\pi\)
0.114264 + 0.993450i \(0.463549\pi\)
\(984\) 0 0
\(985\) 6.40577e10 2.13572
\(986\) 2.05978e10 0.684309
\(987\) 0 0
\(988\) 3.28970e10 1.08519
\(989\) 1.07468e10 0.353258
\(990\) 0 0
\(991\) −5.55681e10 −1.81371 −0.906855 0.421442i \(-0.861524\pi\)
−0.906855 + 0.421442i \(0.861524\pi\)
\(992\) −5.70642e8 −0.0185598
\(993\) 0 0
\(994\) −1.42218e10 −0.459308
\(995\) 4.65671e10 1.49864
\(996\) 0 0
\(997\) 3.37314e10 1.07796 0.538979 0.842319i \(-0.318810\pi\)
0.538979 + 0.842319i \(0.318810\pi\)
\(998\) −2.06228e10 −0.656735
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.a.d.1.1 6
3.2 odd 2 inner 81.8.a.d.1.6 yes 6
9.2 odd 6 81.8.c.k.28.1 12
9.4 even 3 81.8.c.k.55.6 12
9.5 odd 6 81.8.c.k.55.1 12
9.7 even 3 81.8.c.k.28.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.8.a.d.1.1 6 1.1 even 1 trivial
81.8.a.d.1.6 yes 6 3.2 odd 2 inner
81.8.c.k.28.1 12 9.2 odd 6
81.8.c.k.28.6 12 9.7 even 3
81.8.c.k.55.1 12 9.5 odd 6
81.8.c.k.55.6 12 9.4 even 3