Properties

Label 81.8.c.k.28.6
Level $81$
Weight $8$
Character 81.28
Analytic conductor $25.303$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 316x^{10} + 37872x^{8} + 2079550x^{6} + 47948824x^{4} + 251235828x^{2} + 43520409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{21} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 28.6
Root \(0.423455i\) of defining polynomial
Character \(\chi\) \(=\) 81.28
Dual form 81.8.c.k.55.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.88711 + 17.1250i) q^{2} +(-131.510 + 227.782i) q^{4} +(-236.803 + 410.154i) q^{5} +(513.424 + 889.277i) q^{7} -2669.91 q^{8} -9365.17 q^{10} +(1113.43 + 1928.51i) q^{11} +(1661.16 - 2877.22i) q^{13} +(-10152.6 + 17584.7i) q^{14} +(-9564.39 - 16566.0i) q^{16} +36094.5 q^{17} -37646.7 q^{19} +(-62283.7 - 107879. i) q^{20} +(-22017.1 + 38134.8i) q^{22} +(35430.3 - 61367.1i) q^{23} +(-73088.5 - 126593. i) q^{25} +65696.4 q^{26} -270081. q^{28} +(14429.5 + 24992.7i) q^{29} +(-7815.15 + 13536.2i) q^{31} +(18254.4 - 31617.5i) q^{32} +(356870. + 618117. i) q^{34} -486321. q^{35} +41084.0 q^{37} +(-372217. - 644698. i) q^{38} +(632241. - 1.09507e6i) q^{40} +(31731.8 - 54961.1i) q^{41} +(75830.5 + 131342. i) q^{43} -585706. q^{44} +1.40121e6 q^{46} +(357366. + 618976. i) q^{47} +(-115437. + 199943. i) q^{49} +(1.44527e6 - 2.50328e6i) q^{50} +(436918. + 756765. i) q^{52} +490289. q^{53} -1.05465e6 q^{55} +(-1.37079e6 - 2.37428e6i) q^{56} +(-285333. + 494210. i) q^{58} +(668114. - 1.15721e6i) q^{59} +(898069. + 1.55550e6i) q^{61} -309077. q^{62} -1.72655e6 q^{64} +(786736. + 1.36267e6i) q^{65} +(-1.27284e6 + 2.20462e6i) q^{67} +(-4.74677e6 + 8.22165e6i) q^{68} +(-4.80831e6 - 8.32823e6i) q^{70} -700407. q^{71} -4.69075e6 q^{73} +(406202. + 703562. i) q^{74} +(4.95090e6 - 8.57522e6i) q^{76} +(-1.14332e6 + 1.98029e6i) q^{77} +(2.49005e6 + 4.31290e6i) q^{79} +9.05950e6 q^{80} +1.25494e6 q^{82} +(-1.69513e6 - 2.93606e6i) q^{83} +(-8.54726e6 + 1.48043e7i) q^{85} +(-1.49949e6 + 2.59719e6i) q^{86} +(-2.97274e6 - 5.14894e6i) q^{88} +1.27747e6 q^{89} +3.41152e6 q^{91} +(9.31886e6 + 1.61407e7i) q^{92} +(-7.06663e6 + 1.22398e7i) q^{94} +(8.91483e6 - 1.54409e7i) q^{95} +(-3.82854e6 - 6.63122e6i) q^{97} -4.56536e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 438 q^{4} + 1932 q^{7} - 29844 q^{10} + 11886 q^{13} - 7314 q^{16} - 134328 q^{19} + 23364 q^{22} - 42324 q^{25} - 1386696 q^{28} + 470832 q^{31} + 1834866 q^{34} - 2052516 q^{37} + 3091374 q^{40}+ \cdots - 26307948 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.88711 + 17.1250i 0.873905 + 1.51365i 0.857925 + 0.513776i \(0.171754\pi\)
0.0159805 + 0.999872i \(0.494913\pi\)
\(3\) 0 0
\(4\) −131.510 + 227.782i −1.02742 + 1.77954i
\(5\) −236.803 + 410.154i −0.847211 + 1.46741i 0.0364760 + 0.999335i \(0.488387\pi\)
−0.883687 + 0.468078i \(0.844947\pi\)
\(6\) 0 0
\(7\) 513.424 + 889.277i 0.565761 + 0.979927i 0.996978 + 0.0776790i \(0.0247509\pi\)
−0.431217 + 0.902248i \(0.641916\pi\)
\(8\) −2669.91 −1.84366
\(9\) 0 0
\(10\) −9365.17 −2.96153
\(11\) 1113.43 + 1928.51i 0.252224 + 0.436865i 0.964138 0.265402i \(-0.0855046\pi\)
−0.711914 + 0.702267i \(0.752171\pi\)
\(12\) 0 0
\(13\) 1661.16 2877.22i 0.209706 0.363221i −0.741916 0.670493i \(-0.766083\pi\)
0.951622 + 0.307272i \(0.0994160\pi\)
\(14\) −10152.6 + 17584.7i −0.988843 + 1.71273i
\(15\) 0 0
\(16\) −9564.39 16566.0i −0.583764 1.01111i
\(17\) 36094.5 1.78184 0.890921 0.454158i \(-0.150060\pi\)
0.890921 + 0.454158i \(0.150060\pi\)
\(18\) 0 0
\(19\) −37646.7 −1.25918 −0.629592 0.776926i \(-0.716778\pi\)
−0.629592 + 0.776926i \(0.716778\pi\)
\(20\) −62283.7 107879.i −1.74088 3.01530i
\(21\) 0 0
\(22\) −22017.1 + 38134.8i −0.440840 + 0.763558i
\(23\) 35430.3 61367.1i 0.607194 1.05169i −0.384507 0.923122i \(-0.625628\pi\)
0.991701 0.128568i \(-0.0410382\pi\)
\(24\) 0 0
\(25\) −73088.5 126593.i −0.935533 1.62039i
\(26\) 65696.4 0.733052
\(27\) 0 0
\(28\) −270081. −2.32510
\(29\) 14429.5 + 24992.7i 0.109865 + 0.190292i 0.915715 0.401827i \(-0.131625\pi\)
−0.805850 + 0.592119i \(0.798292\pi\)
\(30\) 0 0
\(31\) −7815.15 + 13536.2i −0.0471163 + 0.0816078i −0.888622 0.458641i \(-0.848336\pi\)
0.841505 + 0.540249i \(0.181670\pi\)
\(32\) 18254.4 31617.5i 0.0984786 0.170570i
\(33\) 0 0
\(34\) 356870. + 618117.i 1.55716 + 2.69708i
\(35\) −486321. −1.91728
\(36\) 0 0
\(37\) 41084.0 0.133342 0.0666709 0.997775i \(-0.478762\pi\)
0.0666709 + 0.997775i \(0.478762\pi\)
\(38\) −372217. 644698.i −1.10041 1.90596i
\(39\) 0 0
\(40\) 632241. 1.09507e6i 1.56197 2.70541i
\(41\) 31731.8 54961.1i 0.0719037 0.124541i −0.827832 0.560976i \(-0.810426\pi\)
0.899736 + 0.436435i \(0.143759\pi\)
\(42\) 0 0
\(43\) 75830.5 + 131342.i 0.145447 + 0.251921i 0.929540 0.368722i \(-0.120205\pi\)
−0.784093 + 0.620644i \(0.786871\pi\)
\(44\) −585706. −1.03656
\(45\) 0 0
\(46\) 1.40121e6 2.12252
\(47\) 357366. + 618976.i 0.502077 + 0.869624i 0.999997 + 0.00240047i \(0.000764093\pi\)
−0.497920 + 0.867223i \(0.665903\pi\)
\(48\) 0 0
\(49\) −115437. + 199943.i −0.140171 + 0.242784i
\(50\) 1.44527e6 2.50328e6i 1.63513 2.83214i
\(51\) 0 0
\(52\) 436918. + 756765.i 0.430912 + 0.746361i
\(53\) 490289. 0.452363 0.226181 0.974085i \(-0.427376\pi\)
0.226181 + 0.974085i \(0.427376\pi\)
\(54\) 0 0
\(55\) −1.05465e6 −0.854749
\(56\) −1.37079e6 2.37428e6i −1.04307 1.80665i
\(57\) 0 0
\(58\) −285333. + 494210.i −0.192023 + 0.332594i
\(59\) 668114. 1.15721e6i 0.423515 0.733549i −0.572766 0.819719i \(-0.694129\pi\)
0.996280 + 0.0861700i \(0.0274628\pi\)
\(60\) 0 0
\(61\) 898069. + 1.55550e6i 0.506588 + 0.877437i 0.999971 + 0.00762444i \(0.00242696\pi\)
−0.493383 + 0.869812i \(0.664240\pi\)
\(62\) −309077. −0.164701
\(63\) 0 0
\(64\) −1.72655e6 −0.823284
\(65\) 786736. + 1.36267e6i 0.355330 + 0.615450i
\(66\) 0 0
\(67\) −1.27284e6 + 2.20462e6i −0.517026 + 0.895515i 0.482779 + 0.875742i \(0.339627\pi\)
−0.999805 + 0.0197724i \(0.993706\pi\)
\(68\) −4.74677e6 + 8.22165e6i −1.83070 + 3.17087i
\(69\) 0 0
\(70\) −4.80831e6 8.32823e6i −1.67552 2.90208i
\(71\) −700407. −0.232245 −0.116122 0.993235i \(-0.537047\pi\)
−0.116122 + 0.993235i \(0.537047\pi\)
\(72\) 0 0
\(73\) −4.69075e6 −1.41128 −0.705638 0.708572i \(-0.749340\pi\)
−0.705638 + 0.708572i \(0.749340\pi\)
\(74\) 406202. + 703562.i 0.116528 + 0.201833i
\(75\) 0 0
\(76\) 4.95090e6 8.57522e6i 1.29371 2.24077i
\(77\) −1.14332e6 + 1.98029e6i −0.285397 + 0.494323i
\(78\) 0 0
\(79\) 2.49005e6 + 4.31290e6i 0.568217 + 0.984180i 0.996742 + 0.0806508i \(0.0256999\pi\)
−0.428526 + 0.903530i \(0.640967\pi\)
\(80\) 9.05950e6 1.97829
\(81\) 0 0
\(82\) 1.25494e6 0.251348
\(83\) −1.69513e6 2.93606e6i −0.325410 0.563626i 0.656185 0.754600i \(-0.272169\pi\)
−0.981595 + 0.190973i \(0.938836\pi\)
\(84\) 0 0
\(85\) −8.54726e6 + 1.48043e7i −1.50960 + 2.61470i
\(86\) −1.49949e6 + 2.59719e6i −0.254213 + 0.440311i
\(87\) 0 0
\(88\) −2.97274e6 5.14894e6i −0.465016 0.805432i
\(89\) 1.27747e6 0.192081 0.0960405 0.995377i \(-0.469382\pi\)
0.0960405 + 0.995377i \(0.469382\pi\)
\(90\) 0 0
\(91\) 3.41152e6 0.474574
\(92\) 9.31886e6 + 1.61407e7i 1.24769 + 2.16106i
\(93\) 0 0
\(94\) −7.06663e6 + 1.22398e7i −0.877536 + 1.51994i
\(95\) 8.91483e6 1.54409e7i 1.06679 1.84774i
\(96\) 0 0
\(97\) −3.82854e6 6.63122e6i −0.425924 0.737721i 0.570583 0.821240i \(-0.306717\pi\)
−0.996506 + 0.0835189i \(0.973384\pi\)
\(98\) −4.56536e6 −0.489986
\(99\) 0 0
\(100\) 3.84474e7 3.84474
\(101\) 8.52074e6 + 1.47584e7i 0.822911 + 1.42532i 0.903506 + 0.428576i \(0.140985\pi\)
−0.0805948 + 0.996747i \(0.525682\pi\)
\(102\) 0 0
\(103\) 8.78417e6 1.52146e7i 0.792082 1.37193i −0.132593 0.991171i \(-0.542330\pi\)
0.924675 0.380756i \(-0.124336\pi\)
\(104\) −4.43515e6 + 7.68190e6i −0.386626 + 0.669656i
\(105\) 0 0
\(106\) 4.84754e6 + 8.39619e6i 0.395322 + 0.684718i
\(107\) −1.16418e7 −0.918710 −0.459355 0.888253i \(-0.651919\pi\)
−0.459355 + 0.888253i \(0.651919\pi\)
\(108\) 0 0
\(109\) −2.29184e7 −1.69509 −0.847544 0.530725i \(-0.821920\pi\)
−0.847544 + 0.530725i \(0.821920\pi\)
\(110\) −1.04274e7 1.80608e7i −0.746970 1.29379i
\(111\) 0 0
\(112\) 9.82118e6 1.70108e7i 0.660542 1.14409i
\(113\) −171204. + 296534.i −0.0111619 + 0.0193330i −0.871552 0.490302i \(-0.836886\pi\)
0.860390 + 0.509635i \(0.170220\pi\)
\(114\) 0 0
\(115\) 1.67800e7 + 2.90638e7i 1.02884 + 1.78201i
\(116\) −7.59049e6 −0.451510
\(117\) 0 0
\(118\) 2.64229e7 1.48045
\(119\) 1.85318e7 + 3.20980e7i 1.00810 + 1.74608i
\(120\) 0 0
\(121\) 7.26415e6 1.25819e7i 0.372766 0.645649i
\(122\) −1.77586e7 + 3.07588e7i −0.885420 + 1.53359i
\(123\) 0 0
\(124\) −2.05554e6 3.56029e6i −0.0968165 0.167691i
\(125\) 3.22298e7 1.47595
\(126\) 0 0
\(127\) −1.04923e7 −0.454524 −0.227262 0.973834i \(-0.572977\pi\)
−0.227262 + 0.973834i \(0.572977\pi\)
\(128\) −1.94072e7 3.36142e7i −0.817951 1.41673i
\(129\) 0 0
\(130\) −1.55571e7 + 2.69457e7i −0.621050 + 1.07569i
\(131\) 3.32745e6 5.76331e6i 0.129319 0.223987i −0.794094 0.607795i \(-0.792054\pi\)
0.923413 + 0.383808i \(0.125388\pi\)
\(132\) 0 0
\(133\) −1.93287e7 3.34783e7i −0.712397 1.23391i
\(134\) −5.03388e7 −1.80733
\(135\) 0 0
\(136\) −9.63688e7 −3.28511
\(137\) −2.00068e7 3.46527e7i −0.664744 1.15137i −0.979355 0.202150i \(-0.935207\pi\)
0.314610 0.949221i \(-0.398126\pi\)
\(138\) 0 0
\(139\) −9.41311e6 + 1.63040e7i −0.297291 + 0.514922i −0.975515 0.219932i \(-0.929416\pi\)
0.678225 + 0.734855i \(0.262750\pi\)
\(140\) 6.39560e7 1.10775e8i 1.96985 3.41188i
\(141\) 0 0
\(142\) −6.92500e6 1.19945e7i −0.202960 0.351537i
\(143\) 7.39833e6 0.211572
\(144\) 0 0
\(145\) −1.36678e7 −0.372315
\(146\) −4.63779e7 8.03290e7i −1.23332 2.13618i
\(147\) 0 0
\(148\) −5.40294e6 + 9.35817e6i −0.136998 + 0.237288i
\(149\) −1.29056e7 + 2.23532e7i −0.319614 + 0.553589i −0.980408 0.196980i \(-0.936887\pi\)
0.660793 + 0.750568i \(0.270220\pi\)
\(150\) 0 0
\(151\) 4.56751e6 + 7.91116e6i 0.107959 + 0.186991i 0.914943 0.403582i \(-0.132235\pi\)
−0.806984 + 0.590573i \(0.798902\pi\)
\(152\) 1.00513e8 2.32151
\(153\) 0 0
\(154\) −4.52165e7 −0.997641
\(155\) −3.70130e6 6.41083e6i −0.0798349 0.138278i
\(156\) 0 0
\(157\) 1.65123e7 2.86002e7i 0.340533 0.589821i −0.643999 0.765027i \(-0.722726\pi\)
0.984532 + 0.175206i \(0.0560591\pi\)
\(158\) −4.92389e7 + 8.52842e7i −0.993135 + 1.72016i
\(159\) 0 0
\(160\) 8.64537e6 + 1.49742e7i 0.166864 + 0.289018i
\(161\) 7.27631e7 1.37411
\(162\) 0 0
\(163\) 9.98787e7 1.80641 0.903205 0.429210i \(-0.141208\pi\)
0.903205 + 0.429210i \(0.141208\pi\)
\(164\) 8.34608e6 + 1.44558e7i 0.147751 + 0.255912i
\(165\) 0 0
\(166\) 3.35199e7 5.80582e7i 0.568754 0.985112i
\(167\) 6.13074e6 1.06188e7i 0.101860 0.176427i −0.810591 0.585613i \(-0.800854\pi\)
0.912451 + 0.409186i \(0.134187\pi\)
\(168\) 0 0
\(169\) 2.58553e7 + 4.47828e7i 0.412047 + 0.713686i
\(170\) −3.38031e8 −5.27698
\(171\) 0 0
\(172\) −3.98898e7 −0.597740
\(173\) 1.20023e7 + 2.07886e7i 0.176240 + 0.305256i 0.940590 0.339546i \(-0.110273\pi\)
−0.764350 + 0.644802i \(0.776940\pi\)
\(174\) 0 0
\(175\) 7.50508e7 1.29992e8i 1.05858 1.83351i
\(176\) 2.12985e7 3.68901e7i 0.294479 0.510053i
\(177\) 0 0
\(178\) 1.26304e7 + 2.18766e7i 0.167861 + 0.290743i
\(179\) 1.35827e8 1.77011 0.885054 0.465488i \(-0.154121\pi\)
0.885054 + 0.465488i \(0.154121\pi\)
\(180\) 0 0
\(181\) −7.74602e7 −0.970965 −0.485482 0.874246i \(-0.661356\pi\)
−0.485482 + 0.874246i \(0.661356\pi\)
\(182\) 3.37301e7 + 5.84223e7i 0.414732 + 0.718337i
\(183\) 0 0
\(184\) −9.45956e7 + 1.63844e8i −1.11946 + 1.93896i
\(185\) −9.72879e6 + 1.68508e7i −0.112969 + 0.195667i
\(186\) 0 0
\(187\) 4.01885e7 + 6.96085e7i 0.449424 + 0.778425i
\(188\) −1.87988e8 −2.06338
\(189\) 0 0
\(190\) 3.52568e8 3.72911
\(191\) 1.89245e7 + 3.27782e7i 0.196520 + 0.340383i 0.947398 0.320058i \(-0.103702\pi\)
−0.750877 + 0.660442i \(0.770369\pi\)
\(192\) 0 0
\(193\) 2.15559e7 3.73358e7i 0.215831 0.373831i −0.737698 0.675131i \(-0.764087\pi\)
0.953529 + 0.301300i \(0.0974205\pi\)
\(194\) 7.57063e7 1.31127e8i 0.744434 1.28940i
\(195\) 0 0
\(196\) −3.03622e7 5.25889e7i −0.288030 0.498882i
\(197\) 1.35255e8 1.26044 0.630221 0.776416i \(-0.282964\pi\)
0.630221 + 0.776416i \(0.282964\pi\)
\(198\) 0 0
\(199\) 9.83246e7 0.884456 0.442228 0.896903i \(-0.354188\pi\)
0.442228 + 0.896903i \(0.354188\pi\)
\(200\) 1.95139e8 + 3.37992e8i 1.72481 + 2.98745i
\(201\) 0 0
\(202\) −1.68491e8 + 2.91835e8i −1.43829 + 2.49119i
\(203\) −1.48169e7 + 2.56637e7i −0.124315 + 0.215319i
\(204\) 0 0
\(205\) 1.50283e7 + 2.60299e7i 0.121835 + 0.211025i
\(206\) 3.47400e8 2.76882
\(207\) 0 0
\(208\) −6.35520e7 −0.489675
\(209\) −4.19168e7 7.26020e7i −0.317597 0.550094i
\(210\) 0 0
\(211\) 3.41390e7 5.91305e7i 0.250186 0.433335i −0.713391 0.700766i \(-0.752842\pi\)
0.963577 + 0.267432i \(0.0861750\pi\)
\(212\) −6.44778e7 + 1.11679e8i −0.464767 + 0.804999i
\(213\) 0 0
\(214\) −1.15104e8 1.99366e8i −0.802866 1.39060i
\(215\) −7.18275e7 −0.492897
\(216\) 0 0
\(217\) −1.60499e7 −0.106626
\(218\) −2.26597e8 3.92478e8i −1.48135 2.56577i
\(219\) 0 0
\(220\) 1.38697e8 2.40230e8i 0.878186 1.52106i
\(221\) 5.99588e7 1.03852e8i 0.373663 0.647203i
\(222\) 0 0
\(223\) −1.45930e8 2.52758e8i −0.881207 1.52630i −0.850000 0.526782i \(-0.823398\pi\)
−0.0312065 0.999513i \(-0.509935\pi\)
\(224\) 3.74889e7 0.222862
\(225\) 0 0
\(226\) −6.77085e6 −0.0390179
\(227\) 1.19293e8 + 2.06622e8i 0.676901 + 1.17243i 0.975909 + 0.218176i \(0.0700108\pi\)
−0.299009 + 0.954250i \(0.596656\pi\)
\(228\) 0 0
\(229\) 7.65152e7 1.32528e8i 0.421040 0.729263i −0.575001 0.818152i \(-0.694999\pi\)
0.996041 + 0.0888897i \(0.0283319\pi\)
\(230\) −3.31811e8 + 5.74713e8i −1.79822 + 3.11461i
\(231\) 0 0
\(232\) −3.85255e7 6.67281e7i −0.202554 0.350833i
\(233\) −2.54013e8 −1.31556 −0.657779 0.753211i \(-0.728504\pi\)
−0.657779 + 0.753211i \(0.728504\pi\)
\(234\) 0 0
\(235\) −3.38501e8 −1.70146
\(236\) 1.75727e8 + 3.04368e8i 0.870255 + 1.50733i
\(237\) 0 0
\(238\) −3.66451e8 + 6.34712e8i −1.76196 + 3.05181i
\(239\) −1.58069e8 + 2.73784e8i −0.748953 + 1.29722i 0.199372 + 0.979924i \(0.436110\pi\)
−0.948325 + 0.317300i \(0.897224\pi\)
\(240\) 0 0
\(241\) −1.07767e7 1.86659e7i −0.0495939 0.0858991i 0.840163 0.542334i \(-0.182459\pi\)
−0.889757 + 0.456435i \(0.849126\pi\)
\(242\) 2.87286e8 1.30305
\(243\) 0 0
\(244\) −4.72419e8 −2.08192
\(245\) −5.46717e7 9.46941e7i −0.237510 0.411379i
\(246\) 0 0
\(247\) −6.25372e7 + 1.08318e8i −0.264058 + 0.457362i
\(248\) 2.08657e7 3.61405e7i 0.0868665 0.150457i
\(249\) 0 0
\(250\) 3.18660e8 + 5.51935e8i 1.28984 + 2.23408i
\(251\) 1.38647e8 0.553419 0.276709 0.960954i \(-0.410756\pi\)
0.276709 + 0.960954i \(0.410756\pi\)
\(252\) 0 0
\(253\) 1.57796e8 0.612596
\(254\) −1.03738e8 1.79680e8i −0.397211 0.687989i
\(255\) 0 0
\(256\) 2.73262e8 4.73304e8i 1.01798 1.76319i
\(257\) 2.27138e8 3.93415e8i 0.834688 1.44572i −0.0595957 0.998223i \(-0.518981\pi\)
0.894284 0.447500i \(-0.147686\pi\)
\(258\) 0 0
\(259\) 2.10935e7 + 3.65350e7i 0.0754396 + 0.130665i
\(260\) −4.13854e8 −1.46029
\(261\) 0 0
\(262\) 1.31595e8 0.452050
\(263\) −7.40745e7 1.28301e8i −0.251087 0.434895i 0.712739 0.701430i \(-0.247455\pi\)
−0.963825 + 0.266535i \(0.914121\pi\)
\(264\) 0 0
\(265\) −1.16102e8 + 2.01094e8i −0.383247 + 0.663803i
\(266\) 3.82210e8 6.62007e8i 1.24513 2.15664i
\(267\) 0 0
\(268\) −3.34782e8 5.79859e8i −1.06241 1.84014i
\(269\) 2.17316e8 0.680703 0.340352 0.940298i \(-0.389454\pi\)
0.340352 + 0.940298i \(0.389454\pi\)
\(270\) 0 0
\(271\) −3.83874e8 −1.17165 −0.585823 0.810439i \(-0.699229\pi\)
−0.585823 + 0.810439i \(0.699229\pi\)
\(272\) −3.45222e8 5.97941e8i −1.04018 1.80164i
\(273\) 0 0
\(274\) 3.95618e8 6.85230e8i 1.16185 2.01238i
\(275\) 1.62757e8 2.81904e8i 0.471929 0.817404i
\(276\) 0 0
\(277\) 2.08325e8 + 3.60830e8i 0.588928 + 1.02005i 0.994373 + 0.105934i \(0.0337833\pi\)
−0.405445 + 0.914120i \(0.632883\pi\)
\(278\) −3.72274e8 −1.03921
\(279\) 0 0
\(280\) 1.29843e9 3.53481
\(281\) 3.17153e8 + 5.49325e8i 0.852700 + 1.47692i 0.878762 + 0.477259i \(0.158370\pi\)
−0.0260625 + 0.999660i \(0.508297\pi\)
\(282\) 0 0
\(283\) −3.54403e8 + 6.13844e8i −0.929490 + 1.60992i −0.145314 + 0.989386i \(0.546419\pi\)
−0.784176 + 0.620538i \(0.786914\pi\)
\(284\) 9.21104e7 1.59540e8i 0.238613 0.413290i
\(285\) 0 0
\(286\) 7.31481e7 + 1.26696e8i 0.184894 + 0.320245i
\(287\) 6.51675e7 0.162721
\(288\) 0 0
\(289\) 8.92471e8 2.17496
\(290\) −1.35135e8 2.34061e8i −0.325368 0.563554i
\(291\) 0 0
\(292\) 6.16879e8 1.06847e9i 1.44997 2.51143i
\(293\) −1.82298e7 + 3.15750e7i −0.0423395 + 0.0733342i −0.886419 0.462885i \(-0.846814\pi\)
0.844079 + 0.536219i \(0.180148\pi\)
\(294\) 0 0
\(295\) 3.16422e8 + 5.48060e8i 0.717613 + 1.24294i
\(296\) −1.09690e8 −0.245837
\(297\) 0 0
\(298\) −5.10396e8 −1.11725
\(299\) −1.17711e8 2.03881e8i −0.254664 0.441091i
\(300\) 0 0
\(301\) −7.78664e7 + 1.34869e8i −0.164576 + 0.285055i
\(302\) −9.03189e7 + 1.56437e8i −0.188692 + 0.326825i
\(303\) 0 0
\(304\) 3.60067e8 + 6.23655e8i 0.735066 + 1.27317i
\(305\) −8.50661e8 −1.71675
\(306\) 0 0
\(307\) −7.16485e8 −1.41326 −0.706631 0.707583i \(-0.749786\pi\)
−0.706631 + 0.707583i \(0.749786\pi\)
\(308\) −3.00715e8 5.20854e8i −0.586446 1.01575i
\(309\) 0 0
\(310\) 7.31902e7 1.26769e8i 0.139536 0.241684i
\(311\) −1.31464e8 + 2.27703e8i −0.247826 + 0.429247i −0.962922 0.269779i \(-0.913049\pi\)
0.715096 + 0.699026i \(0.246383\pi\)
\(312\) 0 0
\(313\) −1.49740e8 2.59357e8i −0.276015 0.478071i 0.694376 0.719612i \(-0.255681\pi\)
−0.970391 + 0.241541i \(0.922347\pi\)
\(314\) 6.53037e8 1.19038
\(315\) 0 0
\(316\) −1.30987e9 −2.33519
\(317\) 8.87589e7 + 1.53735e8i 0.156497 + 0.271060i 0.933603 0.358309i \(-0.116647\pi\)
−0.777106 + 0.629369i \(0.783313\pi\)
\(318\) 0 0
\(319\) −3.21324e7 + 5.56550e7i −0.0554212 + 0.0959924i
\(320\) 4.08852e8 7.08153e8i 0.697496 1.20810i
\(321\) 0 0
\(322\) 7.19416e8 + 1.24607e9i 1.20084 + 2.07991i
\(323\) −1.35884e9 −2.24367
\(324\) 0 0
\(325\) −4.85648e8 −0.784747
\(326\) 9.87511e8 + 1.71042e9i 1.57863 + 2.73427i
\(327\) 0 0
\(328\) −8.47209e7 + 1.46741e8i −0.132566 + 0.229611i
\(329\) −3.66961e8 + 6.35594e8i −0.568112 + 0.983999i
\(330\) 0 0
\(331\) −4.09460e8 7.09205e8i −0.620602 1.07491i −0.989374 0.145394i \(-0.953555\pi\)
0.368772 0.929520i \(-0.379778\pi\)
\(332\) 8.91707e8 1.33733
\(333\) 0 0
\(334\) 2.42461e8 0.356065
\(335\) −6.02824e8 1.04412e9i −0.876060 1.51738i
\(336\) 0 0
\(337\) −5.67529e8 + 9.82990e8i −0.807763 + 1.39909i 0.106647 + 0.994297i \(0.465988\pi\)
−0.914410 + 0.404789i \(0.867345\pi\)
\(338\) −5.11269e8 + 8.85544e8i −0.720180 + 1.24739i
\(339\) 0 0
\(340\) −2.24810e9 3.89382e9i −3.10198 5.37279i
\(341\) −3.48064e7 −0.0475355
\(342\) 0 0
\(343\) 6.08581e8 0.814308
\(344\) −2.02460e8 3.50671e8i −0.268155 0.464457i
\(345\) 0 0
\(346\) −2.37336e8 + 4.11078e8i −0.308033 + 0.533529i
\(347\) −2.61567e8 + 4.53047e8i −0.336070 + 0.582090i −0.983690 0.179874i \(-0.942431\pi\)
0.647620 + 0.761964i \(0.275764\pi\)
\(348\) 0 0
\(349\) −1.11792e8 1.93630e8i −0.140774 0.243828i 0.787014 0.616935i \(-0.211626\pi\)
−0.927788 + 0.373107i \(0.878292\pi\)
\(350\) 2.96814e9 3.70038
\(351\) 0 0
\(352\) 8.12996e7 0.0993548
\(353\) −1.92737e8 3.33830e8i −0.233214 0.403938i 0.725538 0.688182i \(-0.241591\pi\)
−0.958752 + 0.284244i \(0.908257\pi\)
\(354\) 0 0
\(355\) 1.65858e8 2.87275e8i 0.196761 0.340799i
\(356\) −1.67999e8 + 2.90983e8i −0.197348 + 0.341816i
\(357\) 0 0
\(358\) 1.34293e9 + 2.32603e9i 1.54691 + 2.67932i
\(359\) 1.05112e9 1.19901 0.599504 0.800372i \(-0.295365\pi\)
0.599504 + 0.800372i \(0.295365\pi\)
\(360\) 0 0
\(361\) 5.23400e8 0.585542
\(362\) −7.65857e8 1.32650e9i −0.848531 1.46970i
\(363\) 0 0
\(364\) −4.48649e8 + 7.77083e8i −0.487587 + 0.844525i
\(365\) 1.11078e9 1.92393e9i 1.19565 2.07093i
\(366\) 0 0
\(367\) −9.67958e7 1.67655e8i −0.102218 0.177046i 0.810380 0.585904i \(-0.199260\pi\)
−0.912598 + 0.408858i \(0.865927\pi\)
\(368\) −1.35548e9 −1.41783
\(369\) 0 0
\(370\) −3.84758e8 −0.394895
\(371\) 2.51726e8 + 4.36003e8i 0.255929 + 0.443282i
\(372\) 0 0
\(373\) 1.76946e8 3.06480e8i 0.176547 0.305788i −0.764149 0.645040i \(-0.776841\pi\)
0.940696 + 0.339252i \(0.110174\pi\)
\(374\) −7.94696e8 + 1.37645e9i −0.785508 + 1.36054i
\(375\) 0 0
\(376\) −9.54133e8 1.65261e9i −0.925660 1.60329i
\(377\) 9.58792e7 0.0921572
\(378\) 0 0
\(379\) −4.69956e8 −0.443425 −0.221712 0.975112i \(-0.571165\pi\)
−0.221712 + 0.975112i \(0.571165\pi\)
\(380\) 2.34478e9 + 4.06127e9i 2.19209 + 3.79681i
\(381\) 0 0
\(382\) −3.74217e8 + 6.48163e8i −0.343480 + 0.594925i
\(383\) −7.65447e8 + 1.32579e9i −0.696177 + 1.20581i 0.273606 + 0.961842i \(0.411784\pi\)
−0.969782 + 0.243971i \(0.921550\pi\)
\(384\) 0 0
\(385\) −5.41482e8 9.37875e8i −0.483584 0.837592i
\(386\) 8.52500e8 0.754465
\(387\) 0 0
\(388\) 2.01396e9 1.75041
\(389\) 4.16725e8 + 7.21789e8i 0.358943 + 0.621708i 0.987785 0.155826i \(-0.0498038\pi\)
−0.628841 + 0.777534i \(0.716470\pi\)
\(390\) 0 0
\(391\) 1.27884e9 2.21501e9i 1.08192 1.87395i
\(392\) 3.08206e8 5.33829e8i 0.258429 0.447611i
\(393\) 0 0
\(394\) 1.33728e9 + 2.31624e9i 1.10151 + 1.90786i
\(395\) −2.35861e9 −1.92560
\(396\) 0 0
\(397\) 8.58150e8 0.688330 0.344165 0.938909i \(-0.388162\pi\)
0.344165 + 0.938909i \(0.388162\pi\)
\(398\) 9.72146e8 + 1.68381e9i 0.772931 + 1.33876i
\(399\) 0 0
\(400\) −1.39809e9 + 2.42157e9i −1.09226 + 1.89185i
\(401\) −1.03584e8 + 1.79412e8i −0.0802205 + 0.138946i −0.903345 0.428916i \(-0.858896\pi\)
0.823124 + 0.567862i \(0.192229\pi\)
\(402\) 0 0
\(403\) 2.59645e7 + 4.49718e7i 0.0197611 + 0.0342273i
\(404\) −4.48225e9 −3.38190
\(405\) 0 0
\(406\) −5.85986e8 −0.434557
\(407\) 4.57440e7 + 7.92309e7i 0.0336320 + 0.0582524i
\(408\) 0 0
\(409\) 2.23582e8 3.87255e8i 0.161586 0.279876i −0.773851 0.633367i \(-0.781672\pi\)
0.935438 + 0.353491i \(0.115006\pi\)
\(410\) −2.97174e8 + 5.14720e8i −0.212945 + 0.368831i
\(411\) 0 0
\(412\) 2.31041e9 + 4.00174e9i 1.62760 + 2.81909i
\(413\) 1.37210e9 0.958433
\(414\) 0 0
\(415\) 1.60565e9 1.10276
\(416\) −6.06470e7 1.05044e8i −0.0413031 0.0715390i
\(417\) 0 0
\(418\) 8.28871e8 1.43565e9i 0.555099 0.961459i
\(419\) 4.02245e8 6.96708e8i 0.267141 0.462702i −0.700981 0.713180i \(-0.747254\pi\)
0.968122 + 0.250477i \(0.0805876\pi\)
\(420\) 0 0
\(421\) −5.98127e8 1.03599e9i −0.390666 0.676654i 0.601871 0.798593i \(-0.294422\pi\)
−0.992538 + 0.121939i \(0.961089\pi\)
\(422\) 1.35015e9 0.874555
\(423\) 0 0
\(424\) −1.30903e9 −0.834003
\(425\) −2.63809e9 4.56931e9i −1.66697 2.88728i
\(426\) 0 0
\(427\) −9.22181e8 + 1.59726e9i −0.573216 + 0.992839i
\(428\) 1.53102e9 2.65180e9i 0.943901 1.63489i
\(429\) 0 0
\(430\) −7.10166e8 1.23004e9i −0.430745 0.746072i
\(431\) −8.02879e8 −0.483036 −0.241518 0.970396i \(-0.577645\pi\)
−0.241518 + 0.970396i \(0.577645\pi\)
\(432\) 0 0
\(433\) 2.54405e9 1.50597 0.752987 0.658035i \(-0.228612\pi\)
0.752987 + 0.658035i \(0.228612\pi\)
\(434\) −1.58687e8 2.74855e8i −0.0931813 0.161395i
\(435\) 0 0
\(436\) 3.01400e9 5.22040e9i 1.74157 3.01648i
\(437\) −1.33383e9 + 2.31027e9i −0.764568 + 1.32427i
\(438\) 0 0
\(439\) 4.00339e8 + 6.93408e8i 0.225841 + 0.391168i 0.956571 0.291498i \(-0.0941537\pi\)
−0.730731 + 0.682666i \(0.760820\pi\)
\(440\) 2.81581e9 1.57587
\(441\) 0 0
\(442\) 2.37127e9 1.30618
\(443\) 5.39360e8 + 9.34200e8i 0.294758 + 0.510536i 0.974929 0.222518i \(-0.0714275\pi\)
−0.680170 + 0.733054i \(0.738094\pi\)
\(444\) 0 0
\(445\) −3.02507e8 + 5.23958e8i −0.162733 + 0.281862i
\(446\) 2.88565e9 4.99810e9i 1.54018 2.66767i
\(447\) 0 0
\(448\) −8.86454e8 1.53538e9i −0.465782 0.806759i
\(449\) 1.67071e9 0.871042 0.435521 0.900179i \(-0.356564\pi\)
0.435521 + 0.900179i \(0.356564\pi\)
\(450\) 0 0
\(451\) 1.41324e8 0.0725434
\(452\) −4.50300e7 7.79942e7i −0.0229360 0.0397263i
\(453\) 0 0
\(454\) −2.35893e9 + 4.08578e9i −1.18309 + 2.04918i
\(455\) −8.07858e8 + 1.39925e9i −0.402064 + 0.696395i
\(456\) 0 0
\(457\) −9.05761e8 1.56882e9i −0.443922 0.768896i 0.554054 0.832481i \(-0.313080\pi\)
−0.997976 + 0.0635848i \(0.979747\pi\)
\(458\) 3.02605e9 1.47180
\(459\) 0 0
\(460\) −8.82693e9 −4.22822
\(461\) −4.54057e8 7.86449e8i −0.215852 0.373867i 0.737684 0.675147i \(-0.235920\pi\)
−0.953536 + 0.301279i \(0.902586\pi\)
\(462\) 0 0
\(463\) 1.48226e9 2.56735e9i 0.694051 1.20213i −0.276449 0.961029i \(-0.589158\pi\)
0.970500 0.241102i \(-0.0775089\pi\)
\(464\) 2.76019e8 4.78079e8i 0.128270 0.222171i
\(465\) 0 0
\(466\) −2.51145e9 4.34997e9i −1.14967 1.99129i
\(467\) −1.15258e9 −0.523675 −0.261837 0.965112i \(-0.584328\pi\)
−0.261837 + 0.965112i \(0.584328\pi\)
\(468\) 0 0
\(469\) −2.61403e9 −1.17005
\(470\) −3.34679e9 5.79682e9i −1.48692 2.57541i
\(471\) 0 0
\(472\) −1.78380e9 + 3.08963e9i −0.780818 + 1.35242i
\(473\) −1.68863e8 + 2.92480e8i −0.0733705 + 0.127081i
\(474\) 0 0
\(475\) 2.75154e9 + 4.76581e9i 1.17801 + 2.04037i
\(476\) −9.74843e9 −4.14296
\(477\) 0 0
\(478\) −6.25139e9 −2.61805
\(479\) 2.83332e8 + 4.90745e8i 0.117793 + 0.204024i 0.918893 0.394507i \(-0.129085\pi\)
−0.801100 + 0.598531i \(0.795751\pi\)
\(480\) 0 0
\(481\) 6.82471e7 1.18208e8i 0.0279625 0.0484326i
\(482\) 2.13102e8 3.69103e8i 0.0866807 0.150135i
\(483\) 0 0
\(484\) 1.91061e9 + 3.30928e9i 0.765974 + 1.32671i
\(485\) 3.62643e9 1.44339
\(486\) 0 0
\(487\) 3.19934e9 1.25519 0.627595 0.778540i \(-0.284040\pi\)
0.627595 + 0.778540i \(0.284040\pi\)
\(488\) −2.39776e9 4.15304e9i −0.933977 1.61770i
\(489\) 0 0
\(490\) 1.08109e9 1.87250e9i 0.415122 0.719012i
\(491\) −1.06617e9 + 1.84667e9i −0.406483 + 0.704049i −0.994493 0.104804i \(-0.966578\pi\)
0.588010 + 0.808854i \(0.299912\pi\)
\(492\) 0 0
\(493\) 5.20826e8 + 9.02097e8i 0.195762 + 0.339070i
\(494\) −2.47325e9 −0.923047
\(495\) 0 0
\(496\) 2.98989e8 0.110019
\(497\) −3.59606e8 6.22856e8i −0.131395 0.227583i
\(498\) 0 0
\(499\) −5.21456e8 + 9.03188e8i −0.187874 + 0.325407i −0.944541 0.328393i \(-0.893493\pi\)
0.756667 + 0.653800i \(0.226826\pi\)
\(500\) −4.23854e9 + 7.34136e9i −1.51643 + 2.62653i
\(501\) 0 0
\(502\) 1.37082e9 + 2.37433e9i 0.483635 + 0.837681i
\(503\) 2.59463e9 0.909051 0.454526 0.890734i \(-0.349809\pi\)
0.454526 + 0.890734i \(0.349809\pi\)
\(504\) 0 0
\(505\) −8.07094e9 −2.78872
\(506\) 1.56015e9 + 2.70225e9i 0.535351 + 0.927255i
\(507\) 0 0
\(508\) 1.37984e9 2.38995e9i 0.466987 0.808845i
\(509\) 2.52142e9 4.36723e9i 0.847488 1.46789i −0.0359549 0.999353i \(-0.511447\pi\)
0.883443 0.468539i \(-0.155219\pi\)
\(510\) 0 0
\(511\) −2.40834e9 4.17137e9i −0.798446 1.38295i
\(512\) 5.83885e9 1.92257
\(513\) 0 0
\(514\) 8.98296e9 2.91775
\(515\) 4.16023e9 + 7.20573e9i 1.34212 + 2.32462i
\(516\) 0 0
\(517\) −7.95801e8 + 1.37837e9i −0.253272 + 0.438681i
\(518\) −4.17107e8 + 7.22451e8i −0.131854 + 0.228378i
\(519\) 0 0
\(520\) −2.10051e9 3.63819e9i −0.655108 1.13468i
\(521\) −3.81880e9 −1.18303 −0.591514 0.806295i \(-0.701469\pi\)
−0.591514 + 0.806295i \(0.701469\pi\)
\(522\) 0 0
\(523\) −1.81806e9 −0.555715 −0.277857 0.960622i \(-0.589624\pi\)
−0.277857 + 0.960622i \(0.589624\pi\)
\(524\) 8.75185e8 + 1.51586e9i 0.265730 + 0.460257i
\(525\) 0 0
\(526\) 1.46477e9 2.53705e9i 0.438852 0.760114i
\(527\) −2.82083e8 + 4.88583e8i −0.0839538 + 0.145412i
\(528\) 0 0
\(529\) −8.08199e8 1.39984e9i −0.237369 0.411135i
\(530\) −4.59164e9 −1.33968
\(531\) 0 0
\(532\) 1.01677e10 2.92772
\(533\) −1.05423e8 1.82599e8i −0.0301572 0.0522339i
\(534\) 0 0
\(535\) 2.75682e9 4.77495e9i 0.778342 1.34813i
\(536\) 3.39836e9 5.88614e9i 0.953220 1.65103i
\(537\) 0 0
\(538\) 2.14862e9 + 3.72152e9i 0.594870 + 1.03034i
\(539\) −5.14123e8 −0.141419
\(540\) 0 0
\(541\) 3.76234e9 1.02157 0.510784 0.859709i \(-0.329355\pi\)
0.510784 + 0.859709i \(0.329355\pi\)
\(542\) −3.79541e9 6.57384e9i −1.02391 1.77346i
\(543\) 0 0
\(544\) 6.58882e8 1.14122e9i 0.175473 0.303929i
\(545\) 5.42715e9 9.40010e9i 1.43610 2.48739i
\(546\) 0 0
\(547\) 2.99728e9 + 5.19144e9i 0.783018 + 1.35623i 0.930176 + 0.367114i \(0.119654\pi\)
−0.147158 + 0.989113i \(0.547013\pi\)
\(548\) 1.05243e10 2.73189
\(549\) 0 0
\(550\) 6.43680e9 1.64968
\(551\) −5.43223e8 9.40891e8i −0.138340 0.239612i
\(552\) 0 0
\(553\) −2.55691e9 + 4.42870e9i −0.642950 + 1.11362i
\(554\) −4.11947e9 + 7.13512e9i −1.02933 + 1.78286i
\(555\) 0 0
\(556\) −2.47583e9 4.28826e9i −0.610885 1.05808i
\(557\) 4.74153e9 1.16259 0.581294 0.813694i \(-0.302547\pi\)
0.581294 + 0.813694i \(0.302547\pi\)
\(558\) 0 0
\(559\) 5.03867e8 0.122004
\(560\) 4.65136e9 + 8.05640e9i 1.11924 + 1.93858i
\(561\) 0 0
\(562\) −6.27144e9 + 1.08625e10i −1.49036 + 2.58138i
\(563\) 1.66572e7 2.88510e7i 0.00393388 0.00681368i −0.864052 0.503403i \(-0.832081\pi\)
0.867986 + 0.496589i \(0.165414\pi\)
\(564\) 0 0
\(565\) −8.10831e7 1.40440e8i −0.0189130 0.0327583i
\(566\) −1.40161e10 −3.24914
\(567\) 0 0
\(568\) 1.87002e9 0.428181
\(569\) 1.85350e9 + 3.21036e9i 0.421794 + 0.730569i 0.996115 0.0880612i \(-0.0280671\pi\)
−0.574321 + 0.818630i \(0.694734\pi\)
\(570\) 0 0
\(571\) −3.41860e9 + 5.92119e9i −0.768462 + 1.33102i 0.169935 + 0.985455i \(0.445644\pi\)
−0.938397 + 0.345560i \(0.887689\pi\)
\(572\) −9.72953e8 + 1.68520e9i −0.217373 + 0.376501i
\(573\) 0 0
\(574\) 6.44318e8 + 1.11599e9i 0.142203 + 0.246303i
\(575\) −1.03582e10 −2.27220
\(576\) 0 0
\(577\) 4.39006e9 0.951382 0.475691 0.879612i \(-0.342198\pi\)
0.475691 + 0.879612i \(0.342198\pi\)
\(578\) 8.82396e9 + 1.52835e10i 1.90071 + 3.29213i
\(579\) 0 0
\(580\) 1.79745e9 3.11327e9i 0.382524 0.662551i
\(581\) 1.74064e9 3.01489e9i 0.368208 0.637756i
\(582\) 0 0
\(583\) 5.45901e8 + 9.45528e8i 0.114097 + 0.197622i
\(584\) 1.25239e10 2.60192
\(585\) 0 0
\(586\) −7.20961e8 −0.148003
\(587\) −4.09956e8 7.10064e8i −0.0836573 0.144899i 0.821161 0.570697i \(-0.193327\pi\)
−0.904818 + 0.425798i \(0.859993\pi\)
\(588\) 0 0
\(589\) 2.94214e8 5.09594e8i 0.0593281 0.102759i
\(590\) −6.25701e9 + 1.08375e10i −1.25425 + 2.17243i
\(591\) 0 0
\(592\) −3.92943e8 6.80597e8i −0.0778402 0.134823i
\(593\) 4.33599e9 0.853880 0.426940 0.904280i \(-0.359592\pi\)
0.426940 + 0.904280i \(0.359592\pi\)
\(594\) 0 0
\(595\) −1.75535e10 −3.41628
\(596\) −3.39443e9 5.87932e9i −0.656757 1.13754i
\(597\) 0 0
\(598\) 2.32764e9 4.03159e9i 0.445105 0.770944i
\(599\) −4.96206e9 + 8.59454e9i −0.943339 + 1.63391i −0.184297 + 0.982871i \(0.559001\pi\)
−0.759042 + 0.651041i \(0.774332\pi\)
\(600\) 0 0
\(601\) −9.72471e8 1.68437e9i −0.182733 0.316502i 0.760078 0.649832i \(-0.225161\pi\)
−0.942810 + 0.333330i \(0.891828\pi\)
\(602\) −3.07949e9 −0.575296
\(603\) 0 0
\(604\) −2.40269e9 −0.443678
\(605\) 3.44034e9 + 5.95884e9i 0.631623 + 1.09400i
\(606\) 0 0
\(607\) 3.99796e9 6.92467e9i 0.725568 1.25672i −0.233172 0.972435i \(-0.574911\pi\)
0.958740 0.284285i \(-0.0917561\pi\)
\(608\) −6.87216e8 + 1.19029e9i −0.124003 + 0.214779i
\(609\) 0 0
\(610\) −8.41057e9 1.45675e10i −1.50028 2.59855i
\(611\) 2.37457e9 0.421154
\(612\) 0 0
\(613\) 5.19028e8 0.0910079 0.0455040 0.998964i \(-0.485511\pi\)
0.0455040 + 0.998964i \(0.485511\pi\)
\(614\) −7.08396e9 1.22698e10i −1.23506 2.13918i
\(615\) 0 0
\(616\) 3.05256e9 5.28718e9i 0.526176 0.911364i
\(617\) −1.16882e9 + 2.02445e9i −0.200331 + 0.346984i −0.948635 0.316372i \(-0.897535\pi\)
0.748304 + 0.663356i \(0.230868\pi\)
\(618\) 0 0
\(619\) 3.37653e9 + 5.84833e9i 0.572208 + 0.991093i 0.996339 + 0.0854921i \(0.0272462\pi\)
−0.424131 + 0.905601i \(0.639420\pi\)
\(620\) 1.94703e9 0.328096
\(621\) 0 0
\(622\) −5.19921e9 −0.866306
\(623\) 6.55882e8 + 1.13602e9i 0.108672 + 0.188225i
\(624\) 0 0
\(625\) −1.92207e9 + 3.32912e9i −0.314912 + 0.545443i
\(626\) 2.96099e9 5.12858e9i 0.482421 0.835578i
\(627\) 0 0
\(628\) 4.34307e9 + 7.52241e9i 0.699742 + 1.21199i
\(629\) 1.48290e9 0.237594
\(630\) 0 0
\(631\) −9.84840e9 −1.56050 −0.780249 0.625469i \(-0.784908\pi\)
−0.780249 + 0.625469i \(0.784908\pi\)
\(632\) −6.64821e9 1.15150e10i −1.04760 1.81449i
\(633\) 0 0
\(634\) −1.75514e9 + 3.03999e9i −0.273526 + 0.473761i
\(635\) 2.48460e9 4.30345e9i 0.385077 0.666974i
\(636\) 0 0
\(637\) 3.83520e8 + 6.64276e8i 0.0587895 + 0.101826i
\(638\) −1.27079e9 −0.193732
\(639\) 0 0
\(640\) 1.83827e10 2.77191
\(641\) 9.64590e8 + 1.67072e9i 0.144657 + 0.250553i 0.929245 0.369464i \(-0.120459\pi\)
−0.784588 + 0.620018i \(0.787125\pi\)
\(642\) 0 0
\(643\) −1.84715e9 + 3.19936e9i −0.274009 + 0.474597i −0.969885 0.243565i \(-0.921683\pi\)
0.695876 + 0.718162i \(0.255016\pi\)
\(644\) −9.56906e9 + 1.65741e10i −1.41179 + 2.44528i
\(645\) 0 0
\(646\) −1.34350e10 2.32700e10i −1.96075 3.39612i
\(647\) 1.04870e10 1.52225 0.761127 0.648602i \(-0.224646\pi\)
0.761127 + 0.648602i \(0.224646\pi\)
\(648\) 0 0
\(649\) 2.97558e9 0.427283
\(650\) −4.80165e9 8.31671e9i −0.685794 1.18783i
\(651\) 0 0
\(652\) −1.31350e10 + 2.27505e10i −1.85594 + 3.21459i
\(653\) 3.38105e9 5.85615e9i 0.475177 0.823031i −0.524419 0.851461i \(-0.675717\pi\)
0.999596 + 0.0284296i \(0.00905063\pi\)
\(654\) 0 0
\(655\) 1.57590e9 + 2.72954e9i 0.219121 + 0.379529i
\(656\) −1.21398e9 −0.167899
\(657\) 0 0
\(658\) −1.45127e10 −1.98590
\(659\) 3.11470e8 + 5.39481e8i 0.0423952 + 0.0734306i 0.886444 0.462835i \(-0.153168\pi\)
−0.844049 + 0.536266i \(0.819834\pi\)
\(660\) 0 0
\(661\) −7.64249e8 + 1.32372e9i −0.102927 + 0.178275i −0.912889 0.408207i \(-0.866154\pi\)
0.809962 + 0.586482i \(0.199488\pi\)
\(662\) 8.09674e9 1.40240e10i 1.08469 1.87875i
\(663\) 0 0
\(664\) 4.52585e9 + 7.83900e9i 0.599945 + 1.03914i
\(665\) 1.83084e10 2.41420
\(666\) 0 0
\(667\) 2.04497e9 0.266837
\(668\) 1.61251e9 + 2.79294e9i 0.209307 + 0.362530i
\(669\) 0 0
\(670\) 1.19204e10 2.06467e10i 1.53119 2.65209i
\(671\) −1.99987e9 + 3.46387e9i −0.255548 + 0.442622i
\(672\) 0 0
\(673\) 5.64752e9 + 9.78180e9i 0.714176 + 1.23699i 0.963276 + 0.268511i \(0.0865317\pi\)
−0.249101 + 0.968478i \(0.580135\pi\)
\(674\) −2.24449e10 −2.82363
\(675\) 0 0
\(676\) −1.36009e10 −1.69338
\(677\) −4.02738e9 6.97562e9i −0.498841 0.864017i 0.501159 0.865355i \(-0.332907\pi\)
−0.999999 + 0.00133832i \(0.999574\pi\)
\(678\) 0 0
\(679\) 3.93133e9 6.80926e9i 0.481942 0.834748i
\(680\) 2.28204e10 3.95261e10i 2.78318 4.82062i
\(681\) 0 0
\(682\) −3.44134e8 5.96058e8i −0.0415415 0.0719520i
\(683\) −1.53230e10 −1.84023 −0.920113 0.391652i \(-0.871904\pi\)
−0.920113 + 0.391652i \(0.871904\pi\)
\(684\) 0 0
\(685\) 1.89506e10 2.25272
\(686\) 6.01710e9 + 1.04219e10i 0.711628 + 1.23258i
\(687\) 0 0
\(688\) 1.45054e9 2.51242e9i 0.169813 0.294125i
\(689\) 8.14450e8 1.41067e9i 0.0948631 0.164308i
\(690\) 0 0
\(691\) −1.82587e9 3.16250e9i −0.210521 0.364634i 0.741356 0.671112i \(-0.234183\pi\)
−0.951878 + 0.306478i \(0.900849\pi\)
\(692\) −6.31369e9 −0.724289
\(693\) 0 0
\(694\) −1.03446e10 −1.17477
\(695\) −4.45810e9 7.72165e9i −0.503736 0.872496i
\(696\) 0 0
\(697\) 1.14534e9 1.98379e9i 0.128121 0.221912i
\(698\) 2.21060e9 3.82888e9i 0.246046 0.426165i
\(699\) 0 0
\(700\) 1.97398e10 + 3.41904e10i 2.17521 + 3.76757i
\(701\) −1.42036e10 −1.55735 −0.778675 0.627427i \(-0.784108\pi\)
−0.778675 + 0.627427i \(0.784108\pi\)
\(702\) 0 0
\(703\) −1.54667e9 −0.167902
\(704\) −1.92239e9 3.32967e9i −0.207652 0.359664i
\(705\) 0 0
\(706\) 3.81122e9 6.60124e9i 0.407613 0.706007i
\(707\) −8.74951e9 + 1.51546e10i −0.931142 + 1.61279i
\(708\) 0 0
\(709\) −5.84215e9 1.01189e10i −0.615617 1.06628i −0.990276 0.139118i \(-0.955573\pi\)
0.374659 0.927163i \(-0.377760\pi\)
\(710\) 6.55943e9 0.687800
\(711\) 0 0
\(712\) −3.41071e9 −0.354132
\(713\) 5.53786e8 + 9.59185e8i 0.0572175 + 0.0991035i
\(714\) 0 0
\(715\) −1.75194e9 + 3.03446e9i −0.179246 + 0.310463i
\(716\) −1.78626e10 + 3.09389e10i −1.81865 + 3.14999i
\(717\) 0 0
\(718\) 1.03925e10 + 1.80004e10i 1.04782 + 1.81488i
\(719\) 8.68481e9 0.871383 0.435691 0.900096i \(-0.356504\pi\)
0.435691 + 0.900096i \(0.356504\pi\)
\(720\) 0 0
\(721\) 1.80400e10 1.79252
\(722\) 5.17491e9 + 8.96320e9i 0.511708 + 0.886305i
\(723\) 0 0
\(724\) 1.01868e10 1.76440e10i 0.997589 1.72787i
\(725\) 2.10927e9 3.65336e9i 0.205565 0.356048i
\(726\) 0 0
\(727\) −1.74815e9 3.02788e9i −0.168736 0.292259i 0.769240 0.638960i \(-0.220635\pi\)
−0.937976 + 0.346701i \(0.887302\pi\)
\(728\) −9.10845e9 −0.874953
\(729\) 0 0
\(730\) 4.39297e10 4.17954
\(731\) 2.73706e9 + 4.74073e9i 0.259163 + 0.448884i
\(732\) 0 0
\(733\) 4.65551e9 8.06359e9i 0.436620 0.756248i −0.560806 0.827947i \(-0.689509\pi\)
0.997426 + 0.0716989i \(0.0228421\pi\)
\(734\) 1.91406e9 3.31525e9i 0.178657 0.309443i
\(735\) 0 0
\(736\) −1.29352e9 2.24044e9i −0.119591 0.207138i
\(737\) −5.66885e9 −0.521626
\(738\) 0 0
\(739\) −7.46338e9 −0.680268 −0.340134 0.940377i \(-0.610472\pi\)
−0.340134 + 0.940377i \(0.610472\pi\)
\(740\) −2.55886e9 4.43208e9i −0.232133 0.402065i
\(741\) 0 0
\(742\) −4.97769e9 + 8.62161e9i −0.447316 + 0.774774i
\(743\) −3.84486e9 + 6.65950e9i −0.343890 + 0.595636i −0.985152 0.171687i \(-0.945078\pi\)
0.641261 + 0.767323i \(0.278412\pi\)
\(744\) 0 0
\(745\) −6.11216e9 1.05866e10i −0.541562 0.938013i
\(746\) 6.99795e9 0.617141
\(747\) 0 0
\(748\) −2.11407e10 −1.84699
\(749\) −5.97720e9 1.03528e10i −0.519771 0.900269i
\(750\) 0 0
\(751\) 9.74148e9 1.68727e10i 0.839238 1.45360i −0.0512949 0.998684i \(-0.516335\pi\)
0.890533 0.454919i \(-0.150332\pi\)
\(752\) 6.83598e9 1.18403e10i 0.586190 1.01531i
\(753\) 0 0
\(754\) 9.47968e8 + 1.64193e9i 0.0805367 + 0.139494i
\(755\) −4.32639e9 −0.365857
\(756\) 0 0
\(757\) −4.45370e9 −0.373152 −0.186576 0.982441i \(-0.559739\pi\)
−0.186576 + 0.982441i \(0.559739\pi\)
\(758\) −4.64650e9 8.04798e9i −0.387511 0.671189i
\(759\) 0 0
\(760\) −2.38018e10 + 4.12259e10i −1.96681 + 3.40661i
\(761\) 9.24329e9 1.60099e10i 0.760292 1.31686i −0.182408 0.983223i \(-0.558389\pi\)
0.942700 0.333641i \(-0.108277\pi\)
\(762\) 0 0
\(763\) −1.17669e10 2.03808e10i −0.959015 1.66106i
\(764\) −9.95503e9 −0.807636
\(765\) 0 0
\(766\) −3.02722e10 −2.43357
\(767\) −2.21969e9 3.84462e9i −0.177627 0.307659i
\(768\) 0 0
\(769\) 5.53663e8 9.58973e8i 0.0439039 0.0760438i −0.843238 0.537540i \(-0.819354\pi\)
0.887142 + 0.461496i \(0.152687\pi\)
\(770\) 1.07074e10 1.85457e10i 0.845213 1.46395i
\(771\) 0 0
\(772\) 5.66961e9 + 9.82005e9i 0.443499 + 0.768163i
\(773\) 1.36030e10 1.05927 0.529633 0.848227i \(-0.322330\pi\)
0.529633 + 0.848227i \(0.322330\pi\)
\(774\) 0 0
\(775\) 2.28479e9 0.176315
\(776\) 1.02218e10 + 1.77047e10i 0.785259 + 1.36011i
\(777\) 0 0
\(778\) −8.24041e9 + 1.42728e10i −0.627365 + 1.08663i
\(779\) −1.19460e9 + 2.06910e9i −0.0905399 + 0.156820i
\(780\) 0 0
\(781\) −7.79852e8 1.35074e9i −0.0585778 0.101460i
\(782\) 5.05760e10 3.78199
\(783\) 0 0
\(784\) 4.41635e9 0.327308
\(785\) 7.82033e9 + 1.35452e10i 0.577007 + 0.999406i
\(786\) 0 0
\(787\) 9.97966e9 1.72853e10i 0.729800 1.26405i −0.227167 0.973856i \(-0.572946\pi\)
0.956967 0.290195i \(-0.0937203\pi\)
\(788\) −1.77874e10 + 3.08087e10i −1.29500 + 2.24301i
\(789\) 0 0
\(790\) −2.33198e10 4.03911e10i −1.68279 2.91468i
\(791\) −3.51601e8 −0.0252599
\(792\) 0 0
\(793\) 5.96736e9 0.424938
\(794\) 8.48462e9 + 1.46958e10i 0.601535 + 1.04189i
\(795\) 0 0
\(796\) −1.29306e10 + 2.23965e10i −0.908708 + 1.57393i
\(797\) 6.15857e9 1.06670e10i 0.430899 0.746340i −0.566052 0.824370i \(-0.691530\pi\)
0.996951 + 0.0780302i \(0.0248631\pi\)
\(798\) 0 0
\(799\) 1.28989e10 + 2.23416e10i 0.894623 + 1.54953i
\(800\) −5.33674e9 −0.368520
\(801\) 0 0
\(802\) −4.09657e9 −0.280421
\(803\) −5.22280e9 9.04616e9i −0.355958 0.616538i
\(804\) 0 0
\(805\) −1.72305e10 + 2.98441e10i −1.16416 + 2.01638i
\(806\) −5.13427e8 + 8.89281e8i −0.0345387 + 0.0598228i
\(807\) 0 0
\(808\) −2.27496e10 3.94034e10i −1.51717 2.62781i
\(809\) 1.27792e10 0.848559 0.424280 0.905531i \(-0.360527\pi\)
0.424280 + 0.905531i \(0.360527\pi\)
\(810\) 0 0
\(811\) −2.84223e9 −0.187105 −0.0935526 0.995614i \(-0.529822\pi\)
−0.0935526 + 0.995614i \(0.529822\pi\)
\(812\) −3.89714e9 6.75005e9i −0.255447 0.442447i
\(813\) 0 0
\(814\) −9.04551e8 + 1.56673e9i −0.0587824 + 0.101814i
\(815\) −2.36515e10 + 4.09657e10i −1.53041 + 2.65075i
\(816\) 0 0
\(817\) −2.85476e9 4.94460e9i −0.183144 0.317215i
\(818\) 8.84231e9 0.564845
\(819\) 0 0
\(820\) −7.90550e9 −0.500704
\(821\) −8.89206e9 1.54015e10i −0.560791 0.971319i −0.997428 0.0716808i \(-0.977164\pi\)
0.436636 0.899638i \(-0.356170\pi\)
\(822\) 0 0
\(823\) −2.43059e9 + 4.20991e9i −0.151989 + 0.263253i −0.931959 0.362565i \(-0.881901\pi\)
0.779969 + 0.625818i \(0.215235\pi\)
\(824\) −2.34529e10 + 4.06216e10i −1.46033 + 2.52937i
\(825\) 0 0
\(826\) 1.35661e10 + 2.34972e10i 0.837579 + 1.45073i
\(827\) −2.39461e10 −1.47220 −0.736099 0.676874i \(-0.763334\pi\)
−0.736099 + 0.676874i \(0.763334\pi\)
\(828\) 0 0
\(829\) −1.19577e10 −0.728968 −0.364484 0.931210i \(-0.618755\pi\)
−0.364484 + 0.931210i \(0.618755\pi\)
\(830\) 1.58752e10 + 2.74967e10i 0.963710 + 1.66920i
\(831\) 0 0
\(832\) −2.86808e9 + 4.96767e9i −0.172648 + 0.299034i
\(833\) −4.16664e9 + 7.21684e9i −0.249763 + 0.432603i
\(834\) 0 0
\(835\) 2.90355e9 + 5.02910e9i 0.172595 + 0.298943i
\(836\) 2.20499e10 1.30522
\(837\) 0 0
\(838\) 1.59081e10 0.933825
\(839\) 4.93588e9 + 8.54920e9i 0.288535 + 0.499757i 0.973460 0.228856i \(-0.0734986\pi\)
−0.684926 + 0.728613i \(0.740165\pi\)
\(840\) 0 0
\(841\) 8.20852e9 1.42176e10i 0.475859 0.824213i
\(842\) 1.18275e10 2.04858e10i 0.682811 1.18266i
\(843\) 0 0
\(844\) 8.97923e9 + 1.55525e10i 0.514092 + 0.890433i
\(845\) −2.44905e10 −1.39636
\(846\) 0 0
\(847\) 1.49184e10 0.843586
\(848\) −4.68932e9 8.12214e9i −0.264073 0.457388i
\(849\) 0 0
\(850\) 5.21662e10 9.03545e10i 2.91355 5.04642i
\(851\) 1.45562e9 2.52120e9i 0.0809643 0.140234i
\(852\) 0 0
\(853\) −6.19893e9 1.07369e10i −0.341976 0.592320i 0.642824 0.766014i \(-0.277763\pi\)
−0.984800 + 0.173695i \(0.944429\pi\)
\(854\) −3.64708e10 −2.00375
\(855\) 0 0
\(856\) 3.10826e10 1.69379
\(857\) −1.76003e10 3.04847e10i −0.955186 1.65443i −0.733942 0.679212i \(-0.762322\pi\)
−0.221244 0.975219i \(-0.571012\pi\)
\(858\) 0 0
\(859\) −6.50686e9 + 1.12702e10i −0.350264 + 0.606675i −0.986296 0.164988i \(-0.947242\pi\)
0.636031 + 0.771663i \(0.280575\pi\)
\(860\) 9.44601e9 1.63610e10i 0.506412 0.877131i
\(861\) 0 0
\(862\) −7.93815e9 1.37493e10i −0.422128 0.731147i
\(863\) −3.11852e10 −1.65162 −0.825811 0.563947i \(-0.809282\pi\)
−0.825811 + 0.563947i \(0.809282\pi\)
\(864\) 0 0
\(865\) −1.13687e10 −0.597249
\(866\) 2.51533e10 + 4.35667e10i 1.31608 + 2.27952i
\(867\) 0 0
\(868\) 2.11072e9 3.65588e9i 0.109550 0.189746i
\(869\) −5.54498e9 + 9.60419e9i −0.286636 + 0.496469i
\(870\) 0 0
\(871\) 4.22879e9 + 7.32448e9i 0.216847 + 0.375589i
\(872\) 6.11901e10 3.12517
\(873\) 0 0
\(874\) −5.27510e10 −2.67264
\(875\) 1.65476e10 + 2.86612e10i 0.835038 + 1.44633i
\(876\) 0 0
\(877\) −1.01903e10 + 1.76501e10i −0.510140 + 0.883588i 0.489791 + 0.871840i \(0.337073\pi\)
−0.999931 + 0.0117482i \(0.996260\pi\)
\(878\) −7.91640e9 + 1.37116e10i −0.394727 + 0.683687i
\(879\) 0 0
\(880\) 1.00871e10 + 1.74713e10i 0.498972 + 0.864245i
\(881\) 1.59058e10 0.783681 0.391841 0.920033i \(-0.371838\pi\)
0.391841 + 0.920033i \(0.371838\pi\)
\(882\) 0 0
\(883\) 3.50773e10 1.71460 0.857302 0.514814i \(-0.172139\pi\)
0.857302 + 0.514814i \(0.172139\pi\)
\(884\) 1.57703e10 + 2.73150e10i 0.767817 + 1.32990i
\(885\) 0 0
\(886\) −1.06654e10 + 1.84731e10i −0.515181 + 0.892321i
\(887\) 1.44830e10 2.50853e10i 0.696828 1.20694i −0.272732 0.962090i \(-0.587927\pi\)
0.969560 0.244852i \(-0.0787394\pi\)
\(888\) 0 0
\(889\) −5.38699e9 9.33053e9i −0.257152 0.445400i
\(890\) −1.19637e10 −0.568853
\(891\) 0 0
\(892\) 7.67649e10 3.62148
\(893\) −1.34536e10 2.33024e10i −0.632207 1.09502i
\(894\) 0 0
\(895\) −3.21642e10 + 5.57100e10i −1.49966 + 2.59748i
\(896\) 1.99282e10 3.45167e10i 0.925530 1.60306i
\(897\) 0 0
\(898\) 1.65185e10 + 2.86109e10i 0.761208 + 1.31845i
\(899\) −4.51075e8 −0.0207057
\(900\) 0 0
\(901\) 1.76967e10 0.806039
\(902\) 1.39729e9 + 2.42017e9i 0.0633961 + 0.109805i
\(903\) 0 0
\(904\) 4.57098e8 7.91718e8i 0.0205788 0.0356435i
\(905\) 1.83428e10 3.17706e10i 0.822612 1.42481i
\(906\) 0 0
\(907\) 1.21829e10 + 2.11013e10i 0.542155 + 0.939041i 0.998780 + 0.0493813i \(0.0157250\pi\)
−0.456625 + 0.889660i \(0.650942\pi\)
\(908\) −6.27529e10 −2.78185
\(909\) 0 0
\(910\) −3.19495e10 −1.40546
\(911\) 1.38488e9 + 2.39868e9i 0.0606872 + 0.105113i 0.894773 0.446522i \(-0.147337\pi\)
−0.834086 + 0.551635i \(0.814004\pi\)
\(912\) 0 0
\(913\) 3.77481e9 6.53817e9i 0.164153 0.284321i
\(914\) 1.79107e10 3.10223e10i 0.775892 1.34388i
\(915\) 0 0
\(916\) 2.01250e10 + 3.48575e10i 0.865170 + 1.49852i
\(917\) 6.83358e9 0.292655
\(918\) 0 0
\(919\) 6.03812e9 0.256624 0.128312 0.991734i \(-0.459044\pi\)
0.128312 + 0.991734i \(0.459044\pi\)
\(920\) −4.48010e10 7.75975e10i −1.89684 3.28542i
\(921\) 0 0
\(922\) 8.97862e9 1.55514e10i 0.377269 0.653449i
\(923\) −1.16349e9 + 2.01522e9i −0.0487031 + 0.0843563i
\(924\) 0 0
\(925\) −3.00277e9 5.20094e9i −0.124746 0.216066i
\(926\) 5.86211e10 2.42614
\(927\) 0 0
\(928\) 1.05361e9 0.0432774
\(929\) 1.52786e9 + 2.64632e9i 0.0625212 + 0.108290i 0.895592 0.444877i \(-0.146753\pi\)
−0.833071 + 0.553167i \(0.813419\pi\)
\(930\) 0 0
\(931\) 4.34583e9 7.52719e9i 0.176502 0.305710i
\(932\) 3.34052e10 5.78595e10i 1.35163 2.34109i
\(933\) 0 0
\(934\) −1.13957e10 1.97379e10i −0.457642 0.792659i
\(935\) −3.80670e10 −1.52303
\(936\) 0 0
\(937\) −4.12174e10 −1.63679 −0.818393 0.574658i \(-0.805135\pi\)
−0.818393 + 0.574658i \(0.805135\pi\)
\(938\) −2.58452e10 4.47651e10i −1.02251 1.77105i
\(939\) 0 0
\(940\) 4.45162e10 7.71043e10i 1.74812 3.02783i
\(941\) −1.22425e10 + 2.12046e10i −0.478967 + 0.829594i −0.999709 0.0241193i \(-0.992322\pi\)
0.520742 + 0.853714i \(0.325655\pi\)
\(942\) 0 0
\(943\) −2.24853e9 3.89457e9i −0.0873189 0.151241i
\(944\) −2.55604e10 −0.988931
\(945\) 0 0
\(946\) −6.67828e9 −0.256475
\(947\) 1.87516e10 + 3.24788e10i 0.717488 + 1.24273i 0.961992 + 0.273077i \(0.0880414\pi\)
−0.244504 + 0.969648i \(0.578625\pi\)
\(948\) 0 0
\(949\) −7.79210e9 + 1.34963e10i −0.295953 + 0.512606i
\(950\) −5.44095e10 + 9.42401e10i −2.05893 + 3.56618i
\(951\) 0 0
\(952\) −4.94781e10 8.56985e10i −1.85859 3.21917i
\(953\) −1.27579e10 −0.477480 −0.238740 0.971084i \(-0.576734\pi\)
−0.238740 + 0.971084i \(0.576734\pi\)
\(954\) 0 0
\(955\) −1.79255e10 −0.665977
\(956\) −4.15753e10 7.20105e10i −1.53898 2.66559i
\(957\) 0 0
\(958\) −5.60266e9 + 9.70409e9i −0.205880 + 0.356595i
\(959\) 2.05439e10 3.55831e10i 0.752173 1.30280i
\(960\) 0 0
\(961\) 1.36342e10 + 2.36150e10i 0.495560 + 0.858335i
\(962\) 2.69907e9 0.0977464
\(963\) 0 0
\(964\) 5.66899e9 0.203815
\(965\) 1.02090e10 + 1.76824e10i 0.365709 + 0.633427i
\(966\) 0 0
\(967\) 1.08441e10 1.87826e10i 0.385658 0.667980i −0.606202 0.795311i \(-0.707308\pi\)
0.991860 + 0.127331i \(0.0406411\pi\)
\(968\) −1.93946e10 + 3.35924e10i −0.687254 + 1.19036i
\(969\) 0 0
\(970\) 3.58549e10 + 6.21025e10i 1.26138 + 2.18478i
\(971\) 4.12029e10 1.44431 0.722155 0.691732i \(-0.243152\pi\)
0.722155 + 0.691732i \(0.243152\pi\)
\(972\) 0 0
\(973\) −1.93317e10 −0.672782
\(974\) 3.16322e10 + 5.47886e10i 1.09692 + 1.89991i
\(975\) 0 0
\(976\) 1.71790e10 2.97548e10i 0.591456 1.02443i
\(977\) 2.35348e8 4.07635e8i 0.00807384 0.0139843i −0.861960 0.506976i \(-0.830763\pi\)
0.870034 + 0.492992i \(0.164097\pi\)
\(978\) 0 0
\(979\) 1.42236e9 + 2.46361e9i 0.0484475 + 0.0839135i
\(980\) 2.87594e10 0.976089
\(981\) 0 0
\(982\) −4.21655e10 −1.42091
\(983\) −3.40287e9 5.89394e9i −0.114264 0.197910i 0.803222 0.595680i \(-0.203117\pi\)
−0.917485 + 0.397770i \(0.869784\pi\)
\(984\) 0 0
\(985\) −3.20288e10 + 5.54756e10i −1.06786 + 1.84959i
\(986\) −1.02989e10 + 1.78383e10i −0.342155 + 0.592629i
\(987\) 0 0
\(988\) −1.64485e10 2.84897e10i −0.542597 0.939806i
\(989\) 1.07468e10 0.353258
\(990\) 0 0
\(991\) −5.55681e10 −1.81371 −0.906855 0.421442i \(-0.861524\pi\)
−0.906855 + 0.421442i \(0.861524\pi\)
\(992\) 2.85321e8 + 4.94191e8i 0.00927990 + 0.0160733i
\(993\) 0 0
\(994\) 7.11092e9 1.23165e10i 0.229654 0.397772i
\(995\) −2.32835e10 + 4.03283e10i −0.749321 + 1.29786i
\(996\) 0 0
\(997\) −1.68657e10 2.92123e10i −0.538979 0.933539i −0.998959 0.0456096i \(-0.985477\pi\)
0.459981 0.887929i \(-0.347856\pi\)
\(998\) −2.06228e10 −0.656735
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.c.k.28.6 12
3.2 odd 2 inner 81.8.c.k.28.1 12
9.2 odd 6 inner 81.8.c.k.55.1 12
9.4 even 3 81.8.a.d.1.1 6
9.5 odd 6 81.8.a.d.1.6 yes 6
9.7 even 3 inner 81.8.c.k.55.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.8.a.d.1.1 6 9.4 even 3
81.8.a.d.1.6 yes 6 9.5 odd 6
81.8.c.k.28.1 12 3.2 odd 2 inner
81.8.c.k.28.6 12 1.1 even 1 trivial
81.8.c.k.55.1 12 9.2 odd 6 inner
81.8.c.k.55.6 12 9.7 even 3 inner