Properties

Label 81.8.a.e.1.2
Level $81$
Weight $8$
Character 81.1
Self dual yes
Analytic conductor $25.303$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 401x^{4} - 1212x^{3} + 17752x^{2} + 15108x - 22632 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-16.1993\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.2319 q^{2} +74.5469 q^{4} +290.607 q^{5} +1111.88 q^{7} +760.739 q^{8} -4135.89 q^{10} +4490.71 q^{11} +2436.58 q^{13} -15824.2 q^{14} -20368.8 q^{16} +15905.4 q^{17} -49949.6 q^{19} +21663.9 q^{20} -63911.4 q^{22} +69385.1 q^{23} +6327.45 q^{25} -34677.2 q^{26} +82887.2 q^{28} -94071.6 q^{29} -19927.2 q^{31} +192512. q^{32} -226364. q^{34} +323120. q^{35} +331750. q^{37} +710878. q^{38} +221076. q^{40} +242266. q^{41} +831426. q^{43} +334769. q^{44} -987481. q^{46} -160011. q^{47} +412732. q^{49} -90051.7 q^{50} +181639. q^{52} +311589. q^{53} +1.30503e6 q^{55} +845850. q^{56} +1.33882e6 q^{58} -312353. q^{59} -57447.8 q^{61} +283601. q^{62} -132603. q^{64} +708087. q^{65} -4.10199e6 q^{67} +1.18570e6 q^{68} -4.59861e6 q^{70} -403110. q^{71} -823496. q^{73} -4.72144e6 q^{74} -3.72359e6 q^{76} +4.99313e6 q^{77} +978827. q^{79} -5.91931e6 q^{80} -3.44791e6 q^{82} -3.70408e6 q^{83} +4.62222e6 q^{85} -1.18328e7 q^{86} +3.41626e6 q^{88} +2.09023e6 q^{89} +2.70918e6 q^{91} +5.17244e6 q^{92} +2.27726e6 q^{94} -1.45157e7 q^{95} +3.50249e6 q^{97} -5.87396e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{2} + 321 q^{4} + 180 q^{5} + 84 q^{7} + 2961 q^{8} + 126 q^{10} + 8460 q^{11} + 1848 q^{13} + 16272 q^{14} + 12417 q^{16} + 15282 q^{17} + 12216 q^{19} + 40788 q^{20} + 35001 q^{22} + 51588 q^{23}+ \cdots - 47916657 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −14.2319 −1.25793 −0.628967 0.777432i \(-0.716522\pi\)
−0.628967 + 0.777432i \(0.716522\pi\)
\(3\) 0 0
\(4\) 74.5469 0.582398
\(5\) 290.607 1.03971 0.519854 0.854255i \(-0.325986\pi\)
0.519854 + 0.854255i \(0.325986\pi\)
\(6\) 0 0
\(7\) 1111.88 1.22522 0.612611 0.790385i \(-0.290119\pi\)
0.612611 + 0.790385i \(0.290119\pi\)
\(8\) 760.739 0.525316
\(9\) 0 0
\(10\) −4135.89 −1.30788
\(11\) 4490.71 1.01728 0.508640 0.860979i \(-0.330148\pi\)
0.508640 + 0.860979i \(0.330148\pi\)
\(12\) 0 0
\(13\) 2436.58 0.307595 0.153797 0.988102i \(-0.450850\pi\)
0.153797 + 0.988102i \(0.450850\pi\)
\(14\) −15824.2 −1.54125
\(15\) 0 0
\(16\) −20368.8 −1.24321
\(17\) 15905.4 0.785187 0.392593 0.919712i \(-0.371578\pi\)
0.392593 + 0.919712i \(0.371578\pi\)
\(18\) 0 0
\(19\) −49949.6 −1.67069 −0.835343 0.549730i \(-0.814731\pi\)
−0.835343 + 0.549730i \(0.814731\pi\)
\(20\) 21663.9 0.605523
\(21\) 0 0
\(22\) −63911.4 −1.27967
\(23\) 69385.1 1.18910 0.594550 0.804058i \(-0.297330\pi\)
0.594550 + 0.804058i \(0.297330\pi\)
\(24\) 0 0
\(25\) 6327.45 0.0809914
\(26\) −34677.2 −0.386934
\(27\) 0 0
\(28\) 82887.2 0.713566
\(29\) −94071.6 −0.716251 −0.358126 0.933673i \(-0.616584\pi\)
−0.358126 + 0.933673i \(0.616584\pi\)
\(30\) 0 0
\(31\) −19927.2 −0.120138 −0.0600689 0.998194i \(-0.519132\pi\)
−0.0600689 + 0.998194i \(0.519132\pi\)
\(32\) 192512. 1.03856
\(33\) 0 0
\(34\) −226364. −0.987713
\(35\) 323120. 1.27387
\(36\) 0 0
\(37\) 331750. 1.07673 0.538363 0.842713i \(-0.319043\pi\)
0.538363 + 0.842713i \(0.319043\pi\)
\(38\) 710878. 2.10161
\(39\) 0 0
\(40\) 221076. 0.546175
\(41\) 242266. 0.548971 0.274486 0.961591i \(-0.411492\pi\)
0.274486 + 0.961591i \(0.411492\pi\)
\(42\) 0 0
\(43\) 831426. 1.59472 0.797359 0.603505i \(-0.206230\pi\)
0.797359 + 0.603505i \(0.206230\pi\)
\(44\) 334769. 0.592462
\(45\) 0 0
\(46\) −987481. −1.49581
\(47\) −160011. −0.224805 −0.112403 0.993663i \(-0.535855\pi\)
−0.112403 + 0.993663i \(0.535855\pi\)
\(48\) 0 0
\(49\) 412732. 0.501167
\(50\) −90051.7 −0.101882
\(51\) 0 0
\(52\) 181639. 0.179142
\(53\) 311589. 0.287486 0.143743 0.989615i \(-0.454086\pi\)
0.143743 + 0.989615i \(0.454086\pi\)
\(54\) 0 0
\(55\) 1.30503e6 1.05767
\(56\) 845850. 0.643628
\(57\) 0 0
\(58\) 1.33882e6 0.900997
\(59\) −312353. −0.197999 −0.0989997 0.995087i \(-0.531564\pi\)
−0.0989997 + 0.995087i \(0.531564\pi\)
\(60\) 0 0
\(61\) −57447.8 −0.0324055 −0.0162028 0.999869i \(-0.505158\pi\)
−0.0162028 + 0.999869i \(0.505158\pi\)
\(62\) 283601. 0.151125
\(63\) 0 0
\(64\) −132603. −0.0632302
\(65\) 708087. 0.319808
\(66\) 0 0
\(67\) −4.10199e6 −1.66622 −0.833111 0.553105i \(-0.813443\pi\)
−0.833111 + 0.553105i \(0.813443\pi\)
\(68\) 1.18570e6 0.457291
\(69\) 0 0
\(70\) −4.59861e6 −1.60245
\(71\) −403110. −0.133666 −0.0668328 0.997764i \(-0.521289\pi\)
−0.0668328 + 0.997764i \(0.521289\pi\)
\(72\) 0 0
\(73\) −823496. −0.247760 −0.123880 0.992297i \(-0.539534\pi\)
−0.123880 + 0.992297i \(0.539534\pi\)
\(74\) −4.72144e6 −1.35445
\(75\) 0 0
\(76\) −3.72359e6 −0.973003
\(77\) 4.99313e6 1.24639
\(78\) 0 0
\(79\) 978827. 0.223363 0.111682 0.993744i \(-0.464376\pi\)
0.111682 + 0.993744i \(0.464376\pi\)
\(80\) −5.91931e6 −1.29258
\(81\) 0 0
\(82\) −3.44791e6 −0.690569
\(83\) −3.70408e6 −0.711060 −0.355530 0.934665i \(-0.615700\pi\)
−0.355530 + 0.934665i \(0.615700\pi\)
\(84\) 0 0
\(85\) 4.62222e6 0.816365
\(86\) −1.18328e7 −2.00605
\(87\) 0 0
\(88\) 3.41626e6 0.534394
\(89\) 2.09023e6 0.314289 0.157145 0.987576i \(-0.449771\pi\)
0.157145 + 0.987576i \(0.449771\pi\)
\(90\) 0 0
\(91\) 2.70918e6 0.376872
\(92\) 5.17244e6 0.692530
\(93\) 0 0
\(94\) 2.27726e6 0.282790
\(95\) −1.45157e7 −1.73702
\(96\) 0 0
\(97\) 3.50249e6 0.389651 0.194826 0.980838i \(-0.437586\pi\)
0.194826 + 0.980838i \(0.437586\pi\)
\(98\) −5.87396e6 −0.630435
\(99\) 0 0
\(100\) 471692. 0.0471692
\(101\) 554721. 0.0535735 0.0267868 0.999641i \(-0.491472\pi\)
0.0267868 + 0.999641i \(0.491472\pi\)
\(102\) 0 0
\(103\) 2.03492e7 1.83492 0.917459 0.397830i \(-0.130236\pi\)
0.917459 + 0.397830i \(0.130236\pi\)
\(104\) 1.85360e6 0.161584
\(105\) 0 0
\(106\) −4.43450e6 −0.361638
\(107\) 6.49941e6 0.512897 0.256449 0.966558i \(-0.417448\pi\)
0.256449 + 0.966558i \(0.417448\pi\)
\(108\) 0 0
\(109\) 2.79312e6 0.206584 0.103292 0.994651i \(-0.467062\pi\)
0.103292 + 0.994651i \(0.467062\pi\)
\(110\) −1.85731e7 −1.33048
\(111\) 0 0
\(112\) −2.26476e7 −1.52321
\(113\) 2.08344e7 1.35833 0.679167 0.733984i \(-0.262341\pi\)
0.679167 + 0.733984i \(0.262341\pi\)
\(114\) 0 0
\(115\) 2.01638e7 1.23632
\(116\) −7.01274e6 −0.417143
\(117\) 0 0
\(118\) 4.44538e6 0.249070
\(119\) 1.76849e7 0.962028
\(120\) 0 0
\(121\) 679329. 0.0348603
\(122\) 817591. 0.0407640
\(123\) 0 0
\(124\) −1.48551e6 −0.0699679
\(125\) −2.08649e7 −0.955500
\(126\) 0 0
\(127\) 8.89911e6 0.385508 0.192754 0.981247i \(-0.438258\pi\)
0.192754 + 0.981247i \(0.438258\pi\)
\(128\) −2.27543e7 −0.959021
\(129\) 0 0
\(130\) −1.00774e7 −0.402298
\(131\) 1.27174e7 0.494251 0.247126 0.968983i \(-0.420514\pi\)
0.247126 + 0.968983i \(0.420514\pi\)
\(132\) 0 0
\(133\) −5.55379e7 −2.04696
\(134\) 5.83791e7 2.09600
\(135\) 0 0
\(136\) 1.20998e7 0.412471
\(137\) 4.90104e7 1.62842 0.814209 0.580572i \(-0.197171\pi\)
0.814209 + 0.580572i \(0.197171\pi\)
\(138\) 0 0
\(139\) −1.57907e6 −0.0498713 −0.0249357 0.999689i \(-0.507938\pi\)
−0.0249357 + 0.999689i \(0.507938\pi\)
\(140\) 2.40876e7 0.741900
\(141\) 0 0
\(142\) 5.73703e6 0.168143
\(143\) 1.09420e7 0.312910
\(144\) 0 0
\(145\) −2.73379e7 −0.744692
\(146\) 1.17199e7 0.311666
\(147\) 0 0
\(148\) 2.47310e7 0.627083
\(149\) −3.91468e7 −0.969492 −0.484746 0.874655i \(-0.661088\pi\)
−0.484746 + 0.874655i \(0.661088\pi\)
\(150\) 0 0
\(151\) 1.83819e7 0.434481 0.217240 0.976118i \(-0.430294\pi\)
0.217240 + 0.976118i \(0.430294\pi\)
\(152\) −3.79986e7 −0.877638
\(153\) 0 0
\(154\) −7.10617e7 −1.56788
\(155\) −5.79097e6 −0.124908
\(156\) 0 0
\(157\) −6.64336e7 −1.37006 −0.685029 0.728516i \(-0.740210\pi\)
−0.685029 + 0.728516i \(0.740210\pi\)
\(158\) −1.39306e7 −0.280976
\(159\) 0 0
\(160\) 5.59452e7 1.07980
\(161\) 7.71478e7 1.45691
\(162\) 0 0
\(163\) −3.94682e7 −0.713823 −0.356912 0.934138i \(-0.616170\pi\)
−0.356912 + 0.934138i \(0.616170\pi\)
\(164\) 1.80602e7 0.319720
\(165\) 0 0
\(166\) 5.27160e7 0.894467
\(167\) 9.72355e7 1.61554 0.807769 0.589499i \(-0.200675\pi\)
0.807769 + 0.589499i \(0.200675\pi\)
\(168\) 0 0
\(169\) −5.68116e7 −0.905385
\(170\) −6.57829e7 −1.02693
\(171\) 0 0
\(172\) 6.19802e7 0.928760
\(173\) 5.54029e7 0.813526 0.406763 0.913534i \(-0.366657\pi\)
0.406763 + 0.913534i \(0.366657\pi\)
\(174\) 0 0
\(175\) 7.03537e6 0.0992324
\(176\) −9.14703e7 −1.26469
\(177\) 0 0
\(178\) −2.97480e7 −0.395355
\(179\) 9.87173e7 1.28649 0.643247 0.765659i \(-0.277587\pi\)
0.643247 + 0.765659i \(0.277587\pi\)
\(180\) 0 0
\(181\) 9.03305e7 1.13230 0.566148 0.824304i \(-0.308433\pi\)
0.566148 + 0.824304i \(0.308433\pi\)
\(182\) −3.85568e7 −0.474079
\(183\) 0 0
\(184\) 5.27839e7 0.624654
\(185\) 9.64090e7 1.11948
\(186\) 0 0
\(187\) 7.14265e7 0.798756
\(188\) −1.19283e7 −0.130926
\(189\) 0 0
\(190\) 2.06586e8 2.18506
\(191\) −1.04182e8 −1.08188 −0.540938 0.841062i \(-0.681931\pi\)
−0.540938 + 0.841062i \(0.681931\pi\)
\(192\) 0 0
\(193\) 1.33029e7 0.133198 0.0665989 0.997780i \(-0.478785\pi\)
0.0665989 + 0.997780i \(0.478785\pi\)
\(194\) −4.98471e7 −0.490156
\(195\) 0 0
\(196\) 3.07679e7 0.291878
\(197\) −1.71308e8 −1.59641 −0.798206 0.602384i \(-0.794217\pi\)
−0.798206 + 0.602384i \(0.794217\pi\)
\(198\) 0 0
\(199\) −1.24021e8 −1.11561 −0.557803 0.829974i \(-0.688355\pi\)
−0.557803 + 0.829974i \(0.688355\pi\)
\(200\) 4.81354e6 0.0425461
\(201\) 0 0
\(202\) −7.89474e6 −0.0673919
\(203\) −1.04596e8 −0.877566
\(204\) 0 0
\(205\) 7.04043e7 0.570769
\(206\) −2.89608e8 −2.30821
\(207\) 0 0
\(208\) −4.96301e7 −0.382405
\(209\) −2.24309e8 −1.69956
\(210\) 0 0
\(211\) −1.86497e8 −1.36673 −0.683367 0.730075i \(-0.739485\pi\)
−0.683367 + 0.730075i \(0.739485\pi\)
\(212\) 2.32280e7 0.167431
\(213\) 0 0
\(214\) −9.24989e7 −0.645191
\(215\) 2.41618e8 1.65804
\(216\) 0 0
\(217\) −2.21566e7 −0.147195
\(218\) −3.97514e7 −0.259869
\(219\) 0 0
\(220\) 9.72862e7 0.615987
\(221\) 3.87547e7 0.241519
\(222\) 0 0
\(223\) −4.20500e7 −0.253921 −0.126961 0.991908i \(-0.540522\pi\)
−0.126961 + 0.991908i \(0.540522\pi\)
\(224\) 2.14050e8 1.27247
\(225\) 0 0
\(226\) −2.96513e8 −1.70869
\(227\) 3.13034e8 1.77623 0.888117 0.459617i \(-0.152013\pi\)
0.888117 + 0.459617i \(0.152013\pi\)
\(228\) 0 0
\(229\) 1.67115e8 0.919585 0.459792 0.888026i \(-0.347924\pi\)
0.459792 + 0.888026i \(0.347924\pi\)
\(230\) −2.86969e8 −1.55520
\(231\) 0 0
\(232\) −7.15639e7 −0.376258
\(233\) −2.55430e8 −1.32290 −0.661449 0.749990i \(-0.730058\pi\)
−0.661449 + 0.749990i \(0.730058\pi\)
\(234\) 0 0
\(235\) −4.65002e7 −0.233732
\(236\) −2.32850e7 −0.115314
\(237\) 0 0
\(238\) −2.51689e8 −1.21017
\(239\) −1.76894e8 −0.838148 −0.419074 0.907952i \(-0.637645\pi\)
−0.419074 + 0.907952i \(0.637645\pi\)
\(240\) 0 0
\(241\) −3.13989e8 −1.44496 −0.722478 0.691394i \(-0.756997\pi\)
−0.722478 + 0.691394i \(0.756997\pi\)
\(242\) −9.66814e6 −0.0438520
\(243\) 0 0
\(244\) −4.28256e6 −0.0188729
\(245\) 1.19943e8 0.521067
\(246\) 0 0
\(247\) −1.21706e8 −0.513894
\(248\) −1.51594e7 −0.0631103
\(249\) 0 0
\(250\) 2.96947e8 1.20196
\(251\) 1.34891e8 0.538425 0.269212 0.963081i \(-0.413237\pi\)
0.269212 + 0.963081i \(0.413237\pi\)
\(252\) 0 0
\(253\) 3.11588e8 1.20965
\(254\) −1.26651e8 −0.484944
\(255\) 0 0
\(256\) 3.40810e8 1.26962
\(257\) 2.35523e8 0.865500 0.432750 0.901514i \(-0.357543\pi\)
0.432750 + 0.901514i \(0.357543\pi\)
\(258\) 0 0
\(259\) 3.68866e8 1.31923
\(260\) 5.27857e7 0.186256
\(261\) 0 0
\(262\) −1.80992e8 −0.621736
\(263\) −1.66665e8 −0.564936 −0.282468 0.959277i \(-0.591153\pi\)
−0.282468 + 0.959277i \(0.591153\pi\)
\(264\) 0 0
\(265\) 9.05500e7 0.298901
\(266\) 7.90410e8 2.57494
\(267\) 0 0
\(268\) −3.05791e8 −0.970404
\(269\) −1.49508e8 −0.468308 −0.234154 0.972200i \(-0.575232\pi\)
−0.234154 + 0.972200i \(0.575232\pi\)
\(270\) 0 0
\(271\) 3.02665e8 0.923783 0.461892 0.886936i \(-0.347171\pi\)
0.461892 + 0.886936i \(0.347171\pi\)
\(272\) −3.23973e8 −0.976153
\(273\) 0 0
\(274\) −6.97510e8 −2.04844
\(275\) 2.84148e7 0.0823910
\(276\) 0 0
\(277\) 3.26957e7 0.0924297 0.0462148 0.998932i \(-0.485284\pi\)
0.0462148 + 0.998932i \(0.485284\pi\)
\(278\) 2.24732e7 0.0627348
\(279\) 0 0
\(280\) 2.45810e8 0.669185
\(281\) 5.01936e8 1.34951 0.674755 0.738042i \(-0.264249\pi\)
0.674755 + 0.738042i \(0.264249\pi\)
\(282\) 0 0
\(283\) 3.25269e8 0.853081 0.426541 0.904468i \(-0.359732\pi\)
0.426541 + 0.904468i \(0.359732\pi\)
\(284\) −3.00506e7 −0.0778466
\(285\) 0 0
\(286\) −1.55725e8 −0.393620
\(287\) 2.69371e8 0.672611
\(288\) 0 0
\(289\) −1.57357e8 −0.383481
\(290\) 3.89070e8 0.936773
\(291\) 0 0
\(292\) −6.13891e7 −0.144295
\(293\) −1.43514e8 −0.333318 −0.166659 0.986015i \(-0.553298\pi\)
−0.166659 + 0.986015i \(0.553298\pi\)
\(294\) 0 0
\(295\) −9.07721e7 −0.205861
\(296\) 2.52375e8 0.565622
\(297\) 0 0
\(298\) 5.57133e8 1.21956
\(299\) 1.69062e8 0.365761
\(300\) 0 0
\(301\) 9.24445e8 1.95388
\(302\) −2.61609e8 −0.546548
\(303\) 0 0
\(304\) 1.01741e9 2.07701
\(305\) −1.66947e7 −0.0336923
\(306\) 0 0
\(307\) −6.60558e8 −1.30295 −0.651474 0.758671i \(-0.725849\pi\)
−0.651474 + 0.758671i \(0.725849\pi\)
\(308\) 3.72222e8 0.725897
\(309\) 0 0
\(310\) 8.24165e7 0.157126
\(311\) 1.05741e8 0.199333 0.0996667 0.995021i \(-0.468222\pi\)
0.0996667 + 0.995021i \(0.468222\pi\)
\(312\) 0 0
\(313\) −1.18721e8 −0.218838 −0.109419 0.993996i \(-0.534899\pi\)
−0.109419 + 0.993996i \(0.534899\pi\)
\(314\) 9.45476e8 1.72344
\(315\) 0 0
\(316\) 7.29686e7 0.130086
\(317\) −4.34669e8 −0.766392 −0.383196 0.923667i \(-0.625177\pi\)
−0.383196 + 0.923667i \(0.625177\pi\)
\(318\) 0 0
\(319\) −4.22448e8 −0.728629
\(320\) −3.85355e7 −0.0657409
\(321\) 0 0
\(322\) −1.09796e9 −1.83270
\(323\) −7.94468e8 −1.31180
\(324\) 0 0
\(325\) 1.54173e7 0.0249125
\(326\) 5.61707e8 0.897943
\(327\) 0 0
\(328\) 1.84301e8 0.288383
\(329\) −1.77913e8 −0.275436
\(330\) 0 0
\(331\) 7.34259e8 1.11289 0.556444 0.830885i \(-0.312165\pi\)
0.556444 + 0.830885i \(0.312165\pi\)
\(332\) −2.76127e8 −0.414120
\(333\) 0 0
\(334\) −1.38385e9 −2.03224
\(335\) −1.19207e9 −1.73238
\(336\) 0 0
\(337\) −4.71545e8 −0.671148 −0.335574 0.942014i \(-0.608930\pi\)
−0.335574 + 0.942014i \(0.608930\pi\)
\(338\) 8.08537e8 1.13892
\(339\) 0 0
\(340\) 3.44572e8 0.475449
\(341\) −8.94871e7 −0.122214
\(342\) 0 0
\(343\) −4.56772e8 −0.611181
\(344\) 6.32498e8 0.837731
\(345\) 0 0
\(346\) −7.88489e8 −1.02336
\(347\) −1.10671e9 −1.42194 −0.710970 0.703222i \(-0.751744\pi\)
−0.710970 + 0.703222i \(0.751744\pi\)
\(348\) 0 0
\(349\) −7.96176e7 −0.100258 −0.0501291 0.998743i \(-0.515963\pi\)
−0.0501291 + 0.998743i \(0.515963\pi\)
\(350\) −1.00127e8 −0.124828
\(351\) 0 0
\(352\) 8.64514e8 1.05651
\(353\) −1.01821e8 −0.123205 −0.0616024 0.998101i \(-0.519621\pi\)
−0.0616024 + 0.998101i \(0.519621\pi\)
\(354\) 0 0
\(355\) −1.17147e8 −0.138973
\(356\) 1.55820e8 0.183041
\(357\) 0 0
\(358\) −1.40494e9 −1.61832
\(359\) 9.69307e7 0.110568 0.0552842 0.998471i \(-0.482394\pi\)
0.0552842 + 0.998471i \(0.482394\pi\)
\(360\) 0 0
\(361\) 1.60109e9 1.79119
\(362\) −1.28558e9 −1.42435
\(363\) 0 0
\(364\) 2.01961e8 0.219489
\(365\) −2.39314e8 −0.257598
\(366\) 0 0
\(367\) −1.54401e9 −1.63050 −0.815249 0.579111i \(-0.803400\pi\)
−0.815249 + 0.579111i \(0.803400\pi\)
\(368\) −1.41329e9 −1.47830
\(369\) 0 0
\(370\) −1.37208e9 −1.40823
\(371\) 3.46449e8 0.352234
\(372\) 0 0
\(373\) −1.34954e9 −1.34650 −0.673250 0.739415i \(-0.735102\pi\)
−0.673250 + 0.739415i \(0.735102\pi\)
\(374\) −1.01654e9 −1.00478
\(375\) 0 0
\(376\) −1.21726e8 −0.118094
\(377\) −2.29213e8 −0.220315
\(378\) 0 0
\(379\) 1.61145e9 1.52048 0.760238 0.649645i \(-0.225082\pi\)
0.760238 + 0.649645i \(0.225082\pi\)
\(380\) −1.08210e9 −1.01164
\(381\) 0 0
\(382\) 1.48271e9 1.36093
\(383\) 1.26424e9 1.14983 0.574915 0.818213i \(-0.305035\pi\)
0.574915 + 0.818213i \(0.305035\pi\)
\(384\) 0 0
\(385\) 1.45104e9 1.29588
\(386\) −1.89326e8 −0.167554
\(387\) 0 0
\(388\) 2.61100e8 0.226932
\(389\) −1.83733e9 −1.58257 −0.791286 0.611446i \(-0.790588\pi\)
−0.791286 + 0.611446i \(0.790588\pi\)
\(390\) 0 0
\(391\) 1.10360e9 0.933666
\(392\) 3.13982e8 0.263271
\(393\) 0 0
\(394\) 2.43803e9 2.00818
\(395\) 2.84454e8 0.232232
\(396\) 0 0
\(397\) −1.85478e9 −1.48773 −0.743867 0.668327i \(-0.767011\pi\)
−0.743867 + 0.668327i \(0.767011\pi\)
\(398\) 1.76506e9 1.40336
\(399\) 0 0
\(400\) −1.28882e8 −0.100689
\(401\) −1.20857e9 −0.935978 −0.467989 0.883734i \(-0.655021\pi\)
−0.467989 + 0.883734i \(0.655021\pi\)
\(402\) 0 0
\(403\) −4.85541e7 −0.0369537
\(404\) 4.13528e7 0.0312011
\(405\) 0 0
\(406\) 1.48860e9 1.10392
\(407\) 1.48980e9 1.09533
\(408\) 0 0
\(409\) −1.22143e9 −0.882750 −0.441375 0.897323i \(-0.645509\pi\)
−0.441375 + 0.897323i \(0.645509\pi\)
\(410\) −1.00199e9 −0.717990
\(411\) 0 0
\(412\) 1.51697e9 1.06865
\(413\) −3.47299e8 −0.242593
\(414\) 0 0
\(415\) −1.07643e9 −0.739295
\(416\) 4.69070e8 0.319456
\(417\) 0 0
\(418\) 3.19235e9 2.13793
\(419\) 1.52070e9 1.00994 0.504969 0.863137i \(-0.331504\pi\)
0.504969 + 0.863137i \(0.331504\pi\)
\(420\) 0 0
\(421\) 1.08736e9 0.710210 0.355105 0.934826i \(-0.384445\pi\)
0.355105 + 0.934826i \(0.384445\pi\)
\(422\) 2.65421e9 1.71926
\(423\) 0 0
\(424\) 2.37038e8 0.151021
\(425\) 1.00641e8 0.0635934
\(426\) 0 0
\(427\) −6.38750e7 −0.0397039
\(428\) 4.84511e8 0.298710
\(429\) 0 0
\(430\) −3.43869e9 −2.08571
\(431\) −1.33391e9 −0.802521 −0.401261 0.915964i \(-0.631428\pi\)
−0.401261 + 0.915964i \(0.631428\pi\)
\(432\) 0 0
\(433\) −3.41286e8 −0.202027 −0.101014 0.994885i \(-0.532209\pi\)
−0.101014 + 0.994885i \(0.532209\pi\)
\(434\) 3.15330e8 0.185162
\(435\) 0 0
\(436\) 2.08219e8 0.120314
\(437\) −3.46576e9 −1.98661
\(438\) 0 0
\(439\) −1.35623e9 −0.765083 −0.382541 0.923938i \(-0.624951\pi\)
−0.382541 + 0.923938i \(0.624951\pi\)
\(440\) 9.92789e8 0.555613
\(441\) 0 0
\(442\) −5.51554e8 −0.303815
\(443\) −1.15939e9 −0.633604 −0.316802 0.948492i \(-0.602609\pi\)
−0.316802 + 0.948492i \(0.602609\pi\)
\(444\) 0 0
\(445\) 6.07436e8 0.326769
\(446\) 5.98451e8 0.319416
\(447\) 0 0
\(448\) −1.47439e8 −0.0774710
\(449\) 9.76057e8 0.508877 0.254439 0.967089i \(-0.418109\pi\)
0.254439 + 0.967089i \(0.418109\pi\)
\(450\) 0 0
\(451\) 1.08795e9 0.558458
\(452\) 1.55314e9 0.791091
\(453\) 0 0
\(454\) −4.45506e9 −2.23439
\(455\) 7.87307e8 0.391836
\(456\) 0 0
\(457\) −1.88838e9 −0.925513 −0.462757 0.886485i \(-0.653140\pi\)
−0.462757 + 0.886485i \(0.653140\pi\)
\(458\) −2.37837e9 −1.15678
\(459\) 0 0
\(460\) 1.50315e9 0.720028
\(461\) −1.41417e9 −0.672278 −0.336139 0.941812i \(-0.609121\pi\)
−0.336139 + 0.941812i \(0.609121\pi\)
\(462\) 0 0
\(463\) −1.02607e9 −0.480445 −0.240222 0.970718i \(-0.577220\pi\)
−0.240222 + 0.970718i \(0.577220\pi\)
\(464\) 1.91612e9 0.890451
\(465\) 0 0
\(466\) 3.63525e9 1.66412
\(467\) 4.39875e8 0.199858 0.0999288 0.994995i \(-0.468139\pi\)
0.0999288 + 0.994995i \(0.468139\pi\)
\(468\) 0 0
\(469\) −4.56092e9 −2.04149
\(470\) 6.61786e8 0.294019
\(471\) 0 0
\(472\) −2.37619e8 −0.104012
\(473\) 3.73370e9 1.62228
\(474\) 0 0
\(475\) −3.16054e8 −0.135311
\(476\) 1.31835e9 0.560283
\(477\) 0 0
\(478\) 2.51754e9 1.05434
\(479\) 2.46738e9 1.02580 0.512899 0.858449i \(-0.328572\pi\)
0.512899 + 0.858449i \(0.328572\pi\)
\(480\) 0 0
\(481\) 8.08336e8 0.331195
\(482\) 4.46866e9 1.81766
\(483\) 0 0
\(484\) 5.06419e7 0.0203026
\(485\) 1.01785e9 0.405123
\(486\) 0 0
\(487\) 9.54719e8 0.374563 0.187281 0.982306i \(-0.440032\pi\)
0.187281 + 0.982306i \(0.440032\pi\)
\(488\) −4.37028e7 −0.0170231
\(489\) 0 0
\(490\) −1.70702e9 −0.655468
\(491\) 1.96760e9 0.750157 0.375079 0.926993i \(-0.377616\pi\)
0.375079 + 0.926993i \(0.377616\pi\)
\(492\) 0 0
\(493\) −1.49624e9 −0.562391
\(494\) 1.73211e9 0.646445
\(495\) 0 0
\(496\) 4.05891e8 0.149356
\(497\) −4.48210e8 −0.163770
\(498\) 0 0
\(499\) 1.04545e9 0.376662 0.188331 0.982106i \(-0.439692\pi\)
0.188331 + 0.982106i \(0.439692\pi\)
\(500\) −1.55541e9 −0.556481
\(501\) 0 0
\(502\) −1.91975e9 −0.677303
\(503\) 1.15052e9 0.403093 0.201546 0.979479i \(-0.435403\pi\)
0.201546 + 0.979479i \(0.435403\pi\)
\(504\) 0 0
\(505\) 1.61206e8 0.0557008
\(506\) −4.43450e9 −1.52166
\(507\) 0 0
\(508\) 6.63401e8 0.224519
\(509\) −5.00188e9 −1.68121 −0.840603 0.541651i \(-0.817799\pi\)
−0.840603 + 0.541651i \(0.817799\pi\)
\(510\) 0 0
\(511\) −9.15628e8 −0.303561
\(512\) −1.93782e9 −0.638071
\(513\) 0 0
\(514\) −3.35194e9 −1.08874
\(515\) 5.91362e9 1.90778
\(516\) 0 0
\(517\) −7.18562e8 −0.228690
\(518\) −5.24967e9 −1.65950
\(519\) 0 0
\(520\) 5.38669e8 0.168001
\(521\) −1.31851e9 −0.408460 −0.204230 0.978923i \(-0.565469\pi\)
−0.204230 + 0.978923i \(0.565469\pi\)
\(522\) 0 0
\(523\) 1.46804e9 0.448727 0.224363 0.974506i \(-0.427970\pi\)
0.224363 + 0.974506i \(0.427970\pi\)
\(524\) 9.48041e8 0.287851
\(525\) 0 0
\(526\) 2.37196e9 0.710653
\(527\) −3.16949e8 −0.0943306
\(528\) 0 0
\(529\) 1.40946e9 0.413961
\(530\) −1.28870e9 −0.375998
\(531\) 0 0
\(532\) −4.14018e9 −1.19214
\(533\) 5.90301e8 0.168861
\(534\) 0 0
\(535\) 1.88877e9 0.533263
\(536\) −3.12054e9 −0.875293
\(537\) 0 0
\(538\) 2.12778e9 0.589100
\(539\) 1.85346e9 0.509827
\(540\) 0 0
\(541\) 3.28515e9 0.892000 0.446000 0.895033i \(-0.352848\pi\)
0.446000 + 0.895033i \(0.352848\pi\)
\(542\) −4.30750e9 −1.16206
\(543\) 0 0
\(544\) 3.06197e9 0.815464
\(545\) 8.11701e8 0.214787
\(546\) 0 0
\(547\) 3.43780e9 0.898100 0.449050 0.893507i \(-0.351762\pi\)
0.449050 + 0.893507i \(0.351762\pi\)
\(548\) 3.65357e9 0.948387
\(549\) 0 0
\(550\) −4.04396e8 −0.103642
\(551\) 4.69884e9 1.19663
\(552\) 0 0
\(553\) 1.08834e9 0.273669
\(554\) −4.65322e8 −0.116270
\(555\) 0 0
\(556\) −1.17715e8 −0.0290449
\(557\) −7.14256e9 −1.75130 −0.875651 0.482945i \(-0.839567\pi\)
−0.875651 + 0.482945i \(0.839567\pi\)
\(558\) 0 0
\(559\) 2.02584e9 0.490527
\(560\) −6.58155e9 −1.58369
\(561\) 0 0
\(562\) −7.14350e9 −1.69759
\(563\) 4.62695e9 1.09274 0.546369 0.837545i \(-0.316010\pi\)
0.546369 + 0.837545i \(0.316010\pi\)
\(564\) 0 0
\(565\) 6.05463e9 1.41227
\(566\) −4.62920e9 −1.07312
\(567\) 0 0
\(568\) −3.06662e8 −0.0702167
\(569\) −5.65485e9 −1.28685 −0.643425 0.765509i \(-0.722487\pi\)
−0.643425 + 0.765509i \(0.722487\pi\)
\(570\) 0 0
\(571\) 7.68026e9 1.72643 0.863216 0.504835i \(-0.168447\pi\)
0.863216 + 0.504835i \(0.168447\pi\)
\(572\) 8.15691e8 0.182238
\(573\) 0 0
\(574\) −3.83366e9 −0.846100
\(575\) 4.39031e8 0.0963070
\(576\) 0 0
\(577\) 2.51579e9 0.545204 0.272602 0.962127i \(-0.412116\pi\)
0.272602 + 0.962127i \(0.412116\pi\)
\(578\) 2.23949e9 0.482394
\(579\) 0 0
\(580\) −2.03795e9 −0.433707
\(581\) −4.11848e9 −0.871206
\(582\) 0 0
\(583\) 1.39926e9 0.292454
\(584\) −6.26465e8 −0.130152
\(585\) 0 0
\(586\) 2.04248e9 0.419292
\(587\) −4.50051e9 −0.918392 −0.459196 0.888335i \(-0.651862\pi\)
−0.459196 + 0.888335i \(0.651862\pi\)
\(588\) 0 0
\(589\) 9.95354e8 0.200712
\(590\) 1.29186e9 0.258960
\(591\) 0 0
\(592\) −6.75735e9 −1.33860
\(593\) 8.41758e9 1.65766 0.828831 0.559499i \(-0.189007\pi\)
0.828831 + 0.559499i \(0.189007\pi\)
\(594\) 0 0
\(595\) 5.13935e9 1.00023
\(596\) −2.91827e9 −0.564630
\(597\) 0 0
\(598\) −2.40608e9 −0.460103
\(599\) 3.82499e9 0.727171 0.363586 0.931561i \(-0.381552\pi\)
0.363586 + 0.931561i \(0.381552\pi\)
\(600\) 0 0
\(601\) −7.25024e8 −0.136236 −0.0681179 0.997677i \(-0.521699\pi\)
−0.0681179 + 0.997677i \(0.521699\pi\)
\(602\) −1.31566e10 −2.45786
\(603\) 0 0
\(604\) 1.37031e9 0.253041
\(605\) 1.97418e8 0.0362445
\(606\) 0 0
\(607\) −1.08492e10 −1.96896 −0.984481 0.175489i \(-0.943849\pi\)
−0.984481 + 0.175489i \(0.943849\pi\)
\(608\) −9.61588e9 −1.73511
\(609\) 0 0
\(610\) 2.37598e8 0.0423826
\(611\) −3.89879e8 −0.0691489
\(612\) 0 0
\(613\) −7.59484e9 −1.33170 −0.665851 0.746085i \(-0.731931\pi\)
−0.665851 + 0.746085i \(0.731931\pi\)
\(614\) 9.40100e9 1.63902
\(615\) 0 0
\(616\) 3.79847e9 0.654751
\(617\) 1.18234e9 0.202648 0.101324 0.994853i \(-0.467692\pi\)
0.101324 + 0.994853i \(0.467692\pi\)
\(618\) 0 0
\(619\) −9.62007e9 −1.63028 −0.815138 0.579267i \(-0.803339\pi\)
−0.815138 + 0.579267i \(0.803339\pi\)
\(620\) −4.31699e8 −0.0727462
\(621\) 0 0
\(622\) −1.50489e9 −0.250748
\(623\) 2.32409e9 0.385074
\(624\) 0 0
\(625\) −6.55781e9 −1.07443
\(626\) 1.68963e9 0.275284
\(627\) 0 0
\(628\) −4.95242e9 −0.797918
\(629\) 5.27662e9 0.845432
\(630\) 0 0
\(631\) −4.21153e9 −0.667325 −0.333662 0.942693i \(-0.608285\pi\)
−0.333662 + 0.942693i \(0.608285\pi\)
\(632\) 7.44632e8 0.117336
\(633\) 0 0
\(634\) 6.18616e9 0.964070
\(635\) 2.58614e9 0.400816
\(636\) 0 0
\(637\) 1.00566e9 0.154156
\(638\) 6.01224e9 0.916567
\(639\) 0 0
\(640\) −6.61256e9 −0.997102
\(641\) −7.92285e9 −1.18817 −0.594084 0.804403i \(-0.702485\pi\)
−0.594084 + 0.804403i \(0.702485\pi\)
\(642\) 0 0
\(643\) −2.92338e9 −0.433657 −0.216829 0.976210i \(-0.569571\pi\)
−0.216829 + 0.976210i \(0.569571\pi\)
\(644\) 5.75113e9 0.848502
\(645\) 0 0
\(646\) 1.13068e10 1.65016
\(647\) 1.00413e10 1.45755 0.728774 0.684754i \(-0.240090\pi\)
0.728774 + 0.684754i \(0.240090\pi\)
\(648\) 0 0
\(649\) −1.40269e9 −0.201421
\(650\) −2.19418e8 −0.0313383
\(651\) 0 0
\(652\) −2.94223e9 −0.415729
\(653\) 1.48330e9 0.208465 0.104233 0.994553i \(-0.466761\pi\)
0.104233 + 0.994553i \(0.466761\pi\)
\(654\) 0 0
\(655\) 3.69576e9 0.513877
\(656\) −4.93466e9 −0.682487
\(657\) 0 0
\(658\) 2.53203e9 0.346480
\(659\) −3.35085e9 −0.456096 −0.228048 0.973650i \(-0.573234\pi\)
−0.228048 + 0.973650i \(0.573234\pi\)
\(660\) 0 0
\(661\) 3.40036e9 0.457952 0.228976 0.973432i \(-0.426462\pi\)
0.228976 + 0.973432i \(0.426462\pi\)
\(662\) −1.04499e10 −1.39994
\(663\) 0 0
\(664\) −2.81783e9 −0.373531
\(665\) −1.61397e10 −2.12824
\(666\) 0 0
\(667\) −6.52716e9 −0.851695
\(668\) 7.24860e9 0.940886
\(669\) 0 0
\(670\) 1.69654e10 2.17922
\(671\) −2.57982e8 −0.0329655
\(672\) 0 0
\(673\) 8.96600e9 1.13382 0.566912 0.823778i \(-0.308138\pi\)
0.566912 + 0.823778i \(0.308138\pi\)
\(674\) 6.71098e9 0.844260
\(675\) 0 0
\(676\) −4.23513e9 −0.527294
\(677\) 1.48883e10 1.84410 0.922052 0.387067i \(-0.126512\pi\)
0.922052 + 0.387067i \(0.126512\pi\)
\(678\) 0 0
\(679\) 3.89435e9 0.477409
\(680\) 3.51630e9 0.428849
\(681\) 0 0
\(682\) 1.27357e9 0.153737
\(683\) 7.71503e9 0.926542 0.463271 0.886217i \(-0.346676\pi\)
0.463271 + 0.886217i \(0.346676\pi\)
\(684\) 0 0
\(685\) 1.42428e10 1.69308
\(686\) 6.50073e9 0.768825
\(687\) 0 0
\(688\) −1.69351e10 −1.98257
\(689\) 7.59211e8 0.0884291
\(690\) 0 0
\(691\) −2.52996e9 −0.291703 −0.145851 0.989307i \(-0.546592\pi\)
−0.145851 + 0.989307i \(0.546592\pi\)
\(692\) 4.13012e9 0.473796
\(693\) 0 0
\(694\) 1.57506e10 1.78871
\(695\) −4.58890e8 −0.0518516
\(696\) 0 0
\(697\) 3.85334e9 0.431045
\(698\) 1.13311e9 0.126118
\(699\) 0 0
\(700\) 5.24465e8 0.0577927
\(701\) 1.41167e10 1.54782 0.773908 0.633298i \(-0.218299\pi\)
0.773908 + 0.633298i \(0.218299\pi\)
\(702\) 0 0
\(703\) −1.65708e10 −1.79887
\(704\) −5.95484e8 −0.0643229
\(705\) 0 0
\(706\) 1.44911e9 0.154983
\(707\) 6.16783e8 0.0656394
\(708\) 0 0
\(709\) −1.29347e10 −1.36299 −0.681496 0.731822i \(-0.738670\pi\)
−0.681496 + 0.731822i \(0.738670\pi\)
\(710\) 1.66722e9 0.174819
\(711\) 0 0
\(712\) 1.59012e9 0.165101
\(713\) −1.38265e9 −0.142856
\(714\) 0 0
\(715\) 3.17982e9 0.325335
\(716\) 7.35907e9 0.749251
\(717\) 0 0
\(718\) −1.37951e9 −0.139088
\(719\) −1.22962e10 −1.23373 −0.616864 0.787070i \(-0.711597\pi\)
−0.616864 + 0.787070i \(0.711597\pi\)
\(720\) 0 0
\(721\) 2.26258e10 2.24818
\(722\) −2.27866e10 −2.25320
\(723\) 0 0
\(724\) 6.73386e9 0.659446
\(725\) −5.95234e8 −0.0580102
\(726\) 0 0
\(727\) 6.74804e9 0.651339 0.325670 0.945484i \(-0.394410\pi\)
0.325670 + 0.945484i \(0.394410\pi\)
\(728\) 2.06098e9 0.197977
\(729\) 0 0
\(730\) 3.40589e9 0.324041
\(731\) 1.32242e10 1.25215
\(732\) 0 0
\(733\) 3.74245e9 0.350988 0.175494 0.984480i \(-0.443848\pi\)
0.175494 + 0.984480i \(0.443848\pi\)
\(734\) 2.19743e10 2.05106
\(735\) 0 0
\(736\) 1.33574e10 1.23495
\(737\) −1.84209e10 −1.69502
\(738\) 0 0
\(739\) 1.27399e9 0.116121 0.0580606 0.998313i \(-0.481508\pi\)
0.0580606 + 0.998313i \(0.481508\pi\)
\(740\) 7.18700e9 0.651983
\(741\) 0 0
\(742\) −4.93063e9 −0.443087
\(743\) 7.25033e9 0.648481 0.324240 0.945975i \(-0.394891\pi\)
0.324240 + 0.945975i \(0.394891\pi\)
\(744\) 0 0
\(745\) −1.13763e10 −1.00799
\(746\) 1.92066e10 1.69381
\(747\) 0 0
\(748\) 5.32463e9 0.465194
\(749\) 7.22656e9 0.628413
\(750\) 0 0
\(751\) −1.96482e10 −1.69271 −0.846357 0.532616i \(-0.821209\pi\)
−0.846357 + 0.532616i \(0.821209\pi\)
\(752\) 3.25922e9 0.279480
\(753\) 0 0
\(754\) 3.26213e9 0.277142
\(755\) 5.34190e9 0.451733
\(756\) 0 0
\(757\) −1.81025e10 −1.51671 −0.758356 0.651841i \(-0.773997\pi\)
−0.758356 + 0.651841i \(0.773997\pi\)
\(758\) −2.29340e10 −1.91266
\(759\) 0 0
\(760\) −1.10427e10 −0.912486
\(761\) −4.86560e9 −0.400212 −0.200106 0.979774i \(-0.564129\pi\)
−0.200106 + 0.979774i \(0.564129\pi\)
\(762\) 0 0
\(763\) 3.10561e9 0.253111
\(764\) −7.76648e9 −0.630083
\(765\) 0 0
\(766\) −1.79925e10 −1.44641
\(767\) −7.61073e8 −0.0609036
\(768\) 0 0
\(769\) −6.64704e9 −0.527092 −0.263546 0.964647i \(-0.584892\pi\)
−0.263546 + 0.964647i \(0.584892\pi\)
\(770\) −2.06510e10 −1.63014
\(771\) 0 0
\(772\) 9.91692e8 0.0775740
\(773\) −1.79263e10 −1.39593 −0.697963 0.716134i \(-0.745910\pi\)
−0.697963 + 0.716134i \(0.745910\pi\)
\(774\) 0 0
\(775\) −1.26088e8 −0.00973012
\(776\) 2.66448e9 0.204690
\(777\) 0 0
\(778\) 2.61487e10 1.99077
\(779\) −1.21011e10 −0.917158
\(780\) 0 0
\(781\) −1.81025e9 −0.135976
\(782\) −1.57063e10 −1.17449
\(783\) 0 0
\(784\) −8.40685e9 −0.623056
\(785\) −1.93061e10 −1.42446
\(786\) 0 0
\(787\) 9.90537e9 0.724368 0.362184 0.932107i \(-0.382031\pi\)
0.362184 + 0.932107i \(0.382031\pi\)
\(788\) −1.27705e10 −0.929747
\(789\) 0 0
\(790\) −4.04832e9 −0.292133
\(791\) 2.31653e10 1.66426
\(792\) 0 0
\(793\) −1.39976e8 −0.00996777
\(794\) 2.63970e10 1.87147
\(795\) 0 0
\(796\) −9.24540e9 −0.649726
\(797\) −2.37203e10 −1.65965 −0.829824 0.558025i \(-0.811559\pi\)
−0.829824 + 0.558025i \(0.811559\pi\)
\(798\) 0 0
\(799\) −2.54503e9 −0.176514
\(800\) 1.21811e9 0.0841145
\(801\) 0 0
\(802\) 1.72002e10 1.17740
\(803\) −3.69808e9 −0.252042
\(804\) 0 0
\(805\) 2.24197e10 1.51476
\(806\) 6.91017e8 0.0464853
\(807\) 0 0
\(808\) 4.21998e8 0.0281430
\(809\) −2.49700e10 −1.65805 −0.829027 0.559208i \(-0.811105\pi\)
−0.829027 + 0.559208i \(0.811105\pi\)
\(810\) 0 0
\(811\) −1.12321e9 −0.0739412 −0.0369706 0.999316i \(-0.511771\pi\)
−0.0369706 + 0.999316i \(0.511771\pi\)
\(812\) −7.79732e9 −0.511092
\(813\) 0 0
\(814\) −2.12026e10 −1.37786
\(815\) −1.14697e10 −0.742167
\(816\) 0 0
\(817\) −4.15294e10 −2.66427
\(818\) 1.73833e10 1.11044
\(819\) 0 0
\(820\) 5.24842e9 0.332415
\(821\) −1.49128e10 −0.940497 −0.470249 0.882534i \(-0.655836\pi\)
−0.470249 + 0.882534i \(0.655836\pi\)
\(822\) 0 0
\(823\) −2.81003e9 −0.175716 −0.0878580 0.996133i \(-0.528002\pi\)
−0.0878580 + 0.996133i \(0.528002\pi\)
\(824\) 1.54804e10 0.963912
\(825\) 0 0
\(826\) 4.94272e9 0.305166
\(827\) 1.92634e10 1.18430 0.592151 0.805827i \(-0.298279\pi\)
0.592151 + 0.805827i \(0.298279\pi\)
\(828\) 0 0
\(829\) −3.12798e10 −1.90688 −0.953440 0.301582i \(-0.902485\pi\)
−0.953440 + 0.301582i \(0.902485\pi\)
\(830\) 1.53196e10 0.929984
\(831\) 0 0
\(832\) −3.23099e8 −0.0194493
\(833\) 6.56467e9 0.393510
\(834\) 0 0
\(835\) 2.82573e10 1.67969
\(836\) −1.67216e10 −0.989818
\(837\) 0 0
\(838\) −2.16425e10 −1.27044
\(839\) 1.53071e10 0.894800 0.447400 0.894334i \(-0.352350\pi\)
0.447400 + 0.894334i \(0.352350\pi\)
\(840\) 0 0
\(841\) −8.40042e9 −0.486984
\(842\) −1.54752e10 −0.893398
\(843\) 0 0
\(844\) −1.39028e10 −0.795983
\(845\) −1.65099e10 −0.941336
\(846\) 0 0
\(847\) 7.55332e8 0.0427116
\(848\) −6.34668e9 −0.357406
\(849\) 0 0
\(850\) −1.43231e9 −0.0799963
\(851\) 2.30185e10 1.28034
\(852\) 0 0
\(853\) 3.19206e10 1.76096 0.880480 0.474083i \(-0.157220\pi\)
0.880480 + 0.474083i \(0.157220\pi\)
\(854\) 9.09063e8 0.0499449
\(855\) 0 0
\(856\) 4.94435e9 0.269433
\(857\) −2.96637e10 −1.60988 −0.804938 0.593359i \(-0.797802\pi\)
−0.804938 + 0.593359i \(0.797802\pi\)
\(858\) 0 0
\(859\) −1.70319e10 −0.916829 −0.458414 0.888739i \(-0.651582\pi\)
−0.458414 + 0.888739i \(0.651582\pi\)
\(860\) 1.80119e10 0.965639
\(861\) 0 0
\(862\) 1.89841e10 1.00952
\(863\) −3.16249e9 −0.167491 −0.0837454 0.996487i \(-0.526688\pi\)
−0.0837454 + 0.996487i \(0.526688\pi\)
\(864\) 0 0
\(865\) 1.61005e10 0.845829
\(866\) 4.85714e9 0.254137
\(867\) 0 0
\(868\) −1.65171e9 −0.0857262
\(869\) 4.39563e9 0.227223
\(870\) 0 0
\(871\) −9.99483e9 −0.512521
\(872\) 2.12484e9 0.108522
\(873\) 0 0
\(874\) 4.93243e10 2.49903
\(875\) −2.31992e10 −1.17070
\(876\) 0 0
\(877\) 6.39795e9 0.320289 0.160145 0.987094i \(-0.448804\pi\)
0.160145 + 0.987094i \(0.448804\pi\)
\(878\) 1.93018e10 0.962424
\(879\) 0 0
\(880\) −2.65819e10 −1.31491
\(881\) −1.45065e10 −0.714739 −0.357369 0.933963i \(-0.616326\pi\)
−0.357369 + 0.933963i \(0.616326\pi\)
\(882\) 0 0
\(883\) 2.39105e10 1.16876 0.584382 0.811479i \(-0.301337\pi\)
0.584382 + 0.811479i \(0.301337\pi\)
\(884\) 2.88905e9 0.140660
\(885\) 0 0
\(886\) 1.65004e10 0.797032
\(887\) −3.08024e10 −1.48201 −0.741007 0.671497i \(-0.765652\pi\)
−0.741007 + 0.671497i \(0.765652\pi\)
\(888\) 0 0
\(889\) 9.89473e9 0.472333
\(890\) −8.64497e9 −0.411054
\(891\) 0 0
\(892\) −3.13470e9 −0.147883
\(893\) 7.99247e9 0.375579
\(894\) 0 0
\(895\) 2.86880e10 1.33758
\(896\) −2.53000e10 −1.17501
\(897\) 0 0
\(898\) −1.38911e10 −0.640134
\(899\) 1.87458e9 0.0860488
\(900\) 0 0
\(901\) 4.95594e9 0.225730
\(902\) −1.54836e10 −0.702503
\(903\) 0 0
\(904\) 1.58495e10 0.713555
\(905\) 2.62507e10 1.17726
\(906\) 0 0
\(907\) 1.21312e10 0.539858 0.269929 0.962880i \(-0.413000\pi\)
0.269929 + 0.962880i \(0.413000\pi\)
\(908\) 2.33357e10 1.03448
\(909\) 0 0
\(910\) −1.12049e10 −0.492904
\(911\) 1.94714e10 0.853261 0.426630 0.904426i \(-0.359701\pi\)
0.426630 + 0.904426i \(0.359701\pi\)
\(912\) 0 0
\(913\) −1.66339e10 −0.723348
\(914\) 2.68752e10 1.16423
\(915\) 0 0
\(916\) 1.24579e10 0.535564
\(917\) 1.41402e10 0.605567
\(918\) 0 0
\(919\) 2.10755e10 0.895721 0.447861 0.894103i \(-0.352186\pi\)
0.447861 + 0.894103i \(0.352186\pi\)
\(920\) 1.53394e10 0.649457
\(921\) 0 0
\(922\) 2.01264e10 0.845682
\(923\) −9.82211e8 −0.0411149
\(924\) 0 0
\(925\) 2.09914e9 0.0872056
\(926\) 1.46029e10 0.604368
\(927\) 0 0
\(928\) −1.81099e10 −0.743870
\(929\) 6.96282e9 0.284925 0.142462 0.989800i \(-0.454498\pi\)
0.142462 + 0.989800i \(0.454498\pi\)
\(930\) 0 0
\(931\) −2.06158e10 −0.837292
\(932\) −1.90415e10 −0.770453
\(933\) 0 0
\(934\) −6.26026e9 −0.251408
\(935\) 2.07571e10 0.830472
\(936\) 0 0
\(937\) 1.58623e10 0.629908 0.314954 0.949107i \(-0.398011\pi\)
0.314954 + 0.949107i \(0.398011\pi\)
\(938\) 6.49105e10 2.56806
\(939\) 0 0
\(940\) −3.46645e9 −0.136125
\(941\) −3.24983e10 −1.27144 −0.635722 0.771918i \(-0.719297\pi\)
−0.635722 + 0.771918i \(0.719297\pi\)
\(942\) 0 0
\(943\) 1.68097e10 0.652782
\(944\) 6.36225e9 0.246155
\(945\) 0 0
\(946\) −5.31376e10 −2.04072
\(947\) 5.41742e9 0.207285 0.103642 0.994615i \(-0.466950\pi\)
0.103642 + 0.994615i \(0.466950\pi\)
\(948\) 0 0
\(949\) −2.00651e9 −0.0762097
\(950\) 4.49805e9 0.170213
\(951\) 0 0
\(952\) 1.34536e10 0.505369
\(953\) 2.62658e9 0.0983028 0.0491514 0.998791i \(-0.484348\pi\)
0.0491514 + 0.998791i \(0.484348\pi\)
\(954\) 0 0
\(955\) −3.02762e10 −1.12484
\(956\) −1.31869e10 −0.488136
\(957\) 0 0
\(958\) −3.51155e10 −1.29039
\(959\) 5.44936e10 1.99517
\(960\) 0 0
\(961\) −2.71155e10 −0.985567
\(962\) −1.15042e10 −0.416622
\(963\) 0 0
\(964\) −2.34069e10 −0.841539
\(965\) 3.86593e9 0.138487
\(966\) 0 0
\(967\) 3.91506e10 1.39234 0.696171 0.717876i \(-0.254886\pi\)
0.696171 + 0.717876i \(0.254886\pi\)
\(968\) 5.16792e8 0.0183127
\(969\) 0 0
\(970\) −1.44859e10 −0.509618
\(971\) −2.49003e10 −0.872846 −0.436423 0.899742i \(-0.643755\pi\)
−0.436423 + 0.899742i \(0.643755\pi\)
\(972\) 0 0
\(973\) −1.75574e9 −0.0611034
\(974\) −1.35875e10 −0.471175
\(975\) 0 0
\(976\) 1.17014e9 0.0402869
\(977\) 4.45804e9 0.152937 0.0764686 0.997072i \(-0.475636\pi\)
0.0764686 + 0.997072i \(0.475636\pi\)
\(978\) 0 0
\(979\) 9.38663e9 0.319720
\(980\) 8.94137e9 0.303468
\(981\) 0 0
\(982\) −2.80027e10 −0.943648
\(983\) −2.65557e10 −0.891702 −0.445851 0.895107i \(-0.647099\pi\)
−0.445851 + 0.895107i \(0.647099\pi\)
\(984\) 0 0
\(985\) −4.97832e10 −1.65980
\(986\) 2.12944e10 0.707451
\(987\) 0 0
\(988\) −9.07282e9 −0.299291
\(989\) 5.76886e10 1.89628
\(990\) 0 0
\(991\) 6.89473e9 0.225040 0.112520 0.993649i \(-0.464108\pi\)
0.112520 + 0.993649i \(0.464108\pi\)
\(992\) −3.83621e9 −0.124770
\(993\) 0 0
\(994\) 6.37888e9 0.206012
\(995\) −3.60415e10 −1.15990
\(996\) 0 0
\(997\) −5.13227e8 −0.0164012 −0.00820062 0.999966i \(-0.502610\pi\)
−0.00820062 + 0.999966i \(0.502610\pi\)
\(998\) −1.48787e10 −0.473816
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.a.e.1.2 6
3.2 odd 2 81.8.a.c.1.5 6
9.2 odd 6 27.8.c.a.10.2 12
9.4 even 3 9.8.c.a.7.5 yes 12
9.5 odd 6 27.8.c.a.19.2 12
9.7 even 3 9.8.c.a.4.5 12
36.7 odd 6 144.8.i.c.49.1 12
36.11 even 6 432.8.i.c.145.5 12
36.23 even 6 432.8.i.c.289.5 12
36.31 odd 6 144.8.i.c.97.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.8.c.a.4.5 12 9.7 even 3
9.8.c.a.7.5 yes 12 9.4 even 3
27.8.c.a.10.2 12 9.2 odd 6
27.8.c.a.19.2 12 9.5 odd 6
81.8.a.c.1.5 6 3.2 odd 2
81.8.a.e.1.2 6 1.1 even 1 trivial
144.8.i.c.49.1 12 36.7 odd 6
144.8.i.c.97.1 12 36.31 odd 6
432.8.i.c.145.5 12 36.11 even 6
432.8.i.c.289.5 12 36.23 even 6