Properties

Label 432.8.i.c.289.5
Level $432$
Weight $8$
Character 432.289
Analytic conductor $134.950$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,8,Mod(145,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.145");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(134.950331009\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 375 x^{10} - 1820 x^{9} + 50808 x^{8} - 192378 x^{7} + 3002887 x^{6} + \cdots + 754412211 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{21} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.5
Root \(0.500000 - 9.08282i\) of defining polynomial
Character \(\chi\) \(=\) 432.289
Dual form 432.8.i.c.145.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(145.304 + 251.673i) q^{5} +(555.940 - 962.916i) q^{7} +(-2245.36 + 3889.07i) q^{11} +(-1218.29 - 2110.14i) q^{13} -15905.4 q^{17} +49949.6 q^{19} +(-34692.5 - 60089.2i) q^{23} +(-3163.73 + 5479.74i) q^{25} +(-47035.8 + 81468.4i) q^{29} +(-9963.58 - 17257.4i) q^{31} +323120. q^{35} +331750. q^{37} +(121133. + 209809. i) q^{41} +(415713. - 720036. i) q^{43} +(80005.3 - 138573. i) q^{47} +(-206366. - 357437. i) q^{49} -311589. q^{53} -1.30503e6 q^{55} +(156177. + 270506. i) q^{59} +(28723.9 - 49751.3i) q^{61} +(354044. - 613221. i) q^{65} +(-2.05100e6 - 3.55243e6i) q^{67} -403110. q^{71} -823496. q^{73} +(2.49656e6 + 4.32418e6i) q^{77} +(489414. - 847689. i) q^{79} +(1.85204e6 - 3.20782e6i) q^{83} +(-2.31111e6 - 4.00296e6i) q^{85} -2.09023e6 q^{89} -2.70918e6 q^{91} +(7.25786e6 + 1.25710e7i) q^{95} +(-1.75125e6 + 3.03325e6i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 180 q^{5} + 84 q^{7} - 8460 q^{11} - 1848 q^{13} - 30564 q^{17} - 24432 q^{19} - 51588 q^{23} + 4746 q^{25} + 414648 q^{29} - 8196 q^{31} + 2210616 q^{35} + 139344 q^{37} + 1731582 q^{41} - 408372 q^{43}+ \cdots + 9977226 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 145.304 + 251.673i 0.519854 + 0.900413i 0.999734 + 0.0230788i \(0.00734688\pi\)
−0.479880 + 0.877334i \(0.659320\pi\)
\(6\) 0 0
\(7\) 555.940 962.916i 0.612611 1.06107i −0.378188 0.925729i \(-0.623453\pi\)
0.990799 0.135344i \(-0.0432139\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2245.36 + 3889.07i −0.508640 + 0.880991i 0.491310 + 0.870985i \(0.336518\pi\)
−0.999950 + 0.0100060i \(0.996815\pi\)
\(12\) 0 0
\(13\) −1218.29 2110.14i −0.153797 0.266385i 0.778823 0.627244i \(-0.215817\pi\)
−0.932620 + 0.360859i \(0.882484\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15905.4 −0.785187 −0.392593 0.919712i \(-0.628422\pi\)
−0.392593 + 0.919712i \(0.628422\pi\)
\(18\) 0 0
\(19\) 49949.6 1.67069 0.835343 0.549730i \(-0.185269\pi\)
0.835343 + 0.549730i \(0.185269\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −34692.5 60089.2i −0.594550 1.02979i −0.993610 0.112867i \(-0.963997\pi\)
0.399060 0.916925i \(-0.369337\pi\)
\(24\) 0 0
\(25\) −3163.73 + 5479.74i −0.0404957 + 0.0701406i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −47035.8 + 81468.4i −0.358126 + 0.620292i −0.987648 0.156691i \(-0.949917\pi\)
0.629522 + 0.776983i \(0.283251\pi\)
\(30\) 0 0
\(31\) −9963.58 17257.4i −0.0600689 0.104042i 0.834427 0.551118i \(-0.185799\pi\)
−0.894496 + 0.447076i \(0.852465\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 323120. 1.27387
\(36\) 0 0
\(37\) 331750. 1.07673 0.538363 0.842713i \(-0.319043\pi\)
0.538363 + 0.842713i \(0.319043\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 121133. + 209809.i 0.274486 + 0.475423i 0.970005 0.243084i \(-0.0781591\pi\)
−0.695520 + 0.718507i \(0.744826\pi\)
\(42\) 0 0
\(43\) 415713. 720036.i 0.797359 1.38107i −0.123971 0.992286i \(-0.539563\pi\)
0.921330 0.388781i \(-0.127104\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 80005.3 138573.i 0.112403 0.194687i −0.804336 0.594175i \(-0.797479\pi\)
0.916738 + 0.399488i \(0.130812\pi\)
\(48\) 0 0
\(49\) −206366. 357437.i −0.250583 0.434023i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −311589. −0.287486 −0.143743 0.989615i \(-0.545914\pi\)
−0.143743 + 0.989615i \(0.545914\pi\)
\(54\) 0 0
\(55\) −1.30503e6 −1.05767
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 156177. + 270506.i 0.0989997 + 0.171473i 0.911271 0.411807i \(-0.135102\pi\)
−0.812271 + 0.583280i \(0.801769\pi\)
\(60\) 0 0
\(61\) 28723.9 49751.3i 0.0162028 0.0280640i −0.857810 0.513966i \(-0.828176\pi\)
0.874013 + 0.485902i \(0.161509\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 354044. 613221.i 0.159904 0.276962i
\(66\) 0 0
\(67\) −2.05100e6 3.55243e6i −0.833111 1.44299i −0.895559 0.444943i \(-0.853224\pi\)
0.0624478 0.998048i \(-0.480109\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −403110. −0.133666 −0.0668328 0.997764i \(-0.521289\pi\)
−0.0668328 + 0.997764i \(0.521289\pi\)
\(72\) 0 0
\(73\) −823496. −0.247760 −0.123880 0.992297i \(-0.539534\pi\)
−0.123880 + 0.992297i \(0.539534\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.49656e6 + 4.32418e6i 0.623197 + 1.07941i
\(78\) 0 0
\(79\) 489414. 847689.i 0.111682 0.193438i −0.804767 0.593591i \(-0.797710\pi\)
0.916448 + 0.400153i \(0.131043\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.85204e6 3.20782e6i 0.355530 0.615796i −0.631678 0.775231i \(-0.717634\pi\)
0.987209 + 0.159434i \(0.0509670\pi\)
\(84\) 0 0
\(85\) −2.31111e6 4.00296e6i −0.408182 0.706993i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.09023e6 −0.314289 −0.157145 0.987576i \(-0.550229\pi\)
−0.157145 + 0.987576i \(0.550229\pi\)
\(90\) 0 0
\(91\) −2.70918e6 −0.376872
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.25786e6 + 1.25710e7i 0.868512 + 1.50431i
\(96\) 0 0
\(97\) −1.75125e6 + 3.03325e6i −0.194826 + 0.337448i −0.946843 0.321695i \(-0.895747\pi\)
0.752018 + 0.659143i \(0.229081\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 277361. 480403.i 0.0267868 0.0463960i −0.852321 0.523019i \(-0.824806\pi\)
0.879108 + 0.476623i \(0.158139\pi\)
\(102\) 0 0
\(103\) 1.01746e7 + 1.76229e7i 0.917459 + 1.58909i 0.803260 + 0.595628i \(0.203097\pi\)
0.114199 + 0.993458i \(0.463570\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.49941e6 0.512897 0.256449 0.966558i \(-0.417448\pi\)
0.256449 + 0.966558i \(0.417448\pi\)
\(108\) 0 0
\(109\) 2.79312e6 0.206584 0.103292 0.994651i \(-0.467062\pi\)
0.103292 + 0.994651i \(0.467062\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.04172e7 + 1.80431e7i 0.679167 + 1.17635i 0.975232 + 0.221184i \(0.0709922\pi\)
−0.296065 + 0.955168i \(0.595674\pi\)
\(114\) 0 0
\(115\) 1.00819e7 1.74624e7i 0.618158 1.07068i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.84244e6 + 1.53155e7i −0.481014 + 0.833140i
\(120\) 0 0
\(121\) −339665. 588316.i −0.0174302 0.0301899i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.08649e7 0.955500
\(126\) 0 0
\(127\) −8.89911e6 −0.385508 −0.192754 0.981247i \(-0.561742\pi\)
−0.192754 + 0.981247i \(0.561742\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.35869e6 1.10136e7i −0.247126 0.428034i 0.715601 0.698509i \(-0.246153\pi\)
−0.962727 + 0.270475i \(0.912819\pi\)
\(132\) 0 0
\(133\) 2.77690e7 4.80973e7i 1.02348 1.77272i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.45052e7 4.24442e7i 0.814209 1.41025i −0.0956855 0.995412i \(-0.530504\pi\)
0.909895 0.414840i \(-0.136162\pi\)
\(138\) 0 0
\(139\) −789537. 1.36752e6i −0.0249357 0.0431898i 0.853288 0.521439i \(-0.174605\pi\)
−0.878224 + 0.478250i \(0.841271\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.09420e7 0.312910
\(144\) 0 0
\(145\) −2.73379e7 −0.744692
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.95734e7 3.39021e7i −0.484746 0.839605i 0.515100 0.857130i \(-0.327755\pi\)
−0.999846 + 0.0175249i \(0.994421\pi\)
\(150\) 0 0
\(151\) 9.19094e6 1.59192e7i 0.217240 0.376271i −0.736723 0.676195i \(-0.763628\pi\)
0.953963 + 0.299923i \(0.0969611\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.89549e6 5.01513e6i 0.0624540 0.108174i
\(156\) 0 0
\(157\) 3.32168e7 + 5.75332e7i 0.685029 + 1.18650i 0.973428 + 0.228994i \(0.0735437\pi\)
−0.288399 + 0.957510i \(0.593123\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.71478e7 −1.45691
\(162\) 0 0
\(163\) 3.94682e7 0.713823 0.356912 0.934138i \(-0.383830\pi\)
0.356912 + 0.934138i \(0.383830\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.86177e7 8.42084e7i −0.807769 1.39910i −0.914406 0.404799i \(-0.867342\pi\)
0.106637 0.994298i \(-0.465992\pi\)
\(168\) 0 0
\(169\) 2.84058e7 4.92003e7i 0.452693 0.784087i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.77015e7 4.79804e7i 0.406763 0.704534i −0.587762 0.809034i \(-0.699991\pi\)
0.994525 + 0.104500i \(0.0333242\pi\)
\(174\) 0 0
\(175\) 3.51768e6 + 6.09281e6i 0.0496162 + 0.0859378i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.87173e7 1.28649 0.643247 0.765659i \(-0.277587\pi\)
0.643247 + 0.765659i \(0.277587\pi\)
\(180\) 0 0
\(181\) 9.03305e7 1.13230 0.566148 0.824304i \(-0.308433\pi\)
0.566148 + 0.824304i \(0.308433\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.82045e7 + 8.34927e7i 0.559740 + 0.969499i
\(186\) 0 0
\(187\) 3.57133e7 6.18572e7i 0.399378 0.691743i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.20912e7 9.02247e7i 0.540938 0.936933i −0.457912 0.888998i \(-0.651403\pi\)
0.998850 0.0479353i \(-0.0152641\pi\)
\(192\) 0 0
\(193\) −6.65147e6 1.15207e7i −0.0665989 0.115353i 0.830803 0.556566i \(-0.187881\pi\)
−0.897402 + 0.441214i \(0.854548\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.71308e8 1.59641 0.798206 0.602384i \(-0.205783\pi\)
0.798206 + 0.602384i \(0.205783\pi\)
\(198\) 0 0
\(199\) 1.24021e8 1.11561 0.557803 0.829974i \(-0.311645\pi\)
0.557803 + 0.829974i \(0.311645\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.22981e7 + 9.05830e7i 0.438783 + 0.759994i
\(204\) 0 0
\(205\) −3.52021e7 + 6.09719e7i −0.285385 + 0.494301i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.12155e8 + 1.94258e8i −0.849778 + 1.47186i
\(210\) 0 0
\(211\) −9.32487e7 1.61511e8i −0.683367 1.18363i −0.973947 0.226776i \(-0.927181\pi\)
0.290580 0.956851i \(-0.406152\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.41618e8 1.65804
\(216\) 0 0
\(217\) −2.21566e7 −0.147195
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.93774e7 + 3.35626e7i 0.120760 + 0.209162i
\(222\) 0 0
\(223\) −2.10250e7 + 3.64164e7i −0.126961 + 0.219902i −0.922498 0.386003i \(-0.873856\pi\)
0.795537 + 0.605905i \(0.207189\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.56517e8 + 2.71095e8i −0.888117 + 1.53826i −0.0460190 + 0.998941i \(0.514653\pi\)
−0.842098 + 0.539324i \(0.818680\pi\)
\(228\) 0 0
\(229\) −8.35576e7 1.44726e8i −0.459792 0.796384i 0.539157 0.842205i \(-0.318743\pi\)
−0.998950 + 0.0458213i \(0.985410\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.55430e8 1.32290 0.661449 0.749990i \(-0.269942\pi\)
0.661449 + 0.749990i \(0.269942\pi\)
\(234\) 0 0
\(235\) 4.65002e7 0.233732
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.84471e7 + 1.53195e8i 0.419074 + 0.725858i 0.995847 0.0910472i \(-0.0290214\pi\)
−0.576772 + 0.816905i \(0.695688\pi\)
\(240\) 0 0
\(241\) 1.56994e8 2.71922e8i 0.722478 1.25137i −0.237526 0.971381i \(-0.576336\pi\)
0.960004 0.279987i \(-0.0903303\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.99715e7 1.03874e8i 0.260533 0.451257i
\(246\) 0 0
\(247\) −6.08531e7 1.05401e8i −0.256947 0.445045i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.34891e8 0.538425 0.269212 0.963081i \(-0.413237\pi\)
0.269212 + 0.963081i \(0.413237\pi\)
\(252\) 0 0
\(253\) 3.11588e8 1.20965
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.17761e8 + 2.03969e8i 0.432750 + 0.749545i 0.997109 0.0759845i \(-0.0242099\pi\)
−0.564359 + 0.825529i \(0.690877\pi\)
\(258\) 0 0
\(259\) 1.84433e8 3.19448e8i 0.659614 1.14249i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.33326e7 1.44336e8i 0.282468 0.489249i −0.689524 0.724263i \(-0.742180\pi\)
0.971992 + 0.235014i \(0.0755135\pi\)
\(264\) 0 0
\(265\) −4.52750e7 7.84186e7i −0.149451 0.258856i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.49508e8 0.468308 0.234154 0.972200i \(-0.424768\pi\)
0.234154 + 0.972200i \(0.424768\pi\)
\(270\) 0 0
\(271\) −3.02665e8 −0.923783 −0.461892 0.886936i \(-0.652829\pi\)
−0.461892 + 0.886936i \(0.652829\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.42074e7 2.46079e7i −0.0411955 0.0713527i
\(276\) 0 0
\(277\) −1.63479e7 + 2.83153e7i −0.0462148 + 0.0800465i −0.888207 0.459443i \(-0.848049\pi\)
0.841993 + 0.539489i \(0.181383\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.50968e8 4.34689e8i 0.674755 1.16871i −0.301786 0.953376i \(-0.597583\pi\)
0.976540 0.215334i \(-0.0690840\pi\)
\(282\) 0 0
\(283\) 1.62635e8 + 2.81691e8i 0.426541 + 0.738790i 0.996563 0.0828391i \(-0.0263988\pi\)
−0.570022 + 0.821629i \(0.693065\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.69371e8 0.672611
\(288\) 0 0
\(289\) −1.57357e8 −0.383481
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.17572e7 1.24287e8i −0.166659 0.288662i 0.770584 0.637338i \(-0.219965\pi\)
−0.937243 + 0.348676i \(0.886631\pi\)
\(294\) 0 0
\(295\) −4.53860e7 + 7.86109e7i −0.102931 + 0.178281i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.45311e7 + 1.46412e8i −0.182881 + 0.316758i
\(300\) 0 0
\(301\) −4.62223e8 8.00593e8i −0.976941 1.69211i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.66947e7 0.0336923
\(306\) 0 0
\(307\) 6.60558e8 1.30295 0.651474 0.758671i \(-0.274151\pi\)
0.651474 + 0.758671i \(0.274151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.28703e7 9.15740e7i −0.0996667 0.172628i 0.811880 0.583824i \(-0.198444\pi\)
−0.911547 + 0.411197i \(0.865111\pi\)
\(312\) 0 0
\(313\) 5.93605e7 1.02815e8i 0.109419 0.189519i −0.806116 0.591757i \(-0.798434\pi\)
0.915535 + 0.402238i \(0.131768\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.17334e8 + 3.76434e8i −0.383196 + 0.663715i −0.991517 0.129976i \(-0.958510\pi\)
0.608321 + 0.793691i \(0.291843\pi\)
\(318\) 0 0
\(319\) −2.11224e8 3.65851e8i −0.364314 0.631011i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.94468e8 −1.31180
\(324\) 0 0
\(325\) 1.54173e7 0.0249125
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.89563e7 1.54077e8i −0.137718 0.238535i
\(330\) 0 0
\(331\) 3.67129e8 6.35887e8i 0.556444 0.963789i −0.441346 0.897337i \(-0.645499\pi\)
0.997790 0.0664518i \(-0.0211678\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.96034e8 1.03236e9i 0.866192 1.50029i
\(336\) 0 0
\(337\) 2.35772e8 + 4.08370e8i 0.335574 + 0.581231i 0.983595 0.180391i \(-0.0577364\pi\)
−0.648021 + 0.761622i \(0.724403\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.94871e7 0.122214
\(342\) 0 0
\(343\) 4.56772e8 0.611181
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.53356e8 + 9.58441e8i 0.710970 + 1.23144i 0.964493 + 0.264107i \(0.0850773\pi\)
−0.253523 + 0.967329i \(0.581589\pi\)
\(348\) 0 0
\(349\) 3.98088e7 6.89509e7i 0.0501291 0.0868262i −0.839872 0.542784i \(-0.817370\pi\)
0.890001 + 0.455958i \(0.150703\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.09107e7 + 8.81799e7i −0.0616024 + 0.106698i −0.895182 0.445701i \(-0.852954\pi\)
0.833579 + 0.552400i \(0.186288\pi\)
\(354\) 0 0
\(355\) −5.85734e7 1.01452e8i −0.0694866 0.120354i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.69307e7 0.110568 0.0552842 0.998471i \(-0.482394\pi\)
0.0552842 + 0.998471i \(0.482394\pi\)
\(360\) 0 0
\(361\) 1.60109e9 1.79119
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.19657e8 2.07252e8i −0.128799 0.223086i
\(366\) 0 0
\(367\) −7.72007e8 + 1.33716e9i −0.815249 + 1.41205i 0.0939003 + 0.995582i \(0.470067\pi\)
−0.909149 + 0.416471i \(0.863267\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.73225e8 + 3.00034e8i −0.176117 + 0.305043i
\(372\) 0 0
\(373\) 6.74772e8 + 1.16874e9i 0.673250 + 1.16610i 0.976977 + 0.213344i \(0.0684355\pi\)
−0.303727 + 0.952759i \(0.598231\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.29213e8 0.220315
\(378\) 0 0
\(379\) −1.61145e9 −1.52048 −0.760238 0.649645i \(-0.774918\pi\)
−0.760238 + 0.649645i \(0.774918\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.32119e8 1.09486e9i −0.574915 0.995781i −0.996051 0.0887840i \(-0.971702\pi\)
0.421136 0.906997i \(-0.361631\pi\)
\(384\) 0 0
\(385\) −7.25519e8 + 1.25664e9i −0.647942 + 1.12227i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.18665e8 + 1.59117e9i −0.791286 + 1.37055i 0.133885 + 0.990997i \(0.457255\pi\)
−0.925171 + 0.379551i \(0.876079\pi\)
\(390\) 0 0
\(391\) 5.51798e8 + 9.55743e8i 0.466833 + 0.808579i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.84454e8 0.232232
\(396\) 0 0
\(397\) −1.85478e9 −1.48773 −0.743867 0.668327i \(-0.767011\pi\)
−0.743867 + 0.668327i \(0.767011\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.04284e8 1.04665e9i −0.467989 0.810580i 0.531342 0.847157i \(-0.321688\pi\)
−0.999331 + 0.0365770i \(0.988355\pi\)
\(402\) 0 0
\(403\) −2.42770e7 + 4.20491e7i −0.0184769 + 0.0320029i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.44898e8 + 1.29020e9i −0.547667 + 0.948587i
\(408\) 0 0
\(409\) 6.10716e8 + 1.05779e9i 0.441375 + 0.764484i 0.997792 0.0664194i \(-0.0211575\pi\)
−0.556417 + 0.830903i \(0.687824\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.47299e8 0.242593
\(414\) 0 0
\(415\) 1.07643e9 0.739295
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.60350e8 1.31697e9i −0.504969 0.874632i −0.999983 0.00574729i \(-0.998171\pi\)
0.495014 0.868885i \(-0.335163\pi\)
\(420\) 0 0
\(421\) −5.43681e8 + 9.41684e8i −0.355105 + 0.615060i −0.987136 0.159883i \(-0.948888\pi\)
0.632031 + 0.774943i \(0.282222\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.03203e7 8.71573e7i 0.0317967 0.0550735i
\(426\) 0 0
\(427\) −3.19375e7 5.53174e7i −0.0198520 0.0343846i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.33391e9 −0.802521 −0.401261 0.915964i \(-0.631428\pi\)
−0.401261 + 0.915964i \(0.631428\pi\)
\(432\) 0 0
\(433\) −3.41286e8 −0.202027 −0.101014 0.994885i \(-0.532209\pi\)
−0.101014 + 0.994885i \(0.532209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.73288e9 3.00144e9i −0.993307 1.72046i
\(438\) 0 0
\(439\) −6.78117e8 + 1.17453e9i −0.382541 + 0.662581i −0.991425 0.130679i \(-0.958284\pi\)
0.608883 + 0.793260i \(0.291618\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.79697e8 1.00407e9i 0.316802 0.548717i −0.663017 0.748605i \(-0.730724\pi\)
0.979819 + 0.199887i \(0.0640575\pi\)
\(444\) 0 0
\(445\) −3.03718e8 5.26055e8i −0.163384 0.282990i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.76057e8 −0.508877 −0.254439 0.967089i \(-0.581891\pi\)
−0.254439 + 0.967089i \(0.581891\pi\)
\(450\) 0 0
\(451\) −1.08795e9 −0.558458
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.93654e8 6.81828e8i −0.195918 0.339340i
\(456\) 0 0
\(457\) 9.44190e8 1.63539e9i 0.462757 0.801518i −0.536340 0.844002i \(-0.680194\pi\)
0.999097 + 0.0424836i \(0.0135270\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.07086e8 + 1.22471e9i −0.336139 + 0.582210i −0.983703 0.179801i \(-0.942455\pi\)
0.647564 + 0.762011i \(0.275788\pi\)
\(462\) 0 0
\(463\) −5.13035e8 8.88602e8i −0.240222 0.416077i 0.720555 0.693398i \(-0.243887\pi\)
−0.960778 + 0.277320i \(0.910554\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.39875e8 0.199858 0.0999288 0.994995i \(-0.468139\pi\)
0.0999288 + 0.994995i \(0.468139\pi\)
\(468\) 0 0
\(469\) −4.56092e9 −2.04149
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.86685e9 + 3.23347e9i 0.811138 + 1.40493i
\(474\) 0 0
\(475\) −1.58027e8 + 2.73711e8i −0.0676556 + 0.117183i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.23369e9 + 2.13681e9i −0.512899 + 0.888367i 0.486989 + 0.873408i \(0.338095\pi\)
−0.999888 + 0.0149590i \(0.995238\pi\)
\(480\) 0 0
\(481\) −4.04168e8 7.00040e8i −0.165598 0.286824i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.01785e9 −0.405123
\(486\) 0 0
\(487\) −9.54719e8 −0.374563 −0.187281 0.982306i \(-0.559968\pi\)
−0.187281 + 0.982306i \(0.559968\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.83801e8 1.70399e9i −0.375079 0.649655i 0.615260 0.788324i \(-0.289051\pi\)
−0.990339 + 0.138669i \(0.955718\pi\)
\(492\) 0 0
\(493\) 7.48122e8 1.29579e9i 0.281196 0.487045i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.24105e8 + 3.88161e8i −0.0818850 + 0.141829i
\(498\) 0 0
\(499\) 5.22725e8 + 9.05387e8i 0.188331 + 0.326199i 0.944694 0.327953i \(-0.106359\pi\)
−0.756363 + 0.654152i \(0.773026\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.15052e9 0.403093 0.201546 0.979479i \(-0.435403\pi\)
0.201546 + 0.979479i \(0.435403\pi\)
\(504\) 0 0
\(505\) 1.61206e8 0.0557008
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.50094e9 4.33176e9i −0.840603 1.45597i −0.889385 0.457158i \(-0.848867\pi\)
0.0487822 0.998809i \(-0.484466\pi\)
\(510\) 0 0
\(511\) −4.57814e8 + 7.92957e8i −0.151781 + 0.262892i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.95681e9 + 5.12134e9i −0.953889 + 1.65218i
\(516\) 0 0
\(517\) 3.59281e8 + 6.22293e8i 0.114345 + 0.198051i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.31851e9 0.408460 0.204230 0.978923i \(-0.434531\pi\)
0.204230 + 0.978923i \(0.434531\pi\)
\(522\) 0 0
\(523\) −1.46804e9 −0.448727 −0.224363 0.974506i \(-0.572030\pi\)
−0.224363 + 0.974506i \(0.572030\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.58475e8 + 2.74486e8i 0.0471653 + 0.0816927i
\(528\) 0 0
\(529\) −7.04732e8 + 1.22063e9i −0.206980 + 0.358501i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.95151e8 5.11216e8i 0.0844303 0.146238i
\(534\) 0 0
\(535\) 9.44387e8 + 1.63573e9i 0.266632 + 0.461820i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.85346e9 0.509827
\(540\) 0 0
\(541\) 3.28515e9 0.892000 0.446000 0.895033i \(-0.352848\pi\)
0.446000 + 0.895033i \(0.352848\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.05850e8 + 7.02954e8i 0.107394 + 0.186011i
\(546\) 0 0
\(547\) 1.71890e9 2.97722e9i 0.449050 0.777778i −0.549274 0.835642i \(-0.685096\pi\)
0.998324 + 0.0578644i \(0.0184291\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.34942e9 + 4.06931e9i −0.598315 + 1.03631i
\(552\) 0 0
\(553\) −5.44169e8 9.42528e8i −0.136835 0.237004i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.14256e9 1.75130 0.875651 0.482945i \(-0.160433\pi\)
0.875651 + 0.482945i \(0.160433\pi\)
\(558\) 0 0
\(559\) −2.02584e9 −0.490527
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.31348e9 4.00706e9i −0.546369 0.946338i −0.998519 0.0543966i \(-0.982676\pi\)
0.452151 0.891941i \(-0.350657\pi\)
\(564\) 0 0
\(565\) −3.02731e9 + 5.24346e9i −0.706135 + 1.22306i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.82742e9 + 4.89724e9i −0.643425 + 1.11444i 0.341238 + 0.939977i \(0.389154\pi\)
−0.984663 + 0.174468i \(0.944180\pi\)
\(570\) 0 0
\(571\) 3.84013e9 + 6.65130e9i 0.863216 + 1.49513i 0.868808 + 0.495149i \(0.164887\pi\)
−0.00559216 + 0.999984i \(0.501780\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.39031e8 0.0963070
\(576\) 0 0
\(577\) 2.51579e9 0.545204 0.272602 0.962127i \(-0.412116\pi\)
0.272602 + 0.962127i \(0.412116\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.05924e9 3.56671e9i −0.435603 0.754487i
\(582\) 0 0
\(583\) 6.99628e8 1.21179e9i 0.146227 0.253273i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.25025e9 3.89755e9i 0.459196 0.795351i −0.539723 0.841843i \(-0.681471\pi\)
0.998919 + 0.0464920i \(0.0148042\pi\)
\(588\) 0 0
\(589\) −4.97677e8 8.62002e8i −0.100356 0.173822i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.41758e9 −1.65766 −0.828831 0.559499i \(-0.810993\pi\)
−0.828831 + 0.559499i \(0.810993\pi\)
\(594\) 0 0
\(595\) −5.13935e9 −1.00023
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.91250e9 3.31254e9i −0.363586 0.629749i 0.624963 0.780655i \(-0.285114\pi\)
−0.988548 + 0.150906i \(0.951781\pi\)
\(600\) 0 0
\(601\) 3.62512e8 6.27889e8i 0.0681179 0.117984i −0.829955 0.557830i \(-0.811634\pi\)
0.898073 + 0.439847i \(0.144967\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.87089e7 1.70969e8i 0.0181223 0.0313887i
\(606\) 0 0
\(607\) −5.42460e9 9.39569e9i −0.984481 1.70517i −0.644218 0.764842i \(-0.722817\pi\)
−0.340263 0.940330i \(-0.610516\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.89879e8 −0.0691489
\(612\) 0 0
\(613\) −7.59484e9 −1.33170 −0.665851 0.746085i \(-0.731931\pi\)
−0.665851 + 0.746085i \(0.731931\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.91168e8 + 1.02393e9i 0.101324 + 0.175498i 0.912230 0.409678i \(-0.134359\pi\)
−0.810906 + 0.585176i \(0.801025\pi\)
\(618\) 0 0
\(619\) −4.81004e9 + 8.33123e9i −0.815138 + 1.41186i 0.0940908 + 0.995564i \(0.470006\pi\)
−0.909229 + 0.416297i \(0.863328\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.16204e9 + 2.01272e9i −0.192537 + 0.333484i
\(624\) 0 0
\(625\) 3.27891e9 + 5.67923e9i 0.537216 + 0.930485i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.27662e9 −0.845432
\(630\) 0 0
\(631\) 4.21153e9 0.667325 0.333662 0.942693i \(-0.391715\pi\)
0.333662 + 0.942693i \(0.391715\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.29307e9 2.23967e9i −0.200408 0.347116i
\(636\) 0 0
\(637\) −5.02828e8 + 8.70923e8i −0.0770781 + 0.133503i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.96142e9 + 6.86139e9i −0.594084 + 1.02898i 0.399591 + 0.916694i \(0.369152\pi\)
−0.993675 + 0.112291i \(0.964181\pi\)
\(642\) 0 0
\(643\) −1.46169e9 2.53172e9i −0.216829 0.375558i 0.737008 0.675884i \(-0.236238\pi\)
−0.953837 + 0.300326i \(0.902905\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.00413e10 1.45755 0.728774 0.684754i \(-0.240090\pi\)
0.728774 + 0.684754i \(0.240090\pi\)
\(648\) 0 0
\(649\) −1.40269e9 −0.201421
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.41652e8 + 1.28458e9i 0.104233 + 0.180536i 0.913424 0.407008i \(-0.133428\pi\)
−0.809192 + 0.587545i \(0.800095\pi\)
\(654\) 0 0
\(655\) 1.84788e9 3.20062e9i 0.256938 0.445030i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.67543e9 2.90193e9i 0.228048 0.394991i −0.729181 0.684320i \(-0.760099\pi\)
0.957230 + 0.289329i \(0.0934323\pi\)
\(660\) 0 0
\(661\) −1.70018e9 2.94480e9i −0.228976 0.396598i 0.728529 0.685015i \(-0.240204\pi\)
−0.957505 + 0.288417i \(0.906871\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.61397e10 2.12824
\(666\) 0 0
\(667\) 6.52716e9 0.851695
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.28991e8 + 2.23419e8i 0.0164828 + 0.0285490i
\(672\) 0 0
\(673\) −4.48300e9 + 7.76478e9i −0.566912 + 0.981921i 0.429957 + 0.902850i \(0.358529\pi\)
−0.996869 + 0.0790714i \(0.974804\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.44416e9 1.28937e10i 0.922052 1.59704i 0.125816 0.992054i \(-0.459845\pi\)
0.796235 0.604987i \(-0.206822\pi\)
\(678\) 0 0
\(679\) 1.94717e9 + 3.37261e9i 0.238705 + 0.413448i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.71503e9 0.926542 0.463271 0.886217i \(-0.346676\pi\)
0.463271 + 0.886217i \(0.346676\pi\)
\(684\) 0 0
\(685\) 1.42428e10 1.69308
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.79606e8 + 6.57496e8i 0.0442146 + 0.0765819i
\(690\) 0 0
\(691\) −1.26498e9 + 2.19101e9i −0.145851 + 0.252622i −0.929690 0.368342i \(-0.879925\pi\)
0.783839 + 0.620964i \(0.213259\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.29445e8 3.97411e8i 0.0259258 0.0449048i
\(696\) 0 0
\(697\) −1.92667e9 3.33709e9i −0.215522 0.373296i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.41167e10 −1.54782 −0.773908 0.633298i \(-0.781701\pi\)
−0.773908 + 0.633298i \(0.781701\pi\)
\(702\) 0 0
\(703\) 1.65708e10 1.79887
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.08392e8 5.34150e8i −0.0328197 0.0568454i
\(708\) 0 0
\(709\) 6.46733e9 1.12017e10i 0.681496 1.18039i −0.293028 0.956104i \(-0.594663\pi\)
0.974524 0.224282i \(-0.0720037\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.91324e8 + 1.19741e9i −0.0714279 + 0.123717i
\(714\) 0 0
\(715\) 1.58991e9 + 2.75380e9i 0.162668 + 0.281748i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.22962e10 −1.23373 −0.616864 0.787070i \(-0.711597\pi\)
−0.616864 + 0.787070i \(0.711597\pi\)
\(720\) 0 0
\(721\) 2.26258e10 2.24818
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.97617e8 5.15487e8i −0.0290051 0.0502383i
\(726\) 0 0
\(727\) 3.37402e9 5.84398e9i 0.325670 0.564077i −0.655978 0.754780i \(-0.727744\pi\)
0.981648 + 0.190704i \(0.0610769\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.61208e9 + 1.14525e10i −0.626076 + 1.08440i
\(732\) 0 0
\(733\) −1.87123e9 3.24106e9i −0.175494 0.303965i 0.764838 0.644223i \(-0.222819\pi\)
−0.940332 + 0.340258i \(0.889486\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.84209e10 1.69502
\(738\) 0 0
\(739\) −1.27399e9 −0.116121 −0.0580606 0.998313i \(-0.518492\pi\)
−0.0580606 + 0.998313i \(0.518492\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.62517e9 6.27897e9i −0.324240 0.561601i 0.657118 0.753788i \(-0.271775\pi\)
−0.981358 + 0.192187i \(0.938442\pi\)
\(744\) 0 0
\(745\) 5.68817e9 9.85220e9i 0.503994 0.872944i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.61328e9 6.25838e9i 0.314206 0.544221i
\(750\) 0 0
\(751\) −9.82411e9 1.70159e10i −0.846357 1.46593i −0.884437 0.466659i \(-0.845458\pi\)
0.0380804 0.999275i \(-0.487876\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.34190e9 0.451733
\(756\) 0 0
\(757\) −1.81025e10 −1.51671 −0.758356 0.651841i \(-0.773997\pi\)
−0.758356 + 0.651841i \(0.773997\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.43280e9 4.21373e9i −0.200106 0.346593i 0.748457 0.663184i \(-0.230795\pi\)
−0.948562 + 0.316590i \(0.897462\pi\)
\(762\) 0 0
\(763\) 1.55281e9 2.68954e9i 0.126556 0.219201i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.80537e8 6.59109e8i 0.0304518 0.0527440i
\(768\) 0 0
\(769\) 3.32352e9 + 5.75651e9i 0.263546 + 0.456475i 0.967182 0.254086i \(-0.0817746\pi\)
−0.703636 + 0.710561i \(0.748441\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.79263e10 1.39593 0.697963 0.716134i \(-0.254090\pi\)
0.697963 + 0.716134i \(0.254090\pi\)
\(774\) 0 0
\(775\) 1.26088e8 0.00973012
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.05056e9 + 1.04799e10i 0.458579 + 0.794282i
\(780\) 0 0
\(781\) 9.05127e8 1.56773e9i 0.0679878 0.117758i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9.65303e9 + 1.67195e10i −0.712229 + 1.23362i
\(786\) 0 0
\(787\) 4.95269e9 + 8.57831e9i 0.362184 + 0.627321i 0.988320 0.152393i \(-0.0486978\pi\)
−0.626136 + 0.779714i \(0.715365\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.31653e10 1.66426
\(792\) 0 0
\(793\) −1.39976e8 −0.00996777
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.18602e10 2.05424e10i −0.829824 1.43730i −0.898176 0.439637i \(-0.855107\pi\)
0.0683515 0.997661i \(-0.478226\pi\)
\(798\) 0 0
\(799\) −1.27252e9 + 2.20406e9i −0.0882571 + 0.152866i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.84904e9 3.20263e9i 0.126021 0.218275i
\(804\) 0 0
\(805\) −1.12099e10 1.94160e10i −0.757381 1.31182i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.49700e10 1.65805 0.829027 0.559208i \(-0.188895\pi\)
0.829027 + 0.559208i \(0.188895\pi\)
\(810\) 0 0
\(811\) 1.12321e9 0.0739412 0.0369706 0.999316i \(-0.488229\pi\)
0.0369706 + 0.999316i \(0.488229\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.73487e9 + 9.93308e9i 0.371084 + 0.642736i
\(816\) 0 0
\(817\) 2.07647e10 3.59655e10i 1.33214 2.30733i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.45639e9 + 1.29148e10i −0.470249 + 0.814494i −0.999421 0.0340198i \(-0.989169\pi\)
0.529173 + 0.848514i \(0.322502\pi\)
\(822\) 0 0
\(823\) −1.40501e9 2.43356e9i −0.0878580 0.152175i 0.818747 0.574154i \(-0.194669\pi\)
−0.906605 + 0.421979i \(0.861336\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.92634e10 1.18430 0.592151 0.805827i \(-0.298279\pi\)
0.592151 + 0.805827i \(0.298279\pi\)
\(828\) 0 0
\(829\) −3.12798e10 −1.90688 −0.953440 0.301582i \(-0.902485\pi\)
−0.953440 + 0.301582i \(0.902485\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.28233e9 + 5.68517e9i 0.196755 + 0.340789i
\(834\) 0 0
\(835\) 1.41287e10 2.44716e10i 0.839843 1.45465i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.65355e9 + 1.32563e10i −0.447400 + 0.774920i −0.998216 0.0597070i \(-0.980983\pi\)
0.550816 + 0.834627i \(0.314317\pi\)
\(840\) 0 0
\(841\) 4.20021e9 + 7.27498e9i 0.243492 + 0.421741i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.65099e10 0.941336
\(846\) 0 0
\(847\) −7.55332e8 −0.0427116
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.15093e10 1.99346e10i −0.640168 1.10880i
\(852\) 0 0
\(853\) −1.59603e10 + 2.76441e10i −0.880480 + 1.52504i −0.0296720 + 0.999560i \(0.509446\pi\)
−0.850808 + 0.525477i \(0.823887\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.48319e10 + 2.56895e10i −0.804938 + 1.39419i 0.111395 + 0.993776i \(0.464468\pi\)
−0.916333 + 0.400417i \(0.868865\pi\)
\(858\) 0 0
\(859\) −8.51597e9 1.47501e10i −0.458414 0.793997i 0.540463 0.841368i \(-0.318249\pi\)
−0.998877 + 0.0473709i \(0.984916\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.16249e9 −0.167491 −0.0837454 0.996487i \(-0.526688\pi\)
−0.0837454 + 0.996487i \(0.526688\pi\)
\(864\) 0 0
\(865\) 1.61005e10 0.845829
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.19782e9 + 3.80673e9i 0.113611 + 0.196781i
\(870\) 0 0
\(871\) −4.99741e9 + 8.65578e9i −0.256261 + 0.443856i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.15996e10 2.00911e10i 0.585349 1.01385i
\(876\) 0 0
\(877\) −3.19898e9 5.54079e9i −0.160145 0.277379i 0.774776 0.632236i \(-0.217863\pi\)
−0.934920 + 0.354857i \(0.884529\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.45065e10 0.714739 0.357369 0.933963i \(-0.383674\pi\)
0.357369 + 0.933963i \(0.383674\pi\)
\(882\) 0 0
\(883\) −2.39105e10 −1.16876 −0.584382 0.811479i \(-0.698663\pi\)
−0.584382 + 0.811479i \(0.698663\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.54012e10 + 2.66757e10i 0.741007 + 1.28346i 0.952037 + 0.305982i \(0.0989849\pi\)
−0.211030 + 0.977480i \(0.567682\pi\)
\(888\) 0 0
\(889\) −4.94737e9 + 8.56909e9i −0.236166 + 0.409052i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.99624e9 6.92168e9i 0.187789 0.325261i
\(894\) 0 0
\(895\) 1.43440e10 + 2.48445e10i 0.668789 + 1.15838i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.87458e9 0.0860488
\(900\) 0 0
\(901\) 4.95594e9 0.225730
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.31253e10 + 2.27338e10i 0.588628 + 1.01953i
\(906\) 0 0
\(907\) 6.06562e9 1.05060e10i 0.269929 0.467531i −0.698914 0.715206i \(-0.746333\pi\)
0.968843 + 0.247675i \(0.0796664\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.73568e9 + 1.68627e10i −0.426630 + 0.738945i −0.996571 0.0827403i \(-0.973633\pi\)
0.569941 + 0.821686i \(0.306966\pi\)
\(912\) 0 0
\(913\) 8.31697e9 + 1.44054e10i 0.361674 + 0.626438i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.41402e10 −0.605567
\(918\) 0 0
\(919\) −2.10755e10 −0.895721 −0.447861 0.894103i \(-0.647814\pi\)
−0.447861 + 0.894103i \(0.647814\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.91105e8 + 8.50619e8i 0.0205574 + 0.0356065i
\(924\) 0 0
\(925\) −1.04957e9 + 1.81791e9i −0.0436028 + 0.0755223i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.48141e9 6.02997e9i 0.142462 0.246752i −0.785961 0.618276i \(-0.787831\pi\)
0.928423 + 0.371524i \(0.121165\pi\)
\(930\) 0 0
\(931\) −1.03079e10 1.78538e10i −0.418646 0.725116i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.07571e10 0.830472
\(936\) 0 0
\(937\) 1.58623e10 0.629908 0.314954 0.949107i \(-0.398011\pi\)
0.314954 + 0.949107i \(0.398011\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.62492e10 2.81444e10i −0.635722 1.10110i −0.986362 0.164592i \(-0.947369\pi\)
0.350640 0.936510i \(-0.385964\pi\)
\(942\) 0 0
\(943\) 8.40483e9 1.45576e10i 0.326391 0.565326i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.70871e9 + 4.69162e9i −0.103642 + 0.179514i −0.913183 0.407550i \(-0.866383\pi\)
0.809540 + 0.587064i \(0.199716\pi\)
\(948\) 0 0
\(949\) 1.00326e9 + 1.73769e9i 0.0381049 + 0.0659996i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.62658e9 −0.0983028 −0.0491514 0.998791i \(-0.515652\pi\)
−0.0491514 + 0.998791i \(0.515652\pi\)
\(954\) 0 0
\(955\) 3.02762e10 1.12484
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.72468e10 4.71928e10i −0.997586 1.72787i
\(960\) 0 0
\(961\) 1.35578e10 2.34827e10i 0.492783 0.853526i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.93296e9 3.34799e9i 0.0692433 0.119933i
\(966\) 0 0
\(967\) 1.95753e10 + 3.39054e10i 0.696171 + 1.20580i 0.969784 + 0.243963i \(0.0784477\pi\)
−0.273614 + 0.961840i \(0.588219\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.49003e10 −0.872846 −0.436423 0.899742i \(-0.643755\pi\)
−0.436423 + 0.899742i \(0.643755\pi\)
\(972\) 0 0
\(973\) −1.75574e9 −0.0611034
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.22902e9 + 3.86078e9i 0.0764686 + 0.132448i 0.901724 0.432312i \(-0.142302\pi\)
−0.825255 + 0.564760i \(0.808969\pi\)
\(978\) 0 0
\(979\) 4.69332e9 8.12906e9i 0.159860 0.276886i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.32778e10 2.29979e10i 0.445851 0.772237i −0.552260 0.833672i \(-0.686234\pi\)
0.998111 + 0.0614353i \(0.0195678\pi\)
\(984\) 0 0
\(985\) 2.48916e10 + 4.31135e10i 0.829901 + 1.43743i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.76886e10 −1.89628
\(990\) 0 0
\(991\) −6.89473e9 −0.225040 −0.112520 0.993649i \(-0.535892\pi\)
−0.112520 + 0.993649i \(0.535892\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.80207e10 + 3.12128e10i 0.579951 + 1.00451i
\(996\) 0 0
\(997\) 2.56614e8 4.44468e8i 0.00820062 0.0142039i −0.861896 0.507085i \(-0.830723\pi\)
0.870097 + 0.492881i \(0.164056\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.8.i.c.289.5 12
3.2 odd 2 144.8.i.c.97.1 12
4.3 odd 2 27.8.c.a.19.2 12
9.4 even 3 inner 432.8.i.c.145.5 12
9.5 odd 6 144.8.i.c.49.1 12
12.11 even 2 9.8.c.a.7.5 yes 12
36.7 odd 6 81.8.a.c.1.5 6
36.11 even 6 81.8.a.e.1.2 6
36.23 even 6 9.8.c.a.4.5 12
36.31 odd 6 27.8.c.a.10.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.8.c.a.4.5 12 36.23 even 6
9.8.c.a.7.5 yes 12 12.11 even 2
27.8.c.a.10.2 12 36.31 odd 6
27.8.c.a.19.2 12 4.3 odd 2
81.8.a.c.1.5 6 36.7 odd 6
81.8.a.e.1.2 6 36.11 even 6
144.8.i.c.49.1 12 9.5 odd 6
144.8.i.c.97.1 12 3.2 odd 2
432.8.i.c.145.5 12 9.4 even 3 inner
432.8.i.c.289.5 12 1.1 even 1 trivial