Properties

Label 810.2.i.d.109.1
Level $810$
Weight $2$
Character 810.109
Analytic conductor $6.468$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(109,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 810.109
Dual form 810.2.i.d.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-1.23205 - 1.86603i) q^{5} +(3.46410 - 2.00000i) q^{7} +1.00000i q^{8} +(2.00000 + 1.00000i) q^{10} +(2.50000 + 4.33013i) q^{11} +(-2.59808 - 1.50000i) q^{13} +(-2.00000 + 3.46410i) q^{14} +(-0.500000 - 0.866025i) q^{16} -1.00000i q^{17} +6.00000 q^{19} +(-2.23205 + 0.133975i) q^{20} +(-4.33013 - 2.50000i) q^{22} +(-0.866025 - 0.500000i) q^{23} +(-1.96410 + 4.59808i) q^{25} +3.00000 q^{26} -4.00000i q^{28} +(-4.50000 - 7.79423i) q^{29} +(2.50000 - 4.33013i) q^{31} +(0.866025 + 0.500000i) q^{32} +(0.500000 + 0.866025i) q^{34} +(-8.00000 - 4.00000i) q^{35} -2.00000i q^{37} +(-5.19615 + 3.00000i) q^{38} +(1.86603 - 1.23205i) q^{40} +(1.00000 - 1.73205i) q^{41} +(-0.866025 + 0.500000i) q^{43} +5.00000 q^{44} +1.00000 q^{46} +(11.2583 - 6.50000i) q^{47} +(4.50000 - 7.79423i) q^{49} +(-0.598076 - 4.96410i) q^{50} +(-2.59808 + 1.50000i) q^{52} +(5.00000 - 10.0000i) q^{55} +(2.00000 + 3.46410i) q^{56} +(7.79423 + 4.50000i) q^{58} +(-2.00000 + 3.46410i) q^{59} +(-4.00000 - 6.92820i) q^{61} +5.00000i q^{62} -1.00000 q^{64} +(0.401924 + 6.69615i) q^{65} +(3.46410 + 2.00000i) q^{67} +(-0.866025 - 0.500000i) q^{68} +(8.92820 - 0.535898i) q^{70} -6.00000 q^{71} +2.00000i q^{73} +(1.00000 + 1.73205i) q^{74} +(3.00000 - 5.19615i) q^{76} +(17.3205 + 10.0000i) q^{77} +(4.50000 + 7.79423i) q^{79} +(-1.00000 + 2.00000i) q^{80} +2.00000i q^{82} +(3.46410 - 2.00000i) q^{83} +(-1.86603 + 1.23205i) q^{85} +(0.500000 - 0.866025i) q^{86} +(-4.33013 + 2.50000i) q^{88} +14.0000 q^{89} -12.0000 q^{91} +(-0.866025 + 0.500000i) q^{92} +(-6.50000 + 11.2583i) q^{94} +(-7.39230 - 11.1962i) q^{95} +(-8.66025 + 5.00000i) q^{97} +9.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{5} + 8 q^{10} + 10 q^{11} - 8 q^{14} - 2 q^{16} + 24 q^{19} - 2 q^{20} + 6 q^{25} + 12 q^{26} - 18 q^{29} + 10 q^{31} + 2 q^{34} - 32 q^{35} + 4 q^{40} + 4 q^{41} + 20 q^{44} + 4 q^{46}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.23205 1.86603i −0.550990 0.834512i
\(6\) 0 0
\(7\) 3.46410 2.00000i 1.30931 0.755929i 0.327327 0.944911i \(-0.393852\pi\)
0.981981 + 0.188982i \(0.0605189\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 + 1.00000i 0.632456 + 0.316228i
\(11\) 2.50000 + 4.33013i 0.753778 + 1.30558i 0.945979 + 0.324227i \(0.105104\pi\)
−0.192201 + 0.981356i \(0.561563\pi\)
\(12\) 0 0
\(13\) −2.59808 1.50000i −0.720577 0.416025i 0.0943882 0.995535i \(-0.469911\pi\)
−0.814965 + 0.579510i \(0.803244\pi\)
\(14\) −2.00000 + 3.46410i −0.534522 + 0.925820i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.00000i 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) −2.23205 + 0.133975i −0.499102 + 0.0299576i
\(21\) 0 0
\(22\) −4.33013 2.50000i −0.923186 0.533002i
\(23\) −0.866025 0.500000i −0.180579 0.104257i 0.406986 0.913434i \(-0.366580\pi\)
−0.587565 + 0.809177i \(0.699913\pi\)
\(24\) 0 0
\(25\) −1.96410 + 4.59808i −0.392820 + 0.919615i
\(26\) 3.00000 0.588348
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) 2.50000 4.33013i 0.449013 0.777714i −0.549309 0.835619i \(-0.685109\pi\)
0.998322 + 0.0579057i \(0.0184423\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 0.500000 + 0.866025i 0.0857493 + 0.148522i
\(35\) −8.00000 4.00000i −1.35225 0.676123i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) −5.19615 + 3.00000i −0.842927 + 0.486664i
\(39\) 0 0
\(40\) 1.86603 1.23205i 0.295045 0.194804i
\(41\) 1.00000 1.73205i 0.156174 0.270501i −0.777312 0.629115i \(-0.783417\pi\)
0.933486 + 0.358614i \(0.116751\pi\)
\(42\) 0 0
\(43\) −0.866025 + 0.500000i −0.132068 + 0.0762493i −0.564578 0.825380i \(-0.690961\pi\)
0.432511 + 0.901629i \(0.357628\pi\)
\(44\) 5.00000 0.753778
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 11.2583 6.50000i 1.64220 0.948122i 0.662145 0.749375i \(-0.269646\pi\)
0.980051 0.198747i \(-0.0636872\pi\)
\(48\) 0 0
\(49\) 4.50000 7.79423i 0.642857 1.11346i
\(50\) −0.598076 4.96410i −0.0845807 0.702030i
\(51\) 0 0
\(52\) −2.59808 + 1.50000i −0.360288 + 0.208013i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 5.00000 10.0000i 0.674200 1.34840i
\(56\) 2.00000 + 3.46410i 0.267261 + 0.462910i
\(57\) 0 0
\(58\) 7.79423 + 4.50000i 1.02343 + 0.590879i
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) 5.00000i 0.635001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.401924 + 6.69615i 0.0498525 + 0.830555i
\(66\) 0 0
\(67\) 3.46410 + 2.00000i 0.423207 + 0.244339i 0.696449 0.717607i \(-0.254762\pi\)
−0.273241 + 0.961946i \(0.588096\pi\)
\(68\) −0.866025 0.500000i −0.105021 0.0606339i
\(69\) 0 0
\(70\) 8.92820 0.535898i 1.06712 0.0640521i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i 0.993127 + 0.117041i \(0.0373409\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) 0 0
\(76\) 3.00000 5.19615i 0.344124 0.596040i
\(77\) 17.3205 + 10.0000i 1.97386 + 1.13961i
\(78\) 0 0
\(79\) 4.50000 + 7.79423i 0.506290 + 0.876919i 0.999974 + 0.00727784i \(0.00231663\pi\)
−0.493684 + 0.869641i \(0.664350\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 0 0
\(82\) 2.00000i 0.220863i
\(83\) 3.46410 2.00000i 0.380235 0.219529i −0.297686 0.954664i \(-0.596215\pi\)
0.677920 + 0.735135i \(0.262881\pi\)
\(84\) 0 0
\(85\) −1.86603 + 1.23205i −0.202399 + 0.133635i
\(86\) 0.500000 0.866025i 0.0539164 0.0933859i
\(87\) 0 0
\(88\) −4.33013 + 2.50000i −0.461593 + 0.266501i
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) −0.866025 + 0.500000i −0.0902894 + 0.0521286i
\(93\) 0 0
\(94\) −6.50000 + 11.2583i −0.670424 + 1.16121i
\(95\) −7.39230 11.1962i −0.758434 1.14870i
\(96\) 0 0
\(97\) −8.66025 + 5.00000i −0.879316 + 0.507673i −0.870433 0.492287i \(-0.836161\pi\)
−0.00888289 + 0.999961i \(0.502828\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) −8.50000 14.7224i −0.845782 1.46494i −0.884941 0.465704i \(-0.845801\pi\)
0.0391591 0.999233i \(-0.487532\pi\)
\(102\) 0 0
\(103\) −8.66025 5.00000i −0.853320 0.492665i 0.00844953 0.999964i \(-0.497310\pi\)
−0.861770 + 0.507300i \(0.830644\pi\)
\(104\) 1.50000 2.59808i 0.147087 0.254762i
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000i 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0.669873 + 11.1603i 0.0638699 + 1.06409i
\(111\) 0 0
\(112\) −3.46410 2.00000i −0.327327 0.188982i
\(113\) 2.59808 + 1.50000i 0.244406 + 0.141108i 0.617200 0.786806i \(-0.288267\pi\)
−0.372794 + 0.927914i \(0.621600\pi\)
\(114\) 0 0
\(115\) 0.133975 + 2.23205i 0.0124932 + 0.208140i
\(116\) −9.00000 −0.835629
\(117\) 0 0
\(118\) 4.00000i 0.368230i
\(119\) −2.00000 3.46410i −0.183340 0.317554i
\(120\) 0 0
\(121\) −7.00000 + 12.1244i −0.636364 + 1.10221i
\(122\) 6.92820 + 4.00000i 0.627250 + 0.362143i
\(123\) 0 0
\(124\) −2.50000 4.33013i −0.224507 0.388857i
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −3.69615 5.59808i −0.324174 0.490984i
\(131\) 1.50000 2.59808i 0.131056 0.226995i −0.793028 0.609185i \(-0.791497\pi\)
0.924084 + 0.382190i \(0.124830\pi\)
\(132\) 0 0
\(133\) 20.7846 12.0000i 1.80225 1.04053i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 15.5885 9.00000i 1.33181 0.768922i 0.346235 0.938148i \(-0.387460\pi\)
0.985577 + 0.169226i \(0.0541268\pi\)
\(138\) 0 0
\(139\) −4.00000 + 6.92820i −0.339276 + 0.587643i −0.984297 0.176522i \(-0.943515\pi\)
0.645021 + 0.764165i \(0.276849\pi\)
\(140\) −7.46410 + 4.92820i −0.630832 + 0.416509i
\(141\) 0 0
\(142\) 5.19615 3.00000i 0.436051 0.251754i
\(143\) 15.0000i 1.25436i
\(144\) 0 0
\(145\) −9.00000 + 18.0000i −0.747409 + 1.49482i
\(146\) −1.00000 1.73205i −0.0827606 0.143346i
\(147\) 0 0
\(148\) −1.73205 1.00000i −0.142374 0.0821995i
\(149\) −6.50000 + 11.2583i −0.532501 + 0.922318i 0.466779 + 0.884374i \(0.345414\pi\)
−0.999280 + 0.0379444i \(0.987919\pi\)
\(150\) 0 0
\(151\) −6.50000 11.2583i −0.528962 0.916190i −0.999430 0.0337724i \(-0.989248\pi\)
0.470467 0.882418i \(-0.344085\pi\)
\(152\) 6.00000i 0.486664i
\(153\) 0 0
\(154\) −20.0000 −1.61165
\(155\) −11.1603 + 0.669873i −0.896413 + 0.0538055i
\(156\) 0 0
\(157\) 11.2583 + 6.50000i 0.898513 + 0.518756i 0.876717 0.481006i \(-0.159728\pi\)
0.0217953 + 0.999762i \(0.493062\pi\)
\(158\) −7.79423 4.50000i −0.620076 0.358001i
\(159\) 0 0
\(160\) −0.133975 2.23205i −0.0105916 0.176459i
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) 19.0000i 1.48819i 0.668071 + 0.744097i \(0.267120\pi\)
−0.668071 + 0.744097i \(0.732880\pi\)
\(164\) −1.00000 1.73205i −0.0780869 0.135250i
\(165\) 0 0
\(166\) −2.00000 + 3.46410i −0.155230 + 0.268866i
\(167\) 10.3923 + 6.00000i 0.804181 + 0.464294i 0.844931 0.534875i \(-0.179641\pi\)
−0.0407502 + 0.999169i \(0.512975\pi\)
\(168\) 0 0
\(169\) −2.00000 3.46410i −0.153846 0.266469i
\(170\) 1.00000 2.00000i 0.0766965 0.153393i
\(171\) 0 0
\(172\) 1.00000i 0.0762493i
\(173\) −13.8564 + 8.00000i −1.05348 + 0.608229i −0.923622 0.383304i \(-0.874786\pi\)
−0.129861 + 0.991532i \(0.541453\pi\)
\(174\) 0 0
\(175\) 2.39230 + 19.8564i 0.180841 + 1.50100i
\(176\) 2.50000 4.33013i 0.188445 0.326396i
\(177\) 0 0
\(178\) −12.1244 + 7.00000i −0.908759 + 0.524672i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 10.3923 6.00000i 0.770329 0.444750i
\(183\) 0 0
\(184\) 0.500000 0.866025i 0.0368605 0.0638442i
\(185\) −3.73205 + 2.46410i −0.274386 + 0.181164i
\(186\) 0 0
\(187\) 4.33013 2.50000i 0.316650 0.182818i
\(188\) 13.0000i 0.948122i
\(189\) 0 0
\(190\) 12.0000 + 6.00000i 0.870572 + 0.435286i
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 0 0
\(193\) 3.46410 + 2.00000i 0.249351 + 0.143963i 0.619467 0.785022i \(-0.287349\pi\)
−0.370116 + 0.928986i \(0.620682\pi\)
\(194\) 5.00000 8.66025i 0.358979 0.621770i
\(195\) 0 0
\(196\) −4.50000 7.79423i −0.321429 0.556731i
\(197\) 22.0000i 1.56744i 0.621117 + 0.783718i \(0.286679\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 0 0
\(199\) −3.00000 −0.212664 −0.106332 0.994331i \(-0.533911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(200\) −4.59808 1.96410i −0.325133 0.138883i
\(201\) 0 0
\(202\) 14.7224 + 8.50000i 1.03587 + 0.598058i
\(203\) −31.1769 18.0000i −2.18819 1.26335i
\(204\) 0 0
\(205\) −4.46410 + 0.267949i −0.311786 + 0.0187144i
\(206\) 10.0000 0.696733
\(207\) 0 0
\(208\) 3.00000i 0.208013i
\(209\) 15.0000 + 25.9808i 1.03757 + 1.79713i
\(210\) 0 0
\(211\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 3.00000 + 5.19615i 0.205076 + 0.355202i
\(215\) 2.00000 + 1.00000i 0.136399 + 0.0681994i
\(216\) 0 0
\(217\) 20.0000i 1.35769i
\(218\) −6.92820 + 4.00000i −0.469237 + 0.270914i
\(219\) 0 0
\(220\) −6.16025 9.33013i −0.415324 0.629037i
\(221\) −1.50000 + 2.59808i −0.100901 + 0.174766i
\(222\) 0 0
\(223\) −19.0526 + 11.0000i −1.27585 + 0.736614i −0.976083 0.217397i \(-0.930243\pi\)
−0.299770 + 0.954011i \(0.596910\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) 1.73205 1.00000i 0.114960 0.0663723i −0.441417 0.897302i \(-0.645524\pi\)
0.556378 + 0.830930i \(0.312191\pi\)
\(228\) 0 0
\(229\) 1.00000 1.73205i 0.0660819 0.114457i −0.831092 0.556136i \(-0.812283\pi\)
0.897173 + 0.441679i \(0.145617\pi\)
\(230\) −1.23205 1.86603i −0.0812390 0.123042i
\(231\) 0 0
\(232\) 7.79423 4.50000i 0.511716 0.295439i
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) 0 0
\(235\) −26.0000 13.0000i −1.69605 0.848026i
\(236\) 2.00000 + 3.46410i 0.130189 + 0.225494i
\(237\) 0 0
\(238\) 3.46410 + 2.00000i 0.224544 + 0.129641i
\(239\) 8.00000 13.8564i 0.517477 0.896296i −0.482317 0.875997i \(-0.660205\pi\)
0.999794 0.0202996i \(-0.00646202\pi\)
\(240\) 0 0
\(241\) 11.5000 + 19.9186i 0.740780 + 1.28307i 0.952141 + 0.305661i \(0.0988773\pi\)
−0.211360 + 0.977408i \(0.567789\pi\)
\(242\) 14.0000i 0.899954i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) −20.0885 + 1.20577i −1.28340 + 0.0770339i
\(246\) 0 0
\(247\) −15.5885 9.00000i −0.991870 0.572656i
\(248\) 4.33013 + 2.50000i 0.274963 + 0.158750i
\(249\) 0 0
\(250\) −8.52628 + 7.23205i −0.539249 + 0.457395i
\(251\) 15.0000 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(252\) 0 0
\(253\) 5.00000i 0.314347i
\(254\) −2.00000 3.46410i −0.125491 0.217357i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 18.1865 + 10.5000i 1.13444 + 0.654972i 0.945049 0.326929i \(-0.106014\pi\)
0.189396 + 0.981901i \(0.439347\pi\)
\(258\) 0 0
\(259\) −4.00000 6.92820i −0.248548 0.430498i
\(260\) 6.00000 + 3.00000i 0.372104 + 0.186052i
\(261\) 0 0
\(262\) 3.00000i 0.185341i
\(263\) −6.92820 + 4.00000i −0.427211 + 0.246651i −0.698158 0.715944i \(-0.745997\pi\)
0.270947 + 0.962594i \(0.412663\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −12.0000 + 20.7846i −0.735767 + 1.27439i
\(267\) 0 0
\(268\) 3.46410 2.00000i 0.211604 0.122169i
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −0.866025 + 0.500000i −0.0525105 + 0.0303170i
\(273\) 0 0
\(274\) −9.00000 + 15.5885i −0.543710 + 0.941733i
\(275\) −24.8205 + 2.99038i −1.49673 + 0.180327i
\(276\) 0 0
\(277\) −22.5167 + 13.0000i −1.35290 + 0.781094i −0.988654 0.150210i \(-0.952005\pi\)
−0.364241 + 0.931305i \(0.618672\pi\)
\(278\) 8.00000i 0.479808i
\(279\) 0 0
\(280\) 4.00000 8.00000i 0.239046 0.478091i
\(281\) 9.00000 + 15.5885i 0.536895 + 0.929929i 0.999069 + 0.0431402i \(0.0137362\pi\)
−0.462174 + 0.886789i \(0.652930\pi\)
\(282\) 0 0
\(283\) 17.3205 + 10.0000i 1.02960 + 0.594438i 0.916869 0.399188i \(-0.130708\pi\)
0.112728 + 0.993626i \(0.464041\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) 7.50000 + 12.9904i 0.443484 + 0.768137i
\(287\) 8.00000i 0.472225i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) −1.20577 20.0885i −0.0708053 1.17963i
\(291\) 0 0
\(292\) 1.73205 + 1.00000i 0.101361 + 0.0585206i
\(293\) 5.19615 + 3.00000i 0.303562 + 0.175262i 0.644042 0.764990i \(-0.277256\pi\)
−0.340480 + 0.940252i \(0.610589\pi\)
\(294\) 0 0
\(295\) 8.92820 0.535898i 0.519820 0.0312012i
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 13.0000i 0.753070i
\(299\) 1.50000 + 2.59808i 0.0867472 + 0.150251i
\(300\) 0 0
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) 11.2583 + 6.50000i 0.647844 + 0.374033i
\(303\) 0 0
\(304\) −3.00000 5.19615i −0.172062 0.298020i
\(305\) −8.00000 + 16.0000i −0.458079 + 0.916157i
\(306\) 0 0
\(307\) 21.0000i 1.19853i 0.800549 + 0.599267i \(0.204541\pi\)
−0.800549 + 0.599267i \(0.795459\pi\)
\(308\) 17.3205 10.0000i 0.986928 0.569803i
\(309\) 0 0
\(310\) 9.33013 6.16025i 0.529916 0.349879i
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 0 0
\(313\) 12.1244 7.00000i 0.685309 0.395663i −0.116543 0.993186i \(-0.537181\pi\)
0.801852 + 0.597522i \(0.203848\pi\)
\(314\) −13.0000 −0.733632
\(315\) 0 0
\(316\) 9.00000 0.506290
\(317\) −3.46410 + 2.00000i −0.194563 + 0.112331i −0.594117 0.804379i \(-0.702498\pi\)
0.399554 + 0.916710i \(0.369165\pi\)
\(318\) 0 0
\(319\) 22.5000 38.9711i 1.25976 2.18197i
\(320\) 1.23205 + 1.86603i 0.0688737 + 0.104314i
\(321\) 0 0
\(322\) 3.46410 2.00000i 0.193047 0.111456i
\(323\) 6.00000i 0.333849i
\(324\) 0 0
\(325\) 12.0000 9.00000i 0.665640 0.499230i
\(326\) −9.50000 16.4545i −0.526156 0.911330i
\(327\) 0 0
\(328\) 1.73205 + 1.00000i 0.0956365 + 0.0552158i
\(329\) 26.0000 45.0333i 1.43343 2.48277i
\(330\) 0 0
\(331\) −5.00000 8.66025i −0.274825 0.476011i 0.695266 0.718752i \(-0.255287\pi\)
−0.970091 + 0.242742i \(0.921953\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) −0.535898 8.92820i −0.0292793 0.487800i
\(336\) 0 0
\(337\) −13.8564 8.00000i −0.754807 0.435788i 0.0726214 0.997360i \(-0.476864\pi\)
−0.827428 + 0.561572i \(0.810197\pi\)
\(338\) 3.46410 + 2.00000i 0.188422 + 0.108786i
\(339\) 0 0
\(340\) 0.133975 + 2.23205i 0.00726579 + 0.121050i
\(341\) 25.0000 1.35383
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) −0.500000 0.866025i −0.0269582 0.0466930i
\(345\) 0 0
\(346\) 8.00000 13.8564i 0.430083 0.744925i
\(347\) −5.19615 3.00000i −0.278944 0.161048i 0.354001 0.935245i \(-0.384821\pi\)
−0.632945 + 0.774197i \(0.718154\pi\)
\(348\) 0 0
\(349\) 8.00000 + 13.8564i 0.428230 + 0.741716i 0.996716 0.0809766i \(-0.0258039\pi\)
−0.568486 + 0.822693i \(0.692471\pi\)
\(350\) −12.0000 16.0000i −0.641427 0.855236i
\(351\) 0 0
\(352\) 5.00000i 0.266501i
\(353\) 9.52628 5.50000i 0.507033 0.292735i −0.224580 0.974456i \(-0.572101\pi\)
0.731613 + 0.681720i \(0.238768\pi\)
\(354\) 0 0
\(355\) 7.39230 + 11.1962i 0.392343 + 0.594230i
\(356\) 7.00000 12.1244i 0.370999 0.642590i
\(357\) 0 0
\(358\) 17.3205 10.0000i 0.915417 0.528516i
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 19.0526 11.0000i 1.00138 0.578147i
\(363\) 0 0
\(364\) −6.00000 + 10.3923i −0.314485 + 0.544705i
\(365\) 3.73205 2.46410i 0.195344 0.128977i
\(366\) 0 0
\(367\) 19.0526 11.0000i 0.994535 0.574195i 0.0879086 0.996129i \(-0.471982\pi\)
0.906627 + 0.421933i \(0.138648\pi\)
\(368\) 1.00000i 0.0521286i
\(369\) 0 0
\(370\) 2.00000 4.00000i 0.103975 0.207950i
\(371\) 0 0
\(372\) 0 0
\(373\) −18.1865 10.5000i −0.941663 0.543669i −0.0511818 0.998689i \(-0.516299\pi\)
−0.890481 + 0.455020i \(0.849632\pi\)
\(374\) −2.50000 + 4.33013i −0.129272 + 0.223906i
\(375\) 0 0
\(376\) 6.50000 + 11.2583i 0.335212 + 0.580604i
\(377\) 27.0000i 1.39057i
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −13.3923 + 0.803848i −0.687011 + 0.0412365i
\(381\) 0 0
\(382\) −5.19615 3.00000i −0.265858 0.153493i
\(383\) 16.4545 + 9.50000i 0.840785 + 0.485427i 0.857531 0.514432i \(-0.171997\pi\)
−0.0167461 + 0.999860i \(0.505331\pi\)
\(384\) 0 0
\(385\) −2.67949 44.6410i −0.136560 2.27512i
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) 10.0000i 0.507673i
\(389\) −2.50000 4.33013i −0.126755 0.219546i 0.795663 0.605740i \(-0.207123\pi\)
−0.922418 + 0.386194i \(0.873790\pi\)
\(390\) 0 0
\(391\) −0.500000 + 0.866025i −0.0252861 + 0.0437968i
\(392\) 7.79423 + 4.50000i 0.393668 + 0.227284i
\(393\) 0 0
\(394\) −11.0000 19.0526i −0.554172 0.959854i
\(395\) 9.00000 18.0000i 0.452839 0.905678i
\(396\) 0 0
\(397\) 13.0000i 0.652451i 0.945292 + 0.326226i \(0.105777\pi\)
−0.945292 + 0.326226i \(0.894223\pi\)
\(398\) 2.59808 1.50000i 0.130230 0.0751882i
\(399\) 0 0
\(400\) 4.96410 0.598076i 0.248205 0.0299038i
\(401\) 8.00000 13.8564i 0.399501 0.691956i −0.594163 0.804344i \(-0.702517\pi\)
0.993664 + 0.112388i \(0.0358501\pi\)
\(402\) 0 0
\(403\) −12.9904 + 7.50000i −0.647097 + 0.373602i
\(404\) −17.0000 −0.845782
\(405\) 0 0
\(406\) 36.0000 1.78665
\(407\) 8.66025 5.00000i 0.429273 0.247841i
\(408\) 0 0
\(409\) 5.50000 9.52628i 0.271957 0.471044i −0.697406 0.716677i \(-0.745662\pi\)
0.969363 + 0.245633i \(0.0789957\pi\)
\(410\) 3.73205 2.46410i 0.184313 0.121693i
\(411\) 0 0
\(412\) −8.66025 + 5.00000i −0.426660 + 0.246332i
\(413\) 16.0000i 0.787309i
\(414\) 0 0
\(415\) −8.00000 4.00000i −0.392705 0.196352i
\(416\) −1.50000 2.59808i −0.0735436 0.127381i
\(417\) 0 0
\(418\) −25.9808 15.0000i −1.27076 0.733674i
\(419\) −11.5000 + 19.9186i −0.561812 + 0.973087i 0.435527 + 0.900176i \(0.356562\pi\)
−0.997338 + 0.0729107i \(0.976771\pi\)
\(420\) 0 0
\(421\) 13.0000 + 22.5167i 0.633581 + 1.09739i 0.986814 + 0.161859i \(0.0517491\pi\)
−0.353233 + 0.935536i \(0.614918\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.59808 + 1.96410i 0.223039 + 0.0952729i
\(426\) 0 0
\(427\) −27.7128 16.0000i −1.34112 0.774294i
\(428\) −5.19615 3.00000i −0.251166 0.145010i
\(429\) 0 0
\(430\) −2.23205 + 0.133975i −0.107639 + 0.00646083i
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 22.0000i 1.05725i −0.848855 0.528626i \(-0.822707\pi\)
0.848855 0.528626i \(-0.177293\pi\)
\(434\) 10.0000 + 17.3205i 0.480015 + 0.831411i
\(435\) 0 0
\(436\) 4.00000 6.92820i 0.191565 0.331801i
\(437\) −5.19615 3.00000i −0.248566 0.143509i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 10.0000 + 5.00000i 0.476731 + 0.238366i
\(441\) 0 0
\(442\) 3.00000i 0.142695i
\(443\) −25.9808 + 15.0000i −1.23438 + 0.712672i −0.967941 0.251179i \(-0.919182\pi\)
−0.266443 + 0.963851i \(0.585848\pi\)
\(444\) 0 0
\(445\) −17.2487 26.1244i −0.817667 1.23841i
\(446\) 11.0000 19.0526i 0.520865 0.902165i
\(447\) 0 0
\(448\) −3.46410 + 2.00000i −0.163663 + 0.0944911i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 2.59808 1.50000i 0.122203 0.0705541i
\(453\) 0 0
\(454\) −1.00000 + 1.73205i −0.0469323 + 0.0812892i
\(455\) 14.7846 + 22.3923i 0.693113 + 1.04977i
\(456\) 0 0
\(457\) 13.8564 8.00000i 0.648175 0.374224i −0.139581 0.990211i \(-0.544576\pi\)
0.787757 + 0.615986i \(0.211242\pi\)
\(458\) 2.00000i 0.0934539i
\(459\) 0 0
\(460\) 2.00000 + 1.00000i 0.0932505 + 0.0466252i
\(461\) 3.00000 + 5.19615i 0.139724 + 0.242009i 0.927392 0.374091i \(-0.122045\pi\)
−0.787668 + 0.616100i \(0.788712\pi\)
\(462\) 0 0
\(463\) −5.19615 3.00000i −0.241486 0.139422i 0.374374 0.927278i \(-0.377858\pi\)
−0.615859 + 0.787856i \(0.711191\pi\)
\(464\) −4.50000 + 7.79423i −0.208907 + 0.361838i
\(465\) 0 0
\(466\) −7.00000 12.1244i −0.324269 0.561650i
\(467\) 6.00000i 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 29.0167 1.74167i 1.33844 0.0803372i
\(471\) 0 0
\(472\) −3.46410 2.00000i −0.159448 0.0920575i
\(473\) −4.33013 2.50000i −0.199099 0.114950i
\(474\) 0 0
\(475\) −11.7846 + 27.5885i −0.540715 + 1.26585i
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 16.0000i 0.731823i
\(479\) −1.00000 1.73205i −0.0456912 0.0791394i 0.842275 0.539048i \(-0.181216\pi\)
−0.887967 + 0.459908i \(0.847882\pi\)
\(480\) 0 0
\(481\) −3.00000 + 5.19615i −0.136788 + 0.236924i
\(482\) −19.9186 11.5000i −0.907267 0.523811i
\(483\) 0 0
\(484\) 7.00000 + 12.1244i 0.318182 + 0.551107i
\(485\) 20.0000 + 10.0000i 0.908153 + 0.454077i
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 6.92820 4.00000i 0.313625 0.181071i
\(489\) 0 0
\(490\) 16.7942 11.0885i 0.758686 0.500925i
\(491\) −12.0000 + 20.7846i −0.541552 + 0.937996i 0.457263 + 0.889332i \(0.348830\pi\)
−0.998815 + 0.0486647i \(0.984503\pi\)
\(492\) 0 0
\(493\) −7.79423 + 4.50000i −0.351034 + 0.202670i
\(494\) 18.0000 0.809858
\(495\) 0 0
\(496\) −5.00000 −0.224507
\(497\) −20.7846 + 12.0000i −0.932317 + 0.538274i
\(498\) 0 0
\(499\) −6.00000 + 10.3923i −0.268597 + 0.465223i −0.968500 0.249015i \(-0.919893\pi\)
0.699903 + 0.714238i \(0.253227\pi\)
\(500\) 3.76795 10.5263i 0.168508 0.470750i
\(501\) 0 0
\(502\) −12.9904 + 7.50000i −0.579789 + 0.334741i
\(503\) 9.00000i 0.401290i 0.979664 + 0.200645i \(0.0643038\pi\)
−0.979664 + 0.200645i \(0.935696\pi\)
\(504\) 0 0
\(505\) −17.0000 + 34.0000i −0.756490 + 1.51298i
\(506\) 2.50000 + 4.33013i 0.111139 + 0.192498i
\(507\) 0 0
\(508\) 3.46410 + 2.00000i 0.153695 + 0.0887357i
\(509\) −10.5000 + 18.1865i −0.465404 + 0.806104i −0.999220 0.0394971i \(-0.987424\pi\)
0.533815 + 0.845601i \(0.320758\pi\)
\(510\) 0 0
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −21.0000 −0.926270
\(515\) 1.33975 + 22.3205i 0.0590363 + 0.983559i
\(516\) 0 0
\(517\) 56.2917 + 32.5000i 2.47570 + 1.42935i
\(518\) 6.92820 + 4.00000i 0.304408 + 0.175750i
\(519\) 0 0
\(520\) −6.69615 + 0.401924i −0.293646 + 0.0176255i
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 23.0000i 1.00572i −0.864368 0.502860i \(-0.832281\pi\)
0.864368 0.502860i \(-0.167719\pi\)
\(524\) −1.50000 2.59808i −0.0655278 0.113497i
\(525\) 0 0
\(526\) 4.00000 6.92820i 0.174408 0.302084i
\(527\) −4.33013 2.50000i −0.188623 0.108902i
\(528\) 0 0
\(529\) −11.0000 19.0526i −0.478261 0.828372i
\(530\) 0 0
\(531\) 0 0
\(532\) 24.0000i 1.04053i
\(533\) −5.19615 + 3.00000i −0.225070 + 0.129944i
\(534\) 0 0
\(535\) −11.1962 + 7.39230i −0.484052 + 0.319597i
\(536\) −2.00000 + 3.46410i −0.0863868 + 0.149626i
\(537\) 0 0
\(538\) 7.79423 4.50000i 0.336033 0.194009i
\(539\) 45.0000 1.93829
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) −13.8564 + 8.00000i −0.595184 + 0.343629i
\(543\) 0 0
\(544\) 0.500000 0.866025i 0.0214373 0.0371305i
\(545\) −9.85641 14.9282i −0.422202 0.639454i
\(546\) 0 0
\(547\) 21.6506 12.5000i 0.925714 0.534461i 0.0402607 0.999189i \(-0.487181\pi\)
0.885454 + 0.464728i \(0.153848\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 20.0000 15.0000i 0.852803 0.639602i
\(551\) −27.0000 46.7654i −1.15024 1.99227i
\(552\) 0 0
\(553\) 31.1769 + 18.0000i 1.32578 + 0.765438i
\(554\) 13.0000 22.5167i 0.552317 0.956641i
\(555\) 0 0
\(556\) 4.00000 + 6.92820i 0.169638 + 0.293821i
\(557\) 42.0000i 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) 3.00000 0.126886
\(560\) 0.535898 + 8.92820i 0.0226458 + 0.377285i
\(561\) 0 0
\(562\) −15.5885 9.00000i −0.657559 0.379642i
\(563\) 3.46410 + 2.00000i 0.145994 + 0.0842900i 0.571218 0.820798i \(-0.306471\pi\)
−0.425223 + 0.905088i \(0.639804\pi\)
\(564\) 0 0
\(565\) −0.401924 6.69615i −0.0169091 0.281709i
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) −10.0000 17.3205i −0.419222 0.726113i 0.576640 0.816999i \(-0.304364\pi\)
−0.995861 + 0.0908852i \(0.971030\pi\)
\(570\) 0 0
\(571\) 16.0000 27.7128i 0.669579 1.15975i −0.308443 0.951243i \(-0.599808\pi\)
0.978022 0.208502i \(-0.0668588\pi\)
\(572\) −12.9904 7.50000i −0.543155 0.313591i
\(573\) 0 0
\(574\) 4.00000 + 6.92820i 0.166957 + 0.289178i
\(575\) 4.00000 3.00000i 0.166812 0.125109i
\(576\) 0 0
\(577\) 32.0000i 1.33218i −0.745873 0.666089i \(-0.767967\pi\)
0.745873 0.666089i \(-0.232033\pi\)
\(578\) −13.8564 + 8.00000i −0.576351 + 0.332756i
\(579\) 0 0
\(580\) 11.0885 + 16.7942i 0.460423 + 0.697342i
\(581\) 8.00000 13.8564i 0.331896 0.574861i
\(582\) 0 0
\(583\) 0 0
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −31.1769 + 18.0000i −1.28681 + 0.742940i −0.978084 0.208212i \(-0.933236\pi\)
−0.308725 + 0.951151i \(0.599902\pi\)
\(588\) 0 0
\(589\) 15.0000 25.9808i 0.618064 1.07052i
\(590\) −7.46410 + 4.92820i −0.307292 + 0.202891i
\(591\) 0 0
\(592\) −1.73205 + 1.00000i −0.0711868 + 0.0410997i
\(593\) 21.0000i 0.862367i 0.902264 + 0.431183i \(0.141904\pi\)
−0.902264 + 0.431183i \(0.858096\pi\)
\(594\) 0 0
\(595\) −4.00000 + 8.00000i −0.163984 + 0.327968i
\(596\) 6.50000 + 11.2583i 0.266250 + 0.461159i
\(597\) 0 0
\(598\) −2.59808 1.50000i −0.106243 0.0613396i
\(599\) −21.0000 + 36.3731i −0.858037 + 1.48616i 0.0157622 + 0.999876i \(0.494983\pi\)
−0.873799 + 0.486287i \(0.838351\pi\)
\(600\) 0 0
\(601\) 9.50000 + 16.4545i 0.387513 + 0.671192i 0.992114 0.125336i \(-0.0400009\pi\)
−0.604601 + 0.796528i \(0.706668\pi\)
\(602\) 4.00000i 0.163028i
\(603\) 0 0
\(604\) −13.0000 −0.528962
\(605\) 31.2487 1.87564i 1.27044 0.0762558i
\(606\) 0 0
\(607\) 8.66025 + 5.00000i 0.351509 + 0.202944i 0.665350 0.746532i \(-0.268282\pi\)
−0.313841 + 0.949476i \(0.601616\pi\)
\(608\) 5.19615 + 3.00000i 0.210732 + 0.121666i
\(609\) 0 0
\(610\) −1.07180 17.8564i −0.0433958 0.722985i
\(611\) −39.0000 −1.57777
\(612\) 0 0
\(613\) 23.0000i 0.928961i 0.885583 + 0.464481i \(0.153759\pi\)
−0.885583 + 0.464481i \(0.846241\pi\)
\(614\) −10.5000 18.1865i −0.423746 0.733949i
\(615\) 0 0
\(616\) −10.0000 + 17.3205i −0.402911 + 0.697863i
\(617\) −25.1147 14.5000i −1.01108 0.583748i −0.0995732 0.995030i \(-0.531748\pi\)
−0.911508 + 0.411282i \(0.865081\pi\)
\(618\) 0 0
\(619\) 13.0000 + 22.5167i 0.522514 + 0.905021i 0.999657 + 0.0261952i \(0.00833914\pi\)
−0.477143 + 0.878826i \(0.658328\pi\)
\(620\) −5.00000 + 10.0000i −0.200805 + 0.401610i
\(621\) 0 0
\(622\) 18.0000i 0.721734i
\(623\) 48.4974 28.0000i 1.94301 1.12180i
\(624\) 0 0
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) −7.00000 + 12.1244i −0.279776 + 0.484587i
\(627\) 0 0
\(628\) 11.2583 6.50000i 0.449256 0.259378i
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) −4.00000 −0.159237 −0.0796187 0.996825i \(-0.525370\pi\)
−0.0796187 + 0.996825i \(0.525370\pi\)
\(632\) −7.79423 + 4.50000i −0.310038 + 0.179000i
\(633\) 0 0
\(634\) 2.00000 3.46410i 0.0794301 0.137577i
\(635\) 7.46410 4.92820i 0.296204 0.195570i
\(636\) 0 0
\(637\) −23.3827 + 13.5000i −0.926456 + 0.534889i
\(638\) 45.0000i 1.78157i
\(639\) 0 0
\(640\) −2.00000 1.00000i −0.0790569 0.0395285i
\(641\) 10.0000 + 17.3205i 0.394976 + 0.684119i 0.993098 0.117286i \(-0.0374195\pi\)
−0.598122 + 0.801405i \(0.704086\pi\)
\(642\) 0 0
\(643\) 18.1865 + 10.5000i 0.717207 + 0.414080i 0.813724 0.581252i \(-0.197437\pi\)
−0.0965169 + 0.995331i \(0.530770\pi\)
\(644\) −2.00000 + 3.46410i −0.0788110 + 0.136505i
\(645\) 0 0
\(646\) 3.00000 + 5.19615i 0.118033 + 0.204440i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) −5.89230 + 13.7942i −0.231115 + 0.541054i
\(651\) 0 0
\(652\) 16.4545 + 9.50000i 0.644407 + 0.372049i
\(653\) 22.5167 + 13.0000i 0.881145 + 0.508729i 0.871036 0.491220i \(-0.163449\pi\)
0.0101092 + 0.999949i \(0.496782\pi\)
\(654\) 0 0
\(655\) −6.69615 + 0.401924i −0.261640 + 0.0157045i
\(656\) −2.00000 −0.0780869
\(657\) 0 0
\(658\) 52.0000i 2.02717i
\(659\) 10.0000 + 17.3205i 0.389545 + 0.674711i 0.992388 0.123148i \(-0.0392990\pi\)
−0.602844 + 0.797859i \(0.705966\pi\)
\(660\) 0 0
\(661\) −22.0000 + 38.1051i −0.855701 + 1.48212i 0.0202925 + 0.999794i \(0.493540\pi\)
−0.875993 + 0.482323i \(0.839793\pi\)
\(662\) 8.66025 + 5.00000i 0.336590 + 0.194331i
\(663\) 0 0
\(664\) 2.00000 + 3.46410i 0.0776151 + 0.134433i
\(665\) −48.0000 24.0000i −1.86136 0.930680i
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 10.3923 6.00000i 0.402090 0.232147i
\(669\) 0 0
\(670\) 4.92820 + 7.46410i 0.190393 + 0.288363i
\(671\) 20.0000 34.6410i 0.772091 1.33730i
\(672\) 0 0
\(673\) −41.5692 + 24.0000i −1.60238 + 0.925132i −0.611365 + 0.791349i \(0.709379\pi\)
−0.991011 + 0.133783i \(0.957287\pi\)
\(674\) 16.0000 0.616297
\(675\) 0 0
\(676\) −4.00000 −0.153846
\(677\) −3.46410 + 2.00000i −0.133136 + 0.0768662i −0.565089 0.825030i \(-0.691158\pi\)
0.431953 + 0.901896i \(0.357825\pi\)
\(678\) 0 0
\(679\) −20.0000 + 34.6410i −0.767530 + 1.32940i
\(680\) −1.23205 1.86603i −0.0472470 0.0715588i
\(681\) 0 0
\(682\) −21.6506 + 12.5000i −0.829046 + 0.478650i
\(683\) 44.0000i 1.68361i −0.539779 0.841807i \(-0.681492\pi\)
0.539779 0.841807i \(-0.318508\pi\)
\(684\) 0 0
\(685\) −36.0000 18.0000i −1.37549 0.687745i
\(686\) 4.00000 + 6.92820i 0.152721 + 0.264520i
\(687\) 0 0
\(688\) 0.866025 + 0.500000i 0.0330169 + 0.0190623i
\(689\) 0 0
\(690\) 0 0
\(691\) −11.0000 19.0526i −0.418460 0.724793i 0.577325 0.816514i \(-0.304097\pi\)
−0.995785 + 0.0917209i \(0.970763\pi\)
\(692\) 16.0000i 0.608229i
\(693\) 0 0
\(694\) 6.00000 0.227757
\(695\) 17.8564 1.07180i 0.677332 0.0406556i
\(696\) 0 0
\(697\) −1.73205 1.00000i −0.0656061 0.0378777i
\(698\) −13.8564 8.00000i −0.524473 0.302804i
\(699\) 0 0
\(700\) 18.3923 + 7.85641i 0.695164 + 0.296944i
\(701\) 31.0000 1.17085 0.585427 0.810725i \(-0.300927\pi\)
0.585427 + 0.810725i \(0.300927\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) −2.50000 4.33013i −0.0942223 0.163198i
\(705\) 0 0
\(706\) −5.50000 + 9.52628i −0.206995 + 0.358526i
\(707\) −58.8897 34.0000i −2.21478 1.27870i
\(708\) 0 0
\(709\) −12.0000 20.7846i −0.450669 0.780582i 0.547758 0.836637i \(-0.315481\pi\)
−0.998428 + 0.0560542i \(0.982148\pi\)
\(710\) −12.0000 6.00000i −0.450352 0.225176i
\(711\) 0 0
\(712\) 14.0000i 0.524672i
\(713\) −4.33013 + 2.50000i −0.162165 + 0.0936257i
\(714\) 0 0
\(715\) −27.9904 + 18.4808i −1.04678 + 0.691141i
\(716\) −10.0000 + 17.3205i −0.373718 + 0.647298i
\(717\) 0 0
\(718\) 5.19615 3.00000i 0.193919 0.111959i
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) −40.0000 −1.48968
\(722\) −14.7224 + 8.50000i −0.547912 + 0.316337i
\(723\) 0 0
\(724\) −11.0000 + 19.0526i −0.408812 + 0.708083i
\(725\) 44.6769 5.38269i 1.65926 0.199908i
\(726\) 0 0
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 12.0000i 0.444750i
\(729\) 0 0
\(730\) −2.00000 + 4.00000i −0.0740233 + 0.148047i
\(731\) 0.500000 + 0.866025i 0.0184932 + 0.0320311i
\(732\) 0 0
\(733\) −39.8372 23.0000i −1.47142 0.849524i −0.471935 0.881633i \(-0.656444\pi\)
−0.999484 + 0.0321090i \(0.989778\pi\)
\(734\) −11.0000 + 19.0526i −0.406017 + 0.703243i
\(735\) 0 0
\(736\) −0.500000 0.866025i −0.0184302 0.0319221i
\(737\) 20.0000i 0.736709i
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 0.267949 + 4.46410i 0.00985001 + 0.164104i
\(741\) 0 0
\(742\) 0 0
\(743\) 7.79423 + 4.50000i 0.285943 + 0.165089i 0.636111 0.771598i \(-0.280542\pi\)
−0.350168 + 0.936687i \(0.613876\pi\)
\(744\) 0 0
\(745\) 29.0167 1.74167i 1.06309 0.0638098i
\(746\) 21.0000 0.768865
\(747\) 0 0
\(748\) 5.00000i 0.182818i
\(749\) −12.0000 20.7846i −0.438470 0.759453i
\(750\) 0 0
\(751\) 3.50000 6.06218i 0.127717 0.221212i −0.795075 0.606511i \(-0.792568\pi\)
0.922792 + 0.385299i \(0.125902\pi\)
\(752\) −11.2583 6.50000i −0.410549 0.237031i
\(753\) 0 0
\(754\) −13.5000 23.3827i −0.491641 0.851547i
\(755\) −13.0000 + 26.0000i −0.473118 + 0.946237i
\(756\) 0 0
\(757\) 43.0000i 1.56286i 0.623992 + 0.781431i \(0.285510\pi\)
−0.623992 + 0.781431i \(0.714490\pi\)
\(758\) −24.2487 + 14.0000i −0.880753 + 0.508503i
\(759\) 0 0
\(760\) 11.1962 7.39230i 0.406127 0.268147i
\(761\) −6.00000 + 10.3923i −0.217500 + 0.376721i −0.954043 0.299670i \(-0.903123\pi\)
0.736543 + 0.676391i \(0.236457\pi\)
\(762\) 0 0
\(763\) 27.7128 16.0000i 1.00327 0.579239i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) −19.0000 −0.686498
\(767\) 10.3923 6.00000i 0.375244 0.216647i
\(768\) 0 0
\(769\) 1.50000 2.59808i 0.0540914 0.0936890i −0.837712 0.546113i \(-0.816107\pi\)
0.891803 + 0.452423i \(0.149440\pi\)
\(770\) 24.6410 + 37.3205i 0.888001 + 1.34494i
\(771\) 0 0
\(772\) 3.46410 2.00000i 0.124676 0.0719816i
\(773\) 18.0000i 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 0 0
\(775\) 15.0000 + 20.0000i 0.538816 + 0.718421i
\(776\) −5.00000 8.66025i −0.179490 0.310885i
\(777\) 0 0
\(778\) 4.33013 + 2.50000i 0.155243 + 0.0896293i
\(779\) 6.00000 10.3923i 0.214972 0.372343i
\(780\) 0 0
\(781\) −15.0000 25.9808i −0.536742 0.929665i
\(782\) 1.00000i 0.0357599i
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) −1.74167 29.0167i −0.0621629 1.03565i
\(786\) 0 0
\(787\) −11.2583 6.50000i −0.401316 0.231700i 0.285736 0.958308i \(-0.407762\pi\)
−0.687052 + 0.726609i \(0.741095\pi\)
\(788\) 19.0526 + 11.0000i 0.678719 + 0.391859i
\(789\) 0 0
\(790\) 1.20577 + 20.0885i 0.0428994 + 0.714715i
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 24.0000i 0.852265i
\(794\) −6.50000 11.2583i −0.230676 0.399543i
\(795\) 0 0
\(796\) −1.50000 + 2.59808i −0.0531661 + 0.0920864i
\(797\) −12.1244 7.00000i −0.429467 0.247953i 0.269653 0.962958i \(-0.413091\pi\)
−0.699119 + 0.715005i \(0.746424\pi\)
\(798\) 0 0
\(799\) −6.50000 11.2583i −0.229953 0.398291i
\(800\) −4.00000 + 3.00000i −0.141421 + 0.106066i
\(801\) 0 0
\(802\) 16.0000i 0.564980i
\(803\) −8.66025 + 5.00000i −0.305614 + 0.176446i
\(804\) 0 0
\(805\) 4.92820 + 7.46410i 0.173696 + 0.263075i
\(806\) 7.50000 12.9904i 0.264176 0.457567i
\(807\) 0 0
\(808\) 14.7224 8.50000i 0.517933 0.299029i
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) −26.0000 −0.912983 −0.456492 0.889728i \(-0.650894\pi\)
−0.456492 + 0.889728i \(0.650894\pi\)
\(812\) −31.1769 + 18.0000i −1.09410 + 0.631676i
\(813\) 0 0
\(814\) −5.00000 + 8.66025i −0.175250 + 0.303542i
\(815\) 35.4545 23.4090i 1.24192 0.819980i
\(816\) 0 0
\(817\) −5.19615 + 3.00000i −0.181790 + 0.104957i
\(818\) 11.0000i 0.384606i
\(819\) 0 0
\(820\) −2.00000 + 4.00000i −0.0698430 + 0.139686i
\(821\) 23.0000 + 39.8372i 0.802706 + 1.39033i 0.917829 + 0.396976i \(0.129940\pi\)
−0.115124 + 0.993351i \(0.536726\pi\)
\(822\) 0 0
\(823\) 20.7846 + 12.0000i 0.724506 + 0.418294i 0.816409 0.577474i \(-0.195962\pi\)
−0.0919029 + 0.995768i \(0.529295\pi\)
\(824\) 5.00000 8.66025i 0.174183 0.301694i
\(825\) 0 0
\(826\) −8.00000 13.8564i −0.278356 0.482126i
\(827\) 22.0000i 0.765015i −0.923952 0.382507i \(-0.875061\pi\)
0.923952 0.382507i \(-0.124939\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 8.92820 0.535898i 0.309902 0.0186013i
\(831\) 0 0
\(832\) 2.59808 + 1.50000i 0.0900721 + 0.0520031i
\(833\) −7.79423 4.50000i −0.270054 0.155916i
\(834\) 0 0
\(835\) −1.60770 26.7846i −0.0556366 0.926920i
\(836\) 30.0000 1.03757
\(837\) 0 0
\(838\) 23.0000i 0.794522i
\(839\) −17.0000 29.4449i −0.586905 1.01655i −0.994635 0.103447i \(-0.967013\pi\)
0.407730 0.913103i \(-0.366321\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) −22.5167 13.0000i −0.775975 0.448010i
\(843\) 0 0
\(844\) 0 0
\(845\) −4.00000 + 8.00000i −0.137604 + 0.275208i
\(846\) 0 0
\(847\) 56.0000i 1.92418i
\(848\) 0 0
\(849\) 0 0
\(850\) −4.96410 + 0.598076i −0.170267 + 0.0205138i
\(851\) −1.00000 + 1.73205i −0.0342796 + 0.0593739i
\(852\) 0 0
\(853\) 16.4545 9.50000i 0.563391 0.325274i −0.191115 0.981568i \(-0.561210\pi\)
0.754505 + 0.656294i \(0.227877\pi\)
\(854\) 32.0000 1.09502
\(855\) 0 0
\(856\) 6.00000 0.205076
\(857\) 5.19615 3.00000i 0.177497 0.102478i −0.408619 0.912705i \(-0.633990\pi\)
0.586116 + 0.810227i \(0.300656\pi\)
\(858\) 0 0
\(859\) 1.00000 1.73205i 0.0341196 0.0590968i −0.848461 0.529257i \(-0.822471\pi\)
0.882581 + 0.470160i \(0.155804\pi\)
\(860\) 1.86603 1.23205i 0.0636309 0.0420126i
\(861\) 0 0
\(862\) 6.92820 4.00000i 0.235976 0.136241i
\(863\) 39.0000i 1.32758i 0.747921 + 0.663788i \(0.231052\pi\)
−0.747921 + 0.663788i \(0.768948\pi\)
\(864\) 0 0
\(865\) 32.0000 + 16.0000i 1.08803 + 0.544016i
\(866\) 11.0000 + 19.0526i 0.373795 + 0.647432i
\(867\) 0 0
\(868\) −17.3205 10.0000i −0.587896 0.339422i
\(869\) −22.5000 + 38.9711i −0.763260 + 1.32201i
\(870\) 0 0
\(871\) −6.00000 10.3923i −0.203302 0.352130i
\(872\) 8.00000i 0.270914i
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) 34.1051 28.9282i 1.15296 0.977952i
\(876\) 0 0
\(877\) 0.866025 + 0.500000i 0.0292436 + 0.0168838i 0.514551 0.857460i \(-0.327959\pi\)
−0.485307 + 0.874344i \(0.661292\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −11.1603 + 0.669873i −0.376212 + 0.0225814i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i −0.795656 0.605748i \(-0.792874\pi\)
0.795656 0.605748i \(-0.207126\pi\)
\(884\) 1.50000 + 2.59808i 0.0504505 + 0.0873828i
\(885\) 0 0
\(886\) 15.0000 25.9808i 0.503935 0.872841i
\(887\) 44.1673 + 25.5000i 1.48299 + 0.856206i 0.999813 0.0193153i \(-0.00614862\pi\)
0.483179 + 0.875521i \(0.339482\pi\)
\(888\) 0 0
\(889\) 8.00000 + 13.8564i 0.268311 + 0.464729i
\(890\) 28.0000 + 14.0000i 0.938562 + 0.469281i
\(891\) 0 0
\(892\) 22.0000i 0.736614i
\(893\) 67.5500 39.0000i 2.26047 1.30509i
\(894\) 0 0
\(895\) 24.6410 + 37.3205i 0.823658 + 1.24749i
\(896\) 2.00000 3.46410i 0.0668153 0.115728i
\(897\) 0 0
\(898\) 0 0
\(899\) −45.0000 −1.50083
\(900\) 0 0
\(901\) 0 0
\(902\) −8.66025 + 5.00000i −0.288355 + 0.166482i
\(903\) 0 0
\(904\) −1.50000 + 2.59808i −0.0498893 + 0.0864107i
\(905\) 27.1051 + 41.0526i 0.901005 + 1.36463i
\(906\) 0 0
\(907\) −2.59808 + 1.50000i −0.0862677 + 0.0498067i −0.542513 0.840047i \(-0.682527\pi\)
0.456246 + 0.889854i \(0.349194\pi\)
\(908\) 2.00000i 0.0663723i
\(909\) 0 0
\(910\) −24.0000 12.0000i −0.795592 0.397796i
\(911\) 18.0000 + 31.1769i 0.596367 + 1.03294i 0.993352 + 0.115113i \(0.0367229\pi\)
−0.396986 + 0.917825i \(0.629944\pi\)
\(912\) 0 0
\(913\) 17.3205 + 10.0000i 0.573225 + 0.330952i
\(914\) −8.00000 + 13.8564i −0.264616 + 0.458329i
\(915\) 0 0
\(916\) −1.00000 1.73205i −0.0330409 0.0572286i
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) −33.0000 −1.08857 −0.544285 0.838901i \(-0.683199\pi\)
−0.544285 + 0.838901i \(0.683199\pi\)
\(920\) −2.23205 + 0.133975i −0.0735885 + 0.00441701i
\(921\) 0 0
\(922\) −5.19615 3.00000i −0.171126 0.0987997i
\(923\) 15.5885 + 9.00000i 0.513100 + 0.296239i
\(924\) 0 0
\(925\) 9.19615 + 3.92820i 0.302368 + 0.129159i
\(926\) 6.00000 0.197172
\(927\) 0 0
\(928\) 9.00000i 0.295439i
\(929\) −3.00000 5.19615i −0.0984268 0.170480i 0.812607 0.582812i \(-0.198048\pi\)
−0.911034 + 0.412332i \(0.864714\pi\)
\(930\) 0 0
\(931\) 27.0000 46.7654i 0.884889 1.53267i
\(932\) 12.1244 + 7.00000i 0.397146 + 0.229293i
\(933\) 0 0
\(934\) 3.00000 + 5.19615i 0.0981630 + 0.170023i
\(935\) −10.0000 5.00000i −0.327035 0.163517i
\(936\) 0 0
\(937\) 40.0000i 1.30674i −0.757037 0.653372i \(-0.773354\pi\)
0.757037 0.653372i \(-0.226646\pi\)
\(938\) −13.8564 + 8.00000i −0.452428 + 0.261209i
\(939\) 0 0
\(940\) −24.2583 + 16.0167i −0.791219 + 0.522406i
\(941\) −15.5000 + 26.8468i −0.505286 + 0.875180i 0.494696 + 0.869066i \(0.335280\pi\)
−0.999981 + 0.00611403i \(0.998054\pi\)
\(942\) 0 0
\(943\) −1.73205 + 1.00000i −0.0564033 + 0.0325645i
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 5.00000 0.162564
\(947\) −41.5692 + 24.0000i −1.35082 + 0.779895i −0.988364 0.152106i \(-0.951394\pi\)
−0.362454 + 0.932002i \(0.618061\pi\)
\(948\) 0 0
\(949\) 3.00000 5.19615i 0.0973841 0.168674i
\(950\) −3.58846 29.7846i −0.116425 0.966340i
\(951\) 0 0
\(952\) 3.46410 2.00000i 0.112272 0.0648204i
\(953\) 61.0000i 1.97598i −0.154506 0.987992i \(-0.549378\pi\)
0.154506 0.987992i \(-0.450622\pi\)
\(954\) 0 0
\(955\) 6.00000 12.0000i 0.194155 0.388311i
\(956\) −8.00000 13.8564i −0.258738 0.448148i
\(957\) 0 0
\(958\) 1.73205 + 1.00000i 0.0559600 + 0.0323085i
\(959\) 36.0000 62.3538i 1.16250 2.01351i
\(960\) 0 0
\(961\) 3.00000 + 5.19615i 0.0967742 + 0.167618i
\(962\) 6.00000i 0.193448i
\(963\) 0 0
\(964\) 23.0000 0.740780
\(965\) −0.535898 8.92820i −0.0172512 0.287409i
\(966\) 0 0
\(967\) −1.73205 1.00000i −0.0556990 0.0321578i 0.471892 0.881656i \(-0.343571\pi\)
−0.527591 + 0.849499i \(0.676905\pi\)
\(968\) −12.1244 7.00000i −0.389692 0.224989i
\(969\) 0 0
\(970\) −22.3205 + 1.33975i −0.716668 + 0.0430167i
\(971\) −9.00000 −0.288824 −0.144412 0.989518i \(-0.546129\pi\)
−0.144412 + 0.989518i \(0.546129\pi\)
\(972\) 0 0
\(973\) 32.0000i 1.02587i
\(974\) 6.00000 + 10.3923i 0.192252 + 0.332991i
\(975\) 0 0
\(976\) −4.00000 + 6.92820i −0.128037 + 0.221766i
\(977\) −33.7750 19.5000i −1.08056 0.623860i −0.149511 0.988760i \(-0.547770\pi\)
−0.931047 + 0.364900i \(0.881103\pi\)
\(978\) 0 0
\(979\) 35.0000 + 60.6218i 1.11860 + 1.93748i
\(980\) −9.00000 + 18.0000i −0.287494 + 0.574989i
\(981\) 0 0
\(982\) 24.0000i 0.765871i
\(983\) 25.1147 14.5000i 0.801036 0.462478i −0.0427975 0.999084i \(-0.513627\pi\)
0.843833 + 0.536606i \(0.180294\pi\)
\(984\) 0 0
\(985\) 41.0526 27.1051i 1.30804 0.863641i
\(986\) 4.50000 7.79423i 0.143309 0.248219i
\(987\) 0 0
\(988\) −15.5885 + 9.00000i −0.495935 + 0.286328i
\(989\) 1.00000 0.0317982
\(990\) 0 0
\(991\) −17.0000 −0.540023 −0.270011 0.962857i \(-0.587027\pi\)
−0.270011 + 0.962857i \(0.587027\pi\)
\(992\) 4.33013 2.50000i 0.137482 0.0793751i
\(993\) 0 0
\(994\) 12.0000 20.7846i 0.380617 0.659248i
\(995\) 3.69615 + 5.59808i 0.117176 + 0.177471i
\(996\) 0 0
\(997\) 12.9904 7.50000i 0.411409 0.237527i −0.279986 0.960004i \(-0.590330\pi\)
0.691395 + 0.722477i \(0.256996\pi\)
\(998\) 12.0000i 0.379853i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.i.d.109.1 4
3.2 odd 2 810.2.i.c.109.2 4
5.4 even 2 inner 810.2.i.d.109.2 4
9.2 odd 6 810.2.i.c.379.1 4
9.4 even 3 270.2.c.a.109.1 2
9.5 odd 6 270.2.c.b.109.2 yes 2
9.7 even 3 inner 810.2.i.d.379.2 4
15.14 odd 2 810.2.i.c.109.1 4
36.23 even 6 2160.2.f.e.1729.1 2
36.31 odd 6 2160.2.f.d.1729.2 2
45.4 even 6 270.2.c.a.109.2 yes 2
45.13 odd 12 1350.2.a.j.1.1 1
45.14 odd 6 270.2.c.b.109.1 yes 2
45.22 odd 12 1350.2.a.l.1.1 1
45.23 even 12 1350.2.a.v.1.1 1
45.29 odd 6 810.2.i.c.379.2 4
45.32 even 12 1350.2.a.b.1.1 1
45.34 even 6 inner 810.2.i.d.379.1 4
180.59 even 6 2160.2.f.e.1729.2 2
180.139 odd 6 2160.2.f.d.1729.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.2.c.a.109.1 2 9.4 even 3
270.2.c.a.109.2 yes 2 45.4 even 6
270.2.c.b.109.1 yes 2 45.14 odd 6
270.2.c.b.109.2 yes 2 9.5 odd 6
810.2.i.c.109.1 4 15.14 odd 2
810.2.i.c.109.2 4 3.2 odd 2
810.2.i.c.379.1 4 9.2 odd 6
810.2.i.c.379.2 4 45.29 odd 6
810.2.i.d.109.1 4 1.1 even 1 trivial
810.2.i.d.109.2 4 5.4 even 2 inner
810.2.i.d.379.1 4 45.34 even 6 inner
810.2.i.d.379.2 4 9.7 even 3 inner
1350.2.a.b.1.1 1 45.32 even 12
1350.2.a.j.1.1 1 45.13 odd 12
1350.2.a.l.1.1 1 45.22 odd 12
1350.2.a.v.1.1 1 45.23 even 12
2160.2.f.d.1729.1 2 180.139 odd 6
2160.2.f.d.1729.2 2 36.31 odd 6
2160.2.f.e.1729.1 2 36.23 even 6
2160.2.f.e.1729.2 2 180.59 even 6