Properties

Label 810.3.d.c.161.7
Level 810810
Weight 33
Character 810.161
Analytic conductor 22.07122.071
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,3,Mod(161,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 810=2345 810 = 2 \cdot 3^{4} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 810.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.070901413222.0709014132
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x1612x14+138x121040x10+5541x826220x6+99328x4202728x2+181476 x^{16} - 12x^{14} + 138x^{12} - 1040x^{10} + 5541x^{8} - 26220x^{6} + 99328x^{4} - 202728x^{2} + 181476 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 212314 2^{12}\cdot 3^{14}
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 161.7
Root 1.42311+1.82514i-1.42311 + 1.82514i of defining polynomial
Character χ\chi == 810.161
Dual form 810.3.d.c.161.11

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.41421iq22.00000q4+2.23607iq5+0.993782q7+2.82843iq8+3.16228q104.98623iq11+1.42026q131.40542iq14+4.00000q16+24.1344iq1727.5702q194.47214iq207.05159q226.03943iq235.00000q252.00856iq261.98756q2819.1577iq29+27.2044q315.65685iq32+34.1312q34+2.22216iq3563.1320q37+38.9901iq386.32456q40+67.1001iq4127.6583q43+9.97245iq448.54104q46+6.75889iq4748.0124q49+7.07107iq502.84053q52+87.8018iq53+11.1495q55+2.81084iq5627.0930q58+103.106iq5972.0128q6138.4728iq628.00000q64+3.17581iq65+19.9681q6748.2688iq68+3.14262q7055.1081iq71+132.751q73+89.2822iq74+55.1404q764.95522iq7739.5893q79+8.94427iq80+94.8939q82+121.188iq8353.9661q85+39.1148iq86+14.1032q88+74.0513iq89+1.41143q91+12.0789iq92+9.55851q9461.6488iq95+2.28766q97+67.8998iq98+O(q100)q-1.41421i q^{2} -2.00000 q^{4} +2.23607i q^{5} +0.993782 q^{7} +2.82843i q^{8} +3.16228 q^{10} -4.98623i q^{11} +1.42026 q^{13} -1.40542i q^{14} +4.00000 q^{16} +24.1344i q^{17} -27.5702 q^{19} -4.47214i q^{20} -7.05159 q^{22} -6.03943i q^{23} -5.00000 q^{25} -2.00856i q^{26} -1.98756 q^{28} -19.1577i q^{29} +27.2044 q^{31} -5.65685i q^{32} +34.1312 q^{34} +2.22216i q^{35} -63.1320 q^{37} +38.9901i q^{38} -6.32456 q^{40} +67.1001i q^{41} -27.6583 q^{43} +9.97245i q^{44} -8.54104 q^{46} +6.75889i q^{47} -48.0124 q^{49} +7.07107i q^{50} -2.84053 q^{52} +87.8018i q^{53} +11.1495 q^{55} +2.81084i q^{56} -27.0930 q^{58} +103.106i q^{59} -72.0128 q^{61} -38.4728i q^{62} -8.00000 q^{64} +3.17581i q^{65} +19.9681 q^{67} -48.2688i q^{68} +3.14262 q^{70} -55.1081i q^{71} +132.751 q^{73} +89.2822i q^{74} +55.1404 q^{76} -4.95522i q^{77} -39.5893 q^{79} +8.94427i q^{80} +94.8939 q^{82} +121.188i q^{83} -53.9661 q^{85} +39.1148i q^{86} +14.1032 q^{88} +74.0513i q^{89} +1.41143 q^{91} +12.0789i q^{92} +9.55851 q^{94} -61.6488i q^{95} +2.28766 q^{97} +67.8998i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q32q4+8q740q13+64q16+80q1948q2280q2516q28+32q31+96q3488q37184q43+24q46+168q49+80q52+152q61128q64++32q97+O(q100) 16 q - 32 q^{4} + 8 q^{7} - 40 q^{13} + 64 q^{16} + 80 q^{19} - 48 q^{22} - 80 q^{25} - 16 q^{28} + 32 q^{31} + 96 q^{34} - 88 q^{37} - 184 q^{43} + 24 q^{46} + 168 q^{49} + 80 q^{52} + 152 q^{61} - 128 q^{64}+ \cdots + 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/810Z)×\left(\mathbb{Z}/810\mathbb{Z}\right)^\times.

nn 487487 731731
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.41421i − 0.707107i
33 0 0
44 −2.00000 −0.500000
55 2.23607i 0.447214i
66 0 0
77 0.993782 0.141969 0.0709844 0.997477i 0.477386π-0.477386\pi
0.0709844 + 0.997477i 0.477386π0.477386\pi
88 2.82843i 0.353553i
99 0 0
1010 3.16228 0.316228
1111 − 4.98623i − 0.453293i −0.973977 0.226647i 0.927224π-0.927224\pi
0.973977 0.226647i 0.0727763π-0.0727763\pi
1212 0 0
1313 1.42026 0.109251 0.0546255 0.998507i 0.482603π-0.482603\pi
0.0546255 + 0.998507i 0.482603π0.482603\pi
1414 − 1.40542i − 0.100387i
1515 0 0
1616 4.00000 0.250000
1717 24.1344i 1.41967i 0.704368 + 0.709835i 0.251231π0.251231\pi
−0.704368 + 0.709835i 0.748769π0.748769\pi
1818 0 0
1919 −27.5702 −1.45106 −0.725531 0.688189i 0.758406π-0.758406\pi
−0.725531 + 0.688189i 0.758406π0.758406\pi
2020 − 4.47214i − 0.223607i
2121 0 0
2222 −7.05159 −0.320527
2323 − 6.03943i − 0.262584i −0.991344 0.131292i 0.958087π-0.958087\pi
0.991344 0.131292i 0.0419125π-0.0419125\pi
2424 0 0
2525 −5.00000 −0.200000
2626 − 2.00856i − 0.0772522i
2727 0 0
2828 −1.98756 −0.0709844
2929 − 19.1577i − 0.660609i −0.943874 0.330305i 0.892849π-0.892849\pi
0.943874 0.330305i 0.107151π-0.107151\pi
3030 0 0
3131 27.2044 0.877561 0.438780 0.898594i 0.355411π-0.355411\pi
0.438780 + 0.898594i 0.355411π0.355411\pi
3232 − 5.65685i − 0.176777i
3333 0 0
3434 34.1312 1.00386
3535 2.22216i 0.0634904i
3636 0 0
3737 −63.1320 −1.70627 −0.853136 0.521689i 0.825302π-0.825302\pi
−0.853136 + 0.521689i 0.825302π0.825302\pi
3838 38.9901i 1.02606i
3939 0 0
4040 −6.32456 −0.158114
4141 67.1001i 1.63659i 0.574799 + 0.818294i 0.305080π0.305080\pi
−0.574799 + 0.818294i 0.694920π0.694920\pi
4242 0 0
4343 −27.6583 −0.643217 −0.321609 0.946873i 0.604224π-0.604224\pi
−0.321609 + 0.946873i 0.604224π0.604224\pi
4444 9.97245i 0.226647i
4545 0 0
4646 −8.54104 −0.185675
4747 6.75889i 0.143806i 0.997412 + 0.0719031i 0.0229072π0.0229072\pi
−0.997412 + 0.0719031i 0.977093π0.977093\pi
4848 0 0
4949 −48.0124 −0.979845
5050 7.07107i 0.141421i
5151 0 0
5252 −2.84053 −0.0546255
5353 87.8018i 1.65664i 0.560257 + 0.828319i 0.310702π0.310702\pi
−0.560257 + 0.828319i 0.689298π0.689298\pi
5454 0 0
5555 11.1495 0.202719
5656 2.81084i 0.0501936i
5757 0 0
5858 −27.0930 −0.467121
5959 103.106i 1.74756i 0.486324 + 0.873778i 0.338337π0.338337\pi
−0.486324 + 0.873778i 0.661663π0.661663\pi
6060 0 0
6161 −72.0128 −1.18054 −0.590269 0.807207i 0.700978π-0.700978\pi
−0.590269 + 0.807207i 0.700978π0.700978\pi
6262 − 38.4728i − 0.620529i
6363 0 0
6464 −8.00000 −0.125000
6565 3.17581i 0.0488586i
6666 0 0
6767 19.9681 0.298031 0.149015 0.988835i 0.452390π-0.452390\pi
0.149015 + 0.988835i 0.452390π0.452390\pi
6868 − 48.2688i − 0.709835i
6969 0 0
7070 3.14262 0.0448945
7171 − 55.1081i − 0.776170i −0.921624 0.388085i 0.873137π-0.873137\pi
0.921624 0.388085i 0.126863π-0.126863\pi
7272 0 0
7373 132.751 1.81851 0.909254 0.416241i 0.136653π-0.136653\pi
0.909254 + 0.416241i 0.136653π0.136653\pi
7474 89.2822i 1.20652i
7575 0 0
7676 55.1404 0.725531
7777 − 4.95522i − 0.0643536i
7878 0 0
7979 −39.5893 −0.501130 −0.250565 0.968100i 0.580616π-0.580616\pi
−0.250565 + 0.968100i 0.580616π0.580616\pi
8080 8.94427i 0.111803i
8181 0 0
8282 94.8939 1.15724
8383 121.188i 1.46009i 0.683398 + 0.730046i 0.260502π0.260502\pi
−0.683398 + 0.730046i 0.739498π0.739498\pi
8484 0 0
8585 −53.9661 −0.634896
8686 39.1148i 0.454823i
8787 0 0
8888 14.1032 0.160263
8989 74.0513i 0.832037i 0.909356 + 0.416018i 0.136575π0.136575\pi
−0.909356 + 0.416018i 0.863425π0.863425\pi
9090 0 0
9191 1.41143 0.0155103
9292 12.0789i 0.131292i
9393 0 0
9494 9.55851 0.101686
9595 − 61.6488i − 0.648935i
9696 0 0
9797 2.28766 0.0235841 0.0117921 0.999930i 0.496246π-0.496246\pi
0.0117921 + 0.999930i 0.496246π0.496246\pi
9898 67.8998i 0.692855i
9999 0 0
100100 10.0000 0.100000
101101 113.648i 1.12523i 0.826720 + 0.562614i 0.190204π0.190204\pi
−0.826720 + 0.562614i 0.809796π0.809796\pi
102102 0 0
103103 −56.7434 −0.550907 −0.275453 0.961314i 0.588828π-0.588828\pi
−0.275453 + 0.961314i 0.588828π0.588828\pi
104104 4.01711i 0.0386261i
105105 0 0
106106 124.170 1.17142
107107 − 93.1862i − 0.870899i −0.900213 0.435450i 0.856589π-0.856589\pi
0.900213 0.435450i 0.143411π-0.143411\pi
108108 0 0
109109 −21.7553 −0.199590 −0.0997950 0.995008i 0.531819π-0.531819\pi
−0.0997950 + 0.995008i 0.531819π0.531819\pi
110110 − 15.7678i − 0.143344i
111111 0 0
112112 3.97513 0.0354922
113113 − 143.243i − 1.26763i −0.773483 0.633817i 0.781487π-0.781487\pi
0.773483 0.633817i 0.218513π-0.218513\pi
114114 0 0
115115 13.5046 0.117431
116116 38.3153i 0.330305i
117117 0 0
118118 145.814 1.23571
119119 23.9843i 0.201549i
120120 0 0
121121 96.1375 0.794525
122122 101.842i 0.834767i
123123 0 0
124124 −54.4088 −0.438780
125125 − 11.1803i − 0.0894427i
126126 0 0
127127 −165.052 −1.29962 −0.649811 0.760096i 0.725152π-0.725152\pi
−0.649811 + 0.760096i 0.725152π0.725152\pi
128128 11.3137i 0.0883883i
129129 0 0
130130 4.49127 0.0345482
131131 52.4674i 0.400515i 0.979743 + 0.200257i 0.0641778π0.0641778\pi
−0.979743 + 0.200257i 0.935822π0.935822\pi
132132 0 0
133133 −27.3988 −0.206006
134134 − 28.2391i − 0.210740i
135135 0 0
136136 −68.2624 −0.501929
137137 − 120.373i − 0.878636i −0.898332 0.439318i 0.855220π-0.855220\pi
0.898332 0.439318i 0.144780π-0.144780\pi
138138 0 0
139139 −66.3984 −0.477687 −0.238843 0.971058i 0.576768π-0.576768\pi
−0.238843 + 0.971058i 0.576768π0.576768\pi
140140 − 4.44433i − 0.0317452i
141141 0 0
142142 −77.9346 −0.548835
143143 − 7.08176i − 0.0495228i
144144 0 0
145145 42.8378 0.295433
146146 − 187.738i − 1.28588i
147147 0 0
148148 126.264 0.853136
149149 95.6198i 0.641744i 0.947123 + 0.320872i 0.103976π0.103976\pi
−0.947123 + 0.320872i 0.896024π0.896024\pi
150150 0 0
151151 270.524 1.79155 0.895776 0.444506i 0.146621π-0.146621\pi
0.895776 + 0.444506i 0.146621π0.146621\pi
152152 − 77.9803i − 0.513028i
153153 0 0
154154 −7.00774 −0.0455048
155155 60.8308i 0.392457i
156156 0 0
157157 36.3452 0.231498 0.115749 0.993278i 0.463073π-0.463073\pi
0.115749 + 0.993278i 0.463073π0.463073\pi
158158 55.9877i 0.354353i
159159 0 0
160160 12.6491 0.0790569
161161 − 6.00188i − 0.0372787i
162162 0 0
163163 93.3260 0.572552 0.286276 0.958147i 0.407583π-0.407583\pi
0.286276 + 0.958147i 0.407583π0.407583\pi
164164 − 134.200i − 0.818294i
165165 0 0
166166 171.385 1.03244
167167 56.9278i 0.340885i 0.985368 + 0.170443i 0.0545197π0.0545197\pi
−0.985368 + 0.170443i 0.945480π0.945480\pi
168168 0 0
169169 −166.983 −0.988064
170170 76.3197i 0.448939i
171171 0 0
172172 55.3167 0.321609
173173 − 217.640i − 1.25803i −0.777391 0.629017i 0.783458π-0.783458\pi
0.777391 0.629017i 0.216542π-0.216542\pi
174174 0 0
175175 −4.96891 −0.0283938
176176 − 19.9449i − 0.113323i
177177 0 0
178178 104.724 0.588339
179179 56.2638i 0.314323i 0.987573 + 0.157161i 0.0502343π0.0502343\pi
−0.987573 + 0.157161i 0.949766π0.949766\pi
180180 0 0
181181 −130.959 −0.723528 −0.361764 0.932270i 0.617825π-0.617825\pi
−0.361764 + 0.932270i 0.617825π0.617825\pi
182182 − 1.99607i − 0.0109674i
183183 0 0
184184 17.0821 0.0928374
185185 − 141.168i − 0.763068i
186186 0 0
187187 120.340 0.643527
188188 − 13.5178i − 0.0719031i
189189 0 0
190190 −87.1846 −0.458866
191191 33.9997i 0.178009i 0.996031 + 0.0890045i 0.0283686π0.0283686\pi
−0.996031 + 0.0890045i 0.971631π0.971631\pi
192192 0 0
193193 −183.108 −0.948748 −0.474374 0.880323i 0.657326π-0.657326\pi
−0.474374 + 0.880323i 0.657326π0.657326\pi
194194 − 3.23524i − 0.0166765i
195195 0 0
196196 96.0248 0.489922
197197 30.9351i 0.157031i 0.996913 + 0.0785154i 0.0250180π0.0250180\pi
−0.996913 + 0.0785154i 0.974982π0.974982\pi
198198 0 0
199199 −332.873 −1.67273 −0.836363 0.548176i 0.815322π-0.815322\pi
−0.836363 + 0.548176i 0.815322π0.815322\pi
200200 − 14.1421i − 0.0707107i
201201 0 0
202202 160.723 0.795656
203203 − 19.0385i − 0.0937860i
204204 0 0
205205 −150.040 −0.731905
206206 80.2473i 0.389550i
207207 0 0
208208 5.68105 0.0273128
209209 137.471i 0.657757i
210210 0 0
211211 −160.772 −0.761951 −0.380976 0.924585i 0.624412π-0.624412\pi
−0.380976 + 0.924585i 0.624412π0.624412\pi
212212 − 175.604i − 0.828319i
213213 0 0
214214 −131.785 −0.615819
215215 − 61.8459i − 0.287655i
216216 0 0
217217 27.0352 0.124586
218218 30.7667i 0.141131i
219219 0 0
220220 −22.2991 −0.101359
221221 34.2772i 0.155100i
222222 0 0
223223 391.401 1.75516 0.877582 0.479427i 0.159156π-0.159156\pi
0.877582 + 0.479427i 0.159156π0.159156\pi
224224 − 5.62168i − 0.0250968i
225225 0 0
226226 −202.576 −0.896353
227227 − 340.699i − 1.50088i −0.660940 0.750439i 0.729842π-0.729842\pi
0.660940 0.750439i 0.270158π-0.270158\pi
228228 0 0
229229 −94.4465 −0.412430 −0.206215 0.978507i 0.566115π-0.566115\pi
−0.206215 + 0.978507i 0.566115π0.566115\pi
230230 − 19.0984i − 0.0830363i
231231 0 0
232232 54.1861 0.233561
233233 117.982i 0.506362i 0.967419 + 0.253181i 0.0814769π0.0814769\pi
−0.967419 + 0.253181i 0.918523π0.918523\pi
234234 0 0
235235 −15.1133 −0.0643121
236236 − 206.212i − 0.873778i
237237 0 0
238238 33.9190 0.142517
239239 − 369.113i − 1.54441i −0.635376 0.772203i 0.719155π-0.719155\pi
0.635376 0.772203i 0.280845π-0.280845\pi
240240 0 0
241241 −375.630 −1.55863 −0.779316 0.626631i 0.784433π-0.784433\pi
−0.779316 + 0.626631i 0.784433π0.784433\pi
242242 − 135.959i − 0.561814i
243243 0 0
244244 144.026 0.590269
245245 − 107.359i − 0.438200i
246246 0 0
247247 −39.1569 −0.158530
248248 76.9456i 0.310265i
249249 0 0
250250 −15.8114 −0.0632456
251251 − 240.639i − 0.958722i −0.877618 0.479361i 0.840869π-0.840869\pi
0.877618 0.479361i 0.159131π-0.159131\pi
252252 0 0
253253 −30.1140 −0.119028
254254 233.419i 0.918971i
255255 0 0
256256 16.0000 0.0625000
257257 − 125.219i − 0.487233i −0.969872 0.243616i 0.921666π-0.921666\pi
0.969872 0.243616i 0.0783338π-0.0783338\pi
258258 0 0
259259 −62.7395 −0.242237
260260 − 6.35161i − 0.0244293i
261261 0 0
262262 74.2001 0.283207
263263 93.2432i 0.354537i 0.984163 + 0.177269i 0.0567261π0.0567261\pi
−0.984163 + 0.177269i 0.943274π0.943274\pi
264264 0 0
265265 −196.331 −0.740871
266266 38.7477i 0.145668i
267267 0 0
268268 −39.9361 −0.149015
269269 − 76.3366i − 0.283779i −0.989882 0.141890i 0.954682π-0.954682\pi
0.989882 0.141890i 0.0453178π-0.0453178\pi
270270 0 0
271271 529.738 1.95475 0.977377 0.211506i 0.0678368π-0.0678368\pi
0.977377 + 0.211506i 0.0678368π0.0678368\pi
272272 96.5376i 0.354918i
273273 0 0
274274 −170.233 −0.621290
275275 24.9311i 0.0906587i
276276 0 0
277277 −84.9611 −0.306719 −0.153359 0.988170i 0.549009π-0.549009\pi
−0.153359 + 0.988170i 0.549009π0.549009\pi
278278 93.9016i 0.337775i
279279 0 0
280280 −6.28523 −0.0224473
281281 214.242i 0.762428i 0.924487 + 0.381214i 0.124494π0.124494\pi
−0.924487 + 0.381214i 0.875506π0.875506\pi
282282 0 0
283283 378.158 1.33625 0.668123 0.744051i 0.267098π-0.267098\pi
0.668123 + 0.744051i 0.267098π0.267098\pi
284284 110.216i 0.388085i
285285 0 0
286286 −10.0151 −0.0350179
287287 66.6829i 0.232345i
288288 0 0
289289 −293.469 −1.01546
290290 − 60.5819i − 0.208903i
291291 0 0
292292 −265.502 −0.909254
293293 − 50.0000i − 0.170648i −0.996353 0.0853242i 0.972807π-0.972807\pi
0.996353 0.0853242i 0.0271926π-0.0271926\pi
294294 0 0
295295 −230.552 −0.781531
296296 − 178.564i − 0.603258i
297297 0 0
298298 135.227 0.453781
299299 − 8.57758i − 0.0286876i
300300 0 0
301301 −27.4864 −0.0913168
302302 − 382.579i − 1.26682i
303303 0 0
304304 −110.281 −0.362766
305305 − 161.026i − 0.527953i
306306 0 0
307307 145.083 0.472583 0.236292 0.971682i 0.424068π-0.424068\pi
0.236292 + 0.971682i 0.424068π0.424068\pi
308308 9.91045i 0.0321768i
309309 0 0
310310 86.0278 0.277509
311311 104.589i 0.336301i 0.985761 + 0.168150i 0.0537794π0.0537794\pi
−0.985761 + 0.168150i 0.946221π0.946221\pi
312312 0 0
313313 57.7737 0.184581 0.0922903 0.995732i 0.470581π-0.470581\pi
0.0922903 + 0.995732i 0.470581π0.470581\pi
314314 − 51.3999i − 0.163694i
315315 0 0
316316 79.1786 0.250565
317317 − 98.3000i − 0.310095i −0.987907 0.155047i 0.950447π-0.950447\pi
0.987907 0.155047i 0.0495530π-0.0495530\pi
318318 0 0
319319 −95.5245 −0.299450
320320 − 17.8885i − 0.0559017i
321321 0 0
322322 −8.48794 −0.0263601
323323 − 665.390i − 2.06003i
324324 0 0
325325 −7.10132 −0.0218502
326326 − 131.983i − 0.404856i
327327 0 0
328328 −189.788 −0.578622
329329 6.71686i 0.0204160i
330330 0 0
331331 −213.075 −0.643730 −0.321865 0.946786i 0.604310π-0.604310\pi
−0.321865 + 0.946786i 0.604310π0.604310\pi
332332 − 242.375i − 0.730046i
333333 0 0
334334 80.5081 0.241042
335335 44.6499i 0.133283i
336336 0 0
337337 165.031 0.489705 0.244853 0.969560i 0.421260π-0.421260\pi
0.244853 + 0.969560i 0.421260π0.421260\pi
338338 236.149i 0.698667i
339339 0 0
340340 107.932 0.317448
341341 − 135.647i − 0.397792i
342342 0 0
343343 −96.4092 −0.281076
344344 − 78.2296i − 0.227412i
345345 0 0
346346 −307.789 −0.889564
347347 − 90.3578i − 0.260397i −0.991488 0.130199i 0.958439π-0.958439\pi
0.991488 0.130199i 0.0415615π-0.0415615\pi
348348 0 0
349349 −354.975 −1.01712 −0.508561 0.861026i 0.669822π-0.669822\pi
−0.508561 + 0.861026i 0.669822π0.669822\pi
350350 7.02710i 0.0200774i
351351 0 0
352352 −28.2064 −0.0801317
353353 − 361.096i − 1.02293i −0.859303 0.511467i 0.829102π-0.829102\pi
0.859303 0.511467i 0.170898π-0.170898\pi
354354 0 0
355355 123.225 0.347114
356356 − 148.103i − 0.416018i
357357 0 0
358358 79.5690 0.222260
359359 229.312i 0.638753i 0.947628 + 0.319377i 0.103473π0.103473\pi
−0.947628 + 0.319377i 0.896527π0.896527\pi
360360 0 0
361361 399.115 1.10558
362362 185.203i 0.511612i
363363 0 0
364364 −2.82287 −0.00775513
365365 296.840i 0.813262i
366366 0 0
367367 411.575 1.12146 0.560728 0.828000i 0.310521π-0.310521\pi
0.560728 + 0.828000i 0.310521π0.310521\pi
368368 − 24.1577i − 0.0656460i
369369 0 0
370370 −199.641 −0.539570
371371 87.2559i 0.235191i
372372 0 0
373373 687.028 1.84190 0.920949 0.389684i 0.127416π-0.127416\pi
0.920949 + 0.389684i 0.127416π0.127416\pi
374374 − 170.186i − 0.455042i
375375 0 0
376376 −19.1170 −0.0508431
377377 − 27.2089i − 0.0721722i
378378 0 0
379379 −154.733 −0.408267 −0.204134 0.978943i 0.565438π-0.565438\pi
−0.204134 + 0.978943i 0.565438π0.565438\pi
380380 123.298i 0.324467i
381381 0 0
382382 48.0829 0.125871
383383 163.122i 0.425907i 0.977062 + 0.212954i 0.0683083π0.0683083\pi
−0.977062 + 0.212954i 0.931692π0.931692\pi
384384 0 0
385385 11.0802 0.0287798
386386 258.954i 0.670866i
387387 0 0
388388 −4.57532 −0.0117921
389389 − 310.319i − 0.797734i −0.917009 0.398867i 0.869403π-0.869403\pi
0.917009 0.398867i 0.130597π-0.130597\pi
390390 0 0
391391 145.758 0.372783
392392 − 135.800i − 0.346427i
393393 0 0
394394 43.7488 0.111038
395395 − 88.5244i − 0.224112i
396396 0 0
397397 −270.057 −0.680244 −0.340122 0.940381i 0.610468π-0.610468\pi
−0.340122 + 0.940381i 0.610468π0.610468\pi
398398 470.753i 1.18280i
399399 0 0
400400 −20.0000 −0.0500000
401401 − 606.672i − 1.51290i −0.654052 0.756449i 0.726932π-0.726932\pi
0.654052 0.756449i 0.273068π-0.273068\pi
402402 0 0
403403 38.6374 0.0958744
404404 − 227.296i − 0.562614i
405405 0 0
406406 −26.9246 −0.0663167
407407 314.791i 0.773441i
408408 0 0
409409 −665.897 −1.62811 −0.814055 0.580788i 0.802745π-0.802745\pi
−0.814055 + 0.580788i 0.802745π0.802745\pi
410410 212.189i 0.517535i
411411 0 0
412412 113.487 0.275453
413413 102.465i 0.248099i
414414 0 0
415415 −270.984 −0.652973
416416 − 8.03422i − 0.0193130i
417417 0 0
418418 194.414 0.465104
419419 216.212i 0.516020i 0.966142 + 0.258010i 0.0830667π0.0830667\pi
−0.966142 + 0.258010i 0.916933π0.916933\pi
420420 0 0
421421 315.504 0.749415 0.374708 0.927143i 0.377743π-0.377743\pi
0.374708 + 0.927143i 0.377743π0.377743\pi
422422 227.366i 0.538781i
423423 0 0
424424 −248.341 −0.585710
425425 − 120.672i − 0.283934i
426426 0 0
427427 −71.5651 −0.167600
428428 186.372i 0.435450i
429429 0 0
430430 −87.4634 −0.203403
431431 705.119i 1.63601i 0.575213 + 0.818003i 0.304919π0.304919\pi
−0.575213 + 0.818003i 0.695081π0.695081\pi
432432 0 0
433433 152.735 0.352737 0.176369 0.984324i 0.443565π-0.443565\pi
0.176369 + 0.984324i 0.443565π0.443565\pi
434434 − 38.2336i − 0.0880958i
435435 0 0
436436 43.5106 0.0997950
437437 166.508i 0.381026i
438438 0 0
439439 162.235 0.369555 0.184778 0.982780i 0.440844π-0.440844\pi
0.184778 + 0.982780i 0.440844π0.440844\pi
440440 31.5357i 0.0716720i
441441 0 0
442442 48.4753 0.109673
443443 − 387.565i − 0.874865i −0.899251 0.437433i 0.855888π-0.855888\pi
0.899251 0.437433i 0.144112π-0.144112\pi
444444 0 0
445445 −165.584 −0.372098
446446 − 553.525i − 1.24109i
447447 0 0
448448 −7.95026 −0.0177461
449449 111.025i 0.247272i 0.992328 + 0.123636i 0.0394554π0.0394554\pi
−0.992328 + 0.123636i 0.960545π0.960545\pi
450450 0 0
451451 334.577 0.741855
452452 286.486i 0.633817i
453453 0 0
454454 −481.821 −1.06128
455455 3.15606i 0.00693640i
456456 0 0
457457 −298.799 −0.653828 −0.326914 0.945054i 0.606009π-0.606009\pi
−0.326914 + 0.945054i 0.606009π0.606009\pi
458458 133.567i 0.291632i
459459 0 0
460460 −27.0091 −0.0587155
461461 207.888i 0.450950i 0.974249 + 0.225475i 0.0723934π0.0723934\pi
−0.974249 + 0.225475i 0.927607π0.927607\pi
462462 0 0
463463 865.125 1.86852 0.934261 0.356591i 0.116061π-0.116061\pi
0.934261 + 0.356591i 0.116061π0.116061\pi
464464 − 76.6307i − 0.165152i
465465 0 0
466466 166.852 0.358052
467467 854.726i 1.83025i 0.403172 + 0.915124i 0.367908π0.367908\pi
−0.403172 + 0.915124i 0.632092π0.632092\pi
468468 0 0
469469 19.8439 0.0423111
470470 21.3735i 0.0454755i
471471 0 0
472472 −291.627 −0.617855
473473 137.911i 0.291566i
474474 0 0
475475 137.851 0.290212
476476 − 47.9687i − 0.100775i
477477 0 0
478478 −522.004 −1.09206
479479 − 304.139i − 0.634945i −0.948267 0.317473i 0.897166π-0.897166\pi
0.948267 0.317473i 0.102834π-0.102834\pi
480480 0 0
481481 −89.6641 −0.186412
482482 531.222i 1.10212i
483483 0 0
484484 −192.275 −0.397263
485485 5.11537i 0.0105472i
486486 0 0
487487 907.378 1.86320 0.931600 0.363486i 0.118413π-0.118413\pi
0.931600 + 0.363486i 0.118413π0.118413\pi
488488 − 203.683i − 0.417383i
489489 0 0
490490 −151.829 −0.309854
491491 65.4467i 0.133293i 0.997777 + 0.0666464i 0.0212299π0.0212299\pi
−0.997777 + 0.0666464i 0.978770π0.978770\pi
492492 0 0
493493 462.359 0.937847
494494 55.3763i 0.112098i
495495 0 0
496496 108.818 0.219390
497497 − 54.7654i − 0.110192i
498498 0 0
499499 717.284 1.43744 0.718721 0.695298i 0.244728π-0.244728\pi
0.718721 + 0.695298i 0.244728π0.244728\pi
500500 22.3607i 0.0447214i
501501 0 0
502502 −340.315 −0.677919
503503 − 623.374i − 1.23931i −0.784873 0.619657i 0.787272π-0.787272\pi
0.784873 0.619657i 0.212728π-0.212728\pi
504504 0 0
505505 −254.125 −0.503217
506506 42.5876i 0.0841652i
507507 0 0
508508 330.104 0.649811
509509 666.448i 1.30933i 0.755920 + 0.654664i 0.227190π0.227190\pi
−0.755920 + 0.654664i 0.772810π0.772810\pi
510510 0 0
511511 131.926 0.258172
512512 − 22.6274i − 0.0441942i
513513 0 0
514514 −177.086 −0.344526
515515 − 126.882i − 0.246373i
516516 0 0
517517 33.7013 0.0651864
518518 88.7270i 0.171288i
519519 0 0
520520 −8.98254 −0.0172741
521521 896.544i 1.72081i 0.509608 + 0.860407i 0.329790π0.329790\pi
−0.509608 + 0.860407i 0.670210π0.670210\pi
522522 0 0
523523 354.070 0.676999 0.338499 0.940967i 0.390081π-0.390081\pi
0.338499 + 0.940967i 0.390081π0.390081\pi
524524 − 104.935i − 0.200257i
525525 0 0
526526 131.866 0.250696
527527 656.561i 1.24585i
528528 0 0
529529 492.525 0.931050
530530 277.654i 0.523875i
531531 0 0
532532 54.7975 0.103003
533533 95.2999i 0.178799i
534534 0 0
535535 208.371 0.389478
536536 56.4782i 0.105370i
537537 0 0
538538 −107.956 −0.200662
539539 239.401i 0.444157i
540540 0 0
541541 −392.737 −0.725947 −0.362974 0.931799i 0.618238π-0.618238\pi
−0.362974 + 0.931799i 0.618238π0.618238\pi
542542 − 749.163i − 1.38222i
543543 0 0
544544 136.525 0.250965
545545 − 48.6463i − 0.0892594i
546546 0 0
547547 271.057 0.495534 0.247767 0.968820i 0.420303π-0.420303\pi
0.247767 + 0.968820i 0.420303π0.420303\pi
548548 240.746i 0.439318i
549549 0 0
550550 35.2579 0.0641054
551551 528.180i 0.958585i
552552 0 0
553553 −39.3431 −0.0711449
554554 120.153i 0.216883i
555555 0 0
556556 132.797 0.238843
557557 − 122.363i − 0.219682i −0.993949 0.109841i 0.964966π-0.964966\pi
0.993949 0.109841i 0.0350342π-0.0350342\pi
558558 0 0
559559 −39.2821 −0.0702722
560560 8.88866i 0.0158726i
561561 0 0
562562 302.984 0.539118
563563 52.9120i 0.0939823i 0.998895 + 0.0469911i 0.0149633π0.0149633\pi
−0.998895 + 0.0469911i 0.985037π0.985037\pi
564564 0 0
565565 320.301 0.566904
566566 − 534.796i − 0.944869i
567567 0 0
568568 155.869 0.274418
569569 729.154i 1.28147i 0.767764 + 0.640733i 0.221369π0.221369\pi
−0.767764 + 0.640733i 0.778631π0.778631\pi
570570 0 0
571571 −397.481 −0.696115 −0.348057 0.937473i 0.613159π-0.613159\pi
−0.348057 + 0.937473i 0.613159π0.613159\pi
572572 14.1635i 0.0247614i
573573 0 0
574574 94.3039 0.164293
575575 30.1971i 0.0525168i
576576 0 0
577577 −82.2138 −0.142485 −0.0712425 0.997459i 0.522696π-0.522696\pi
−0.0712425 + 0.997459i 0.522696π0.522696\pi
578578 415.028i 0.718041i
579579 0 0
580580 −85.6757 −0.147717
581581 120.434i 0.207288i
582582 0 0
583583 437.800 0.750943
584584 375.477i 0.642940i
585585 0 0
586586 −70.7106 −0.120667
587587 861.368i 1.46741i 0.679470 + 0.733703i 0.262210π0.262210\pi
−0.679470 + 0.733703i 0.737790π0.737790\pi
588588 0 0
589589 −750.030 −1.27340
590590 326.049i 0.552626i
591591 0 0
592592 −252.528 −0.426568
593593 377.445i 0.636500i 0.948007 + 0.318250i 0.103095π0.103095\pi
−0.948007 + 0.318250i 0.896905π0.896905\pi
594594 0 0
595595 −53.6306 −0.0901355
596596 − 191.240i − 0.320872i
597597 0 0
598598 −12.1305 −0.0202852
599599 − 309.928i − 0.517408i −0.965957 0.258704i 0.916705π-0.916705\pi
0.965957 0.258704i 0.0832955π-0.0832955\pi
600600 0 0
601601 417.783 0.695146 0.347573 0.937653i 0.387006π-0.387006\pi
0.347573 + 0.937653i 0.387006π0.387006\pi
602602 38.8716i 0.0645708i
603603 0 0
604604 −541.049 −0.895776
605605 214.970i 0.355322i
606606 0 0
607607 856.166 1.41049 0.705244 0.708965i 0.250838π-0.250838\pi
0.705244 + 0.708965i 0.250838π0.250838\pi
608608 155.961i 0.256514i
609609 0 0
610610 −227.725 −0.373319
611611 9.59940i 0.0157110i
612612 0 0
613613 −1022.92 −1.66870 −0.834352 0.551231i 0.814158π-0.814158\pi
−0.834352 + 0.551231i 0.814158π0.814158\pi
614614 − 205.178i − 0.334167i
615615 0 0
616616 14.0155 0.0227524
617617 − 585.968i − 0.949704i −0.880066 0.474852i 0.842502π-0.842502\pi
0.880066 0.474852i 0.157498π-0.157498\pi
618618 0 0
619619 −911.575 −1.47266 −0.736329 0.676624i 0.763442π-0.763442\pi
−0.736329 + 0.676624i 0.763442π0.763442\pi
620620 − 121.662i − 0.196229i
621621 0 0
622622 147.912 0.237800
623623 73.5909i 0.118123i
624624 0 0
625625 25.0000 0.0400000
626626 − 81.7044i − 0.130518i
627627 0 0
628628 −72.6905 −0.115749
629629 − 1523.65i − 2.42234i
630630 0 0
631631 463.111 0.733932 0.366966 0.930234i 0.380396π-0.380396\pi
0.366966 + 0.930234i 0.380396π0.380396\pi
632632 − 111.975i − 0.177176i
633633 0 0
634634 −139.017 −0.219270
635635 − 369.067i − 0.581208i
636636 0 0
637637 −68.1903 −0.107049
638638 135.092i 0.211743i
639639 0 0
640640 −25.2982 −0.0395285
641641 591.726i 0.923129i 0.887107 + 0.461565i 0.152712π0.152712\pi
−0.887107 + 0.461565i 0.847288π0.847288\pi
642642 0 0
643643 −747.102 −1.16190 −0.580950 0.813939i 0.697319π-0.697319\pi
−0.580950 + 0.813939i 0.697319π0.697319\pi
644644 12.0038i 0.0186394i
645645 0 0
646646 −941.003 −1.45666
647647 86.2103i 0.133246i 0.997778 + 0.0666231i 0.0212225π0.0212225\pi
−0.997778 + 0.0666231i 0.978777π0.978777\pi
648648 0 0
649649 514.109 0.792156
650650 10.0428i 0.0154504i
651651 0 0
652652 −186.652 −0.286276
653653 − 171.547i − 0.262707i −0.991336 0.131353i 0.958068π-0.958068\pi
0.991336 0.131353i 0.0419322π-0.0419322\pi
654654 0 0
655655 −117.321 −0.179116
656656 268.401i 0.409147i
657657 0 0
658658 9.49908 0.0144363
659659 − 94.2318i − 0.142992i −0.997441 0.0714960i 0.977223π-0.977223\pi
0.997441 0.0714960i 0.0227773π-0.0227773\pi
660660 0 0
661661 844.781 1.27803 0.639017 0.769192i 0.279341π-0.279341\pi
0.639017 + 0.769192i 0.279341π0.279341\pi
662662 301.333i 0.455186i
663663 0 0
664664 −342.771 −0.516221
665665 − 61.2655i − 0.0921286i
666666 0 0
667667 −115.701 −0.173465
668668 − 113.856i − 0.170443i
669669 0 0
670670 63.1446 0.0942456
671671 359.072i 0.535130i
672672 0 0
673673 −704.290 −1.04649 −0.523247 0.852181i 0.675279π-0.675279\pi
−0.523247 + 0.852181i 0.675279π0.675279\pi
674674 − 233.389i − 0.346274i
675675 0 0
676676 333.966 0.494032
677677 1278.87i 1.88903i 0.328475 + 0.944513i 0.393465π0.393465\pi
−0.328475 + 0.944513i 0.606535π0.606535\pi
678678 0 0
679679 2.27344 0.00334822
680680 − 152.639i − 0.224470i
681681 0 0
682682 −191.834 −0.281282
683683 − 571.914i − 0.837356i −0.908135 0.418678i 0.862494π-0.862494\pi
0.908135 0.418678i 0.137506π-0.137506\pi
684684 0 0
685685 269.163 0.392938
686686 136.343i 0.198751i
687687 0 0
688688 −110.633 −0.160804
689689 124.702i 0.180989i
690690 0 0
691691 620.122 0.897427 0.448713 0.893676i 0.351882π-0.351882\pi
0.448713 + 0.893676i 0.351882π0.351882\pi
692692 435.280i 0.629017i
693693 0 0
694694 −127.785 −0.184129
695695 − 148.471i − 0.213628i
696696 0 0
697697 −1619.42 −2.32342
698698 502.011i 0.719213i
699699 0 0
700700 9.93782 0.0141969
701701 − 66.6004i − 0.0950077i −0.998871 0.0475038i 0.984873π-0.984873\pi
0.998871 0.0475038i 0.0151266π-0.0151266\pi
702702 0 0
703703 1740.56 2.47591
704704 39.8898i 0.0566617i
705705 0 0
706706 −510.666 −0.723324
707707 112.941i 0.159747i
708708 0 0
709709 −210.574 −0.297002 −0.148501 0.988912i 0.547445π-0.547445\pi
−0.148501 + 0.988912i 0.547445π0.547445\pi
710710 − 174.267i − 0.245447i
711711 0 0
712712 −209.449 −0.294169
713713 − 164.299i − 0.230433i
714714 0 0
715715 15.8353 0.0221473
716716 − 112.528i − 0.157161i
717717 0 0
718718 324.297 0.451667
719719 900.163i 1.25197i 0.779837 + 0.625983i 0.215302π0.215302\pi
−0.779837 + 0.625983i 0.784698π0.784698\pi
720720 0 0
721721 −56.3906 −0.0782116
722722 − 564.434i − 0.781764i
723723 0 0
724724 261.917 0.361764
725725 95.7883i 0.132122i
726726 0 0
727727 −755.214 −1.03881 −0.519404 0.854529i 0.673846π-0.673846\pi
−0.519404 + 0.854529i 0.673846π0.673846\pi
728728 3.99213i 0.00548370i
729729 0 0
730730 419.796 0.575063
731731 − 667.517i − 0.913156i
732732 0 0
733733 −126.122 −0.172062 −0.0860311 0.996292i 0.527418π-0.527418\pi
−0.0860311 + 0.996292i 0.527418π0.527418\pi
734734 − 582.055i − 0.792990i
735735 0 0
736736 −34.1642 −0.0464187
737737 − 99.5653i − 0.135095i
738738 0 0
739739 503.837 0.681782 0.340891 0.940103i 0.389271π-0.389271\pi
0.340891 + 0.940103i 0.389271π0.389271\pi
740740 282.335i 0.381534i
741741 0 0
742742 123.398 0.166305
743743 − 732.660i − 0.986083i −0.870006 0.493042i 0.835885π-0.835885\pi
0.870006 0.493042i 0.164115π-0.164115\pi
744744 0 0
745745 −213.812 −0.286996
746746 − 971.604i − 1.30242i
747747 0 0
748748 −240.679 −0.321764
749749 − 92.6068i − 0.123641i
750750 0 0
751751 −116.216 −0.154749 −0.0773744 0.997002i 0.524654π-0.524654\pi
−0.0773744 + 0.997002i 0.524654π0.524654\pi
752752 27.0356i 0.0359515i
753753 0 0
754754 −38.4792 −0.0510335
755755 604.911i 0.801206i
756756 0 0
757757 −644.638 −0.851570 −0.425785 0.904824i 0.640002π-0.640002\pi
−0.425785 + 0.904824i 0.640002π0.640002\pi
758758 218.826i 0.288689i
759759 0 0
760760 174.369 0.229433
761761 1059.55i 1.39231i 0.717891 + 0.696156i 0.245108π0.245108\pi
−0.717891 + 0.696156i 0.754892π0.754892\pi
762762 0 0
763763 −21.6200 −0.0283356
764764 − 67.9994i − 0.0890045i
765765 0 0
766766 230.690 0.301162
767767 146.437i 0.190922i
768768 0 0
769769 −695.512 −0.904437 −0.452219 0.891907i 0.649367π-0.649367\pi
−0.452219 + 0.891907i 0.649367π0.649367\pi
770770 − 15.6698i − 0.0203504i
771771 0 0
772772 366.217 0.474374
773773 − 931.046i − 1.20446i −0.798323 0.602229i 0.794279π-0.794279\pi
0.798323 0.602229i 0.205721π-0.205721\pi
774774 0 0
775775 −136.022 −0.175512
776776 6.47049i 0.00833825i
777777 0 0
778778 −438.857 −0.564083
779779 − 1849.96i − 2.37479i
780780 0 0
781781 −274.781 −0.351833
782782 − 206.133i − 0.263597i
783783 0 0
784784 −192.050 −0.244961
785785 81.2704i 0.103529i
786786 0 0
787787 −429.601 −0.545871 −0.272936 0.962032i 0.587995π-0.587995\pi
−0.272936 + 0.962032i 0.587995π0.587995\pi
788788 − 61.8702i − 0.0785154i
789789 0 0
790790 −125.192 −0.158471
791791 − 142.352i − 0.179965i
792792 0 0
793793 −102.277 −0.128975
794794 381.918i 0.481005i
795795 0 0
796796 665.745 0.836363
797797 610.415i 0.765891i 0.923771 + 0.382945i 0.125090π0.125090\pi
−0.923771 + 0.382945i 0.874910π0.874910\pi
798798 0 0
799799 −163.122 −0.204157
800800 28.2843i 0.0353553i
801801 0 0
802802 −857.964 −1.06978
803803 − 661.927i − 0.824318i
804804 0 0
805805 13.4206 0.0166716
806806 − 54.6415i − 0.0677934i
807807 0 0
808808 −321.445 −0.397828
809809 − 304.324i − 0.376173i −0.982152 0.188087i 0.939771π-0.939771\pi
0.982152 0.188087i 0.0602286π-0.0602286\pi
810810 0 0
811811 −639.398 −0.788407 −0.394204 0.919023i 0.628980π-0.628980\pi
−0.394204 + 0.919023i 0.628980π0.628980\pi
812812 38.0771i 0.0468930i
813813 0 0
814814 445.181 0.546906
815815 208.683i 0.256053i
816816 0 0
817817 762.546 0.933348
818818 941.721i 1.15125i
819819 0 0
820820 300.081 0.365952
821821 − 1331.48i − 1.62178i −0.585196 0.810892i 0.698982π-0.698982\pi
0.585196 0.810892i 0.301018π-0.301018\pi
822822 0 0
823823 −891.022 −1.08265 −0.541325 0.840813i 0.682077π-0.682077\pi
−0.541325 + 0.840813i 0.682077π0.682077\pi
824824 − 160.495i − 0.194775i
825825 0 0
826826 144.907 0.175432
827827 494.513i 0.597960i 0.954259 + 0.298980i 0.0966465π0.0966465\pi
−0.954259 + 0.298980i 0.903354π0.903354\pi
828828 0 0
829829 −752.153 −0.907302 −0.453651 0.891179i 0.649879π-0.649879\pi
−0.453651 + 0.891179i 0.649879π0.649879\pi
830830 383.229i 0.461722i
831831 0 0
832832 −11.3621 −0.0136564
833833 − 1158.75i − 1.39106i
834834 0 0
835835 −127.294 −0.152448
836836 − 274.942i − 0.328878i
837837 0 0
838838 305.770 0.364881
839839 − 506.107i − 0.603226i −0.953430 0.301613i 0.902475π-0.902475\pi
0.953430 0.301613i 0.0975251π-0.0975251\pi
840840 0 0
841841 473.984 0.563595
842842 − 446.190i − 0.529917i
843843 0 0
844844 321.543 0.380976
845845 − 373.385i − 0.441876i
846846 0 0
847847 95.5398 0.112798
848848 351.207i 0.414159i
849849 0 0
850850 −170.656 −0.200772
851851 381.281i 0.448039i
852852 0 0
853853 22.0081 0.0258008 0.0129004 0.999917i 0.495894π-0.495894\pi
0.0129004 + 0.999917i 0.495894π0.495894\pi
854854 101.208i 0.118511i
855855 0 0
856856 263.570 0.307909
857857 − 122.498i − 0.142938i −0.997443 0.0714691i 0.977231π-0.977231\pi
0.997443 0.0714691i 0.0227687π-0.0227687\pi
858858 0 0
859859 1410.03 1.64148 0.820738 0.571305i 0.193563π-0.193563\pi
0.820738 + 0.571305i 0.193563π0.193563\pi
860860 123.692i 0.143828i
861861 0 0
862862 997.189 1.15683
863863 674.484i 0.781557i 0.920485 + 0.390778i 0.127794π0.127794\pi
−0.920485 + 0.390778i 0.872206π0.872206\pi
864864 0 0
865865 486.658 0.562610
866866 − 216.000i − 0.249423i
867867 0 0
868868 −54.0705 −0.0622932
869869 197.401i 0.227159i
870870 0 0
871871 28.3599 0.0325602
872872 − 61.5333i − 0.0705657i
873873 0 0
874874 235.478 0.269426
875875 − 11.1108i − 0.0126981i
876876 0 0
877877 1370.70 1.56295 0.781473 0.623939i 0.214469π-0.214469\pi
0.781473 + 0.623939i 0.214469π0.214469\pi
878878 − 229.434i − 0.261315i
879879 0 0
880880 44.5982 0.0506797
881881 − 629.262i − 0.714259i −0.934055 0.357130i 0.883755π-0.883755\pi
0.934055 0.357130i 0.116245π-0.116245\pi
882882 0 0
883883 −537.868 −0.609137 −0.304569 0.952490i 0.598512π-0.598512\pi
−0.304569 + 0.952490i 0.598512π0.598512\pi
884884 − 68.5544i − 0.0775502i
885885 0 0
886886 −548.100 −0.618623
887887 537.138i 0.605568i 0.953059 + 0.302784i 0.0979160π0.0979160\pi
−0.953059 + 0.302784i 0.902084π0.902084\pi
888888 0 0
889889 −164.026 −0.184506
890890 234.171i 0.263113i
891891 0 0
892892 −782.803 −0.877582
893893 − 186.344i − 0.208672i
894894 0 0
895895 −125.810 −0.140570
896896 11.2434i 0.0125484i
897897 0 0
898898 157.013 0.174847
899899 − 521.172i − 0.579725i
900900 0 0
901901 −2119.04 −2.35188
902902 − 473.163i − 0.524571i
903903 0 0
904904 405.152 0.448177
905905 − 292.832i − 0.323572i
906906 0 0
907907 498.885 0.550039 0.275019 0.961439i 0.411316π-0.411316\pi
0.275019 + 0.961439i 0.411316π0.411316\pi
908908 681.398i 0.750439i
909909 0 0
910910 4.46334 0.00490477
911911 − 1132.40i − 1.24303i −0.783402 0.621515i 0.786518π-0.786518\pi
0.783402 0.621515i 0.213482π-0.213482\pi
912912 0 0
913913 604.269 0.661850
914914 422.566i 0.462326i
915915 0 0
916916 188.893 0.206215
917917 52.1412i 0.0568606i
918918 0 0
919919 −20.1454 −0.0219210 −0.0109605 0.999940i 0.503489π-0.503489\pi
−0.0109605 + 0.999940i 0.503489π0.503489\pi
920920 38.1967i 0.0415182i
921921 0 0
922922 293.998 0.318870
923923 − 78.2680i − 0.0847974i
924924 0 0
925925 315.660 0.341254
926926 − 1223.47i − 1.32124i
927927 0 0
928928 −108.372 −0.116780
929929 300.765i 0.323751i 0.986811 + 0.161876i 0.0517543π0.0517543\pi
−0.986811 + 0.161876i 0.948246π0.948246\pi
930930 0 0
931931 1323.71 1.42182
932932 − 235.965i − 0.253181i
933933 0 0
934934 1208.76 1.29418
935935 269.087i 0.287794i
936936 0 0
937937 310.906 0.331810 0.165905 0.986142i 0.446945π-0.446945\pi
0.165905 + 0.986142i 0.446945π0.446945\pi
938938 − 28.0635i − 0.0299185i
939939 0 0
940940 30.2267 0.0321560
941941 1454.01i 1.54518i 0.634908 + 0.772588i 0.281038π0.281038\pi
−0.634908 + 0.772588i 0.718962π0.718962\pi
942942 0 0
943943 405.247 0.429742
944944 412.423i 0.436889i
945945 0 0
946946 195.035 0.206168
947947 − 190.859i − 0.201540i −0.994910 0.100770i 0.967869π-0.967869\pi
0.994910 0.100770i 0.0321307π-0.0321307\pi
948948 0 0
949949 188.542 0.198674
950950 − 194.951i − 0.205211i
951951 0 0
952952 −67.8379 −0.0712583
953953 808.807i 0.848695i 0.905499 + 0.424348i 0.139497π0.139497\pi
−0.905499 + 0.424348i 0.860503π0.860503\pi
954954 0 0
955955 −76.0257 −0.0796081
956956 738.226i 0.772203i
957957 0 0
958958 −430.117 −0.448974
959959 − 119.625i − 0.124739i
960960 0 0
961961 −220.922 −0.229888
962962 126.804i 0.131813i
963963 0 0
964964 751.261 0.779316
965965 − 409.443i − 0.424293i
966966 0 0
967967 427.562 0.442153 0.221076 0.975257i 0.429043π-0.429043\pi
0.221076 + 0.975257i 0.429043π0.429043\pi
968968 271.918i 0.280907i
969969 0 0
970970 7.23422 0.00745796
971971 932.208i 0.960050i 0.877255 + 0.480025i 0.159372π0.159372\pi
−0.877255 + 0.480025i 0.840628π0.840628\pi
972972 0 0
973973 −65.9856 −0.0678166
974974 − 1283.23i − 1.31748i
975975 0 0
976976 −288.051 −0.295135
977977 − 203.421i − 0.208209i −0.994566 0.104105i 0.966802π-0.966802\pi
0.994566 0.104105i 0.0331977π-0.0331977\pi
978978 0 0
979979 369.236 0.377157
980980 214.718i 0.219100i
981981 0 0
982982 92.5557 0.0942522
983983 − 1434.02i − 1.45882i −0.684074 0.729412i 0.739794π-0.739794\pi
0.684074 0.729412i 0.260206π-0.260206\pi
984984 0 0
985985 −69.1729 −0.0702263
986986 − 653.874i − 0.663158i
987987 0 0
988988 78.3139 0.0792650
989989 167.041i 0.168898i
990990 0 0
991991 −983.596 −0.992528 −0.496264 0.868172i 0.665295π-0.665295\pi
−0.496264 + 0.868172i 0.665295π0.665295\pi
992992 − 153.891i − 0.155132i
993993 0 0
994994 −77.4500 −0.0779175
995995 − 744.326i − 0.748066i
996996 0 0
997997 −991.171 −0.994154 −0.497077 0.867707i 0.665593π-0.665593\pi
−0.497077 + 0.867707i 0.665593π0.665593\pi
998998 − 1014.39i − 1.01643i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.3.d.c.161.7 16
3.2 odd 2 inner 810.3.d.c.161.11 16
9.2 odd 6 90.3.h.a.41.7 yes 16
9.4 even 3 90.3.h.a.11.7 16
9.5 odd 6 270.3.h.a.251.1 16
9.7 even 3 270.3.h.a.71.1 16
36.7 odd 6 2160.3.bs.d.881.3 16
36.11 even 6 720.3.bs.d.401.2 16
36.23 even 6 2160.3.bs.d.1601.3 16
36.31 odd 6 720.3.bs.d.641.2 16
45.2 even 12 450.3.k.c.149.11 32
45.4 even 6 450.3.i.g.101.2 16
45.7 odd 12 1350.3.k.b.449.6 32
45.13 odd 12 450.3.k.c.299.11 32
45.14 odd 6 1350.3.i.g.251.7 16
45.22 odd 12 450.3.k.c.299.6 32
45.23 even 12 1350.3.k.b.899.6 32
45.29 odd 6 450.3.i.g.401.2 16
45.32 even 12 1350.3.k.b.899.11 32
45.34 even 6 1350.3.i.g.1151.7 16
45.38 even 12 450.3.k.c.149.6 32
45.43 odd 12 1350.3.k.b.449.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.h.a.11.7 16 9.4 even 3
90.3.h.a.41.7 yes 16 9.2 odd 6
270.3.h.a.71.1 16 9.7 even 3
270.3.h.a.251.1 16 9.5 odd 6
450.3.i.g.101.2 16 45.4 even 6
450.3.i.g.401.2 16 45.29 odd 6
450.3.k.c.149.6 32 45.38 even 12
450.3.k.c.149.11 32 45.2 even 12
450.3.k.c.299.6 32 45.22 odd 12
450.3.k.c.299.11 32 45.13 odd 12
720.3.bs.d.401.2 16 36.11 even 6
720.3.bs.d.641.2 16 36.31 odd 6
810.3.d.c.161.7 16 1.1 even 1 trivial
810.3.d.c.161.11 16 3.2 odd 2 inner
1350.3.i.g.251.7 16 45.14 odd 6
1350.3.i.g.1151.7 16 45.34 even 6
1350.3.k.b.449.6 32 45.7 odd 12
1350.3.k.b.449.11 32 45.43 odd 12
1350.3.k.b.899.6 32 45.23 even 12
1350.3.k.b.899.11 32 45.32 even 12
2160.3.bs.d.881.3 16 36.7 odd 6
2160.3.bs.d.1601.3 16 36.23 even 6