Properties

Label 810.3.d.c.161.7
Level $810$
Weight $3$
Character 810.161
Analytic conductor $22.071$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,3,Mod(161,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 810.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.0709014132\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 138x^{12} - 1040x^{10} + 5541x^{8} - 26220x^{6} + 99328x^{4} - 202728x^{2} + 181476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{14} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.7
Root \(-1.42311 + 1.82514i\) of defining polynomial
Character \(\chi\) \(=\) 810.161
Dual form 810.3.d.c.161.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +2.23607i q^{5} +0.993782 q^{7} +2.82843i q^{8} +3.16228 q^{10} -4.98623i q^{11} +1.42026 q^{13} -1.40542i q^{14} +4.00000 q^{16} +24.1344i q^{17} -27.5702 q^{19} -4.47214i q^{20} -7.05159 q^{22} -6.03943i q^{23} -5.00000 q^{25} -2.00856i q^{26} -1.98756 q^{28} -19.1577i q^{29} +27.2044 q^{31} -5.65685i q^{32} +34.1312 q^{34} +2.22216i q^{35} -63.1320 q^{37} +38.9901i q^{38} -6.32456 q^{40} +67.1001i q^{41} -27.6583 q^{43} +9.97245i q^{44} -8.54104 q^{46} +6.75889i q^{47} -48.0124 q^{49} +7.07107i q^{50} -2.84053 q^{52} +87.8018i q^{53} +11.1495 q^{55} +2.81084i q^{56} -27.0930 q^{58} +103.106i q^{59} -72.0128 q^{61} -38.4728i q^{62} -8.00000 q^{64} +3.17581i q^{65} +19.9681 q^{67} -48.2688i q^{68} +3.14262 q^{70} -55.1081i q^{71} +132.751 q^{73} +89.2822i q^{74} +55.1404 q^{76} -4.95522i q^{77} -39.5893 q^{79} +8.94427i q^{80} +94.8939 q^{82} +121.188i q^{83} -53.9661 q^{85} +39.1148i q^{86} +14.1032 q^{88} +74.0513i q^{89} +1.41143 q^{91} +12.0789i q^{92} +9.55851 q^{94} -61.6488i q^{95} +2.28766 q^{97} +67.8998i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 8 q^{7} - 40 q^{13} + 64 q^{16} + 80 q^{19} - 48 q^{22} - 80 q^{25} - 16 q^{28} + 32 q^{31} + 96 q^{34} - 88 q^{37} - 184 q^{43} + 24 q^{46} + 168 q^{49} + 80 q^{52} + 152 q^{61} - 128 q^{64}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 0.993782 0.141969 0.0709844 0.997477i \(-0.477386\pi\)
0.0709844 + 0.997477i \(0.477386\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 3.16228 0.316228
\(11\) − 4.98623i − 0.453293i −0.973977 0.226647i \(-0.927224\pi\)
0.973977 0.226647i \(-0.0727763\pi\)
\(12\) 0 0
\(13\) 1.42026 0.109251 0.0546255 0.998507i \(-0.482603\pi\)
0.0546255 + 0.998507i \(0.482603\pi\)
\(14\) − 1.40542i − 0.100387i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 24.1344i 1.41967i 0.704368 + 0.709835i \(0.251231\pi\)
−0.704368 + 0.709835i \(0.748769\pi\)
\(18\) 0 0
\(19\) −27.5702 −1.45106 −0.725531 0.688189i \(-0.758406\pi\)
−0.725531 + 0.688189i \(0.758406\pi\)
\(20\) − 4.47214i − 0.223607i
\(21\) 0 0
\(22\) −7.05159 −0.320527
\(23\) − 6.03943i − 0.262584i −0.991344 0.131292i \(-0.958087\pi\)
0.991344 0.131292i \(-0.0419125\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) − 2.00856i − 0.0772522i
\(27\) 0 0
\(28\) −1.98756 −0.0709844
\(29\) − 19.1577i − 0.660609i −0.943874 0.330305i \(-0.892849\pi\)
0.943874 0.330305i \(-0.107151\pi\)
\(30\) 0 0
\(31\) 27.2044 0.877561 0.438780 0.898594i \(-0.355411\pi\)
0.438780 + 0.898594i \(0.355411\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 34.1312 1.00386
\(35\) 2.22216i 0.0634904i
\(36\) 0 0
\(37\) −63.1320 −1.70627 −0.853136 0.521689i \(-0.825302\pi\)
−0.853136 + 0.521689i \(0.825302\pi\)
\(38\) 38.9901i 1.02606i
\(39\) 0 0
\(40\) −6.32456 −0.158114
\(41\) 67.1001i 1.63659i 0.574799 + 0.818294i \(0.305080\pi\)
−0.574799 + 0.818294i \(0.694920\pi\)
\(42\) 0 0
\(43\) −27.6583 −0.643217 −0.321609 0.946873i \(-0.604224\pi\)
−0.321609 + 0.946873i \(0.604224\pi\)
\(44\) 9.97245i 0.226647i
\(45\) 0 0
\(46\) −8.54104 −0.185675
\(47\) 6.75889i 0.143806i 0.997412 + 0.0719031i \(0.0229072\pi\)
−0.997412 + 0.0719031i \(0.977093\pi\)
\(48\) 0 0
\(49\) −48.0124 −0.979845
\(50\) 7.07107i 0.141421i
\(51\) 0 0
\(52\) −2.84053 −0.0546255
\(53\) 87.8018i 1.65664i 0.560257 + 0.828319i \(0.310702\pi\)
−0.560257 + 0.828319i \(0.689298\pi\)
\(54\) 0 0
\(55\) 11.1495 0.202719
\(56\) 2.81084i 0.0501936i
\(57\) 0 0
\(58\) −27.0930 −0.467121
\(59\) 103.106i 1.74756i 0.486324 + 0.873778i \(0.338337\pi\)
−0.486324 + 0.873778i \(0.661663\pi\)
\(60\) 0 0
\(61\) −72.0128 −1.18054 −0.590269 0.807207i \(-0.700978\pi\)
−0.590269 + 0.807207i \(0.700978\pi\)
\(62\) − 38.4728i − 0.620529i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 3.17581i 0.0488586i
\(66\) 0 0
\(67\) 19.9681 0.298031 0.149015 0.988835i \(-0.452390\pi\)
0.149015 + 0.988835i \(0.452390\pi\)
\(68\) − 48.2688i − 0.709835i
\(69\) 0 0
\(70\) 3.14262 0.0448945
\(71\) − 55.1081i − 0.776170i −0.921624 0.388085i \(-0.873137\pi\)
0.921624 0.388085i \(-0.126863\pi\)
\(72\) 0 0
\(73\) 132.751 1.81851 0.909254 0.416241i \(-0.136653\pi\)
0.909254 + 0.416241i \(0.136653\pi\)
\(74\) 89.2822i 1.20652i
\(75\) 0 0
\(76\) 55.1404 0.725531
\(77\) − 4.95522i − 0.0643536i
\(78\) 0 0
\(79\) −39.5893 −0.501130 −0.250565 0.968100i \(-0.580616\pi\)
−0.250565 + 0.968100i \(0.580616\pi\)
\(80\) 8.94427i 0.111803i
\(81\) 0 0
\(82\) 94.8939 1.15724
\(83\) 121.188i 1.46009i 0.683398 + 0.730046i \(0.260502\pi\)
−0.683398 + 0.730046i \(0.739498\pi\)
\(84\) 0 0
\(85\) −53.9661 −0.634896
\(86\) 39.1148i 0.454823i
\(87\) 0 0
\(88\) 14.1032 0.160263
\(89\) 74.0513i 0.832037i 0.909356 + 0.416018i \(0.136575\pi\)
−0.909356 + 0.416018i \(0.863425\pi\)
\(90\) 0 0
\(91\) 1.41143 0.0155103
\(92\) 12.0789i 0.131292i
\(93\) 0 0
\(94\) 9.55851 0.101686
\(95\) − 61.6488i − 0.648935i
\(96\) 0 0
\(97\) 2.28766 0.0235841 0.0117921 0.999930i \(-0.496246\pi\)
0.0117921 + 0.999930i \(0.496246\pi\)
\(98\) 67.8998i 0.692855i
\(99\) 0 0
\(100\) 10.0000 0.100000
\(101\) 113.648i 1.12523i 0.826720 + 0.562614i \(0.190204\pi\)
−0.826720 + 0.562614i \(0.809796\pi\)
\(102\) 0 0
\(103\) −56.7434 −0.550907 −0.275453 0.961314i \(-0.588828\pi\)
−0.275453 + 0.961314i \(0.588828\pi\)
\(104\) 4.01711i 0.0386261i
\(105\) 0 0
\(106\) 124.170 1.17142
\(107\) − 93.1862i − 0.870899i −0.900213 0.435450i \(-0.856589\pi\)
0.900213 0.435450i \(-0.143411\pi\)
\(108\) 0 0
\(109\) −21.7553 −0.199590 −0.0997950 0.995008i \(-0.531819\pi\)
−0.0997950 + 0.995008i \(0.531819\pi\)
\(110\) − 15.7678i − 0.143344i
\(111\) 0 0
\(112\) 3.97513 0.0354922
\(113\) − 143.243i − 1.26763i −0.773483 0.633817i \(-0.781487\pi\)
0.773483 0.633817i \(-0.218513\pi\)
\(114\) 0 0
\(115\) 13.5046 0.117431
\(116\) 38.3153i 0.330305i
\(117\) 0 0
\(118\) 145.814 1.23571
\(119\) 23.9843i 0.201549i
\(120\) 0 0
\(121\) 96.1375 0.794525
\(122\) 101.842i 0.834767i
\(123\) 0 0
\(124\) −54.4088 −0.438780
\(125\) − 11.1803i − 0.0894427i
\(126\) 0 0
\(127\) −165.052 −1.29962 −0.649811 0.760096i \(-0.725152\pi\)
−0.649811 + 0.760096i \(0.725152\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 4.49127 0.0345482
\(131\) 52.4674i 0.400515i 0.979743 + 0.200257i \(0.0641778\pi\)
−0.979743 + 0.200257i \(0.935822\pi\)
\(132\) 0 0
\(133\) −27.3988 −0.206006
\(134\) − 28.2391i − 0.210740i
\(135\) 0 0
\(136\) −68.2624 −0.501929
\(137\) − 120.373i − 0.878636i −0.898332 0.439318i \(-0.855220\pi\)
0.898332 0.439318i \(-0.144780\pi\)
\(138\) 0 0
\(139\) −66.3984 −0.477687 −0.238843 0.971058i \(-0.576768\pi\)
−0.238843 + 0.971058i \(0.576768\pi\)
\(140\) − 4.44433i − 0.0317452i
\(141\) 0 0
\(142\) −77.9346 −0.548835
\(143\) − 7.08176i − 0.0495228i
\(144\) 0 0
\(145\) 42.8378 0.295433
\(146\) − 187.738i − 1.28588i
\(147\) 0 0
\(148\) 126.264 0.853136
\(149\) 95.6198i 0.641744i 0.947123 + 0.320872i \(0.103976\pi\)
−0.947123 + 0.320872i \(0.896024\pi\)
\(150\) 0 0
\(151\) 270.524 1.79155 0.895776 0.444506i \(-0.146621\pi\)
0.895776 + 0.444506i \(0.146621\pi\)
\(152\) − 77.9803i − 0.513028i
\(153\) 0 0
\(154\) −7.00774 −0.0455048
\(155\) 60.8308i 0.392457i
\(156\) 0 0
\(157\) 36.3452 0.231498 0.115749 0.993278i \(-0.463073\pi\)
0.115749 + 0.993278i \(0.463073\pi\)
\(158\) 55.9877i 0.354353i
\(159\) 0 0
\(160\) 12.6491 0.0790569
\(161\) − 6.00188i − 0.0372787i
\(162\) 0 0
\(163\) 93.3260 0.572552 0.286276 0.958147i \(-0.407583\pi\)
0.286276 + 0.958147i \(0.407583\pi\)
\(164\) − 134.200i − 0.818294i
\(165\) 0 0
\(166\) 171.385 1.03244
\(167\) 56.9278i 0.340885i 0.985368 + 0.170443i \(0.0545197\pi\)
−0.985368 + 0.170443i \(0.945480\pi\)
\(168\) 0 0
\(169\) −166.983 −0.988064
\(170\) 76.3197i 0.448939i
\(171\) 0 0
\(172\) 55.3167 0.321609
\(173\) − 217.640i − 1.25803i −0.777391 0.629017i \(-0.783458\pi\)
0.777391 0.629017i \(-0.216542\pi\)
\(174\) 0 0
\(175\) −4.96891 −0.0283938
\(176\) − 19.9449i − 0.113323i
\(177\) 0 0
\(178\) 104.724 0.588339
\(179\) 56.2638i 0.314323i 0.987573 + 0.157161i \(0.0502343\pi\)
−0.987573 + 0.157161i \(0.949766\pi\)
\(180\) 0 0
\(181\) −130.959 −0.723528 −0.361764 0.932270i \(-0.617825\pi\)
−0.361764 + 0.932270i \(0.617825\pi\)
\(182\) − 1.99607i − 0.0109674i
\(183\) 0 0
\(184\) 17.0821 0.0928374
\(185\) − 141.168i − 0.763068i
\(186\) 0 0
\(187\) 120.340 0.643527
\(188\) − 13.5178i − 0.0719031i
\(189\) 0 0
\(190\) −87.1846 −0.458866
\(191\) 33.9997i 0.178009i 0.996031 + 0.0890045i \(0.0283686\pi\)
−0.996031 + 0.0890045i \(0.971631\pi\)
\(192\) 0 0
\(193\) −183.108 −0.948748 −0.474374 0.880323i \(-0.657326\pi\)
−0.474374 + 0.880323i \(0.657326\pi\)
\(194\) − 3.23524i − 0.0166765i
\(195\) 0 0
\(196\) 96.0248 0.489922
\(197\) 30.9351i 0.157031i 0.996913 + 0.0785154i \(0.0250180\pi\)
−0.996913 + 0.0785154i \(0.974982\pi\)
\(198\) 0 0
\(199\) −332.873 −1.67273 −0.836363 0.548176i \(-0.815322\pi\)
−0.836363 + 0.548176i \(0.815322\pi\)
\(200\) − 14.1421i − 0.0707107i
\(201\) 0 0
\(202\) 160.723 0.795656
\(203\) − 19.0385i − 0.0937860i
\(204\) 0 0
\(205\) −150.040 −0.731905
\(206\) 80.2473i 0.389550i
\(207\) 0 0
\(208\) 5.68105 0.0273128
\(209\) 137.471i 0.657757i
\(210\) 0 0
\(211\) −160.772 −0.761951 −0.380976 0.924585i \(-0.624412\pi\)
−0.380976 + 0.924585i \(0.624412\pi\)
\(212\) − 175.604i − 0.828319i
\(213\) 0 0
\(214\) −131.785 −0.615819
\(215\) − 61.8459i − 0.287655i
\(216\) 0 0
\(217\) 27.0352 0.124586
\(218\) 30.7667i 0.141131i
\(219\) 0 0
\(220\) −22.2991 −0.101359
\(221\) 34.2772i 0.155100i
\(222\) 0 0
\(223\) 391.401 1.75516 0.877582 0.479427i \(-0.159156\pi\)
0.877582 + 0.479427i \(0.159156\pi\)
\(224\) − 5.62168i − 0.0250968i
\(225\) 0 0
\(226\) −202.576 −0.896353
\(227\) − 340.699i − 1.50088i −0.660940 0.750439i \(-0.729842\pi\)
0.660940 0.750439i \(-0.270158\pi\)
\(228\) 0 0
\(229\) −94.4465 −0.412430 −0.206215 0.978507i \(-0.566115\pi\)
−0.206215 + 0.978507i \(0.566115\pi\)
\(230\) − 19.0984i − 0.0830363i
\(231\) 0 0
\(232\) 54.1861 0.233561
\(233\) 117.982i 0.506362i 0.967419 + 0.253181i \(0.0814769\pi\)
−0.967419 + 0.253181i \(0.918523\pi\)
\(234\) 0 0
\(235\) −15.1133 −0.0643121
\(236\) − 206.212i − 0.873778i
\(237\) 0 0
\(238\) 33.9190 0.142517
\(239\) − 369.113i − 1.54441i −0.635376 0.772203i \(-0.719155\pi\)
0.635376 0.772203i \(-0.280845\pi\)
\(240\) 0 0
\(241\) −375.630 −1.55863 −0.779316 0.626631i \(-0.784433\pi\)
−0.779316 + 0.626631i \(0.784433\pi\)
\(242\) − 135.959i − 0.561814i
\(243\) 0 0
\(244\) 144.026 0.590269
\(245\) − 107.359i − 0.438200i
\(246\) 0 0
\(247\) −39.1569 −0.158530
\(248\) 76.9456i 0.310265i
\(249\) 0 0
\(250\) −15.8114 −0.0632456
\(251\) − 240.639i − 0.958722i −0.877618 0.479361i \(-0.840869\pi\)
0.877618 0.479361i \(-0.159131\pi\)
\(252\) 0 0
\(253\) −30.1140 −0.119028
\(254\) 233.419i 0.918971i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 125.219i − 0.487233i −0.969872 0.243616i \(-0.921666\pi\)
0.969872 0.243616i \(-0.0783338\pi\)
\(258\) 0 0
\(259\) −62.7395 −0.242237
\(260\) − 6.35161i − 0.0244293i
\(261\) 0 0
\(262\) 74.2001 0.283207
\(263\) 93.2432i 0.354537i 0.984163 + 0.177269i \(0.0567261\pi\)
−0.984163 + 0.177269i \(0.943274\pi\)
\(264\) 0 0
\(265\) −196.331 −0.740871
\(266\) 38.7477i 0.145668i
\(267\) 0 0
\(268\) −39.9361 −0.149015
\(269\) − 76.3366i − 0.283779i −0.989882 0.141890i \(-0.954682\pi\)
0.989882 0.141890i \(-0.0453178\pi\)
\(270\) 0 0
\(271\) 529.738 1.95475 0.977377 0.211506i \(-0.0678368\pi\)
0.977377 + 0.211506i \(0.0678368\pi\)
\(272\) 96.5376i 0.354918i
\(273\) 0 0
\(274\) −170.233 −0.621290
\(275\) 24.9311i 0.0906587i
\(276\) 0 0
\(277\) −84.9611 −0.306719 −0.153359 0.988170i \(-0.549009\pi\)
−0.153359 + 0.988170i \(0.549009\pi\)
\(278\) 93.9016i 0.337775i
\(279\) 0 0
\(280\) −6.28523 −0.0224473
\(281\) 214.242i 0.762428i 0.924487 + 0.381214i \(0.124494\pi\)
−0.924487 + 0.381214i \(0.875506\pi\)
\(282\) 0 0
\(283\) 378.158 1.33625 0.668123 0.744051i \(-0.267098\pi\)
0.668123 + 0.744051i \(0.267098\pi\)
\(284\) 110.216i 0.388085i
\(285\) 0 0
\(286\) −10.0151 −0.0350179
\(287\) 66.6829i 0.232345i
\(288\) 0 0
\(289\) −293.469 −1.01546
\(290\) − 60.5819i − 0.208903i
\(291\) 0 0
\(292\) −265.502 −0.909254
\(293\) − 50.0000i − 0.170648i −0.996353 0.0853242i \(-0.972807\pi\)
0.996353 0.0853242i \(-0.0271926\pi\)
\(294\) 0 0
\(295\) −230.552 −0.781531
\(296\) − 178.564i − 0.603258i
\(297\) 0 0
\(298\) 135.227 0.453781
\(299\) − 8.57758i − 0.0286876i
\(300\) 0 0
\(301\) −27.4864 −0.0913168
\(302\) − 382.579i − 1.26682i
\(303\) 0 0
\(304\) −110.281 −0.362766
\(305\) − 161.026i − 0.527953i
\(306\) 0 0
\(307\) 145.083 0.472583 0.236292 0.971682i \(-0.424068\pi\)
0.236292 + 0.971682i \(0.424068\pi\)
\(308\) 9.91045i 0.0321768i
\(309\) 0 0
\(310\) 86.0278 0.277509
\(311\) 104.589i 0.336301i 0.985761 + 0.168150i \(0.0537794\pi\)
−0.985761 + 0.168150i \(0.946221\pi\)
\(312\) 0 0
\(313\) 57.7737 0.184581 0.0922903 0.995732i \(-0.470581\pi\)
0.0922903 + 0.995732i \(0.470581\pi\)
\(314\) − 51.3999i − 0.163694i
\(315\) 0 0
\(316\) 79.1786 0.250565
\(317\) − 98.3000i − 0.310095i −0.987907 0.155047i \(-0.950447\pi\)
0.987907 0.155047i \(-0.0495530\pi\)
\(318\) 0 0
\(319\) −95.5245 −0.299450
\(320\) − 17.8885i − 0.0559017i
\(321\) 0 0
\(322\) −8.48794 −0.0263601
\(323\) − 665.390i − 2.06003i
\(324\) 0 0
\(325\) −7.10132 −0.0218502
\(326\) − 131.983i − 0.404856i
\(327\) 0 0
\(328\) −189.788 −0.578622
\(329\) 6.71686i 0.0204160i
\(330\) 0 0
\(331\) −213.075 −0.643730 −0.321865 0.946786i \(-0.604310\pi\)
−0.321865 + 0.946786i \(0.604310\pi\)
\(332\) − 242.375i − 0.730046i
\(333\) 0 0
\(334\) 80.5081 0.241042
\(335\) 44.6499i 0.133283i
\(336\) 0 0
\(337\) 165.031 0.489705 0.244853 0.969560i \(-0.421260\pi\)
0.244853 + 0.969560i \(0.421260\pi\)
\(338\) 236.149i 0.698667i
\(339\) 0 0
\(340\) 107.932 0.317448
\(341\) − 135.647i − 0.397792i
\(342\) 0 0
\(343\) −96.4092 −0.281076
\(344\) − 78.2296i − 0.227412i
\(345\) 0 0
\(346\) −307.789 −0.889564
\(347\) − 90.3578i − 0.260397i −0.991488 0.130199i \(-0.958439\pi\)
0.991488 0.130199i \(-0.0415615\pi\)
\(348\) 0 0
\(349\) −354.975 −1.01712 −0.508561 0.861026i \(-0.669822\pi\)
−0.508561 + 0.861026i \(0.669822\pi\)
\(350\) 7.02710i 0.0200774i
\(351\) 0 0
\(352\) −28.2064 −0.0801317
\(353\) − 361.096i − 1.02293i −0.859303 0.511467i \(-0.829102\pi\)
0.859303 0.511467i \(-0.170898\pi\)
\(354\) 0 0
\(355\) 123.225 0.347114
\(356\) − 148.103i − 0.416018i
\(357\) 0 0
\(358\) 79.5690 0.222260
\(359\) 229.312i 0.638753i 0.947628 + 0.319377i \(0.103473\pi\)
−0.947628 + 0.319377i \(0.896527\pi\)
\(360\) 0 0
\(361\) 399.115 1.10558
\(362\) 185.203i 0.511612i
\(363\) 0 0
\(364\) −2.82287 −0.00775513
\(365\) 296.840i 0.813262i
\(366\) 0 0
\(367\) 411.575 1.12146 0.560728 0.828000i \(-0.310521\pi\)
0.560728 + 0.828000i \(0.310521\pi\)
\(368\) − 24.1577i − 0.0656460i
\(369\) 0 0
\(370\) −199.641 −0.539570
\(371\) 87.2559i 0.235191i
\(372\) 0 0
\(373\) 687.028 1.84190 0.920949 0.389684i \(-0.127416\pi\)
0.920949 + 0.389684i \(0.127416\pi\)
\(374\) − 170.186i − 0.455042i
\(375\) 0 0
\(376\) −19.1170 −0.0508431
\(377\) − 27.2089i − 0.0721722i
\(378\) 0 0
\(379\) −154.733 −0.408267 −0.204134 0.978943i \(-0.565438\pi\)
−0.204134 + 0.978943i \(0.565438\pi\)
\(380\) 123.298i 0.324467i
\(381\) 0 0
\(382\) 48.0829 0.125871
\(383\) 163.122i 0.425907i 0.977062 + 0.212954i \(0.0683083\pi\)
−0.977062 + 0.212954i \(0.931692\pi\)
\(384\) 0 0
\(385\) 11.0802 0.0287798
\(386\) 258.954i 0.670866i
\(387\) 0 0
\(388\) −4.57532 −0.0117921
\(389\) − 310.319i − 0.797734i −0.917009 0.398867i \(-0.869403\pi\)
0.917009 0.398867i \(-0.130597\pi\)
\(390\) 0 0
\(391\) 145.758 0.372783
\(392\) − 135.800i − 0.346427i
\(393\) 0 0
\(394\) 43.7488 0.111038
\(395\) − 88.5244i − 0.224112i
\(396\) 0 0
\(397\) −270.057 −0.680244 −0.340122 0.940381i \(-0.610468\pi\)
−0.340122 + 0.940381i \(0.610468\pi\)
\(398\) 470.753i 1.18280i
\(399\) 0 0
\(400\) −20.0000 −0.0500000
\(401\) − 606.672i − 1.51290i −0.654052 0.756449i \(-0.726932\pi\)
0.654052 0.756449i \(-0.273068\pi\)
\(402\) 0 0
\(403\) 38.6374 0.0958744
\(404\) − 227.296i − 0.562614i
\(405\) 0 0
\(406\) −26.9246 −0.0663167
\(407\) 314.791i 0.773441i
\(408\) 0 0
\(409\) −665.897 −1.62811 −0.814055 0.580788i \(-0.802745\pi\)
−0.814055 + 0.580788i \(0.802745\pi\)
\(410\) 212.189i 0.517535i
\(411\) 0 0
\(412\) 113.487 0.275453
\(413\) 102.465i 0.248099i
\(414\) 0 0
\(415\) −270.984 −0.652973
\(416\) − 8.03422i − 0.0193130i
\(417\) 0 0
\(418\) 194.414 0.465104
\(419\) 216.212i 0.516020i 0.966142 + 0.258010i \(0.0830667\pi\)
−0.966142 + 0.258010i \(0.916933\pi\)
\(420\) 0 0
\(421\) 315.504 0.749415 0.374708 0.927143i \(-0.377743\pi\)
0.374708 + 0.927143i \(0.377743\pi\)
\(422\) 227.366i 0.538781i
\(423\) 0 0
\(424\) −248.341 −0.585710
\(425\) − 120.672i − 0.283934i
\(426\) 0 0
\(427\) −71.5651 −0.167600
\(428\) 186.372i 0.435450i
\(429\) 0 0
\(430\) −87.4634 −0.203403
\(431\) 705.119i 1.63601i 0.575213 + 0.818003i \(0.304919\pi\)
−0.575213 + 0.818003i \(0.695081\pi\)
\(432\) 0 0
\(433\) 152.735 0.352737 0.176369 0.984324i \(-0.443565\pi\)
0.176369 + 0.984324i \(0.443565\pi\)
\(434\) − 38.2336i − 0.0880958i
\(435\) 0 0
\(436\) 43.5106 0.0997950
\(437\) 166.508i 0.381026i
\(438\) 0 0
\(439\) 162.235 0.369555 0.184778 0.982780i \(-0.440844\pi\)
0.184778 + 0.982780i \(0.440844\pi\)
\(440\) 31.5357i 0.0716720i
\(441\) 0 0
\(442\) 48.4753 0.109673
\(443\) − 387.565i − 0.874865i −0.899251 0.437433i \(-0.855888\pi\)
0.899251 0.437433i \(-0.144112\pi\)
\(444\) 0 0
\(445\) −165.584 −0.372098
\(446\) − 553.525i − 1.24109i
\(447\) 0 0
\(448\) −7.95026 −0.0177461
\(449\) 111.025i 0.247272i 0.992328 + 0.123636i \(0.0394554\pi\)
−0.992328 + 0.123636i \(0.960545\pi\)
\(450\) 0 0
\(451\) 334.577 0.741855
\(452\) 286.486i 0.633817i
\(453\) 0 0
\(454\) −481.821 −1.06128
\(455\) 3.15606i 0.00693640i
\(456\) 0 0
\(457\) −298.799 −0.653828 −0.326914 0.945054i \(-0.606009\pi\)
−0.326914 + 0.945054i \(0.606009\pi\)
\(458\) 133.567i 0.291632i
\(459\) 0 0
\(460\) −27.0091 −0.0587155
\(461\) 207.888i 0.450950i 0.974249 + 0.225475i \(0.0723934\pi\)
−0.974249 + 0.225475i \(0.927607\pi\)
\(462\) 0 0
\(463\) 865.125 1.86852 0.934261 0.356591i \(-0.116061\pi\)
0.934261 + 0.356591i \(0.116061\pi\)
\(464\) − 76.6307i − 0.165152i
\(465\) 0 0
\(466\) 166.852 0.358052
\(467\) 854.726i 1.83025i 0.403172 + 0.915124i \(0.367908\pi\)
−0.403172 + 0.915124i \(0.632092\pi\)
\(468\) 0 0
\(469\) 19.8439 0.0423111
\(470\) 21.3735i 0.0454755i
\(471\) 0 0
\(472\) −291.627 −0.617855
\(473\) 137.911i 0.291566i
\(474\) 0 0
\(475\) 137.851 0.290212
\(476\) − 47.9687i − 0.100775i
\(477\) 0 0
\(478\) −522.004 −1.09206
\(479\) − 304.139i − 0.634945i −0.948267 0.317473i \(-0.897166\pi\)
0.948267 0.317473i \(-0.102834\pi\)
\(480\) 0 0
\(481\) −89.6641 −0.186412
\(482\) 531.222i 1.10212i
\(483\) 0 0
\(484\) −192.275 −0.397263
\(485\) 5.11537i 0.0105472i
\(486\) 0 0
\(487\) 907.378 1.86320 0.931600 0.363486i \(-0.118413\pi\)
0.931600 + 0.363486i \(0.118413\pi\)
\(488\) − 203.683i − 0.417383i
\(489\) 0 0
\(490\) −151.829 −0.309854
\(491\) 65.4467i 0.133293i 0.997777 + 0.0666464i \(0.0212299\pi\)
−0.997777 + 0.0666464i \(0.978770\pi\)
\(492\) 0 0
\(493\) 462.359 0.937847
\(494\) 55.3763i 0.112098i
\(495\) 0 0
\(496\) 108.818 0.219390
\(497\) − 54.7654i − 0.110192i
\(498\) 0 0
\(499\) 717.284 1.43744 0.718721 0.695298i \(-0.244728\pi\)
0.718721 + 0.695298i \(0.244728\pi\)
\(500\) 22.3607i 0.0447214i
\(501\) 0 0
\(502\) −340.315 −0.677919
\(503\) − 623.374i − 1.23931i −0.784873 0.619657i \(-0.787272\pi\)
0.784873 0.619657i \(-0.212728\pi\)
\(504\) 0 0
\(505\) −254.125 −0.503217
\(506\) 42.5876i 0.0841652i
\(507\) 0 0
\(508\) 330.104 0.649811
\(509\) 666.448i 1.30933i 0.755920 + 0.654664i \(0.227190\pi\)
−0.755920 + 0.654664i \(0.772810\pi\)
\(510\) 0 0
\(511\) 131.926 0.258172
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −177.086 −0.344526
\(515\) − 126.882i − 0.246373i
\(516\) 0 0
\(517\) 33.7013 0.0651864
\(518\) 88.7270i 0.171288i
\(519\) 0 0
\(520\) −8.98254 −0.0172741
\(521\) 896.544i 1.72081i 0.509608 + 0.860407i \(0.329790\pi\)
−0.509608 + 0.860407i \(0.670210\pi\)
\(522\) 0 0
\(523\) 354.070 0.676999 0.338499 0.940967i \(-0.390081\pi\)
0.338499 + 0.940967i \(0.390081\pi\)
\(524\) − 104.935i − 0.200257i
\(525\) 0 0
\(526\) 131.866 0.250696
\(527\) 656.561i 1.24585i
\(528\) 0 0
\(529\) 492.525 0.931050
\(530\) 277.654i 0.523875i
\(531\) 0 0
\(532\) 54.7975 0.103003
\(533\) 95.2999i 0.178799i
\(534\) 0 0
\(535\) 208.371 0.389478
\(536\) 56.4782i 0.105370i
\(537\) 0 0
\(538\) −107.956 −0.200662
\(539\) 239.401i 0.444157i
\(540\) 0 0
\(541\) −392.737 −0.725947 −0.362974 0.931799i \(-0.618238\pi\)
−0.362974 + 0.931799i \(0.618238\pi\)
\(542\) − 749.163i − 1.38222i
\(543\) 0 0
\(544\) 136.525 0.250965
\(545\) − 48.6463i − 0.0892594i
\(546\) 0 0
\(547\) 271.057 0.495534 0.247767 0.968820i \(-0.420303\pi\)
0.247767 + 0.968820i \(0.420303\pi\)
\(548\) 240.746i 0.439318i
\(549\) 0 0
\(550\) 35.2579 0.0641054
\(551\) 528.180i 0.958585i
\(552\) 0 0
\(553\) −39.3431 −0.0711449
\(554\) 120.153i 0.216883i
\(555\) 0 0
\(556\) 132.797 0.238843
\(557\) − 122.363i − 0.219682i −0.993949 0.109841i \(-0.964966\pi\)
0.993949 0.109841i \(-0.0350342\pi\)
\(558\) 0 0
\(559\) −39.2821 −0.0702722
\(560\) 8.88866i 0.0158726i
\(561\) 0 0
\(562\) 302.984 0.539118
\(563\) 52.9120i 0.0939823i 0.998895 + 0.0469911i \(0.0149633\pi\)
−0.998895 + 0.0469911i \(0.985037\pi\)
\(564\) 0 0
\(565\) 320.301 0.566904
\(566\) − 534.796i − 0.944869i
\(567\) 0 0
\(568\) 155.869 0.274418
\(569\) 729.154i 1.28147i 0.767764 + 0.640733i \(0.221369\pi\)
−0.767764 + 0.640733i \(0.778631\pi\)
\(570\) 0 0
\(571\) −397.481 −0.696115 −0.348057 0.937473i \(-0.613159\pi\)
−0.348057 + 0.937473i \(0.613159\pi\)
\(572\) 14.1635i 0.0247614i
\(573\) 0 0
\(574\) 94.3039 0.164293
\(575\) 30.1971i 0.0525168i
\(576\) 0 0
\(577\) −82.2138 −0.142485 −0.0712425 0.997459i \(-0.522696\pi\)
−0.0712425 + 0.997459i \(0.522696\pi\)
\(578\) 415.028i 0.718041i
\(579\) 0 0
\(580\) −85.6757 −0.147717
\(581\) 120.434i 0.207288i
\(582\) 0 0
\(583\) 437.800 0.750943
\(584\) 375.477i 0.642940i
\(585\) 0 0
\(586\) −70.7106 −0.120667
\(587\) 861.368i 1.46741i 0.679470 + 0.733703i \(0.262210\pi\)
−0.679470 + 0.733703i \(0.737790\pi\)
\(588\) 0 0
\(589\) −750.030 −1.27340
\(590\) 326.049i 0.552626i
\(591\) 0 0
\(592\) −252.528 −0.426568
\(593\) 377.445i 0.636500i 0.948007 + 0.318250i \(0.103095\pi\)
−0.948007 + 0.318250i \(0.896905\pi\)
\(594\) 0 0
\(595\) −53.6306 −0.0901355
\(596\) − 191.240i − 0.320872i
\(597\) 0 0
\(598\) −12.1305 −0.0202852
\(599\) − 309.928i − 0.517408i −0.965957 0.258704i \(-0.916705\pi\)
0.965957 0.258704i \(-0.0832955\pi\)
\(600\) 0 0
\(601\) 417.783 0.695146 0.347573 0.937653i \(-0.387006\pi\)
0.347573 + 0.937653i \(0.387006\pi\)
\(602\) 38.8716i 0.0645708i
\(603\) 0 0
\(604\) −541.049 −0.895776
\(605\) 214.970i 0.355322i
\(606\) 0 0
\(607\) 856.166 1.41049 0.705244 0.708965i \(-0.250838\pi\)
0.705244 + 0.708965i \(0.250838\pi\)
\(608\) 155.961i 0.256514i
\(609\) 0 0
\(610\) −227.725 −0.373319
\(611\) 9.59940i 0.0157110i
\(612\) 0 0
\(613\) −1022.92 −1.66870 −0.834352 0.551231i \(-0.814158\pi\)
−0.834352 + 0.551231i \(0.814158\pi\)
\(614\) − 205.178i − 0.334167i
\(615\) 0 0
\(616\) 14.0155 0.0227524
\(617\) − 585.968i − 0.949704i −0.880066 0.474852i \(-0.842502\pi\)
0.880066 0.474852i \(-0.157498\pi\)
\(618\) 0 0
\(619\) −911.575 −1.47266 −0.736329 0.676624i \(-0.763442\pi\)
−0.736329 + 0.676624i \(0.763442\pi\)
\(620\) − 121.662i − 0.196229i
\(621\) 0 0
\(622\) 147.912 0.237800
\(623\) 73.5909i 0.118123i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) − 81.7044i − 0.130518i
\(627\) 0 0
\(628\) −72.6905 −0.115749
\(629\) − 1523.65i − 2.42234i
\(630\) 0 0
\(631\) 463.111 0.733932 0.366966 0.930234i \(-0.380396\pi\)
0.366966 + 0.930234i \(0.380396\pi\)
\(632\) − 111.975i − 0.177176i
\(633\) 0 0
\(634\) −139.017 −0.219270
\(635\) − 369.067i − 0.581208i
\(636\) 0 0
\(637\) −68.1903 −0.107049
\(638\) 135.092i 0.211743i
\(639\) 0 0
\(640\) −25.2982 −0.0395285
\(641\) 591.726i 0.923129i 0.887107 + 0.461565i \(0.152712\pi\)
−0.887107 + 0.461565i \(0.847288\pi\)
\(642\) 0 0
\(643\) −747.102 −1.16190 −0.580950 0.813939i \(-0.697319\pi\)
−0.580950 + 0.813939i \(0.697319\pi\)
\(644\) 12.0038i 0.0186394i
\(645\) 0 0
\(646\) −941.003 −1.45666
\(647\) 86.2103i 0.133246i 0.997778 + 0.0666231i \(0.0212225\pi\)
−0.997778 + 0.0666231i \(0.978777\pi\)
\(648\) 0 0
\(649\) 514.109 0.792156
\(650\) 10.0428i 0.0154504i
\(651\) 0 0
\(652\) −186.652 −0.286276
\(653\) − 171.547i − 0.262707i −0.991336 0.131353i \(-0.958068\pi\)
0.991336 0.131353i \(-0.0419322\pi\)
\(654\) 0 0
\(655\) −117.321 −0.179116
\(656\) 268.401i 0.409147i
\(657\) 0 0
\(658\) 9.49908 0.0144363
\(659\) − 94.2318i − 0.142992i −0.997441 0.0714960i \(-0.977223\pi\)
0.997441 0.0714960i \(-0.0227773\pi\)
\(660\) 0 0
\(661\) 844.781 1.27803 0.639017 0.769192i \(-0.279341\pi\)
0.639017 + 0.769192i \(0.279341\pi\)
\(662\) 301.333i 0.455186i
\(663\) 0 0
\(664\) −342.771 −0.516221
\(665\) − 61.2655i − 0.0921286i
\(666\) 0 0
\(667\) −115.701 −0.173465
\(668\) − 113.856i − 0.170443i
\(669\) 0 0
\(670\) 63.1446 0.0942456
\(671\) 359.072i 0.535130i
\(672\) 0 0
\(673\) −704.290 −1.04649 −0.523247 0.852181i \(-0.675279\pi\)
−0.523247 + 0.852181i \(0.675279\pi\)
\(674\) − 233.389i − 0.346274i
\(675\) 0 0
\(676\) 333.966 0.494032
\(677\) 1278.87i 1.88903i 0.328475 + 0.944513i \(0.393465\pi\)
−0.328475 + 0.944513i \(0.606535\pi\)
\(678\) 0 0
\(679\) 2.27344 0.00334822
\(680\) − 152.639i − 0.224470i
\(681\) 0 0
\(682\) −191.834 −0.281282
\(683\) − 571.914i − 0.837356i −0.908135 0.418678i \(-0.862494\pi\)
0.908135 0.418678i \(-0.137506\pi\)
\(684\) 0 0
\(685\) 269.163 0.392938
\(686\) 136.343i 0.198751i
\(687\) 0 0
\(688\) −110.633 −0.160804
\(689\) 124.702i 0.180989i
\(690\) 0 0
\(691\) 620.122 0.897427 0.448713 0.893676i \(-0.351882\pi\)
0.448713 + 0.893676i \(0.351882\pi\)
\(692\) 435.280i 0.629017i
\(693\) 0 0
\(694\) −127.785 −0.184129
\(695\) − 148.471i − 0.213628i
\(696\) 0 0
\(697\) −1619.42 −2.32342
\(698\) 502.011i 0.719213i
\(699\) 0 0
\(700\) 9.93782 0.0141969
\(701\) − 66.6004i − 0.0950077i −0.998871 0.0475038i \(-0.984873\pi\)
0.998871 0.0475038i \(-0.0151266\pi\)
\(702\) 0 0
\(703\) 1740.56 2.47591
\(704\) 39.8898i 0.0566617i
\(705\) 0 0
\(706\) −510.666 −0.723324
\(707\) 112.941i 0.159747i
\(708\) 0 0
\(709\) −210.574 −0.297002 −0.148501 0.988912i \(-0.547445\pi\)
−0.148501 + 0.988912i \(0.547445\pi\)
\(710\) − 174.267i − 0.245447i
\(711\) 0 0
\(712\) −209.449 −0.294169
\(713\) − 164.299i − 0.230433i
\(714\) 0 0
\(715\) 15.8353 0.0221473
\(716\) − 112.528i − 0.157161i
\(717\) 0 0
\(718\) 324.297 0.451667
\(719\) 900.163i 1.25197i 0.779837 + 0.625983i \(0.215302\pi\)
−0.779837 + 0.625983i \(0.784698\pi\)
\(720\) 0 0
\(721\) −56.3906 −0.0782116
\(722\) − 564.434i − 0.781764i
\(723\) 0 0
\(724\) 261.917 0.361764
\(725\) 95.7883i 0.132122i
\(726\) 0 0
\(727\) −755.214 −1.03881 −0.519404 0.854529i \(-0.673846\pi\)
−0.519404 + 0.854529i \(0.673846\pi\)
\(728\) 3.99213i 0.00548370i
\(729\) 0 0
\(730\) 419.796 0.575063
\(731\) − 667.517i − 0.913156i
\(732\) 0 0
\(733\) −126.122 −0.172062 −0.0860311 0.996292i \(-0.527418\pi\)
−0.0860311 + 0.996292i \(0.527418\pi\)
\(734\) − 582.055i − 0.792990i
\(735\) 0 0
\(736\) −34.1642 −0.0464187
\(737\) − 99.5653i − 0.135095i
\(738\) 0 0
\(739\) 503.837 0.681782 0.340891 0.940103i \(-0.389271\pi\)
0.340891 + 0.940103i \(0.389271\pi\)
\(740\) 282.335i 0.381534i
\(741\) 0 0
\(742\) 123.398 0.166305
\(743\) − 732.660i − 0.986083i −0.870006 0.493042i \(-0.835885\pi\)
0.870006 0.493042i \(-0.164115\pi\)
\(744\) 0 0
\(745\) −213.812 −0.286996
\(746\) − 971.604i − 1.30242i
\(747\) 0 0
\(748\) −240.679 −0.321764
\(749\) − 92.6068i − 0.123641i
\(750\) 0 0
\(751\) −116.216 −0.154749 −0.0773744 0.997002i \(-0.524654\pi\)
−0.0773744 + 0.997002i \(0.524654\pi\)
\(752\) 27.0356i 0.0359515i
\(753\) 0 0
\(754\) −38.4792 −0.0510335
\(755\) 604.911i 0.801206i
\(756\) 0 0
\(757\) −644.638 −0.851570 −0.425785 0.904824i \(-0.640002\pi\)
−0.425785 + 0.904824i \(0.640002\pi\)
\(758\) 218.826i 0.288689i
\(759\) 0 0
\(760\) 174.369 0.229433
\(761\) 1059.55i 1.39231i 0.717891 + 0.696156i \(0.245108\pi\)
−0.717891 + 0.696156i \(0.754892\pi\)
\(762\) 0 0
\(763\) −21.6200 −0.0283356
\(764\) − 67.9994i − 0.0890045i
\(765\) 0 0
\(766\) 230.690 0.301162
\(767\) 146.437i 0.190922i
\(768\) 0 0
\(769\) −695.512 −0.904437 −0.452219 0.891907i \(-0.649367\pi\)
−0.452219 + 0.891907i \(0.649367\pi\)
\(770\) − 15.6698i − 0.0203504i
\(771\) 0 0
\(772\) 366.217 0.474374
\(773\) − 931.046i − 1.20446i −0.798323 0.602229i \(-0.794279\pi\)
0.798323 0.602229i \(-0.205721\pi\)
\(774\) 0 0
\(775\) −136.022 −0.175512
\(776\) 6.47049i 0.00833825i
\(777\) 0 0
\(778\) −438.857 −0.564083
\(779\) − 1849.96i − 2.37479i
\(780\) 0 0
\(781\) −274.781 −0.351833
\(782\) − 206.133i − 0.263597i
\(783\) 0 0
\(784\) −192.050 −0.244961
\(785\) 81.2704i 0.103529i
\(786\) 0 0
\(787\) −429.601 −0.545871 −0.272936 0.962032i \(-0.587995\pi\)
−0.272936 + 0.962032i \(0.587995\pi\)
\(788\) − 61.8702i − 0.0785154i
\(789\) 0 0
\(790\) −125.192 −0.158471
\(791\) − 142.352i − 0.179965i
\(792\) 0 0
\(793\) −102.277 −0.128975
\(794\) 381.918i 0.481005i
\(795\) 0 0
\(796\) 665.745 0.836363
\(797\) 610.415i 0.765891i 0.923771 + 0.382945i \(0.125090\pi\)
−0.923771 + 0.382945i \(0.874910\pi\)
\(798\) 0 0
\(799\) −163.122 −0.204157
\(800\) 28.2843i 0.0353553i
\(801\) 0 0
\(802\) −857.964 −1.06978
\(803\) − 661.927i − 0.824318i
\(804\) 0 0
\(805\) 13.4206 0.0166716
\(806\) − 54.6415i − 0.0677934i
\(807\) 0 0
\(808\) −321.445 −0.397828
\(809\) − 304.324i − 0.376173i −0.982152 0.188087i \(-0.939771\pi\)
0.982152 0.188087i \(-0.0602286\pi\)
\(810\) 0 0
\(811\) −639.398 −0.788407 −0.394204 0.919023i \(-0.628980\pi\)
−0.394204 + 0.919023i \(0.628980\pi\)
\(812\) 38.0771i 0.0468930i
\(813\) 0 0
\(814\) 445.181 0.546906
\(815\) 208.683i 0.256053i
\(816\) 0 0
\(817\) 762.546 0.933348
\(818\) 941.721i 1.15125i
\(819\) 0 0
\(820\) 300.081 0.365952
\(821\) − 1331.48i − 1.62178i −0.585196 0.810892i \(-0.698982\pi\)
0.585196 0.810892i \(-0.301018\pi\)
\(822\) 0 0
\(823\) −891.022 −1.08265 −0.541325 0.840813i \(-0.682077\pi\)
−0.541325 + 0.840813i \(0.682077\pi\)
\(824\) − 160.495i − 0.194775i
\(825\) 0 0
\(826\) 144.907 0.175432
\(827\) 494.513i 0.597960i 0.954259 + 0.298980i \(0.0966465\pi\)
−0.954259 + 0.298980i \(0.903354\pi\)
\(828\) 0 0
\(829\) −752.153 −0.907302 −0.453651 0.891179i \(-0.649879\pi\)
−0.453651 + 0.891179i \(0.649879\pi\)
\(830\) 383.229i 0.461722i
\(831\) 0 0
\(832\) −11.3621 −0.0136564
\(833\) − 1158.75i − 1.39106i
\(834\) 0 0
\(835\) −127.294 −0.152448
\(836\) − 274.942i − 0.328878i
\(837\) 0 0
\(838\) 305.770 0.364881
\(839\) − 506.107i − 0.603226i −0.953430 0.301613i \(-0.902475\pi\)
0.953430 0.301613i \(-0.0975251\pi\)
\(840\) 0 0
\(841\) 473.984 0.563595
\(842\) − 446.190i − 0.529917i
\(843\) 0 0
\(844\) 321.543 0.380976
\(845\) − 373.385i − 0.441876i
\(846\) 0 0
\(847\) 95.5398 0.112798
\(848\) 351.207i 0.414159i
\(849\) 0 0
\(850\) −170.656 −0.200772
\(851\) 381.281i 0.448039i
\(852\) 0 0
\(853\) 22.0081 0.0258008 0.0129004 0.999917i \(-0.495894\pi\)
0.0129004 + 0.999917i \(0.495894\pi\)
\(854\) 101.208i 0.118511i
\(855\) 0 0
\(856\) 263.570 0.307909
\(857\) − 122.498i − 0.142938i −0.997443 0.0714691i \(-0.977231\pi\)
0.997443 0.0714691i \(-0.0227687\pi\)
\(858\) 0 0
\(859\) 1410.03 1.64148 0.820738 0.571305i \(-0.193563\pi\)
0.820738 + 0.571305i \(0.193563\pi\)
\(860\) 123.692i 0.143828i
\(861\) 0 0
\(862\) 997.189 1.15683
\(863\) 674.484i 0.781557i 0.920485 + 0.390778i \(0.127794\pi\)
−0.920485 + 0.390778i \(0.872206\pi\)
\(864\) 0 0
\(865\) 486.658 0.562610
\(866\) − 216.000i − 0.249423i
\(867\) 0 0
\(868\) −54.0705 −0.0622932
\(869\) 197.401i 0.227159i
\(870\) 0 0
\(871\) 28.3599 0.0325602
\(872\) − 61.5333i − 0.0705657i
\(873\) 0 0
\(874\) 235.478 0.269426
\(875\) − 11.1108i − 0.0126981i
\(876\) 0 0
\(877\) 1370.70 1.56295 0.781473 0.623939i \(-0.214469\pi\)
0.781473 + 0.623939i \(0.214469\pi\)
\(878\) − 229.434i − 0.261315i
\(879\) 0 0
\(880\) 44.5982 0.0506797
\(881\) − 629.262i − 0.714259i −0.934055 0.357130i \(-0.883755\pi\)
0.934055 0.357130i \(-0.116245\pi\)
\(882\) 0 0
\(883\) −537.868 −0.609137 −0.304569 0.952490i \(-0.598512\pi\)
−0.304569 + 0.952490i \(0.598512\pi\)
\(884\) − 68.5544i − 0.0775502i
\(885\) 0 0
\(886\) −548.100 −0.618623
\(887\) 537.138i 0.605568i 0.953059 + 0.302784i \(0.0979160\pi\)
−0.953059 + 0.302784i \(0.902084\pi\)
\(888\) 0 0
\(889\) −164.026 −0.184506
\(890\) 234.171i 0.263113i
\(891\) 0 0
\(892\) −782.803 −0.877582
\(893\) − 186.344i − 0.208672i
\(894\) 0 0
\(895\) −125.810 −0.140570
\(896\) 11.2434i 0.0125484i
\(897\) 0 0
\(898\) 157.013 0.174847
\(899\) − 521.172i − 0.579725i
\(900\) 0 0
\(901\) −2119.04 −2.35188
\(902\) − 473.163i − 0.524571i
\(903\) 0 0
\(904\) 405.152 0.448177
\(905\) − 292.832i − 0.323572i
\(906\) 0 0
\(907\) 498.885 0.550039 0.275019 0.961439i \(-0.411316\pi\)
0.275019 + 0.961439i \(0.411316\pi\)
\(908\) 681.398i 0.750439i
\(909\) 0 0
\(910\) 4.46334 0.00490477
\(911\) − 1132.40i − 1.24303i −0.783402 0.621515i \(-0.786518\pi\)
0.783402 0.621515i \(-0.213482\pi\)
\(912\) 0 0
\(913\) 604.269 0.661850
\(914\) 422.566i 0.462326i
\(915\) 0 0
\(916\) 188.893 0.206215
\(917\) 52.1412i 0.0568606i
\(918\) 0 0
\(919\) −20.1454 −0.0219210 −0.0109605 0.999940i \(-0.503489\pi\)
−0.0109605 + 0.999940i \(0.503489\pi\)
\(920\) 38.1967i 0.0415182i
\(921\) 0 0
\(922\) 293.998 0.318870
\(923\) − 78.2680i − 0.0847974i
\(924\) 0 0
\(925\) 315.660 0.341254
\(926\) − 1223.47i − 1.32124i
\(927\) 0 0
\(928\) −108.372 −0.116780
\(929\) 300.765i 0.323751i 0.986811 + 0.161876i \(0.0517543\pi\)
−0.986811 + 0.161876i \(0.948246\pi\)
\(930\) 0 0
\(931\) 1323.71 1.42182
\(932\) − 235.965i − 0.253181i
\(933\) 0 0
\(934\) 1208.76 1.29418
\(935\) 269.087i 0.287794i
\(936\) 0 0
\(937\) 310.906 0.331810 0.165905 0.986142i \(-0.446945\pi\)
0.165905 + 0.986142i \(0.446945\pi\)
\(938\) − 28.0635i − 0.0299185i
\(939\) 0 0
\(940\) 30.2267 0.0321560
\(941\) 1454.01i 1.54518i 0.634908 + 0.772588i \(0.281038\pi\)
−0.634908 + 0.772588i \(0.718962\pi\)
\(942\) 0 0
\(943\) 405.247 0.429742
\(944\) 412.423i 0.436889i
\(945\) 0 0
\(946\) 195.035 0.206168
\(947\) − 190.859i − 0.201540i −0.994910 0.100770i \(-0.967869\pi\)
0.994910 0.100770i \(-0.0321307\pi\)
\(948\) 0 0
\(949\) 188.542 0.198674
\(950\) − 194.951i − 0.205211i
\(951\) 0 0
\(952\) −67.8379 −0.0712583
\(953\) 808.807i 0.848695i 0.905499 + 0.424348i \(0.139497\pi\)
−0.905499 + 0.424348i \(0.860503\pi\)
\(954\) 0 0
\(955\) −76.0257 −0.0796081
\(956\) 738.226i 0.772203i
\(957\) 0 0
\(958\) −430.117 −0.448974
\(959\) − 119.625i − 0.124739i
\(960\) 0 0
\(961\) −220.922 −0.229888
\(962\) 126.804i 0.131813i
\(963\) 0 0
\(964\) 751.261 0.779316
\(965\) − 409.443i − 0.424293i
\(966\) 0 0
\(967\) 427.562 0.442153 0.221076 0.975257i \(-0.429043\pi\)
0.221076 + 0.975257i \(0.429043\pi\)
\(968\) 271.918i 0.280907i
\(969\) 0 0
\(970\) 7.23422 0.00745796
\(971\) 932.208i 0.960050i 0.877255 + 0.480025i \(0.159372\pi\)
−0.877255 + 0.480025i \(0.840628\pi\)
\(972\) 0 0
\(973\) −65.9856 −0.0678166
\(974\) − 1283.23i − 1.31748i
\(975\) 0 0
\(976\) −288.051 −0.295135
\(977\) − 203.421i − 0.208209i −0.994566 0.104105i \(-0.966802\pi\)
0.994566 0.104105i \(-0.0331977\pi\)
\(978\) 0 0
\(979\) 369.236 0.377157
\(980\) 214.718i 0.219100i
\(981\) 0 0
\(982\) 92.5557 0.0942522
\(983\) − 1434.02i − 1.45882i −0.684074 0.729412i \(-0.739794\pi\)
0.684074 0.729412i \(-0.260206\pi\)
\(984\) 0 0
\(985\) −69.1729 −0.0702263
\(986\) − 653.874i − 0.663158i
\(987\) 0 0
\(988\) 78.3139 0.0792650
\(989\) 167.041i 0.168898i
\(990\) 0 0
\(991\) −983.596 −0.992528 −0.496264 0.868172i \(-0.665295\pi\)
−0.496264 + 0.868172i \(0.665295\pi\)
\(992\) − 153.891i − 0.155132i
\(993\) 0 0
\(994\) −77.4500 −0.0779175
\(995\) − 744.326i − 0.748066i
\(996\) 0 0
\(997\) −991.171 −0.994154 −0.497077 0.867707i \(-0.665593\pi\)
−0.497077 + 0.867707i \(0.665593\pi\)
\(998\) − 1014.39i − 1.01643i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.3.d.c.161.7 16
3.2 odd 2 inner 810.3.d.c.161.11 16
9.2 odd 6 90.3.h.a.41.7 yes 16
9.4 even 3 90.3.h.a.11.7 16
9.5 odd 6 270.3.h.a.251.1 16
9.7 even 3 270.3.h.a.71.1 16
36.7 odd 6 2160.3.bs.d.881.3 16
36.11 even 6 720.3.bs.d.401.2 16
36.23 even 6 2160.3.bs.d.1601.3 16
36.31 odd 6 720.3.bs.d.641.2 16
45.2 even 12 450.3.k.c.149.11 32
45.4 even 6 450.3.i.g.101.2 16
45.7 odd 12 1350.3.k.b.449.6 32
45.13 odd 12 450.3.k.c.299.11 32
45.14 odd 6 1350.3.i.g.251.7 16
45.22 odd 12 450.3.k.c.299.6 32
45.23 even 12 1350.3.k.b.899.6 32
45.29 odd 6 450.3.i.g.401.2 16
45.32 even 12 1350.3.k.b.899.11 32
45.34 even 6 1350.3.i.g.1151.7 16
45.38 even 12 450.3.k.c.149.6 32
45.43 odd 12 1350.3.k.b.449.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.h.a.11.7 16 9.4 even 3
90.3.h.a.41.7 yes 16 9.2 odd 6
270.3.h.a.71.1 16 9.7 even 3
270.3.h.a.251.1 16 9.5 odd 6
450.3.i.g.101.2 16 45.4 even 6
450.3.i.g.401.2 16 45.29 odd 6
450.3.k.c.149.6 32 45.38 even 12
450.3.k.c.149.11 32 45.2 even 12
450.3.k.c.299.6 32 45.22 odd 12
450.3.k.c.299.11 32 45.13 odd 12
720.3.bs.d.401.2 16 36.11 even 6
720.3.bs.d.641.2 16 36.31 odd 6
810.3.d.c.161.7 16 1.1 even 1 trivial
810.3.d.c.161.11 16 3.2 odd 2 inner
1350.3.i.g.251.7 16 45.14 odd 6
1350.3.i.g.1151.7 16 45.34 even 6
1350.3.k.b.449.6 32 45.7 odd 12
1350.3.k.b.449.11 32 45.43 odd 12
1350.3.k.b.899.6 32 45.23 even 12
1350.3.k.b.899.11 32 45.32 even 12
2160.3.bs.d.881.3 16 36.7 odd 6
2160.3.bs.d.1601.3 16 36.23 even 6