Properties

Label 90.3.h.a.11.7
Level $90$
Weight $3$
Character 90.11
Analytic conductor $2.452$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,3,Mod(11,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.11");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 90.h (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45232237924\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 138x^{12} - 1040x^{10} + 5541x^{8} - 26220x^{6} + 99328x^{4} - 202728x^{2} + 181476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.7
Root \(-1.42311 - 0.410927i\) of defining polynomial
Character \(\chi\) \(=\) 90.11
Dual form 90.3.h.a.41.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(1.52181 - 2.58536i) q^{3} +(1.00000 + 1.73205i) q^{4} +(1.93649 - 1.11803i) q^{5} +(3.69195 - 2.09033i) q^{6} +(-0.496891 + 0.860641i) q^{7} +2.82843i q^{8} +(-4.36821 - 7.86884i) q^{9} +3.16228 q^{10} +(4.31820 + 2.49311i) q^{11} +(5.99979 + 0.0504813i) q^{12} +(-0.710132 - 1.22998i) q^{13} +(-1.21713 + 0.702710i) q^{14} +(0.0564398 - 6.70797i) q^{15} +(-2.00000 + 3.46410i) q^{16} +24.1344i q^{17} +(0.214166 - 12.7261i) q^{18} -27.5702 q^{19} +(3.87298 + 2.23607i) q^{20} +(1.46890 + 2.59437i) q^{21} +(3.52579 + 6.10686i) q^{22} +(-5.23030 + 3.01971i) q^{23} +(7.31251 + 4.30432i) q^{24} +(2.50000 - 4.33013i) q^{25} -2.00856i q^{26} +(-26.9914 - 0.681433i) q^{27} -1.98756 q^{28} +(16.5910 + 9.57883i) q^{29} +(4.81237 - 8.17564i) q^{30} +(-13.6022 - 23.5597i) q^{31} +(-4.89898 + 2.82843i) q^{32} +(13.0171 - 7.37008i) q^{33} +(-17.0656 + 29.5585i) q^{34} +2.22216i q^{35} +(9.26102 - 15.4348i) q^{36} -63.1320 q^{37} +(-33.7664 - 19.4951i) q^{38} +(-4.26064 - 0.0358483i) q^{39} +(3.16228 + 5.47723i) q^{40} +(58.1104 - 33.5501i) q^{41} +(-0.0354737 + 4.21611i) q^{42} +(13.8292 - 23.9528i) q^{43} +9.97245i q^{44} +(-17.2566 - 10.3541i) q^{45} -8.54104 q^{46} +(-5.85337 - 3.37944i) q^{47} +(5.91235 + 10.4424i) q^{48} +(24.0062 + 41.5800i) q^{49} +(6.12372 - 3.53553i) q^{50} +(62.3962 + 36.7279i) q^{51} +(1.42026 - 2.45997i) q^{52} +87.8018i q^{53} +(-32.5757 - 19.9204i) q^{54} +11.1495 q^{55} +(-2.43426 - 1.40542i) q^{56} +(-41.9565 + 71.2790i) q^{57} +(13.5465 + 23.4633i) q^{58} +(89.2923 - 51.5529i) q^{59} +(11.6750 - 6.61021i) q^{60} +(36.0064 - 62.3649i) q^{61} -38.4728i q^{62} +(8.94277 + 0.150497i) q^{63} -8.00000 q^{64} +(-2.75033 - 1.58790i) q^{65} +(21.1540 + 0.177987i) q^{66} +(-9.98403 - 17.2928i) q^{67} +(-41.8020 + 24.1344i) q^{68} +(-0.152439 + 18.1176i) q^{69} +(-1.57131 + 2.72158i) q^{70} -55.1081i q^{71} +(22.2565 - 12.3552i) q^{72} +132.751 q^{73} +(-77.3206 - 44.6411i) q^{74} +(-7.39044 - 13.0530i) q^{75} +(-27.5702 - 47.7530i) q^{76} +(-4.29135 + 2.47761i) q^{77} +(-5.19285 - 3.05663i) q^{78} +(19.7946 - 34.2853i) q^{79} +8.94427i q^{80} +(-42.8374 + 68.7456i) q^{81} +94.8939 q^{82} +(-104.952 - 60.5938i) q^{83} +(-3.02469 + 5.13858i) q^{84} +(26.9831 + 46.7361i) q^{85} +(33.8744 - 19.5574i) q^{86} +(50.0131 - 28.3167i) q^{87} +(-7.05159 + 12.2137i) q^{88} +74.0513i q^{89} +(-13.8135 - 24.8835i) q^{90} +1.41143 q^{91} +(-10.4606 - 6.03943i) q^{92} +(-81.6102 - 0.686656i) q^{93} +(-4.77926 - 8.27791i) q^{94} +(-53.3894 + 30.8244i) q^{95} +(-0.142783 + 16.9700i) q^{96} +(-1.14383 + 1.98117i) q^{97} +67.8998i q^{98} +(0.755106 - 44.8697i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} + 16 q^{4} + 16 q^{6} - 4 q^{7} - 4 q^{9} - 16 q^{12} + 20 q^{13} - 36 q^{14} - 20 q^{15} - 32 q^{16} + 16 q^{18} + 80 q^{19} - 44 q^{21} + 24 q^{22} + 108 q^{23} - 8 q^{24} + 40 q^{25} - 124 q^{27}+ \cdots + 816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.612372 + 0.353553i
\(3\) 1.52181 2.58536i 0.507269 0.861788i
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 1.93649 1.11803i 0.387298 0.223607i
\(6\) 3.69195 2.09033i 0.615325 0.348389i
\(7\) −0.496891 + 0.860641i −0.0709844 + 0.122949i −0.899333 0.437264i \(-0.855947\pi\)
0.828349 + 0.560213i \(0.189281\pi\)
\(8\) 2.82843i 0.353553i
\(9\) −4.36821 7.86884i −0.485357 0.874316i
\(10\) 3.16228 0.316228
\(11\) 4.31820 + 2.49311i 0.392564 + 0.226647i 0.683270 0.730166i \(-0.260557\pi\)
−0.290707 + 0.956812i \(0.593890\pi\)
\(12\) 5.99979 + 0.0504813i 0.499982 + 0.00420677i
\(13\) −0.710132 1.22998i −0.0546255 0.0946142i 0.837420 0.546561i \(-0.184063\pi\)
−0.892045 + 0.451946i \(0.850730\pi\)
\(14\) −1.21713 + 0.702710i −0.0869378 + 0.0501936i
\(15\) 0.0564398 6.70797i 0.00376265 0.447198i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 24.1344i 1.41967i 0.704368 + 0.709835i \(0.251231\pi\)
−0.704368 + 0.709835i \(0.748769\pi\)
\(18\) 0.214166 12.7261i 0.0118981 0.707007i
\(19\) −27.5702 −1.45106 −0.725531 0.688189i \(-0.758406\pi\)
−0.725531 + 0.688189i \(0.758406\pi\)
\(20\) 3.87298 + 2.23607i 0.193649 + 0.111803i
\(21\) 1.46890 + 2.59437i 0.0699475 + 0.123542i
\(22\) 3.52579 + 6.10686i 0.160263 + 0.277584i
\(23\) −5.23030 + 3.01971i −0.227404 + 0.131292i −0.609374 0.792883i \(-0.708579\pi\)
0.381970 + 0.924175i \(0.375246\pi\)
\(24\) 7.31251 + 4.30432i 0.304688 + 0.179347i
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 2.00856i 0.0772522i
\(27\) −26.9914 0.681433i −0.999681 0.0252382i
\(28\) −1.98756 −0.0709844
\(29\) 16.5910 + 9.57883i 0.572104 + 0.330305i 0.757989 0.652267i \(-0.226182\pi\)
−0.185885 + 0.982572i \(0.559515\pi\)
\(30\) 4.81237 8.17564i 0.160412 0.272521i
\(31\) −13.6022 23.5597i −0.438780 0.759990i 0.558815 0.829292i \(-0.311256\pi\)
−0.997596 + 0.0693023i \(0.977923\pi\)
\(32\) −4.89898 + 2.82843i −0.153093 + 0.0883883i
\(33\) 13.0171 7.37008i 0.394457 0.223336i
\(34\) −17.0656 + 29.5585i −0.501929 + 0.869367i
\(35\) 2.22216i 0.0634904i
\(36\) 9.26102 15.4348i 0.257251 0.428745i
\(37\) −63.1320 −1.70627 −0.853136 0.521689i \(-0.825302\pi\)
−0.853136 + 0.521689i \(0.825302\pi\)
\(38\) −33.7664 19.4951i −0.888591 0.513028i
\(39\) −4.26064 0.0358483i −0.109247 0.000919188i
\(40\) 3.16228 + 5.47723i 0.0790569 + 0.136931i
\(41\) 58.1104 33.5501i 1.41733 0.818294i 0.421264 0.906938i \(-0.361587\pi\)
0.996063 + 0.0886435i \(0.0282532\pi\)
\(42\) −0.0354737 + 4.21611i −0.000844612 + 0.100384i
\(43\) 13.8292 23.9528i 0.321609 0.557042i −0.659212 0.751958i \(-0.729110\pi\)
0.980820 + 0.194915i \(0.0624431\pi\)
\(44\) 9.97245i 0.226647i
\(45\) −17.2566 10.3541i −0.383481 0.230092i
\(46\) −8.54104 −0.185675
\(47\) −5.85337 3.37944i −0.124540 0.0719031i 0.436436 0.899735i \(-0.356241\pi\)
−0.560976 + 0.827832i \(0.689574\pi\)
\(48\) 5.91235 + 10.4424i 0.123174 + 0.217550i
\(49\) 24.0062 + 41.5800i 0.489922 + 0.848571i
\(50\) 6.12372 3.53553i 0.122474 0.0707107i
\(51\) 62.3962 + 36.7279i 1.22345 + 0.720154i
\(52\) 1.42026 2.45997i 0.0273128 0.0473071i
\(53\) 87.8018i 1.65664i 0.560257 + 0.828319i \(0.310702\pi\)
−0.560257 + 0.828319i \(0.689298\pi\)
\(54\) −32.5757 19.9204i −0.603254 0.368896i
\(55\) 11.1495 0.202719
\(56\) −2.43426 1.40542i −0.0434689 0.0250968i
\(57\) −41.9565 + 71.2790i −0.736078 + 1.25051i
\(58\) 13.5465 + 23.4633i 0.233561 + 0.404539i
\(59\) 89.2923 51.5529i 1.51343 0.873778i 0.513552 0.858058i \(-0.328329\pi\)
0.999876 0.0157198i \(-0.00500398\pi\)
\(60\) 11.6750 6.61021i 0.194583 0.110170i
\(61\) 36.0064 62.3649i 0.590269 1.02238i −0.403927 0.914791i \(-0.632355\pi\)
0.994196 0.107585i \(-0.0343117\pi\)
\(62\) 38.4728i 0.620529i
\(63\) 8.94277 + 0.150497i 0.141949 + 0.00238884i
\(64\) −8.00000 −0.125000
\(65\) −2.75033 1.58790i −0.0423127 0.0244293i
\(66\) 21.1540 + 0.177987i 0.320515 + 0.00269677i
\(67\) −9.98403 17.2928i −0.149015 0.258102i 0.781848 0.623469i \(-0.214277\pi\)
−0.930864 + 0.365366i \(0.880944\pi\)
\(68\) −41.8020 + 24.1344i −0.614735 + 0.354918i
\(69\) −0.152439 + 18.1176i −0.00220926 + 0.262575i
\(70\) −1.57131 + 2.72158i −0.0224473 + 0.0388798i
\(71\) 55.1081i 0.776170i −0.921624 0.388085i \(-0.873137\pi\)
0.921624 0.388085i \(-0.126863\pi\)
\(72\) 22.2565 12.3552i 0.309117 0.171600i
\(73\) 132.751 1.81851 0.909254 0.416241i \(-0.136653\pi\)
0.909254 + 0.416241i \(0.136653\pi\)
\(74\) −77.3206 44.6411i −1.04487 0.603258i
\(75\) −7.39044 13.0530i −0.0985392 0.174040i
\(76\) −27.5702 47.7530i −0.362766 0.628328i
\(77\) −4.29135 + 2.47761i −0.0557318 + 0.0321768i
\(78\) −5.19285 3.05663i −0.0665750 0.0391876i
\(79\) 19.7946 34.2853i 0.250565 0.433992i −0.713116 0.701046i \(-0.752717\pi\)
0.963682 + 0.267054i \(0.0860502\pi\)
\(80\) 8.94427i 0.111803i
\(81\) −42.8374 + 68.7456i −0.528857 + 0.848711i
\(82\) 94.8939 1.15724
\(83\) −104.952 60.5938i −1.26448 0.730046i −0.290540 0.956863i \(-0.593835\pi\)
−0.973937 + 0.226817i \(0.927168\pi\)
\(84\) −3.02469 + 5.13858i −0.0360082 + 0.0611735i
\(85\) 26.9831 + 46.7361i 0.317448 + 0.549836i
\(86\) 33.8744 19.5574i 0.393888 0.227412i
\(87\) 50.0131 28.3167i 0.574863 0.325479i
\(88\) −7.05159 + 12.2137i −0.0801317 + 0.138792i
\(89\) 74.0513i 0.832037i 0.909356 + 0.416018i \(0.136575\pi\)
−0.909356 + 0.416018i \(0.863425\pi\)
\(90\) −13.8135 24.8835i −0.153483 0.276483i
\(91\) 1.41143 0.0155103
\(92\) −10.4606 6.03943i −0.113702 0.0656460i
\(93\) −81.6102 0.686656i −0.877529 0.00738339i
\(94\) −4.77926 8.27791i −0.0508431 0.0880629i
\(95\) −53.3894 + 30.8244i −0.561994 + 0.324467i
\(96\) −0.142783 + 16.9700i −0.00148732 + 0.176770i
\(97\) −1.14383 + 1.98117i −0.0117921 + 0.0204245i −0.871861 0.489753i \(-0.837087\pi\)
0.860069 + 0.510177i \(0.170420\pi\)
\(98\) 67.8998i 0.692855i
\(99\) 0.755106 44.8697i 0.00762734 0.453229i
\(100\) 10.0000 0.100000
\(101\) −98.4221 56.8240i −0.974476 0.562614i −0.0738781 0.997267i \(-0.523538\pi\)
−0.900598 + 0.434653i \(0.856871\pi\)
\(102\) 50.4489 + 89.1030i 0.494597 + 0.873559i
\(103\) 28.3717 + 49.1412i 0.275453 + 0.477099i 0.970249 0.242108i \(-0.0778387\pi\)
−0.694796 + 0.719207i \(0.744505\pi\)
\(104\) 3.47892 2.00856i 0.0334512 0.0193130i
\(105\) 5.74510 + 3.38170i 0.0547153 + 0.0322067i
\(106\) −62.0852 + 107.535i −0.585710 + 1.01448i
\(107\) 93.1862i 0.870899i −0.900213 0.435450i \(-0.856589\pi\)
0.900213 0.435450i \(-0.143411\pi\)
\(108\) −25.8111 47.4319i −0.238992 0.439184i
\(109\) −21.7553 −0.199590 −0.0997950 0.995008i \(-0.531819\pi\)
−0.0997950 + 0.995008i \(0.531819\pi\)
\(110\) 13.6553 + 7.88392i 0.124139 + 0.0716720i
\(111\) −96.0747 + 163.219i −0.865538 + 1.47044i
\(112\) −1.98756 3.44256i −0.0177461 0.0307372i
\(113\) −124.052 + 71.6214i −1.09780 + 0.633817i −0.935643 0.352947i \(-0.885180\pi\)
−0.162161 + 0.986764i \(0.551846\pi\)
\(114\) −101.788 + 57.6308i −0.892875 + 0.505534i
\(115\) −6.75229 + 11.6953i −0.0587155 + 0.101698i
\(116\) 38.3153i 0.330305i
\(117\) −6.57655 + 10.9608i −0.0562098 + 0.0936816i
\(118\) 145.814 1.23571
\(119\) −20.7710 11.9922i −0.174547 0.100775i
\(120\) 18.9730 + 0.159636i 0.158108 + 0.00133030i
\(121\) −48.0688 83.2576i −0.397263 0.688079i
\(122\) 88.1973 50.9208i 0.722929 0.417383i
\(123\) 1.69365 201.293i 0.0137695 1.63653i
\(124\) 27.2044 47.1194i 0.219390 0.379995i
\(125\) 11.1803i 0.0894427i
\(126\) 10.8462 + 6.50782i 0.0860809 + 0.0516493i
\(127\) −165.052 −1.29962 −0.649811 0.760096i \(-0.725152\pi\)
−0.649811 + 0.760096i \(0.725152\pi\)
\(128\) −9.79796 5.65685i −0.0765466 0.0441942i
\(129\) −40.8815 72.2050i −0.316911 0.559729i
\(130\) −2.24563 3.88955i −0.0172741 0.0299196i
\(131\) 45.4381 26.2337i 0.346856 0.200257i −0.316444 0.948611i \(-0.602489\pi\)
0.663300 + 0.748354i \(0.269156\pi\)
\(132\) 25.7824 + 15.1761i 0.195321 + 0.114971i
\(133\) 13.6994 23.7280i 0.103003 0.178406i
\(134\) 28.2391i 0.210740i
\(135\) −53.0305 + 28.8577i −0.392818 + 0.213761i
\(136\) −68.2624 −0.501929
\(137\) 104.246 + 60.1866i 0.760921 + 0.439318i 0.829626 0.558319i \(-0.188553\pi\)
−0.0687051 + 0.997637i \(0.521887\pi\)
\(138\) −12.9978 + 22.0817i −0.0941870 + 0.160012i
\(139\) 33.1992 + 57.5027i 0.238843 + 0.413689i 0.960383 0.278685i \(-0.0898984\pi\)
−0.721539 + 0.692373i \(0.756565\pi\)
\(140\) −3.84890 + 2.22216i −0.0274922 + 0.0158726i
\(141\) −17.6448 + 9.99023i −0.125140 + 0.0708527i
\(142\) 38.9673 67.4933i 0.274418 0.475305i
\(143\) 7.08176i 0.0495228i
\(144\) 35.9949 + 0.605754i 0.249965 + 0.00420662i
\(145\) 42.8378 0.295433
\(146\) 162.586 + 93.8692i 1.11360 + 0.642940i
\(147\) 144.032 + 1.21186i 0.979810 + 0.00824397i
\(148\) −63.1320 109.348i −0.426568 0.738837i
\(149\) 82.8092 47.8099i 0.555766 0.320872i −0.195678 0.980668i \(-0.562691\pi\)
0.751444 + 0.659796i \(0.229357\pi\)
\(150\) 0.178478 21.2125i 0.00118985 0.141416i
\(151\) −135.262 + 234.281i −0.895776 + 1.55153i −0.0629346 + 0.998018i \(0.520046\pi\)
−0.832841 + 0.553512i \(0.813287\pi\)
\(152\) 77.9803i 0.513028i
\(153\) 189.910 105.424i 1.24124 0.689047i
\(154\) −7.00774 −0.0455048
\(155\) −52.6810 30.4154i −0.339878 0.196229i
\(156\) −4.19855 7.41549i −0.0269138 0.0475352i
\(157\) −18.1726 31.4759i −0.115749 0.200483i 0.802330 0.596881i \(-0.203594\pi\)
−0.918079 + 0.396398i \(0.870260\pi\)
\(158\) 48.4868 27.9939i 0.306878 0.177176i
\(159\) 227.000 + 133.617i 1.42767 + 0.840360i
\(160\) −6.32456 + 10.9545i −0.0395285 + 0.0684653i
\(161\) 6.00188i 0.0372787i
\(162\) −101.075 + 53.9052i −0.623922 + 0.332748i
\(163\) 93.3260 0.572552 0.286276 0.958147i \(-0.407583\pi\)
0.286276 + 0.958147i \(0.407583\pi\)
\(164\) 116.221 + 67.1001i 0.708664 + 0.409147i
\(165\) 16.9674 28.8256i 0.102833 0.174701i
\(166\) −85.6926 148.424i −0.516221 0.894120i
\(167\) 49.3009 28.4639i 0.295215 0.170443i −0.345076 0.938575i \(-0.612147\pi\)
0.640291 + 0.768132i \(0.278814\pi\)
\(168\) −7.33799 + 4.15467i −0.0436785 + 0.0247302i
\(169\) 83.4914 144.611i 0.494032 0.855689i
\(170\) 76.3197i 0.448939i
\(171\) 120.432 + 216.945i 0.704283 + 1.26869i
\(172\) 55.3167 0.321609
\(173\) 188.482 + 108.820i 1.08949 + 0.629017i 0.933441 0.358732i \(-0.116791\pi\)
0.156049 + 0.987749i \(0.450124\pi\)
\(174\) 81.2762 + 0.683845i 0.467105 + 0.00393014i
\(175\) 2.48446 + 4.30320i 0.0141969 + 0.0245897i
\(176\) −17.2728 + 9.97245i −0.0981409 + 0.0566617i
\(177\) 2.60246 309.307i 0.0147031 1.74749i
\(178\) −52.3622 + 90.6939i −0.294169 + 0.509516i
\(179\) 56.2638i 0.314323i 0.987573 + 0.157161i \(0.0502343\pi\)
−0.987573 + 0.157161i \(0.949766\pi\)
\(180\) 0.677253 40.2435i 0.00376252 0.223575i
\(181\) −130.959 −0.723528 −0.361764 0.932270i \(-0.617825\pi\)
−0.361764 + 0.932270i \(0.617825\pi\)
\(182\) 1.72865 + 0.998034i 0.00949805 + 0.00548370i
\(183\) −106.441 187.997i −0.581646 1.02731i
\(184\) −8.54104 14.7935i −0.0464187 0.0803996i
\(185\) −122.255 + 70.5838i −0.660836 + 0.381534i
\(186\) −99.4662 58.5481i −0.534764 0.314775i
\(187\) −60.1698 + 104.217i −0.321764 + 0.557311i
\(188\) 13.5178i 0.0719031i
\(189\) 13.9983 22.8913i 0.0740648 0.121118i
\(190\) −87.1846 −0.458866
\(191\) −29.4446 16.9999i −0.154160 0.0890045i 0.420935 0.907091i \(-0.361702\pi\)
−0.575096 + 0.818086i \(0.695035\pi\)
\(192\) −12.1744 + 20.6829i −0.0634086 + 0.107723i
\(193\) 91.5542 + 158.577i 0.474374 + 0.821640i 0.999569 0.0293415i \(-0.00934104\pi\)
−0.525195 + 0.850982i \(0.676008\pi\)
\(194\) −2.80180 + 1.61762i −0.0144423 + 0.00833825i
\(195\) −8.29077 + 4.69412i −0.0425168 + 0.0240724i
\(196\) −48.0124 + 83.1599i −0.244961 + 0.424285i
\(197\) 30.9351i 0.157031i 0.996913 + 0.0785154i \(0.0250180\pi\)
−0.996913 + 0.0785154i \(0.974982\pi\)
\(198\) 32.6525 54.4200i 0.164911 0.274848i
\(199\) −332.873 −1.67273 −0.836363 0.548176i \(-0.815322\pi\)
−0.836363 + 0.548176i \(0.815322\pi\)
\(200\) 12.2474 + 7.07107i 0.0612372 + 0.0353553i
\(201\) −59.9021 0.504006i −0.298020 0.00250749i
\(202\) −80.3613 139.190i −0.397828 0.689059i
\(203\) −16.4879 + 9.51927i −0.0812210 + 0.0468930i
\(204\) −1.21833 + 144.801i −0.00597223 + 0.709810i
\(205\) 75.0202 129.939i 0.365952 0.633848i
\(206\) 80.2473i 0.389550i
\(207\) 46.6087 + 27.9657i 0.225163 + 0.135100i
\(208\) 5.68105 0.0273128
\(209\) −119.054 68.7356i −0.569634 0.328878i
\(210\) 4.64506 + 8.20413i 0.0221193 + 0.0390673i
\(211\) 80.3859 + 139.232i 0.380976 + 0.659869i 0.991202 0.132358i \(-0.0422548\pi\)
−0.610226 + 0.792227i \(0.708921\pi\)
\(212\) −152.077 + 87.8018i −0.717345 + 0.414159i
\(213\) −142.474 83.8638i −0.668894 0.393727i
\(214\) 65.8926 114.129i 0.307909 0.533315i
\(215\) 61.8459i 0.287655i
\(216\) 1.92738 76.3432i 0.00892307 0.353441i
\(217\) 27.0352 0.124586
\(218\) −26.6447 15.3833i −0.122223 0.0705657i
\(219\) 202.021 343.210i 0.922472 1.56717i
\(220\) 11.1495 + 19.3116i 0.0506797 + 0.0877799i
\(221\) 29.6849 17.1386i 0.134321 0.0775502i
\(222\) −233.080 + 131.967i −1.04991 + 0.594446i
\(223\) −195.701 + 338.964i −0.877582 + 1.52002i −0.0235946 + 0.999722i \(0.507511\pi\)
−0.853987 + 0.520294i \(0.825822\pi\)
\(224\) 5.62168i 0.0250968i
\(225\) −44.9936 0.757192i −0.199972 0.00336530i
\(226\) −202.576 −0.896353
\(227\) 295.054 + 170.350i 1.29980 + 0.750439i 0.980369 0.197172i \(-0.0631756\pi\)
0.319429 + 0.947610i \(0.396509\pi\)
\(228\) −165.415 1.39178i −0.725505 0.00610429i
\(229\) 47.2232 + 81.7931i 0.206215 + 0.357175i 0.950519 0.310666i \(-0.100552\pi\)
−0.744304 + 0.667841i \(0.767219\pi\)
\(230\) −16.5397 + 9.54918i −0.0719116 + 0.0415182i
\(231\) −0.125073 + 14.8651i −0.000541441 + 0.0643513i
\(232\) −27.0930 + 46.9265i −0.116780 + 0.202269i
\(233\) 117.982i 0.506362i 0.967419 + 0.253181i \(0.0814769\pi\)
−0.967419 + 0.253181i \(0.918523\pi\)
\(234\) −15.8050 + 8.77380i −0.0675428 + 0.0374949i
\(235\) −15.1133 −0.0643121
\(236\) 178.585 + 103.106i 0.756714 + 0.436889i
\(237\) −58.5165 103.352i −0.246905 0.436084i
\(238\) −16.9595 29.3747i −0.0712583 0.123423i
\(239\) −319.661 + 184.556i −1.33749 + 0.772203i −0.986435 0.164151i \(-0.947512\pi\)
−0.351059 + 0.936353i \(0.614178\pi\)
\(240\) 23.1242 + 13.6114i 0.0963508 + 0.0567144i
\(241\) 187.815 325.306i 0.779316 1.34982i −0.153020 0.988223i \(-0.548900\pi\)
0.932336 0.361592i \(-0.117767\pi\)
\(242\) 135.959i 0.561814i
\(243\) 112.542 + 215.368i 0.463136 + 0.886287i
\(244\) 144.026 0.590269
\(245\) 92.9756 + 53.6795i 0.379492 + 0.219100i
\(246\) 144.410 245.335i 0.587033 0.997298i
\(247\) 19.5785 + 33.9109i 0.0792650 + 0.137291i
\(248\) 66.6368 38.4728i 0.268697 0.155132i
\(249\) −316.373 + 179.126i −1.27057 + 0.719382i
\(250\) 7.90569 13.6931i 0.0316228 0.0547723i
\(251\) 240.639i 0.958722i −0.877618 0.479361i \(-0.840869\pi\)
0.877618 0.479361i \(-0.159131\pi\)
\(252\) 8.68211 + 15.6398i 0.0344528 + 0.0620628i
\(253\) −30.1140 −0.119028
\(254\) −202.146 116.709i −0.795852 0.459485i
\(255\) 161.893 + 1.36214i 0.634873 + 0.00534172i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −108.443 + 62.6094i −0.421956 + 0.243616i −0.695914 0.718125i \(-0.745000\pi\)
0.273958 + 0.961742i \(0.411667\pi\)
\(258\) 0.987282 117.340i 0.00382668 0.454807i
\(259\) 31.3697 54.3340i 0.121119 0.209784i
\(260\) 6.35161i 0.0244293i
\(261\) 2.90121 172.395i 0.0111157 0.660516i
\(262\) 74.2001 0.283207
\(263\) −80.7510 46.6216i −0.307038 0.177269i 0.338562 0.940944i \(-0.390059\pi\)
−0.645600 + 0.763675i \(0.723393\pi\)
\(264\) 20.8457 + 36.8178i 0.0789611 + 0.139461i
\(265\) 98.1654 + 170.027i 0.370435 + 0.641613i
\(266\) 33.5565 19.3738i 0.126152 0.0728340i
\(267\) 191.450 + 112.692i 0.717039 + 0.422066i
\(268\) 19.9681 34.5857i 0.0745077 0.129051i
\(269\) 76.3366i 0.283779i −0.989882 0.141890i \(-0.954682\pi\)
0.989882 0.141890i \(-0.0453178\pi\)
\(270\) −85.3543 2.15488i −0.316127 0.00798103i
\(271\) 529.738 1.95475 0.977377 0.211506i \(-0.0678368\pi\)
0.977377 + 0.211506i \(0.0678368\pi\)
\(272\) −83.6040 48.2688i −0.307368 0.177459i
\(273\) 2.14793 3.64907i 0.00786786 0.0133665i
\(274\) 85.1167 + 147.426i 0.310645 + 0.538053i
\(275\) 21.5910 12.4656i 0.0785127 0.0453293i
\(276\) −31.5331 + 17.8536i −0.114250 + 0.0646870i
\(277\) 42.4806 73.5785i 0.153359 0.265626i −0.779101 0.626898i \(-0.784324\pi\)
0.932460 + 0.361272i \(0.117657\pi\)
\(278\) 93.9016i 0.337775i
\(279\) −125.970 + 209.947i −0.451506 + 0.752499i
\(280\) −6.28523 −0.0224473
\(281\) −185.539 107.121i −0.660282 0.381214i 0.132102 0.991236i \(-0.457827\pi\)
−0.792384 + 0.610022i \(0.791161\pi\)
\(282\) −28.6745 0.241263i −0.101683 0.000855542i
\(283\) −189.079 327.494i −0.668123 1.15722i −0.978428 0.206586i \(-0.933765\pi\)
0.310305 0.950637i \(-0.399569\pi\)
\(284\) 95.4500 55.1081i 0.336091 0.194042i
\(285\) −1.55605 + 184.940i −0.00545984 + 0.648912i
\(286\) 5.00756 8.67334i 0.0175089 0.0303264i
\(287\) 66.6829i 0.232345i
\(288\) 43.6562 + 26.1941i 0.151584 + 0.0909519i
\(289\) −293.469 −1.01546
\(290\) 52.4654 + 30.2909i 0.180915 + 0.104451i
\(291\) 3.38137 + 5.97218i 0.0116198 + 0.0205230i
\(292\) 132.751 + 229.932i 0.454627 + 0.787437i
\(293\) −43.3012 + 25.0000i −0.147786 + 0.0853242i −0.572070 0.820205i \(-0.693859\pi\)
0.424284 + 0.905529i \(0.360526\pi\)
\(294\) 175.546 + 103.330i 0.597094 + 0.351464i
\(295\) 115.276 199.664i 0.390766 0.676826i
\(296\) 178.564i 0.603258i
\(297\) −114.855 70.2352i −0.386718 0.236482i
\(298\) 135.227 0.453781
\(299\) 7.42840 + 4.28879i 0.0248442 + 0.0143438i
\(300\) 15.2181 25.8536i 0.0507269 0.0861788i
\(301\) 13.7432 + 23.8039i 0.0456584 + 0.0790827i
\(302\) −331.323 + 191.290i −1.09710 + 0.633409i
\(303\) −296.690 + 167.982i −0.979175 + 0.554395i
\(304\) 55.1404 95.5059i 0.181383 0.314164i
\(305\) 161.026i 0.527953i
\(306\) 307.137 + 5.16877i 1.00372 + 0.0168914i
\(307\) 145.083 0.472583 0.236292 0.971682i \(-0.424068\pi\)
0.236292 + 0.971682i \(0.424068\pi\)
\(308\) −8.58270 4.95522i −0.0278659 0.0160884i
\(309\) 170.224 + 1.43224i 0.550887 + 0.00463508i
\(310\) −43.0139 74.5023i −0.138755 0.240330i
\(311\) 90.5772 52.2947i 0.291245 0.168150i −0.347258 0.937770i \(-0.612887\pi\)
0.638503 + 0.769619i \(0.279554\pi\)
\(312\) 0.101394 12.0509i 0.000324982 0.0386247i
\(313\) −28.8869 + 50.0335i −0.0922903 + 0.159852i −0.908474 0.417940i \(-0.862752\pi\)
0.816184 + 0.577792i \(0.196085\pi\)
\(314\) 51.3999i 0.163694i
\(315\) 17.4859 9.70689i 0.0555107 0.0308155i
\(316\) 79.1786 0.250565
\(317\) 85.1303 + 49.1500i 0.268550 + 0.155047i 0.628228 0.778029i \(-0.283780\pi\)
−0.359679 + 0.933076i \(0.617114\pi\)
\(318\) 183.535 + 324.160i 0.577154 + 1.01937i
\(319\) 47.7622 + 82.7266i 0.149725 + 0.259331i
\(320\) −15.4919 + 8.94427i −0.0484123 + 0.0279508i
\(321\) −240.920 141.811i −0.750531 0.441780i
\(322\) 4.24397 7.35077i 0.0131800 0.0228285i
\(323\) 665.390i 2.06003i
\(324\) −161.908 5.45101i −0.499717 0.0168241i
\(325\) −7.10132 −0.0218502
\(326\) 114.301 + 65.9915i 0.350615 + 0.202428i
\(327\) −33.1074 + 56.2454i −0.101246 + 0.172004i
\(328\) 94.8939 + 164.361i 0.289311 + 0.501101i
\(329\) 5.81697 3.35843i 0.0176808 0.0102080i
\(330\) 41.1636 23.3062i 0.124738 0.0706250i
\(331\) 106.537 184.528i 0.321865 0.557487i −0.659008 0.752136i \(-0.729024\pi\)
0.980873 + 0.194649i \(0.0623569\pi\)
\(332\) 242.375i 0.730046i
\(333\) 275.774 + 496.776i 0.828151 + 1.49182i
\(334\) 80.5081 0.241042
\(335\) −38.6680 22.3250i −0.115427 0.0666417i
\(336\) −11.9250 0.100335i −0.0354910 0.000298615i
\(337\) −82.5154 142.921i −0.244853 0.424097i 0.717237 0.696829i \(-0.245406\pi\)
−0.962090 + 0.272731i \(0.912073\pi\)
\(338\) 204.511 118.075i 0.605063 0.349333i
\(339\) −3.61554 + 429.713i −0.0106653 + 1.26759i
\(340\) −53.9661 + 93.4721i −0.158724 + 0.274918i
\(341\) 135.647i 0.397792i
\(342\) −5.90460 + 350.861i −0.0172649 + 1.02591i
\(343\) −96.4092 −0.281076
\(344\) 67.7488 + 39.1148i 0.196944 + 0.113706i
\(345\) 19.9609 + 35.2551i 0.0578578 + 0.102189i
\(346\) 153.895 + 266.553i 0.444782 + 0.770385i
\(347\) −78.2522 + 45.1789i −0.225511 + 0.130199i −0.608499 0.793554i \(-0.708228\pi\)
0.382989 + 0.923753i \(0.374895\pi\)
\(348\) 99.0591 + 58.3085i 0.284653 + 0.167553i
\(349\) 177.488 307.418i 0.508561 0.880853i −0.491390 0.870939i \(-0.663511\pi\)
0.999951 0.00991327i \(-0.00315554\pi\)
\(350\) 7.02710i 0.0200774i
\(351\) 18.3293 + 33.6829i 0.0522202 + 0.0959627i
\(352\) −28.2064 −0.0801317
\(353\) 312.718 + 180.548i 0.885887 + 0.511467i 0.872595 0.488445i \(-0.162436\pi\)
0.0132919 + 0.999912i \(0.495769\pi\)
\(354\) 221.900 376.981i 0.626836 1.06492i
\(355\) −61.6127 106.716i −0.173557 0.300609i
\(356\) −128.261 + 74.0513i −0.360283 + 0.208009i
\(357\) −62.6136 + 35.4510i −0.175388 + 0.0993024i
\(358\) −39.7845 + 68.9088i −0.111130 + 0.192483i
\(359\) 229.312i 0.638753i 0.947628 + 0.319377i \(0.103473\pi\)
−0.947628 + 0.319377i \(0.896527\pi\)
\(360\) 29.2859 48.8092i 0.0813498 0.135581i
\(361\) 399.115 1.10558
\(362\) −160.391 92.6017i −0.443069 0.255806i
\(363\) −288.402 2.42657i −0.794497 0.00668477i
\(364\) 1.41143 + 2.44467i 0.00387756 + 0.00671614i
\(365\) 257.071 148.420i 0.704305 0.406631i
\(366\) 2.57054 305.514i 0.00702334 0.834737i
\(367\) −205.787 + 356.434i −0.560728 + 0.971210i 0.436705 + 0.899605i \(0.356146\pi\)
−0.997433 + 0.0716052i \(0.977188\pi\)
\(368\) 24.1577i 0.0656460i
\(369\) −517.839 310.708i −1.40336 0.842027i
\(370\) −199.641 −0.539570
\(371\) −75.5658 43.6279i −0.203681 0.117596i
\(372\) −80.4209 142.040i −0.216185 0.381827i
\(373\) −343.514 594.984i −0.920949 1.59513i −0.797950 0.602723i \(-0.794082\pi\)
−0.122999 0.992407i \(-0.539251\pi\)
\(374\) −147.385 + 85.0929i −0.394078 + 0.227521i
\(375\) −28.9052 17.0143i −0.0770807 0.0453715i
\(376\) 9.55851 16.5558i 0.0254216 0.0440315i
\(377\) 27.2089i 0.0721722i
\(378\) 33.3309 18.1377i 0.0881769 0.0479834i
\(379\) −154.733 −0.408267 −0.204134 0.978943i \(-0.565438\pi\)
−0.204134 + 0.978943i \(0.565438\pi\)
\(380\) −106.779 61.6488i −0.280997 0.162234i
\(381\) −251.177 + 426.719i −0.659257 + 1.12000i
\(382\) −24.0414 41.6410i −0.0629357 0.109008i
\(383\) 141.268 81.5612i 0.368846 0.212954i −0.304108 0.952638i \(-0.598358\pi\)
0.672954 + 0.739684i \(0.265025\pi\)
\(384\) −29.5356 + 16.7227i −0.0769157 + 0.0435486i
\(385\) −5.54011 + 9.59575i −0.0143899 + 0.0249240i
\(386\) 258.954i 0.670866i
\(387\) −248.890 4.18854i −0.643126 0.0108231i
\(388\) −4.57532 −0.0117921
\(389\) 268.744 + 155.159i 0.690858 + 0.398867i 0.803933 0.594719i \(-0.202737\pi\)
−0.113075 + 0.993586i \(0.536070\pi\)
\(390\) −13.4733 0.113362i −0.0345470 0.000290673i
\(391\) −72.8790 126.230i −0.186391 0.322839i
\(392\) −117.606 + 67.8998i −0.300015 + 0.173214i
\(393\) 1.32431 157.397i 0.00336975 0.400500i
\(394\) −21.8744 + 37.8876i −0.0555188 + 0.0961614i
\(395\) 88.5244i 0.224112i
\(396\) 78.4717 43.5618i 0.198161 0.110005i
\(397\) −270.057 −0.680244 −0.340122 0.940381i \(-0.610468\pi\)
−0.340122 + 0.940381i \(0.610468\pi\)
\(398\) −407.684 235.376i −1.02433 0.591398i
\(399\) −40.4978 71.5273i −0.101498 0.179266i
\(400\) 10.0000 + 17.3205i 0.0250000 + 0.0433013i
\(401\) −525.394 + 303.336i −1.31021 + 0.756449i −0.982130 0.188201i \(-0.939734\pi\)
−0.328078 + 0.944651i \(0.606401\pi\)
\(402\) −73.0084 42.9744i −0.181613 0.106902i
\(403\) −19.3187 + 33.4610i −0.0479372 + 0.0830297i
\(404\) 227.296i 0.562614i
\(405\) −6.09442 + 181.019i −0.0150479 + 0.446960i
\(406\) −26.9246 −0.0663167
\(407\) −272.617 157.395i −0.669820 0.386721i
\(408\) −103.882 + 176.483i −0.254613 + 0.432557i
\(409\) 332.949 + 576.684i 0.814055 + 1.40998i 0.910004 + 0.414599i \(0.136078\pi\)
−0.0959493 + 0.995386i \(0.530589\pi\)
\(410\) 183.761 106.095i 0.448198 0.258767i
\(411\) 314.247 177.922i 0.764591 0.432901i
\(412\) −56.7434 + 98.2825i −0.137727 + 0.238550i
\(413\) 102.465i 0.248099i
\(414\) 37.3091 + 67.2081i 0.0901186 + 0.162338i
\(415\) −270.984 −0.652973
\(416\) 6.95784 + 4.01711i 0.0167256 + 0.00965652i
\(417\) 199.188 + 1.67594i 0.477670 + 0.00401904i
\(418\) −97.2068 168.367i −0.232552 0.402792i
\(419\) 187.245 108.106i 0.446886 0.258010i −0.259628 0.965709i \(-0.583600\pi\)
0.706514 + 0.707699i \(0.250267\pi\)
\(420\) −0.112178 + 13.3325i −0.000267090 + 0.0317441i
\(421\) −157.752 + 273.234i −0.374708 + 0.649013i −0.990283 0.139065i \(-0.955590\pi\)
0.615576 + 0.788078i \(0.288924\pi\)
\(422\) 227.366i 0.538781i
\(423\) −1.02356 + 60.8214i −0.00241975 + 0.143786i
\(424\) −248.341 −0.585710
\(425\) 104.505 + 60.3360i 0.245894 + 0.141967i
\(426\) −115.194 203.456i −0.270409 0.477597i
\(427\) 35.7825 + 61.9772i 0.0837999 + 0.145146i
\(428\) 161.403 93.1862i 0.377110 0.217725i
\(429\) −18.3089 10.7771i −0.0426781 0.0251213i
\(430\) 43.7317 75.7455i 0.101702 0.176152i
\(431\) 705.119i 1.63601i 0.575213 + 0.818003i \(0.304919\pi\)
−0.575213 + 0.818003i \(0.695081\pi\)
\(432\) 56.3434 92.1381i 0.130424 0.213283i
\(433\) 152.735 0.352737 0.176369 0.984324i \(-0.443565\pi\)
0.176369 + 0.984324i \(0.443565\pi\)
\(434\) 33.1113 + 19.1168i 0.0762932 + 0.0440479i
\(435\) 65.1909 110.751i 0.149864 0.254601i
\(436\) −21.7553 37.6813i −0.0498975 0.0864250i
\(437\) 144.200 83.2541i 0.329978 0.190513i
\(438\) 490.111 277.494i 1.11897 0.633548i
\(439\) −81.1173 + 140.499i −0.184778 + 0.320044i −0.943502 0.331368i \(-0.892490\pi\)
0.758724 + 0.651412i \(0.225823\pi\)
\(440\) 31.5357i 0.0716720i
\(441\) 222.322 370.531i 0.504132 0.840207i
\(442\) 48.4753 0.109673
\(443\) 335.641 + 193.783i 0.757655 + 0.437433i 0.828453 0.560058i \(-0.189221\pi\)
−0.0707979 + 0.997491i \(0.522555\pi\)
\(444\) −378.779 3.18698i −0.853105 0.00717789i
\(445\) 82.7919 + 143.400i 0.186049 + 0.322247i
\(446\) −479.367 + 276.763i −1.07481 + 0.620544i
\(447\) 2.41350 286.849i 0.00539934 0.641721i
\(448\) 3.97513 6.88513i 0.00887306 0.0153686i
\(449\) 111.025i 0.247272i 0.992328 + 0.123636i \(0.0394554\pi\)
−0.992328 + 0.123636i \(0.960545\pi\)
\(450\) −54.5703 32.7427i −0.121267 0.0727615i
\(451\) 334.577 0.741855
\(452\) −248.104 143.243i −0.548902 0.316909i
\(453\) 399.859 + 706.232i 0.882690 + 1.55901i
\(454\) 240.911 + 417.269i 0.530640 + 0.919096i
\(455\) 2.73323 1.57803i 0.00600709 0.00346820i
\(456\) −201.607 118.671i −0.442121 0.260243i
\(457\) 149.400 258.768i 0.326914 0.566232i −0.654984 0.755643i \(-0.727325\pi\)
0.981898 + 0.189411i \(0.0606579\pi\)
\(458\) 133.567i 0.291632i
\(459\) 16.4460 651.421i 0.0358300 1.41922i
\(460\) −27.0091 −0.0587155
\(461\) −180.036 103.944i −0.390534 0.225475i 0.291857 0.956462i \(-0.405727\pi\)
−0.682392 + 0.730987i \(0.739060\pi\)
\(462\) −10.6644 + 18.1176i −0.0230832 + 0.0392155i
\(463\) −432.563 749.220i −0.934261 1.61819i −0.775947 0.630798i \(-0.782728\pi\)
−0.158313 0.987389i \(-0.550606\pi\)
\(464\) −66.3641 + 38.3153i −0.143026 + 0.0825762i
\(465\) −158.805 + 89.9133i −0.341517 + 0.193362i
\(466\) −83.4262 + 144.498i −0.179026 + 0.310082i
\(467\) 854.726i 1.83025i 0.403172 + 0.915124i \(0.367908\pi\)
−0.403172 + 0.915124i \(0.632092\pi\)
\(468\) −25.5611 0.430165i −0.0546178 0.000919156i
\(469\) 19.8439 0.0423111
\(470\) −18.5100 10.6867i −0.0393829 0.0227377i
\(471\) −109.032 0.917377i −0.231490 0.00194772i
\(472\) 145.814 + 252.557i 0.308927 + 0.535078i
\(473\) 119.434 68.9554i 0.252504 0.145783i
\(474\) 1.41317 167.957i 0.00298136 0.354340i
\(475\) −68.9255 + 119.382i −0.145106 + 0.251331i
\(476\) 47.9687i 0.100775i
\(477\) 690.899 383.537i 1.44842 0.804061i
\(478\) −522.004 −1.09206
\(479\) 263.392 + 152.069i 0.549879 + 0.317473i 0.749073 0.662487i \(-0.230499\pi\)
−0.199194 + 0.979960i \(0.563832\pi\)
\(480\) 18.6965 + 33.0218i 0.0389510 + 0.0687955i
\(481\) 44.8321 + 77.6514i 0.0932060 + 0.161437i
\(482\) 460.051 265.611i 0.954464 0.551060i
\(483\) −15.5170 9.13369i −0.0321264 0.0189103i
\(484\) 96.1375 166.515i 0.198631 0.344039i
\(485\) 5.11537i 0.0105472i
\(486\) −14.4526 + 343.350i −0.0297379 + 0.706481i
\(487\) 907.378 1.86320 0.931600 0.363486i \(-0.118413\pi\)
0.931600 + 0.363486i \(0.118413\pi\)
\(488\) 176.395 + 101.842i 0.361465 + 0.208692i
\(489\) 142.024 241.282i 0.290438 0.493419i
\(490\) 75.9143 + 131.487i 0.154927 + 0.268342i
\(491\) 56.6785 32.7234i 0.115435 0.0666464i −0.441171 0.897423i \(-0.645437\pi\)
0.556606 + 0.830777i \(0.312103\pi\)
\(492\) 350.344 198.360i 0.712081 0.403170i
\(493\) −231.179 + 400.414i −0.468924 + 0.812200i
\(494\) 55.3763i 0.112098i
\(495\) −48.7036 87.7340i −0.0983911 0.177240i
\(496\) 108.818 0.219390
\(497\) 47.4282 + 27.3827i 0.0954291 + 0.0550960i
\(498\) −514.138 4.32587i −1.03240 0.00868649i
\(499\) −358.642 621.186i −0.718721 1.24486i −0.961507 0.274782i \(-0.911394\pi\)
0.242785 0.970080i \(-0.421939\pi\)
\(500\) 19.3649 11.1803i 0.0387298 0.0223607i
\(501\) 1.43689 170.777i 0.00286805 0.340873i
\(502\) 170.158 294.722i 0.338959 0.587095i
\(503\) 623.374i 1.23931i −0.784873 0.619657i \(-0.787272\pi\)
0.784873 0.619657i \(-0.212728\pi\)
\(504\) −0.425669 + 25.2940i −0.000844582 + 0.0501865i
\(505\) −254.125 −0.503217
\(506\) −36.8819 21.2938i −0.0728892 0.0420826i
\(507\) −246.815 435.926i −0.486815 0.859815i
\(508\) −165.052 285.878i −0.324905 0.562753i
\(509\) 577.161 333.224i 1.13391 0.654664i 0.188996 0.981978i \(-0.439477\pi\)
0.944916 + 0.327313i \(0.106143\pi\)
\(510\) 197.314 + 116.144i 0.386890 + 0.227733i
\(511\) −65.9628 + 114.251i −0.129086 + 0.223583i
\(512\) 22.6274i 0.0441942i
\(513\) 744.158 + 18.7872i 1.45060 + 0.0366223i
\(514\) −177.086 −0.344526
\(515\) 109.883 + 63.4411i 0.213365 + 0.123187i
\(516\) 84.1813 143.014i 0.163142 0.277158i
\(517\) −16.8507 29.1862i −0.0325932 0.0564530i
\(518\) 76.8399 44.3635i 0.148340 0.0856439i
\(519\) 568.172 321.691i 1.09474 0.619828i
\(520\) 4.49127 7.77910i 0.00863705 0.0149598i
\(521\) 896.544i 1.72081i 0.509608 + 0.860407i \(0.329790\pi\)
−0.509608 + 0.860407i \(0.670210\pi\)
\(522\) 125.455 209.088i 0.240335 0.400552i
\(523\) 354.070 0.676999 0.338499 0.940967i \(-0.390081\pi\)
0.338499 + 0.940967i \(0.390081\pi\)
\(524\) 90.8762 + 52.4674i 0.173428 + 0.100129i
\(525\) 14.9062 + 0.125418i 0.0283928 + 0.000238892i
\(526\) −65.9329 114.199i −0.125348 0.217109i
\(527\) 568.599 328.281i 1.07893 0.622923i
\(528\) −0.503422 + 59.8326i −0.000953451 + 0.113319i
\(529\) −246.263 + 426.539i −0.465525 + 0.806313i
\(530\) 277.654i 0.523875i
\(531\) −795.710 477.433i −1.49851 0.899120i
\(532\) 54.7975 0.103003
\(533\) −82.5321 47.6500i −0.154845 0.0893995i
\(534\) 154.792 + 273.394i 0.289872 + 0.511973i
\(535\) −104.185 180.454i −0.194739 0.337298i
\(536\) 48.9116 28.2391i 0.0912529 0.0526849i
\(537\) 145.462 + 85.6226i 0.270880 + 0.159446i
\(538\) 53.9781 93.4928i 0.100331 0.173779i
\(539\) 239.401i 0.444157i
\(540\) −103.014 62.9938i −0.190766 0.116655i
\(541\) −392.737 −0.725947 −0.362974 0.931799i \(-0.618238\pi\)
−0.362974 + 0.931799i \(0.618238\pi\)
\(542\) 648.794 + 374.581i 1.19704 + 0.691110i
\(543\) −199.294 + 338.576i −0.367023 + 0.623528i
\(544\) −68.2624 118.234i −0.125482 0.217342i
\(545\) −42.1290 + 24.3232i −0.0773009 + 0.0446297i
\(546\) 5.21094 2.95036i 0.00954385 0.00540360i
\(547\) −135.528 + 234.742i −0.247767 + 0.429145i −0.962906 0.269837i \(-0.913030\pi\)
0.715139 + 0.698982i \(0.246363\pi\)
\(548\) 240.746i 0.439318i
\(549\) −648.024 10.9055i −1.18037 0.0198643i
\(550\) 35.2579 0.0641054
\(551\) −457.418 264.090i −0.830159 0.479293i
\(552\) −51.2444 0.431163i −0.0928341 0.000781092i
\(553\) 19.6716 + 34.0722i 0.0355725 + 0.0616133i
\(554\) 104.056 60.0766i 0.187826 0.108442i
\(555\) −3.56316 + 423.488i −0.00642010 + 0.763041i
\(556\) −66.3984 + 115.005i −0.119422 + 0.206844i
\(557\) 122.363i 0.219682i −0.993949 0.109841i \(-0.964966\pi\)
0.993949 0.109841i \(-0.0350342\pi\)
\(558\) −302.736 + 168.057i −0.542538 + 0.301178i
\(559\) −39.2821 −0.0702722
\(560\) −7.69780 4.44433i −0.0137461 0.00793630i
\(561\) 177.872 + 314.159i 0.317063 + 0.559998i
\(562\) −151.492 262.392i −0.269559 0.466890i
\(563\) 45.8232 26.4560i 0.0813911 0.0469911i −0.458752 0.888564i \(-0.651703\pi\)
0.540143 + 0.841573i \(0.318370\pi\)
\(564\) −34.9484 20.5714i −0.0619652 0.0364742i
\(565\) −160.150 + 277.388i −0.283452 + 0.490953i
\(566\) 534.796i 0.944869i
\(567\) −37.8797 71.0267i −0.0668072 0.125268i
\(568\) 155.869 0.274418
\(569\) −631.466 364.577i −1.10978 0.640733i −0.171009 0.985269i \(-0.554703\pi\)
−0.938773 + 0.344536i \(0.888036\pi\)
\(570\) −132.678 + 225.404i −0.232768 + 0.395445i
\(571\) 198.741 + 344.229i 0.348057 + 0.602853i 0.985904 0.167310i \(-0.0535081\pi\)
−0.637847 + 0.770163i \(0.720175\pi\)
\(572\) 12.2660 7.08176i 0.0214440 0.0123807i
\(573\) −88.7598 + 50.2546i −0.154904 + 0.0877043i
\(574\) −47.1520 + 81.6696i −0.0821463 + 0.142282i
\(575\) 30.1971i 0.0525168i
\(576\) 34.9457 + 62.9508i 0.0606696 + 0.109290i
\(577\) −82.2138 −0.142485 −0.0712425 0.997459i \(-0.522696\pi\)
−0.0712425 + 0.997459i \(0.522696\pi\)
\(578\) −359.425 207.514i −0.621842 0.359021i
\(579\) 549.306 + 4.62177i 0.948715 + 0.00798234i
\(580\) 42.8378 + 74.1973i 0.0738584 + 0.127926i
\(581\) 104.299 60.2171i 0.179516 0.103644i
\(582\) −0.0816596 + 9.70538i −0.000140309 + 0.0166759i
\(583\) −218.900 + 379.146i −0.375471 + 0.650335i
\(584\) 375.477i 0.642940i
\(585\) −0.480939 + 28.5782i −0.000822118 + 0.0488516i
\(586\) −70.7106 −0.120667
\(587\) −745.966 430.684i −1.27081 0.733703i −0.295671 0.955290i \(-0.595543\pi\)
−0.975141 + 0.221587i \(0.928876\pi\)
\(588\) 141.933 + 250.683i 0.241383 + 0.426331i
\(589\) 375.015 + 649.545i 0.636698 + 1.10279i
\(590\) 282.367 163.025i 0.478588 0.276313i
\(591\) 79.9784 + 47.0772i 0.135327 + 0.0796568i
\(592\) 126.264 218.696i 0.213284 0.369419i
\(593\) 377.445i 0.636500i 0.948007 + 0.318250i \(0.103095\pi\)
−0.948007 + 0.318250i \(0.896905\pi\)
\(594\) −91.0047 167.235i −0.153207 0.281541i
\(595\) −53.6306 −0.0901355
\(596\) 165.618 + 95.6198i 0.277883 + 0.160436i
\(597\) −506.567 + 860.597i −0.848522 + 1.44154i
\(598\) 6.06527 + 10.5053i 0.0101426 + 0.0175675i
\(599\) −268.405 + 154.964i −0.448089 + 0.258704i −0.707023 0.707191i \(-0.749962\pi\)
0.258934 + 0.965895i \(0.416629\pi\)
\(600\) 36.9195 20.9033i 0.0615325 0.0348389i
\(601\) −208.891 + 361.810i −0.347573 + 0.602014i −0.985818 0.167820i \(-0.946327\pi\)
0.638245 + 0.769833i \(0.279661\pi\)
\(602\) 38.8716i 0.0645708i
\(603\) −92.4624 + 154.102i −0.153337 + 0.255558i
\(604\) −541.049 −0.895776
\(605\) −186.170 107.485i −0.307718 0.177661i
\(606\) −482.151 4.05674i −0.795628 0.00669429i
\(607\) −428.083 741.461i −0.705244 1.22152i −0.966603 0.256277i \(-0.917504\pi\)
0.261360 0.965241i \(-0.415829\pi\)
\(608\) 135.066 77.9803i 0.222148 0.128257i
\(609\) −0.480545 + 57.1136i −0.000789072 + 0.0937826i
\(610\) 113.862 197.215i 0.186659 0.323304i
\(611\) 9.59940i 0.0157110i
\(612\) 372.510 + 223.509i 0.608676 + 0.365211i
\(613\) −1022.92 −1.66870 −0.834352 0.551231i \(-0.814158\pi\)
−0.834352 + 0.551231i \(0.814158\pi\)
\(614\) 177.690 + 102.589i 0.289397 + 0.167083i
\(615\) −221.773 391.696i −0.360607 0.636905i
\(616\) −7.00774 12.1378i −0.0113762 0.0197042i
\(617\) −507.463 + 292.984i −0.822468 + 0.474852i −0.851267 0.524733i \(-0.824165\pi\)
0.0287987 + 0.999585i \(0.490832\pi\)
\(618\) 207.468 + 122.121i 0.335710 + 0.197607i
\(619\) 455.788 789.447i 0.736329 1.27536i −0.217809 0.975991i \(-0.569891\pi\)
0.954138 0.299367i \(-0.0967756\pi\)
\(620\) 121.662i 0.196229i
\(621\) 143.231 77.9422i 0.230645 0.125511i
\(622\) 147.912 0.237800
\(623\) −63.7315 36.7954i −0.102298 0.0590617i
\(624\) 8.64546 14.6876i 0.0138549 0.0235378i
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) −70.7581 + 40.8522i −0.113032 + 0.0652591i
\(627\) −358.883 + 203.194i −0.572381 + 0.324074i
\(628\) 36.3452 62.9518i 0.0578746 0.100242i
\(629\) 1523.65i 2.42234i
\(630\) 28.2795 + 0.475913i 0.0448882 + 0.000755417i
\(631\) 463.111 0.733932 0.366966 0.930234i \(-0.380396\pi\)
0.366966 + 0.930234i \(0.380396\pi\)
\(632\) 96.9736 + 55.9877i 0.153439 + 0.0885882i
\(633\) 482.298 + 4.05798i 0.761924 + 0.00641071i
\(634\) 69.5086 + 120.392i 0.109635 + 0.189893i
\(635\) −319.622 + 184.534i −0.503341 + 0.290604i
\(636\) −4.43234 + 526.792i −0.00696910 + 0.828289i
\(637\) 34.0951 59.0545i 0.0535245 0.0927072i
\(638\) 135.092i 0.211743i
\(639\) −433.637 + 240.724i −0.678618 + 0.376720i
\(640\) −25.2982 −0.0395285
\(641\) −512.450 295.863i −0.799454 0.461565i 0.0438265 0.999039i \(-0.486045\pi\)
−0.843280 + 0.537474i \(0.819378\pi\)
\(642\) −194.790 344.039i −0.303411 0.535886i
\(643\) 373.551 + 647.010i 0.580950 + 1.00624i 0.995367 + 0.0961484i \(0.0306523\pi\)
−0.414417 + 0.910087i \(0.636014\pi\)
\(644\) 10.3956 6.00188i 0.0161422 0.00931969i
\(645\) −159.894 94.1175i −0.247898 0.145919i
\(646\) 470.502 814.933i 0.728331 1.26151i
\(647\) 86.2103i 0.133246i 0.997778 + 0.0666231i \(0.0212225\pi\)
−0.997778 + 0.0666231i \(0.978777\pi\)
\(648\) −194.442 121.163i −0.300065 0.186979i
\(649\) 514.109 0.792156
\(650\) −8.69730 5.02139i −0.0133805 0.00772522i
\(651\) 41.1424 69.8959i 0.0631987 0.107367i
\(652\) 93.3260 + 161.645i 0.143138 + 0.247922i
\(653\) −148.564 + 85.7737i −0.227511 + 0.131353i −0.609423 0.792845i \(-0.708599\pi\)
0.381913 + 0.924198i \(0.375266\pi\)
\(654\) −80.3196 + 45.4758i −0.122813 + 0.0695349i
\(655\) 58.6603 101.603i 0.0895578 0.155119i
\(656\) 268.401i 0.409147i
\(657\) −579.885 1044.60i −0.882626 1.58995i
\(658\) 9.49908 0.0144363
\(659\) 81.6071 + 47.1159i 0.123835 + 0.0714960i 0.560638 0.828061i \(-0.310556\pi\)
−0.436803 + 0.899557i \(0.643889\pi\)
\(660\) 66.8949 + 0.562843i 0.101356 + 0.000852792i
\(661\) −422.390 731.602i −0.639017 1.10681i −0.985649 0.168809i \(-0.946008\pi\)
0.346631 0.938001i \(-0.387325\pi\)
\(662\) 260.962 150.667i 0.394203 0.227593i
\(663\) 0.865178 102.828i 0.00130494 0.155095i
\(664\) 171.385 296.848i 0.258110 0.447060i
\(665\) 61.2655i 0.0921286i
\(666\) −13.5208 + 803.426i −0.0203014 + 1.20635i
\(667\) −115.701 −0.173465
\(668\) 98.6019 + 56.9278i 0.147608 + 0.0852213i
\(669\) 578.526 + 1021.79i 0.864762 + 1.52735i
\(670\) −31.5723 54.6848i −0.0471228 0.0816191i
\(671\) 310.966 179.536i 0.463436 0.267565i
\(672\) −14.5341 8.55511i −0.0216281 0.0127308i
\(673\) 352.145 609.933i 0.523247 0.906290i −0.476387 0.879235i \(-0.658054\pi\)
0.999634 0.0270541i \(-0.00861264\pi\)
\(674\) 233.389i 0.346274i
\(675\) −70.4292 + 115.173i −0.104340 + 0.170626i
\(676\) 333.966 0.494032
\(677\) −1107.53 639.435i −1.63594 0.944513i −0.982210 0.187788i \(-0.939868\pi\)
−0.653734 0.756724i \(-0.726799\pi\)
\(678\) −308.281 + 523.732i −0.454692 + 0.772466i
\(679\) −1.13672 1.96886i −0.00167411 0.00289964i
\(680\) −132.190 + 76.3197i −0.194396 + 0.112235i
\(681\) 889.431 503.583i 1.30607 0.739476i
\(682\) 95.9170 166.133i 0.140641 0.243597i
\(683\) 571.914i 0.837356i −0.908135 0.418678i \(-0.862494\pi\)
0.908135 0.418678i \(-0.137506\pi\)
\(684\) −255.328 + 425.541i −0.373287 + 0.622135i
\(685\) 269.163 0.392938
\(686\) −118.077 68.1716i −0.172123 0.0993755i
\(687\) 283.329 + 2.38389i 0.412415 + 0.00347000i
\(688\) 55.3167 + 95.8113i 0.0804022 + 0.139261i
\(689\) 107.995 62.3508i 0.156741 0.0904947i
\(690\) −0.482054 + 57.2930i −0.000698630 + 0.0830334i
\(691\) −310.061 + 537.041i −0.448713 + 0.777194i −0.998303 0.0582407i \(-0.981451\pi\)
0.549589 + 0.835435i \(0.314784\pi\)
\(692\) 435.280i 0.629017i
\(693\) 38.2415 + 22.9452i 0.0551825 + 0.0331100i
\(694\) −127.785 −0.184129
\(695\) 128.580 + 74.2357i 0.185007 + 0.106814i
\(696\) 80.0918 + 141.458i 0.115074 + 0.203245i
\(697\) 809.711 + 1402.46i 1.16171 + 2.01214i
\(698\) 434.754 251.005i 0.622857 0.359607i
\(699\) 305.027 + 179.546i 0.436377 + 0.256862i
\(700\) −4.96891 + 8.60641i −0.00709844 + 0.0122949i
\(701\) 66.6004i 0.0950077i −0.998871 0.0475038i \(-0.984873\pi\)
0.998871 0.0475038i \(-0.0151266\pi\)
\(702\) −1.36870 + 54.2137i −0.00194971 + 0.0772276i
\(703\) 1740.56 2.47591
\(704\) −34.5456 19.9449i −0.0490704 0.0283308i
\(705\) −22.9996 + 39.0735i −0.0326235 + 0.0554234i
\(706\) 255.333 + 442.250i 0.361662 + 0.626417i
\(707\) 97.8101 56.4707i 0.138345 0.0798737i
\(708\) 538.337 304.799i 0.760363 0.430507i
\(709\) 105.287 182.363i 0.148501 0.257211i −0.782173 0.623062i \(-0.785889\pi\)
0.930674 + 0.365851i \(0.119222\pi\)
\(710\) 174.267i 0.245447i
\(711\) −356.253 5.99534i −0.501059 0.00843226i
\(712\) −209.449 −0.294169
\(713\) 142.287 + 82.1495i 0.199561 + 0.115217i
\(714\) −101.753 0.856136i −0.142512 0.00119907i
\(715\) −7.91764 13.7138i −0.0110736 0.0191801i
\(716\) −97.4518 + 56.2638i −0.136106 + 0.0785807i
\(717\) −9.31664 + 1107.30i −0.0129939 + 1.54435i
\(718\) −162.148 + 280.849i −0.225833 + 0.391155i
\(719\) 900.163i 1.25197i 0.779837 + 0.625983i \(0.215302\pi\)
−0.779837 + 0.625983i \(0.784698\pi\)
\(720\) 70.3811 39.0705i 0.0977515 0.0542646i
\(721\) −56.3906 −0.0782116
\(722\) 488.814 + 282.217i 0.677028 + 0.390882i
\(723\) −555.215 980.623i −0.767932 1.35632i
\(724\) −130.959 226.827i −0.180882 0.313297i
\(725\) 82.9551 47.8942i 0.114421 0.0660609i
\(726\) −351.504 206.903i −0.484165 0.284991i
\(727\) 377.607 654.034i 0.519404 0.899635i −0.480341 0.877082i \(-0.659487\pi\)
0.999746 0.0225530i \(-0.00717944\pi\)
\(728\) 3.99213i 0.00548370i
\(729\) 728.071 + 36.7856i 0.998726 + 0.0504604i
\(730\) 419.796 0.575063
\(731\) 578.087 + 333.759i 0.790817 + 0.456578i
\(732\) 219.179 372.359i 0.299425 0.508687i
\(733\) 63.0608 + 109.224i 0.0860311 + 0.149010i 0.905830 0.423641i \(-0.139248\pi\)
−0.819799 + 0.572651i \(0.805915\pi\)
\(734\) −504.074 + 291.027i −0.686749 + 0.396495i
\(735\) 280.272 158.686i 0.381322 0.215899i
\(736\) 17.0821 29.5870i 0.0232094 0.0401998i
\(737\) 99.5653i 0.135095i
\(738\) −414.517 746.706i −0.561676 1.01180i
\(739\) 503.837 0.681782 0.340891 0.940103i \(-0.389271\pi\)
0.340891 + 0.940103i \(0.389271\pi\)
\(740\) −244.509 141.168i −0.330418 0.190767i
\(741\) 117.467 + 0.988346i 0.158524 + 0.00133380i
\(742\) −61.6992 106.866i −0.0831526 0.144024i
\(743\) −634.502 + 366.330i −0.853973 + 0.493042i −0.861989 0.506926i \(-0.830782\pi\)
0.00801616 + 0.999968i \(0.497448\pi\)
\(744\) 1.94216 230.829i 0.00261042 0.310254i
\(745\) 106.906 185.167i 0.143498 0.248546i
\(746\) 971.604i 1.30242i
\(747\) −18.3525 + 1090.53i −0.0245682 + 1.45989i
\(748\) −240.679 −0.321764
\(749\) 80.1999 + 46.3034i 0.107076 + 0.0618203i
\(750\) −23.3706 41.2773i −0.0311608 0.0550364i
\(751\) 58.1082 + 100.646i 0.0773744 + 0.134016i 0.902116 0.431493i \(-0.142013\pi\)
−0.824742 + 0.565509i \(0.808680\pi\)
\(752\) 23.4135 13.5178i 0.0311349 0.0179758i
\(753\) −622.140 366.206i −0.826215 0.486329i
\(754\) 19.2396 33.3240i 0.0255167 0.0441963i
\(755\) 604.911i 0.801206i
\(756\) 53.6471 + 1.35439i 0.0709618 + 0.00179152i
\(757\) −644.638 −0.851570 −0.425785 0.904824i \(-0.640002\pi\)
−0.425785 + 0.904824i \(0.640002\pi\)
\(758\) −189.509 109.413i −0.250012 0.144344i
\(759\) −45.8276 + 77.8556i −0.0603789 + 0.102576i
\(760\) −87.1846 151.008i −0.114717 0.198695i
\(761\) 917.597 529.775i 1.20578 0.696156i 0.243943 0.969789i \(-0.421559\pi\)
0.961834 + 0.273634i \(0.0882256\pi\)
\(762\) −609.364 + 345.013i −0.799690 + 0.452773i
\(763\) 10.8100 18.7235i 0.0141678 0.0245393i
\(764\) 67.9994i 0.0890045i
\(765\) 249.891 416.479i 0.326655 0.544417i
\(766\) 230.690 0.301162
\(767\) −126.819 73.2187i −0.165344 0.0954612i
\(768\) −47.9983 0.403850i −0.0624978 0.000525846i
\(769\) 347.756 + 602.331i 0.452219 + 0.783266i 0.998524 0.0543206i \(-0.0172993\pi\)
−0.546305 + 0.837586i \(0.683966\pi\)
\(770\) −13.5704 + 7.83490i −0.0176239 + 0.0101752i
\(771\) −3.16060 + 375.643i −0.00409935 + 0.487216i
\(772\) −183.108 + 317.153i −0.237187 + 0.410820i
\(773\) 931.046i 1.20446i −0.798323 0.602229i \(-0.794279\pi\)
0.798323 0.602229i \(-0.205721\pi\)
\(774\) −301.865 181.122i −0.390006 0.234007i
\(775\) −136.022 −0.175512
\(776\) −5.60360 3.23524i −0.00722114 0.00416913i
\(777\) −92.7345 163.788i −0.119349 0.210795i
\(778\) 219.428 + 380.061i 0.282042 + 0.488510i
\(779\) −1602.12 + 924.982i −2.05663 + 1.18740i
\(780\) −16.4212 9.66592i −0.0210529 0.0123922i
\(781\) 137.391 237.968i 0.175916 0.304696i
\(782\) 206.133i 0.263597i
\(783\) −441.288 269.852i −0.563586 0.344638i
\(784\) −192.050 −0.244961
\(785\) −70.3823 40.6352i −0.0896589 0.0517646i
\(786\) 112.918 191.834i 0.143662 0.244064i
\(787\) 214.800 + 372.045i 0.272936 + 0.472738i 0.969612 0.244647i \(-0.0786721\pi\)
−0.696677 + 0.717385i \(0.745339\pi\)
\(788\) −53.5811 + 30.9351i −0.0679964 + 0.0392577i
\(789\) −243.421 + 137.822i −0.308519 + 0.174679i
\(790\) 62.5962 108.420i 0.0792357 0.137240i
\(791\) 142.352i 0.179965i
\(792\) 126.911 + 2.13576i 0.160241 + 0.00269667i
\(793\) −102.277 −0.128975
\(794\) −330.751 190.959i −0.416563 0.240503i
\(795\) 588.971 + 4.95551i 0.740845 + 0.00623335i
\(796\) −332.873 576.552i −0.418182 0.724312i
\(797\) 528.635 305.208i 0.663281 0.382945i −0.130245 0.991482i \(-0.541576\pi\)
0.793526 + 0.608536i \(0.208243\pi\)
\(798\) 0.978016 116.239i 0.00122558 0.145663i
\(799\) 81.5608 141.268i 0.102079 0.176805i
\(800\) 28.2843i 0.0353553i
\(801\) 582.698 323.472i 0.727463 0.403835i
\(802\) −857.964 −1.06978
\(803\) 573.246 + 330.964i 0.713880 + 0.412159i
\(804\) −59.0291 104.257i −0.0734193 0.129673i
\(805\) −6.71030 11.6226i −0.00833578 0.0144380i
\(806\) −47.3209 + 27.3208i −0.0587108 + 0.0338967i
\(807\) −197.358 116.169i −0.244557 0.143952i
\(808\) 160.723 278.380i 0.198914 0.344529i
\(809\) 304.324i 0.376173i −0.982152 0.188087i \(-0.939771\pi\)
0.982152 0.188087i \(-0.0602286\pi\)
\(810\) −135.464 + 217.393i −0.167239 + 0.268386i
\(811\) −639.398 −0.788407 −0.394204 0.919023i \(-0.628980\pi\)
−0.394204 + 0.919023i \(0.628980\pi\)
\(812\) −32.9757 19.0385i −0.0406105 0.0234465i
\(813\) 806.159 1369.57i 0.991585 1.68458i
\(814\) −222.591 385.538i −0.273453 0.473634i
\(815\) 180.725 104.342i 0.221749 0.128027i
\(816\) −252.021 + 142.691i −0.308850 + 0.174866i
\(817\) −381.273 + 660.384i −0.466674 + 0.808303i
\(818\) 941.721i 1.15125i
\(819\) −6.16544 11.1063i −0.00752801 0.0135609i
\(820\) 300.081 0.365952
\(821\) 1153.10 + 665.742i 1.40451 + 0.810892i 0.994851 0.101349i \(-0.0323158\pi\)
0.409655 + 0.912241i \(0.365649\pi\)
\(822\) 510.682 + 4.29680i 0.621268 + 0.00522725i
\(823\) 445.511 + 771.647i 0.541325 + 0.937603i 0.998828 + 0.0483950i \(0.0154106\pi\)
−0.457503 + 0.889208i \(0.651256\pi\)
\(824\) −138.992 + 80.2473i −0.168680 + 0.0973875i
\(825\) 0.629277 74.7907i 0.000762761 0.0906555i
\(826\) −72.4535 + 125.493i −0.0877161 + 0.151929i
\(827\) 494.513i 0.597960i 0.954259 + 0.298980i \(0.0966465\pi\)
−0.954259 + 0.298980i \(0.903354\pi\)
\(828\) −1.82920 + 108.694i −0.00220918 + 0.131273i
\(829\) −752.153 −0.907302 −0.453651 0.891179i \(-0.649879\pi\)
−0.453651 + 0.891179i \(0.649879\pi\)
\(830\) −331.886 191.615i −0.399863 0.230861i
\(831\) −125.580 221.800i −0.151119 0.266907i
\(832\) 5.68105 + 9.83988i 0.00682819 + 0.0118268i
\(833\) −1003.51 + 579.375i −1.20469 + 0.695528i
\(834\) 242.770 + 142.900i 0.291091 + 0.171343i
\(835\) 63.6472 110.240i 0.0762242 0.132024i
\(836\) 274.942i 0.328878i
\(837\) 351.088 + 645.178i 0.419460 + 0.770822i
\(838\) 305.770 0.364881
\(839\) 438.301 + 253.053i 0.522409 + 0.301613i 0.737920 0.674888i \(-0.235808\pi\)
−0.215511 + 0.976502i \(0.569142\pi\)
\(840\) −9.56490 + 16.2496i −0.0113868 + 0.0193448i
\(841\) −236.992 410.482i −0.281798 0.488088i
\(842\) −386.412 + 223.095i −0.458921 + 0.264958i
\(843\) −559.302 + 316.669i −0.663466 + 0.375645i
\(844\) −160.772 + 278.465i −0.190488 + 0.329935i
\(845\) 373.385i 0.441876i
\(846\) −44.2608 + 73.7669i −0.0523177 + 0.0871949i
\(847\) 95.5398 0.112798
\(848\) −304.154 175.604i −0.358673 0.207080i
\(849\) −1134.43 9.54494i −1.33620 0.0112426i
\(850\) 85.3280 + 147.792i 0.100386 + 0.173873i
\(851\) 330.199 190.641i 0.388013 0.224020i
\(852\) 2.78192 330.637i 0.00326517 0.388071i
\(853\) −11.0040 + 19.0595i −0.0129004 + 0.0223441i −0.872404 0.488786i \(-0.837440\pi\)
0.859503 + 0.511130i \(0.170773\pi\)
\(854\) 101.208i 0.118511i
\(855\) 475.769 + 285.466i 0.556455 + 0.333878i
\(856\) 263.570 0.307909
\(857\) 106.086 + 61.2491i 0.123788 + 0.0714691i 0.560615 0.828076i \(-0.310565\pi\)
−0.436827 + 0.899545i \(0.643898\pi\)
\(858\) −14.8032 26.1455i −0.0172532 0.0304726i
\(859\) −705.014 1221.12i −0.820738 1.42156i −0.905134 0.425127i \(-0.860229\pi\)
0.0843962 0.996432i \(-0.473104\pi\)
\(860\) 107.120 61.8459i 0.124558 0.0719139i
\(861\) 172.400 + 101.478i 0.200232 + 0.117861i
\(862\) −498.594 + 863.591i −0.578416 + 1.00185i
\(863\) 674.484i 0.781557i 0.920485 + 0.390778i \(0.127794\pi\)
−0.920485 + 0.390778i \(0.872206\pi\)
\(864\) 134.158 73.0049i 0.155275 0.0844964i
\(865\) 486.658 0.562610
\(866\) 187.062 + 108.000i 0.216007 + 0.124711i
\(867\) −446.603 + 758.724i −0.515113 + 0.875115i
\(868\) 27.0352 + 46.8264i 0.0311466 + 0.0539475i
\(869\) 170.954 98.7006i 0.196725 0.113580i
\(870\) 158.155 89.5453i 0.181788 0.102926i
\(871\) −14.1800 + 24.5604i −0.0162801 + 0.0281979i
\(872\) 61.5333i 0.0705657i
\(873\) 20.5860 + 0.346440i 0.0235808 + 0.000396838i
\(874\) 235.478 0.269426
\(875\) 9.62226 + 5.55541i 0.0109969 + 0.00634904i
\(876\) 796.478 + 6.70144i 0.909222 + 0.00765005i
\(877\) −685.352 1187.06i −0.781473 1.35355i −0.931084 0.364805i \(-0.881136\pi\)
0.149611 0.988745i \(-0.452198\pi\)
\(878\) −198.696 + 114.717i −0.226305 + 0.130657i
\(879\) −1.26203 + 149.995i −0.00143576 + 0.170642i
\(880\) −22.2991 + 38.6231i −0.0253399 + 0.0438899i
\(881\) 629.262i 0.714259i −0.934055 0.357130i \(-0.883755\pi\)
0.934055 0.357130i \(-0.116245\pi\)
\(882\) 534.293 296.601i 0.605774 0.336282i
\(883\) −537.868 −0.609137 −0.304569 0.952490i \(-0.598512\pi\)
−0.304569 + 0.952490i \(0.598512\pi\)
\(884\) 59.3699 + 34.2772i 0.0671605 + 0.0387751i
\(885\) −340.776 601.879i −0.385057 0.680090i
\(886\) 274.050 + 474.669i 0.309312 + 0.535743i
\(887\) 465.175 268.569i 0.524437 0.302784i −0.214311 0.976765i \(-0.568751\pi\)
0.738748 + 0.673982i \(0.235417\pi\)
\(888\) −461.654 271.740i −0.519880 0.306014i
\(889\) 82.0128 142.050i 0.0922529 0.159787i
\(890\) 234.171i 0.263113i
\(891\) −356.371 + 190.059i −0.399967 + 0.213309i
\(892\) −782.803 −0.877582
\(893\) 161.378 + 93.1719i 0.180715 + 0.104336i
\(894\) 205.789 349.611i 0.230189 0.391063i
\(895\) 62.9049 + 108.954i 0.0702848 + 0.121737i
\(896\) 9.73704 5.62168i 0.0108672 0.00627420i
\(897\) 22.3927 12.6784i 0.0249640 0.0141342i
\(898\) −78.5065 + 135.977i −0.0874237 + 0.151422i
\(899\) 521.172i 0.579725i
\(900\) −43.6821 78.6884i −0.0485357 0.0874316i
\(901\) −2119.04 −2.35188
\(902\) 409.771 + 236.581i 0.454291 + 0.262285i
\(903\) 82.4562 + 0.693773i 0.0913136 + 0.000768298i
\(904\) −202.576 350.872i −0.224088 0.388132i
\(905\) −253.600 + 146.416i −0.280221 + 0.161786i
\(906\) −9.65654 + 1147.70i −0.0106584 + 1.26677i
\(907\) −249.443 + 432.047i −0.275019 + 0.476347i −0.970140 0.242546i \(-0.922018\pi\)
0.695121 + 0.718893i \(0.255351\pi\)
\(908\) 681.398i 0.750439i
\(909\) −17.2107 + 1022.69i −0.0189336 + 1.12507i
\(910\) 4.46334 0.00490477
\(911\) 980.687 + 566.200i 1.07650 + 0.621515i 0.929949 0.367689i \(-0.119851\pi\)
0.146547 + 0.989204i \(0.453184\pi\)
\(912\) −163.005 287.899i −0.178733 0.315679i
\(913\) −302.135 523.312i −0.330925 0.573179i
\(914\) 365.953 211.283i 0.400386 0.231163i
\(915\) −416.310 245.050i −0.454983 0.267814i
\(916\) −94.4465 + 163.586i −0.103108 + 0.178587i
\(917\) 52.1412i 0.0568606i
\(918\) 480.766 786.196i 0.523711 0.856422i
\(919\) −20.1454 −0.0219210 −0.0109605 0.999940i \(-0.503489\pi\)
−0.0109605 + 0.999940i \(0.503489\pi\)
\(920\) −33.0793 19.0984i −0.0359558 0.0207591i
\(921\) 220.788 375.092i 0.239727 0.407266i
\(922\) −146.999 254.610i −0.159435 0.276149i
\(923\) −67.7821 + 39.1340i −0.0734367 + 0.0423987i
\(924\) −25.8723 + 14.6485i −0.0280003 + 0.0158534i
\(925\) −157.830 + 273.370i −0.170627 + 0.295535i
\(926\) 1223.47i 1.32124i
\(927\) 262.751 437.912i 0.283442 0.472397i
\(928\) −108.372 −0.116780
\(929\) −260.470 150.382i −0.280377 0.161876i 0.353217 0.935541i \(-0.385088\pi\)
−0.633594 + 0.773666i \(0.718421\pi\)
\(930\) −258.074 2.17140i −0.277499 0.00233483i
\(931\) −661.855 1146.37i −0.710908 1.23133i
\(932\) −204.352 + 117.982i −0.219261 + 0.126591i
\(933\) 2.63990 313.757i 0.00282948 0.336289i
\(934\) −604.382 + 1046.82i −0.647090 + 1.12079i
\(935\) 269.087i 0.287794i
\(936\) −31.0017 18.6013i −0.0331215 0.0198732i
\(937\) 310.906 0.331810 0.165905 0.986142i \(-0.446945\pi\)
0.165905 + 0.986142i \(0.446945\pi\)
\(938\) 24.3037 + 14.0318i 0.0259102 + 0.0149592i
\(939\) 85.3947 + 150.824i 0.0909421 + 0.160622i
\(940\) −15.1133 26.1771i −0.0160780 0.0278479i
\(941\) 1259.21 727.005i 1.33816 0.772588i 0.351627 0.936140i \(-0.385629\pi\)
0.986535 + 0.163553i \(0.0522953\pi\)
\(942\) −132.888 78.2207i −0.141070 0.0830369i
\(943\) −202.623 + 350.954i −0.214871 + 0.372167i
\(944\) 412.423i 0.436889i
\(945\) 1.51426 59.9793i 0.00160239 0.0634702i
\(946\) 195.035 0.206168
\(947\) 165.289 + 95.4294i 0.174539 + 0.100770i 0.584724 0.811232i \(-0.301203\pi\)
−0.410185 + 0.912002i \(0.634536\pi\)
\(948\) 120.494 204.705i 0.127104 0.215934i
\(949\) −94.2708 163.282i −0.0993370 0.172057i
\(950\) −168.832 + 97.4753i −0.177718 + 0.102606i
\(951\) 256.623 145.296i 0.269845 0.152782i
\(952\) 33.9190 58.7494i 0.0356292 0.0617115i
\(953\) 808.807i 0.848695i 0.905499 + 0.424348i \(0.139497\pi\)
−0.905499 + 0.424348i \(0.860503\pi\)
\(954\) 1117.38 + 18.8042i 1.17125 + 0.0197109i
\(955\) −76.0257 −0.0796081
\(956\) −639.322 369.113i −0.668747 0.386101i
\(957\) 286.563 + 2.41110i 0.299439 + 0.00251943i
\(958\) 215.059 + 372.493i 0.224487 + 0.388823i
\(959\) −103.598 + 59.8124i −0.108027 + 0.0623695i
\(960\) −0.451518 + 53.6637i −0.000470331 + 0.0558997i
\(961\) 110.461 191.324i 0.114944 0.199088i
\(962\) 126.804i 0.131813i
\(963\) −733.268 + 407.057i −0.761441 + 0.422697i
\(964\) 751.261 0.779316
\(965\) 354.588 + 204.721i 0.367449 + 0.212147i
\(966\) −12.5459 22.1586i −0.0129875 0.0229386i
\(967\) −213.781 370.279i −0.221076 0.382915i 0.734059 0.679086i \(-0.237624\pi\)
−0.955135 + 0.296171i \(0.904290\pi\)
\(968\) 235.488 135.959i 0.243273 0.140454i
\(969\) −1720.27 1012.59i −1.77531 1.04499i
\(970\) −3.61711 + 6.26502i −0.00372898 + 0.00645878i
\(971\) 932.208i 0.960050i 0.877255 + 0.480025i \(0.159372\pi\)
−0.877255 + 0.480025i \(0.840628\pi\)
\(972\) −260.486 + 410.296i −0.267990 + 0.422116i
\(973\) −65.9856 −0.0678166
\(974\) 1111.31 + 641.613i 1.14097 + 0.658741i
\(975\) −10.8068 + 18.3595i −0.0110839 + 0.0188302i
\(976\) 144.026 + 249.460i 0.147567 + 0.255594i
\(977\) −176.167 + 101.710i −0.180315 + 0.104105i −0.587440 0.809267i \(-0.699864\pi\)
0.407126 + 0.913372i \(0.366531\pi\)
\(978\) 344.555 195.082i 0.352306 0.199471i
\(979\) −184.618 + 319.768i −0.188578 + 0.326627i
\(980\) 214.718i 0.219100i
\(981\) 95.0318 + 171.189i 0.0968724 + 0.174505i
\(982\) 92.5557 0.0942522
\(983\) 1241.90 + 717.012i 1.26338 + 0.729412i 0.973727 0.227719i \(-0.0731269\pi\)
0.289653 + 0.957132i \(0.406460\pi\)
\(984\) 569.343 + 4.79037i 0.578601 + 0.00486826i
\(985\) 34.5865 + 59.9055i 0.0351132 + 0.0608178i
\(986\) −566.271 + 326.937i −0.574312 + 0.331579i
\(987\) 0.169538 20.1499i 0.000171771 0.0204153i
\(988\) −39.1569 + 67.8218i −0.0396325 + 0.0686455i
\(989\) 167.041i 0.168898i
\(990\) 2.38786 141.890i 0.00241198 0.143324i
\(991\) −983.596 −0.992528 −0.496264 0.868172i \(-0.665295\pi\)
−0.496264 + 0.868172i \(0.665295\pi\)
\(992\) 133.274 + 76.9456i 0.134348 + 0.0775661i
\(993\) −314.943 556.254i −0.317163 0.560175i
\(994\) 38.7250 + 67.0737i 0.0389588 + 0.0674785i
\(995\) −644.605 + 372.163i −0.647844 + 0.374033i
\(996\) −626.629 368.848i −0.629145 0.370330i
\(997\) 495.586 858.379i 0.497077 0.860962i −0.502917 0.864334i \(-0.667740\pi\)
0.999994 + 0.00337211i \(0.00107338\pi\)
\(998\) 1014.39i 1.01643i
\(999\) 1704.02 + 43.0202i 1.70573 + 0.0430633i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.3.h.a.11.7 16
3.2 odd 2 270.3.h.a.251.1 16
4.3 odd 2 720.3.bs.d.641.2 16
5.2 odd 4 450.3.k.c.299.6 32
5.3 odd 4 450.3.k.c.299.11 32
5.4 even 2 450.3.i.g.101.2 16
9.2 odd 6 810.3.d.c.161.11 16
9.4 even 3 270.3.h.a.71.1 16
9.5 odd 6 inner 90.3.h.a.41.7 yes 16
9.7 even 3 810.3.d.c.161.7 16
12.11 even 2 2160.3.bs.d.1601.3 16
15.2 even 4 1350.3.k.b.899.11 32
15.8 even 4 1350.3.k.b.899.6 32
15.14 odd 2 1350.3.i.g.251.7 16
36.23 even 6 720.3.bs.d.401.2 16
36.31 odd 6 2160.3.bs.d.881.3 16
45.4 even 6 1350.3.i.g.1151.7 16
45.13 odd 12 1350.3.k.b.449.11 32
45.14 odd 6 450.3.i.g.401.2 16
45.22 odd 12 1350.3.k.b.449.6 32
45.23 even 12 450.3.k.c.149.6 32
45.32 even 12 450.3.k.c.149.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.h.a.11.7 16 1.1 even 1 trivial
90.3.h.a.41.7 yes 16 9.5 odd 6 inner
270.3.h.a.71.1 16 9.4 even 3
270.3.h.a.251.1 16 3.2 odd 2
450.3.i.g.101.2 16 5.4 even 2
450.3.i.g.401.2 16 45.14 odd 6
450.3.k.c.149.6 32 45.23 even 12
450.3.k.c.149.11 32 45.32 even 12
450.3.k.c.299.6 32 5.2 odd 4
450.3.k.c.299.11 32 5.3 odd 4
720.3.bs.d.401.2 16 36.23 even 6
720.3.bs.d.641.2 16 4.3 odd 2
810.3.d.c.161.7 16 9.7 even 3
810.3.d.c.161.11 16 9.2 odd 6
1350.3.i.g.251.7 16 15.14 odd 2
1350.3.i.g.1151.7 16 45.4 even 6
1350.3.k.b.449.6 32 45.22 odd 12
1350.3.k.b.449.11 32 45.13 odd 12
1350.3.k.b.899.6 32 15.8 even 4
1350.3.k.b.899.11 32 15.2 even 4
2160.3.bs.d.881.3 16 36.31 odd 6
2160.3.bs.d.1601.3 16 12.11 even 2