Properties

Label 810.4.a.a
Level $810$
Weight $4$
Character orbit 810.a
Self dual yes
Analytic conductor $47.792$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(1,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.7915471046\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 5 q^{5} - 28 q^{7} - 8 q^{8} - 10 q^{10} - 45 q^{11} + 32 q^{13} + 56 q^{14} + 16 q^{16} + 84 q^{17} + 149 q^{19} + 20 q^{20} + 90 q^{22} + 90 q^{23} + 25 q^{25} - 64 q^{26} - 112 q^{28}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 4.00000 5.00000 0 −28.0000 −8.00000 0 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.4.a.a 1
3.b odd 2 1 810.4.a.d yes 1
9.c even 3 2 810.4.e.t 2
9.d odd 6 2 810.4.e.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
810.4.a.a 1 1.a even 1 1 trivial
810.4.a.d yes 1 3.b odd 2 1
810.4.e.l 2 9.d odd 6 2
810.4.e.t 2 9.c even 3 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(810))\):

\( T_{7} + 28 \) Copy content Toggle raw display
\( T_{11} + 45 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 28 \) Copy content Toggle raw display
$11$ \( T + 45 \) Copy content Toggle raw display
$13$ \( T - 32 \) Copy content Toggle raw display
$17$ \( T - 84 \) Copy content Toggle raw display
$19$ \( T - 149 \) Copy content Toggle raw display
$23$ \( T - 90 \) Copy content Toggle raw display
$29$ \( T + 9 \) Copy content Toggle raw display
$31$ \( T + 259 \) Copy content Toggle raw display
$37$ \( T + 262 \) Copy content Toggle raw display
$41$ \( T - 111 \) Copy content Toggle raw display
$43$ \( T + 466 \) Copy content Toggle raw display
$47$ \( T - 606 \) Copy content Toggle raw display
$53$ \( T - 132 \) Copy content Toggle raw display
$59$ \( T + 135 \) Copy content Toggle raw display
$61$ \( T + 826 \) Copy content Toggle raw display
$67$ \( T + 538 \) Copy content Toggle raw display
$71$ \( T + 357 \) Copy content Toggle raw display
$73$ \( T + 52 \) Copy content Toggle raw display
$79$ \( T + 724 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T + 1617 \) Copy content Toggle raw display
$97$ \( T - 1094 \) Copy content Toggle raw display
show more
show less