Properties

Label 810.4.e.be.271.2
Level $810$
Weight $4$
Character 810.271
Analytic conductor $47.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-1027})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 256x^{2} - 257x + 66049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.2
Root \(14.1267 + 7.57870i\) of defining polynomial
Character \(\chi\) \(=\) 810.271
Dual form 810.4.e.be.541.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(2.50000 - 4.33013i) q^{5} +(15.1267 + 26.2002i) q^{7} -8.00000 q^{8} +10.0000 q^{10} +(26.6267 + 46.1188i) q^{11} +(9.12669 - 15.8079i) q^{13} +(-30.2534 + 52.4004i) q^{14} +(-8.00000 - 13.8564i) q^{16} -88.5068 q^{17} -71.5068 q^{19} +(10.0000 + 17.3205i) q^{20} +(-53.2534 + 92.2376i) q^{22} +(-16.1267 + 27.9322i) q^{23} +(-12.5000 - 21.6506i) q^{25} +36.5068 q^{26} -121.014 q^{28} +(133.133 + 230.594i) q^{29} +(39.1334 - 67.7811i) q^{31} +(16.0000 - 27.7128i) q^{32} +(-88.5068 - 153.298i) q^{34} +151.267 q^{35} +413.041 q^{37} +(-71.5068 - 123.853i) q^{38} +(-20.0000 + 34.6410i) q^{40} +(38.2601 - 66.2685i) q^{41} +(2.74662 + 4.75729i) q^{43} -213.014 q^{44} -64.5068 q^{46} +(-129.394 - 224.116i) q^{47} +(-286.133 + 495.598i) q^{49} +(25.0000 - 43.3013i) q^{50} +(36.5068 + 63.2316i) q^{52} -579.774 q^{53} +266.267 q^{55} +(-121.014 - 209.602i) q^{56} +(-266.267 + 461.188i) q^{58} +(80.2736 - 139.038i) q^{59} +(251.760 + 436.061i) q^{61} +156.534 q^{62} +64.0000 q^{64} +(-45.6334 - 79.0394i) q^{65} +(-445.760 + 772.079i) q^{67} +(177.014 - 306.596i) q^{68} +(151.267 + 262.002i) q^{70} -993.760 q^{71} -116.561 q^{73} +(413.041 + 715.407i) q^{74} +(143.014 - 247.707i) q^{76} +(-805.547 + 1395.25i) q^{77} +(-501.321 - 868.313i) q^{79} -80.0000 q^{80} +153.041 q^{82} +(-257.986 - 446.846i) q^{83} +(-221.267 + 383.245i) q^{85} +(-5.49324 + 9.51458i) q^{86} +(-213.014 - 368.950i) q^{88} -957.760 q^{89} +552.226 q^{91} +(-64.5068 - 111.729i) q^{92} +(258.787 - 448.233i) q^{94} +(-178.767 + 309.633i) q^{95} +(866.855 + 1501.44i) q^{97} -1144.53 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 10 q^{5} + 5 q^{7} - 32 q^{8} + 40 q^{10} + 51 q^{11} - 19 q^{13} - 10 q^{14} - 32 q^{16} - 132 q^{17} - 64 q^{19} + 40 q^{20} - 102 q^{22} - 9 q^{23} - 50 q^{25} - 76 q^{26} - 40 q^{28}+ \cdots - 3468 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) 15.1267 + 26.2002i 0.816764 + 1.41468i 0.908054 + 0.418853i \(0.137568\pi\)
−0.0912896 + 0.995824i \(0.529099\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) 26.6267 + 46.1188i 0.729841 + 1.26412i 0.956950 + 0.290252i \(0.0937392\pi\)
−0.227109 + 0.973869i \(0.572928\pi\)
\(12\) 0 0
\(13\) 9.12669 15.8079i 0.194714 0.337255i −0.752092 0.659058i \(-0.770955\pi\)
0.946807 + 0.321802i \(0.104289\pi\)
\(14\) −30.2534 + 52.4004i −0.577540 + 1.00033i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −88.5068 −1.26271 −0.631354 0.775495i \(-0.717501\pi\)
−0.631354 + 0.775495i \(0.717501\pi\)
\(18\) 0 0
\(19\) −71.5068 −0.863409 −0.431705 0.902015i \(-0.642088\pi\)
−0.431705 + 0.902015i \(0.642088\pi\)
\(20\) 10.0000 + 17.3205i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) −53.2534 + 92.2376i −0.516075 + 0.893869i
\(23\) −16.1267 + 27.9322i −0.146202 + 0.253229i −0.929821 0.368013i \(-0.880038\pi\)
0.783619 + 0.621242i \(0.213372\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 36.5068 0.275368
\(27\) 0 0
\(28\) −121.014 −0.816764
\(29\) 133.133 + 230.594i 0.852492 + 1.47656i 0.878953 + 0.476909i \(0.158243\pi\)
−0.0264609 + 0.999650i \(0.508424\pi\)
\(30\) 0 0
\(31\) 39.1334 67.7811i 0.226728 0.392705i −0.730108 0.683331i \(-0.760530\pi\)
0.956837 + 0.290627i \(0.0938638\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −88.5068 153.298i −0.446435 0.773248i
\(35\) 151.267 0.730536
\(36\) 0 0
\(37\) 413.041 1.83523 0.917614 0.397472i \(-0.130113\pi\)
0.917614 + 0.397472i \(0.130113\pi\)
\(38\) −71.5068 123.853i −0.305261 0.528728i
\(39\) 0 0
\(40\) −20.0000 + 34.6410i −0.0790569 + 0.136931i
\(41\) 38.2601 66.2685i 0.145737 0.252424i −0.783910 0.620874i \(-0.786778\pi\)
0.929648 + 0.368449i \(0.120111\pi\)
\(42\) 0 0
\(43\) 2.74662 + 4.75729i 0.00974083 + 0.0168716i 0.870855 0.491540i \(-0.163566\pi\)
−0.861114 + 0.508412i \(0.830233\pi\)
\(44\) −213.014 −0.729841
\(45\) 0 0
\(46\) −64.5068 −0.206761
\(47\) −129.394 224.116i −0.401574 0.695547i 0.592342 0.805687i \(-0.298204\pi\)
−0.993916 + 0.110140i \(0.964870\pi\)
\(48\) 0 0
\(49\) −286.133 + 495.598i −0.834208 + 1.44489i
\(50\) 25.0000 43.3013i 0.0707107 0.122474i
\(51\) 0 0
\(52\) 36.5068 + 63.2316i 0.0973572 + 0.168628i
\(53\) −579.774 −1.50260 −0.751302 0.659958i \(-0.770574\pi\)
−0.751302 + 0.659958i \(0.770574\pi\)
\(54\) 0 0
\(55\) 266.267 0.652789
\(56\) −121.014 209.602i −0.288770 0.500164i
\(57\) 0 0
\(58\) −266.267 + 461.188i −0.602803 + 1.04408i
\(59\) 80.2736 139.038i 0.177131 0.306800i −0.763766 0.645494i \(-0.776652\pi\)
0.940897 + 0.338694i \(0.109985\pi\)
\(60\) 0 0
\(61\) 251.760 + 436.061i 0.528436 + 0.915278i 0.999450 + 0.0331522i \(0.0105546\pi\)
−0.471015 + 0.882125i \(0.656112\pi\)
\(62\) 156.534 0.320642
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −45.6334 79.0394i −0.0870790 0.150825i
\(66\) 0 0
\(67\) −445.760 + 772.079i −0.812810 + 1.40783i 0.0980799 + 0.995179i \(0.468730\pi\)
−0.910890 + 0.412650i \(0.864603\pi\)
\(68\) 177.014 306.596i 0.315677 0.546769i
\(69\) 0 0
\(70\) 151.267 + 262.002i 0.258284 + 0.447360i
\(71\) −993.760 −1.66109 −0.830547 0.556949i \(-0.811972\pi\)
−0.830547 + 0.556949i \(0.811972\pi\)
\(72\) 0 0
\(73\) −116.561 −0.186882 −0.0934412 0.995625i \(-0.529787\pi\)
−0.0934412 + 0.995625i \(0.529787\pi\)
\(74\) 413.041 + 715.407i 0.648851 + 1.12384i
\(75\) 0 0
\(76\) 143.014 247.707i 0.215852 0.373867i
\(77\) −805.547 + 1395.25i −1.19222 + 2.06498i
\(78\) 0 0
\(79\) −501.321 868.313i −0.713962 1.23662i −0.963358 0.268217i \(-0.913565\pi\)
0.249396 0.968402i \(-0.419768\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) 153.041 0.206104
\(83\) −257.986 446.846i −0.341177 0.590936i 0.643475 0.765468i \(-0.277492\pi\)
−0.984652 + 0.174532i \(0.944159\pi\)
\(84\) 0 0
\(85\) −221.267 + 383.245i −0.282350 + 0.489045i
\(86\) −5.49324 + 9.51458i −0.00688781 + 0.0119300i
\(87\) 0 0
\(88\) −213.014 368.950i −0.258038 0.446934i
\(89\) −957.760 −1.14070 −0.570350 0.821401i \(-0.693193\pi\)
−0.570350 + 0.821401i \(0.693193\pi\)
\(90\) 0 0
\(91\) 552.226 0.636143
\(92\) −64.5068 111.729i −0.0731010 0.126615i
\(93\) 0 0
\(94\) 258.787 448.233i 0.283956 0.491826i
\(95\) −178.767 + 309.633i −0.193064 + 0.334397i
\(96\) 0 0
\(97\) 866.855 + 1501.44i 0.907379 + 1.57163i 0.817692 + 0.575657i \(0.195253\pi\)
0.0896874 + 0.995970i \(0.471413\pi\)
\(98\) −1144.53 −1.17975
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 495.427 + 858.105i 0.488088 + 0.845393i 0.999906 0.0137009i \(-0.00436126\pi\)
−0.511818 + 0.859094i \(0.671028\pi\)
\(102\) 0 0
\(103\) 637.701 1104.53i 0.610044 1.05663i −0.381188 0.924497i \(-0.624485\pi\)
0.991232 0.132130i \(-0.0421816\pi\)
\(104\) −73.0135 + 126.463i −0.0688420 + 0.119238i
\(105\) 0 0
\(106\) −579.774 1004.20i −0.531251 0.920154i
\(107\) 453.095 0.409367 0.204684 0.978828i \(-0.434383\pi\)
0.204684 + 0.978828i \(0.434383\pi\)
\(108\) 0 0
\(109\) −538.855 −0.473513 −0.236757 0.971569i \(-0.576084\pi\)
−0.236757 + 0.971569i \(0.576084\pi\)
\(110\) 266.267 + 461.188i 0.230796 + 0.399750i
\(111\) 0 0
\(112\) 242.027 419.203i 0.204191 0.353669i
\(113\) −677.267 + 1173.06i −0.563822 + 0.976569i 0.433336 + 0.901232i \(0.357336\pi\)
−0.997158 + 0.0753363i \(0.975997\pi\)
\(114\) 0 0
\(115\) 80.6334 + 139.661i 0.0653835 + 0.113248i
\(116\) −1065.07 −0.852492
\(117\) 0 0
\(118\) 321.095 0.250501
\(119\) −1338.81 2318.89i −1.03134 1.78633i
\(120\) 0 0
\(121\) −752.461 + 1303.30i −0.565335 + 0.979189i
\(122\) −503.520 + 872.123i −0.373661 + 0.647199i
\(123\) 0 0
\(124\) 156.534 + 271.124i 0.113364 + 0.196352i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 721.240 0.503935 0.251967 0.967736i \(-0.418922\pi\)
0.251967 + 0.967736i \(0.418922\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 91.2669 158.079i 0.0615741 0.106650i
\(131\) −1072.57 + 1857.74i −0.715349 + 1.23902i 0.247476 + 0.968894i \(0.420399\pi\)
−0.962825 + 0.270126i \(0.912935\pi\)
\(132\) 0 0
\(133\) −1081.66 1873.49i −0.705202 1.22145i
\(134\) −1783.04 −1.14949
\(135\) 0 0
\(136\) 708.054 0.446435
\(137\) 11.2399 + 19.4680i 0.00700939 + 0.0121406i 0.869509 0.493917i \(-0.164435\pi\)
−0.862499 + 0.506058i \(0.831102\pi\)
\(138\) 0 0
\(139\) −745.780 + 1291.73i −0.455081 + 0.788224i −0.998693 0.0511132i \(-0.983723\pi\)
0.543612 + 0.839337i \(0.317056\pi\)
\(140\) −302.534 + 524.004i −0.182634 + 0.316332i
\(141\) 0 0
\(142\) −993.760 1721.24i −0.587285 1.01721i
\(143\) 972.054 0.568442
\(144\) 0 0
\(145\) 1331.33 0.762492
\(146\) −116.561 201.889i −0.0660729 0.114442i
\(147\) 0 0
\(148\) −826.081 + 1430.81i −0.458807 + 0.794677i
\(149\) 733.642 1270.71i 0.403371 0.698659i −0.590759 0.806848i \(-0.701172\pi\)
0.994130 + 0.108189i \(0.0345051\pi\)
\(150\) 0 0
\(151\) −668.160 1157.29i −0.360094 0.623700i 0.627882 0.778308i \(-0.283922\pi\)
−0.987976 + 0.154608i \(0.950589\pi\)
\(152\) 572.054 0.305261
\(153\) 0 0
\(154\) −3222.19 −1.68605
\(155\) −195.667 338.906i −0.101396 0.175623i
\(156\) 0 0
\(157\) −749.113 + 1297.50i −0.380801 + 0.659566i −0.991177 0.132545i \(-0.957685\pi\)
0.610376 + 0.792112i \(0.291018\pi\)
\(158\) 1002.64 1736.63i 0.504848 0.874422i
\(159\) 0 0
\(160\) −80.0000 138.564i −0.0395285 0.0684653i
\(161\) −975.774 −0.477651
\(162\) 0 0
\(163\) 1604.05 0.770793 0.385396 0.922751i \(-0.374065\pi\)
0.385396 + 0.922751i \(0.374065\pi\)
\(164\) 153.041 + 265.074i 0.0728686 + 0.126212i
\(165\) 0 0
\(166\) 515.973 893.691i 0.241249 0.417855i
\(167\) −7.38514 + 12.7914i −0.00342203 + 0.00592713i −0.867731 0.497034i \(-0.834423\pi\)
0.864309 + 0.502961i \(0.167756\pi\)
\(168\) 0 0
\(169\) 931.907 + 1614.11i 0.424173 + 0.734688i
\(170\) −885.068 −0.399303
\(171\) 0 0
\(172\) −21.9730 −0.00974083
\(173\) 227.728 + 394.437i 0.100080 + 0.173344i 0.911717 0.410818i \(-0.134757\pi\)
−0.811637 + 0.584162i \(0.801423\pi\)
\(174\) 0 0
\(175\) 378.167 655.005i 0.163353 0.282936i
\(176\) 426.027 737.900i 0.182460 0.316030i
\(177\) 0 0
\(178\) −957.760 1658.89i −0.403299 0.698534i
\(179\) −2766.07 −1.15500 −0.577502 0.816390i \(-0.695972\pi\)
−0.577502 + 0.816390i \(0.695972\pi\)
\(180\) 0 0
\(181\) 4154.77 1.70620 0.853099 0.521749i \(-0.174720\pi\)
0.853099 + 0.521749i \(0.174720\pi\)
\(182\) 552.226 + 956.484i 0.224911 + 0.389557i
\(183\) 0 0
\(184\) 129.014 223.458i 0.0516902 0.0895301i
\(185\) 1032.60 1788.52i 0.410370 0.710781i
\(186\) 0 0
\(187\) −2356.64 4081.82i −0.921576 1.59622i
\(188\) 1035.15 0.401574
\(189\) 0 0
\(190\) −715.068 −0.273034
\(191\) −1389.43 2406.56i −0.526364 0.911688i −0.999528 0.0307144i \(-0.990222\pi\)
0.473165 0.880974i \(-0.343112\pi\)
\(192\) 0 0
\(193\) 691.199 1197.19i 0.257791 0.446507i −0.707859 0.706354i \(-0.750339\pi\)
0.965650 + 0.259847i \(0.0836721\pi\)
\(194\) −1733.71 + 3002.87i −0.641614 + 1.11131i
\(195\) 0 0
\(196\) −1144.53 1982.39i −0.417104 0.722446i
\(197\) 2733.58 0.988629 0.494314 0.869283i \(-0.335419\pi\)
0.494314 + 0.869283i \(0.335419\pi\)
\(198\) 0 0
\(199\) 3371.47 1.20099 0.600496 0.799628i \(-0.294970\pi\)
0.600496 + 0.799628i \(0.294970\pi\)
\(200\) 100.000 + 173.205i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −990.855 + 1716.21i −0.345130 + 0.597783i
\(203\) −4027.74 + 6976.24i −1.39257 + 2.41200i
\(204\) 0 0
\(205\) −191.301 331.342i −0.0651757 0.112888i
\(206\) 2550.80 0.862733
\(207\) 0 0
\(208\) −292.054 −0.0973572
\(209\) −1903.99 3297.80i −0.630151 1.09145i
\(210\) 0 0
\(211\) 2843.97 4925.90i 0.927900 1.60717i 0.141071 0.989999i \(-0.454945\pi\)
0.786829 0.617171i \(-0.211721\pi\)
\(212\) 1159.55 2008.39i 0.375651 0.650647i
\(213\) 0 0
\(214\) 453.095 + 784.783i 0.144733 + 0.250685i
\(215\) 27.4662 0.00871247
\(216\) 0 0
\(217\) 2367.84 0.740734
\(218\) −538.855 933.324i −0.167412 0.289966i
\(219\) 0 0
\(220\) −532.534 + 922.376i −0.163197 + 0.282666i
\(221\) −807.774 + 1399.10i −0.245868 + 0.425855i
\(222\) 0 0
\(223\) 2712.70 + 4698.53i 0.814599 + 1.41093i 0.909616 + 0.415451i \(0.136376\pi\)
−0.0950167 + 0.995476i \(0.530290\pi\)
\(224\) 968.108 0.288770
\(225\) 0 0
\(226\) −2709.07 −0.797365
\(227\) 1983.20 + 3435.01i 0.579867 + 1.00436i 0.995494 + 0.0948239i \(0.0302288\pi\)
−0.415627 + 0.909535i \(0.636438\pi\)
\(228\) 0 0
\(229\) 298.294 516.660i 0.0860778 0.149091i −0.819772 0.572690i \(-0.805900\pi\)
0.905850 + 0.423599i \(0.139233\pi\)
\(230\) −161.267 + 279.322i −0.0462331 + 0.0800782i
\(231\) 0 0
\(232\) −1065.07 1844.75i −0.301401 0.522042i
\(233\) 1330.40 0.374066 0.187033 0.982354i \(-0.440113\pi\)
0.187033 + 0.982354i \(0.440113\pi\)
\(234\) 0 0
\(235\) −1293.94 −0.359179
\(236\) 321.095 + 556.152i 0.0885656 + 0.153400i
\(237\) 0 0
\(238\) 2677.63 4637.79i 0.729264 1.26312i
\(239\) −167.375 + 289.902i −0.0452995 + 0.0784611i −0.887786 0.460256i \(-0.847758\pi\)
0.842487 + 0.538717i \(0.181091\pi\)
\(240\) 0 0
\(241\) 1894.06 + 3280.60i 0.506253 + 0.876855i 0.999974 + 0.00723489i \(0.00230296\pi\)
−0.493721 + 0.869620i \(0.664364\pi\)
\(242\) −3009.84 −0.799505
\(243\) 0 0
\(244\) −2014.08 −0.528436
\(245\) 1430.67 + 2477.99i 0.373069 + 0.646175i
\(246\) 0 0
\(247\) −652.620 + 1130.37i −0.168118 + 0.291189i
\(248\) −313.068 + 542.249i −0.0801605 + 0.138842i
\(249\) 0 0
\(250\) −125.000 216.506i −0.0316228 0.0547723i
\(251\) 3636.79 0.914550 0.457275 0.889325i \(-0.348826\pi\)
0.457275 + 0.889325i \(0.348826\pi\)
\(252\) 0 0
\(253\) −1717.60 −0.426817
\(254\) 721.240 + 1249.22i 0.178168 + 0.308596i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −1204.55 + 2086.34i −0.292364 + 0.506390i −0.974368 0.224959i \(-0.927775\pi\)
0.682004 + 0.731348i \(0.261109\pi\)
\(258\) 0 0
\(259\) 6247.94 + 10821.7i 1.49895 + 2.59626i
\(260\) 365.068 0.0870790
\(261\) 0 0
\(262\) −4290.27 −1.01166
\(263\) −1944.35 3367.72i −0.455871 0.789591i 0.542867 0.839818i \(-0.317339\pi\)
−0.998738 + 0.0502276i \(0.984005\pi\)
\(264\) 0 0
\(265\) −1449.43 + 2510.49i −0.335993 + 0.581956i
\(266\) 2163.32 3746.98i 0.498653 0.863692i
\(267\) 0 0
\(268\) −1783.04 3088.32i −0.406405 0.703914i
\(269\) −1253.01 −0.284005 −0.142003 0.989866i \(-0.545354\pi\)
−0.142003 + 0.989866i \(0.545354\pi\)
\(270\) 0 0
\(271\) −3356.72 −0.752422 −0.376211 0.926534i \(-0.622773\pi\)
−0.376211 + 0.926534i \(0.622773\pi\)
\(272\) 708.054 + 1226.39i 0.157839 + 0.273384i
\(273\) 0 0
\(274\) −22.4797 + 38.9360i −0.00495639 + 0.00858472i
\(275\) 665.667 1152.97i 0.145968 0.252824i
\(276\) 0 0
\(277\) −2337.21 4048.17i −0.506965 0.878090i −0.999968 0.00806167i \(-0.997434\pi\)
0.493002 0.870028i \(-0.335899\pi\)
\(278\) −2983.12 −0.643582
\(279\) 0 0
\(280\) −1210.14 −0.258284
\(281\) 650.769 + 1127.16i 0.138155 + 0.239292i 0.926798 0.375559i \(-0.122549\pi\)
−0.788643 + 0.614851i \(0.789216\pi\)
\(282\) 0 0
\(283\) 1973.65 3418.47i 0.414563 0.718045i −0.580819 0.814033i \(-0.697268\pi\)
0.995383 + 0.0959878i \(0.0306010\pi\)
\(284\) 1987.52 3442.49i 0.415273 0.719275i
\(285\) 0 0
\(286\) 972.054 + 1683.65i 0.200975 + 0.348098i
\(287\) 2315.00 0.476132
\(288\) 0 0
\(289\) 2920.45 0.594432
\(290\) 1331.33 + 2305.94i 0.269582 + 0.466929i
\(291\) 0 0
\(292\) 233.122 403.778i 0.0467206 0.0809224i
\(293\) 3133.98 5428.22i 0.624878 1.08232i −0.363687 0.931521i \(-0.618482\pi\)
0.988565 0.150799i \(-0.0481845\pi\)
\(294\) 0 0
\(295\) −401.368 695.190i −0.0792155 0.137205i
\(296\) −3304.32 −0.648851
\(297\) 0 0
\(298\) 2934.57 0.570453
\(299\) 294.367 + 509.858i 0.0569353 + 0.0986148i
\(300\) 0 0
\(301\) −83.0946 + 143.924i −0.0159119 + 0.0275603i
\(302\) 1336.32 2314.58i 0.254625 0.441023i
\(303\) 0 0
\(304\) 572.054 + 990.827i 0.107926 + 0.186934i
\(305\) 2517.60 0.472647
\(306\) 0 0
\(307\) −6482.89 −1.20520 −0.602602 0.798042i \(-0.705869\pi\)
−0.602602 + 0.798042i \(0.705869\pi\)
\(308\) −3222.19 5581.00i −0.596108 1.03249i
\(309\) 0 0
\(310\) 391.334 677.811i 0.0716978 0.124184i
\(311\) 1907.90 3304.57i 0.347868 0.602525i −0.638003 0.770034i \(-0.720239\pi\)
0.985870 + 0.167509i \(0.0535724\pi\)
\(312\) 0 0
\(313\) 2711.01 + 4695.61i 0.489570 + 0.847961i 0.999928 0.0120015i \(-0.00382027\pi\)
−0.510358 + 0.859962i \(0.670487\pi\)
\(314\) −2996.45 −0.538534
\(315\) 0 0
\(316\) 4010.57 0.713962
\(317\) −132.596 229.663i −0.0234932 0.0406914i 0.854040 0.520208i \(-0.174145\pi\)
−0.877533 + 0.479516i \(0.840812\pi\)
\(318\) 0 0
\(319\) −7089.81 + 12279.9i −1.24437 + 2.15531i
\(320\) 160.000 277.128i 0.0279508 0.0484123i
\(321\) 0 0
\(322\) −975.774 1690.09i −0.168875 0.292500i
\(323\) 6328.83 1.09023
\(324\) 0 0
\(325\) −456.334 −0.0778858
\(326\) 1604.05 + 2778.30i 0.272516 + 0.472012i
\(327\) 0 0
\(328\) −306.081 + 530.148i −0.0515259 + 0.0892455i
\(329\) 3914.59 6780.27i 0.655983 1.13620i
\(330\) 0 0
\(331\) 823.640 + 1426.59i 0.136771 + 0.236895i 0.926273 0.376854i \(-0.122994\pi\)
−0.789501 + 0.613749i \(0.789661\pi\)
\(332\) 2063.89 0.341177
\(333\) 0 0
\(334\) −29.5406 −0.00483949
\(335\) 2228.80 + 3860.40i 0.363500 + 0.629600i
\(336\) 0 0
\(337\) 3994.50 6918.67i 0.645680 1.11835i −0.338464 0.940979i \(-0.609907\pi\)
0.984144 0.177371i \(-0.0567592\pi\)
\(338\) −1863.81 + 3228.22i −0.299935 + 0.519503i
\(339\) 0 0
\(340\) −885.068 1532.98i −0.141175 0.244522i
\(341\) 4167.98 0.661902
\(342\) 0 0
\(343\) −6936.10 −1.09188
\(344\) −21.9730 38.0583i −0.00344391 0.00596502i
\(345\) 0 0
\(346\) −455.456 + 788.873i −0.0707673 + 0.122572i
\(347\) 1449.72 2510.99i 0.224280 0.388464i −0.731823 0.681494i \(-0.761330\pi\)
0.956103 + 0.293031i \(0.0946638\pi\)
\(348\) 0 0
\(349\) 1908.64 + 3305.86i 0.292742 + 0.507044i 0.974457 0.224574i \(-0.0720989\pi\)
−0.681715 + 0.731618i \(0.738766\pi\)
\(350\) 1512.67 0.231016
\(351\) 0 0
\(352\) 1704.11 0.258038
\(353\) −4949.01 8571.93i −0.746201 1.29246i −0.949631 0.313369i \(-0.898542\pi\)
0.203430 0.979089i \(-0.434791\pi\)
\(354\) 0 0
\(355\) −2484.40 + 4303.11i −0.371432 + 0.643339i
\(356\) 1915.52 3317.78i 0.285175 0.493938i
\(357\) 0 0
\(358\) −2766.07 4790.97i −0.408355 0.707292i
\(359\) 8828.92 1.29797 0.648987 0.760800i \(-0.275193\pi\)
0.648987 + 0.760800i \(0.275193\pi\)
\(360\) 0 0
\(361\) −1745.78 −0.254525
\(362\) 4154.77 + 7196.28i 0.603232 + 1.04483i
\(363\) 0 0
\(364\) −1104.45 + 1912.97i −0.159036 + 0.275458i
\(365\) −291.402 + 504.723i −0.0417882 + 0.0723792i
\(366\) 0 0
\(367\) 1910.80 + 3309.60i 0.271779 + 0.470735i 0.969318 0.245812i \(-0.0790546\pi\)
−0.697538 + 0.716548i \(0.745721\pi\)
\(368\) 516.054 0.0731010
\(369\) 0 0
\(370\) 4130.41 0.580350
\(371\) −8770.06 15190.2i −1.22727 2.12570i
\(372\) 0 0
\(373\) 5186.81 8983.83i 0.720008 1.24709i −0.240988 0.970528i \(-0.577471\pi\)
0.960996 0.276563i \(-0.0891953\pi\)
\(374\) 4713.28 8163.65i 0.651653 1.12870i
\(375\) 0 0
\(376\) 1035.15 + 1792.93i 0.141978 + 0.245913i
\(377\) 4860.27 0.663970
\(378\) 0 0
\(379\) −8312.15 −1.12656 −0.563280 0.826266i \(-0.690461\pi\)
−0.563280 + 0.826266i \(0.690461\pi\)
\(380\) −715.068 1238.53i −0.0965321 0.167198i
\(381\) 0 0
\(382\) 2778.85 4813.12i 0.372195 0.644661i
\(383\) 5037.00 8724.34i 0.672007 1.16395i −0.305327 0.952247i \(-0.598766\pi\)
0.977334 0.211702i \(-0.0679008\pi\)
\(384\) 0 0
\(385\) 4027.74 + 6976.24i 0.533175 + 0.923487i
\(386\) 2764.80 0.364571
\(387\) 0 0
\(388\) −6934.84 −0.907379
\(389\) 4178.37 + 7237.16i 0.544607 + 0.943287i 0.998632 + 0.0522975i \(0.0166544\pi\)
−0.454025 + 0.890989i \(0.650012\pi\)
\(390\) 0 0
\(391\) 1427.32 2472.19i 0.184611 0.319755i
\(392\) 2289.07 3964.78i 0.294937 0.510846i
\(393\) 0 0
\(394\) 2733.58 + 4734.71i 0.349533 + 0.605409i
\(395\) −5013.21 −0.638587
\(396\) 0 0
\(397\) 14024.3 1.77295 0.886473 0.462781i \(-0.153148\pi\)
0.886473 + 0.462781i \(0.153148\pi\)
\(398\) 3371.47 + 5839.56i 0.424615 + 0.735454i
\(399\) 0 0
\(400\) −200.000 + 346.410i −0.0250000 + 0.0433013i
\(401\) −5497.03 + 9521.13i −0.684560 + 1.18569i 0.289015 + 0.957325i \(0.406672\pi\)
−0.973575 + 0.228368i \(0.926661\pi\)
\(402\) 0 0
\(403\) −714.318 1237.23i −0.0882945 0.152931i
\(404\) −3963.42 −0.488088
\(405\) 0 0
\(406\) −16110.9 −1.96939
\(407\) 10997.9 + 19048.9i 1.33942 + 2.31995i
\(408\) 0 0
\(409\) 1997.20 3459.25i 0.241455 0.418213i −0.719674 0.694312i \(-0.755709\pi\)
0.961129 + 0.276100i \(0.0890419\pi\)
\(410\) 382.601 662.685i 0.0460862 0.0798236i
\(411\) 0 0
\(412\) 2550.80 + 4418.12i 0.305022 + 0.528314i
\(413\) 4857.10 0.578698
\(414\) 0 0
\(415\) −2579.86 −0.305158
\(416\) −292.054 505.852i −0.0344210 0.0596189i
\(417\) 0 0
\(418\) 3807.98 6595.61i 0.445584 0.771775i
\(419\) 1328.85 2301.64i 0.154937 0.268359i −0.778099 0.628142i \(-0.783816\pi\)
0.933036 + 0.359783i \(0.117149\pi\)
\(420\) 0 0
\(421\) −7406.89 12829.1i −0.857458 1.48516i −0.874346 0.485303i \(-0.838709\pi\)
0.0168882 0.999857i \(-0.494624\pi\)
\(422\) 11375.9 1.31225
\(423\) 0 0
\(424\) 4638.19 0.531251
\(425\) 1106.33 + 1916.23i 0.126271 + 0.218707i
\(426\) 0 0
\(427\) −7616.59 + 13192.3i −0.863215 + 1.49513i
\(428\) −906.189 + 1569.57i −0.102342 + 0.177261i
\(429\) 0 0
\(430\) 27.4662 + 47.5729i 0.00308032 + 0.00533528i
\(431\) −4219.77 −0.471599 −0.235800 0.971802i \(-0.575771\pi\)
−0.235800 + 0.971802i \(0.575771\pi\)
\(432\) 0 0
\(433\) 11227.5 1.24609 0.623046 0.782185i \(-0.285895\pi\)
0.623046 + 0.782185i \(0.285895\pi\)
\(434\) 2367.84 + 4101.22i 0.261889 + 0.453605i
\(435\) 0 0
\(436\) 1077.71 1866.65i 0.118378 0.205037i
\(437\) 1153.17 1997.34i 0.126232 0.218641i
\(438\) 0 0
\(439\) 7841.52 + 13581.9i 0.852518 + 1.47660i 0.878929 + 0.476953i \(0.158259\pi\)
−0.0264105 + 0.999651i \(0.508408\pi\)
\(440\) −2130.14 −0.230796
\(441\) 0 0
\(442\) −3231.09 −0.347709
\(443\) 2103.62 + 3643.58i 0.225612 + 0.390771i 0.956503 0.291723i \(-0.0942285\pi\)
−0.730891 + 0.682494i \(0.760895\pi\)
\(444\) 0 0
\(445\) −2394.40 + 4147.22i −0.255068 + 0.441792i
\(446\) −5425.39 + 9397.05i −0.576008 + 0.997676i
\(447\) 0 0
\(448\) 968.108 + 1676.81i 0.102096 + 0.176835i
\(449\) −16724.0 −1.75781 −0.878903 0.477000i \(-0.841724\pi\)
−0.878903 + 0.477000i \(0.841724\pi\)
\(450\) 0 0
\(451\) 4074.96 0.425460
\(452\) −2709.07 4692.24i −0.281911 0.488284i
\(453\) 0 0
\(454\) −3966.41 + 6870.02i −0.410028 + 0.710189i
\(455\) 1380.57 2391.21i 0.142246 0.246377i
\(456\) 0 0
\(457\) 7737.77 + 13402.2i 0.792030 + 1.37184i 0.924708 + 0.380677i \(0.124309\pi\)
−0.132678 + 0.991159i \(0.542358\pi\)
\(458\) 1193.18 0.121732
\(459\) 0 0
\(460\) −645.068 −0.0653835
\(461\) 8719.25 + 15102.2i 0.880902 + 1.52577i 0.850339 + 0.526235i \(0.176397\pi\)
0.0305633 + 0.999533i \(0.490270\pi\)
\(462\) 0 0
\(463\) 2221.62 3847.96i 0.222997 0.386241i −0.732720 0.680530i \(-0.761749\pi\)
0.955717 + 0.294289i \(0.0950828\pi\)
\(464\) 2130.14 3689.50i 0.213123 0.369140i
\(465\) 0 0
\(466\) 1330.40 + 2304.32i 0.132252 + 0.229068i
\(467\) 12491.1 1.23773 0.618866 0.785497i \(-0.287593\pi\)
0.618866 + 0.785497i \(0.287593\pi\)
\(468\) 0 0
\(469\) −26971.5 −2.65550
\(470\) −1293.94 2241.16i −0.126989 0.219951i
\(471\) 0 0
\(472\) −642.189 + 1112.30i −0.0626253 + 0.108470i
\(473\) −146.267 + 253.342i −0.0142185 + 0.0246272i
\(474\) 0 0
\(475\) 893.834 + 1548.17i 0.0863409 + 0.149547i
\(476\) 10710.5 1.03134
\(477\) 0 0
\(478\) −669.500 −0.0640632
\(479\) 3693.98 + 6398.16i 0.352364 + 0.610312i 0.986663 0.162775i \(-0.0520446\pi\)
−0.634299 + 0.773088i \(0.718711\pi\)
\(480\) 0 0
\(481\) 3769.69 6529.30i 0.357346 0.618941i
\(482\) −3788.11 + 6561.20i −0.357975 + 0.620030i
\(483\) 0 0
\(484\) −3009.84 5213.20i −0.282668 0.489595i
\(485\) 8668.55 0.811584
\(486\) 0 0
\(487\) 11726.6 1.09114 0.545570 0.838065i \(-0.316313\pi\)
0.545570 + 0.838065i \(0.316313\pi\)
\(488\) −2014.08 3488.49i −0.186830 0.323600i
\(489\) 0 0
\(490\) −2861.33 + 4955.98i −0.263800 + 0.456915i
\(491\) −3549.35 + 6147.65i −0.326232 + 0.565050i −0.981761 0.190120i \(-0.939112\pi\)
0.655529 + 0.755170i \(0.272446\pi\)
\(492\) 0 0
\(493\) −11783.2 20409.1i −1.07645 1.86446i
\(494\) −2610.48 −0.237755
\(495\) 0 0
\(496\) −1252.27 −0.113364
\(497\) −15032.3 26036.7i −1.35672 2.34991i
\(498\) 0 0
\(499\) −96.5744 + 167.272i −0.00866385 + 0.0150062i −0.870325 0.492478i \(-0.836091\pi\)
0.861661 + 0.507484i \(0.169424\pi\)
\(500\) 250.000 433.013i 0.0223607 0.0387298i
\(501\) 0 0
\(502\) 3636.79 + 6299.10i 0.323342 + 0.560045i
\(503\) 12473.5 1.10570 0.552848 0.833282i \(-0.313541\pi\)
0.552848 + 0.833282i \(0.313541\pi\)
\(504\) 0 0
\(505\) 4954.27 0.436559
\(506\) −1717.60 2974.97i −0.150903 0.261371i
\(507\) 0 0
\(508\) −1442.48 + 2498.45i −0.125984 + 0.218210i
\(509\) 5895.08 10210.6i 0.513349 0.889147i −0.486531 0.873664i \(-0.661738\pi\)
0.999880 0.0154838i \(-0.00492886\pi\)
\(510\) 0 0
\(511\) −1763.18 3053.92i −0.152639 0.264378i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −4818.19 −0.413465
\(515\) −3188.51 5522.65i −0.272820 0.472538i
\(516\) 0 0
\(517\) 6890.65 11934.9i 0.586171 1.01528i
\(518\) −12495.9 + 21643.5i −1.05992 + 1.83583i
\(519\) 0 0
\(520\) 365.068 + 632.316i 0.0307871 + 0.0533248i
\(521\) 10577.1 0.889426 0.444713 0.895673i \(-0.353306\pi\)
0.444713 + 0.895673i \(0.353306\pi\)
\(522\) 0 0
\(523\) 3634.17 0.303845 0.151923 0.988392i \(-0.451454\pi\)
0.151923 + 0.988392i \(0.451454\pi\)
\(524\) −4290.27 7430.97i −0.357674 0.619510i
\(525\) 0 0
\(526\) 3888.71 6735.44i 0.322349 0.558325i
\(527\) −3463.57 + 5999.09i −0.286292 + 0.495872i
\(528\) 0 0
\(529\) 5563.36 + 9636.02i 0.457250 + 0.791980i
\(530\) −5797.74 −0.475165
\(531\) 0 0
\(532\) 8653.28 0.705202
\(533\) −698.377 1209.62i −0.0567543 0.0983014i
\(534\) 0 0
\(535\) 1132.74 1961.96i 0.0915373 0.158547i
\(536\) 3566.08 6176.63i 0.287372 0.497742i
\(537\) 0 0
\(538\) −1253.01 2170.28i −0.100411 0.173917i
\(539\) −30475.1 −2.43536
\(540\) 0 0
\(541\) 6353.00 0.504874 0.252437 0.967613i \(-0.418768\pi\)
0.252437 + 0.967613i \(0.418768\pi\)
\(542\) −3356.72 5814.01i −0.266021 0.460763i
\(543\) 0 0
\(544\) −1416.11 + 2452.77i −0.111609 + 0.193312i
\(545\) −1347.14 + 2333.31i −0.105881 + 0.183391i
\(546\) 0 0
\(547\) −11851.4 20527.2i −0.926376 1.60453i −0.789333 0.613966i \(-0.789573\pi\)
−0.137043 0.990565i \(-0.543760\pi\)
\(548\) −89.9189 −0.00700939
\(549\) 0 0
\(550\) 2662.67 0.206430
\(551\) −9519.94 16489.0i −0.736049 1.27487i
\(552\) 0 0
\(553\) 15166.7 26269.4i 1.16628 2.02005i
\(554\) 4674.42 8096.34i 0.358479 0.620903i
\(555\) 0 0
\(556\) −2983.12 5166.92i −0.227541 0.394112i
\(557\) −9740.28 −0.740950 −0.370475 0.928843i \(-0.620805\pi\)
−0.370475 + 0.928843i \(0.620805\pi\)
\(558\) 0 0
\(559\) 100.270 0.00758673
\(560\) −1210.14 2096.02i −0.0913170 0.158166i
\(561\) 0 0
\(562\) −1301.54 + 2254.33i −0.0976904 + 0.169205i
\(563\) 5329.72 9231.35i 0.398971 0.691039i −0.594628 0.804001i \(-0.702701\pi\)
0.993599 + 0.112962i \(0.0360339\pi\)
\(564\) 0 0
\(565\) 3386.33 + 5865.30i 0.252149 + 0.436735i
\(566\) 7894.61 0.586281
\(567\) 0 0
\(568\) 7950.08 0.587285
\(569\) 8073.77 + 13984.2i 0.594850 + 1.03031i 0.993568 + 0.113237i \(0.0361221\pi\)
−0.398717 + 0.917074i \(0.630545\pi\)
\(570\) 0 0
\(571\) −10400.6 + 18014.3i −0.762260 + 1.32027i 0.179422 + 0.983772i \(0.442577\pi\)
−0.941683 + 0.336502i \(0.890756\pi\)
\(572\) −1944.11 + 3367.29i −0.142111 + 0.246143i
\(573\) 0 0
\(574\) 2315.00 + 4009.69i 0.168338 + 0.291570i
\(575\) 806.334 0.0584808
\(576\) 0 0
\(577\) 3290.24 0.237391 0.118696 0.992931i \(-0.462129\pi\)
0.118696 + 0.992931i \(0.462129\pi\)
\(578\) 2920.45 + 5058.36i 0.210164 + 0.364014i
\(579\) 0 0
\(580\) −2662.67 + 4611.88i −0.190623 + 0.330169i
\(581\) 7804.96 13518.6i 0.557323 0.965311i
\(582\) 0 0
\(583\) −15437.5 26738.5i −1.09666 1.89947i
\(584\) 932.486 0.0660729
\(585\) 0 0
\(586\) 12535.9 0.883710
\(587\) −4475.96 7752.59i −0.314723 0.545117i 0.664655 0.747150i \(-0.268578\pi\)
−0.979379 + 0.202033i \(0.935245\pi\)
\(588\) 0 0
\(589\) −2798.31 + 4846.81i −0.195759 + 0.339065i
\(590\) 802.736 1390.38i 0.0560138 0.0970187i
\(591\) 0 0
\(592\) −3304.32 5723.26i −0.229404 0.397339i
\(593\) 11821.6 0.818646 0.409323 0.912390i \(-0.365765\pi\)
0.409323 + 0.912390i \(0.365765\pi\)
\(594\) 0 0
\(595\) −13388.1 −0.922454
\(596\) 2934.57 + 5082.82i 0.201686 + 0.349330i
\(597\) 0 0
\(598\) −588.733 + 1019.72i −0.0402593 + 0.0697312i
\(599\) −2114.33 + 3662.12i −0.144222 + 0.249800i −0.929082 0.369873i \(-0.879401\pi\)
0.784860 + 0.619673i \(0.212735\pi\)
\(600\) 0 0
\(601\) −9092.64 15748.9i −0.617132 1.06890i −0.990006 0.141022i \(-0.954961\pi\)
0.372874 0.927882i \(-0.378372\pi\)
\(602\) −332.378 −0.0225029
\(603\) 0 0
\(604\) 5345.28 0.360094
\(605\) 3762.31 + 6516.50i 0.252826 + 0.437907i
\(606\) 0 0
\(607\) 3551.60 6151.55i 0.237488 0.411340i −0.722505 0.691366i \(-0.757009\pi\)
0.959993 + 0.280025i \(0.0903428\pi\)
\(608\) −1144.11 + 1981.65i −0.0763153 + 0.132182i
\(609\) 0 0
\(610\) 2517.60 + 4360.61i 0.167106 + 0.289436i
\(611\) −4723.74 −0.312769
\(612\) 0 0
\(613\) −4161.02 −0.274163 −0.137081 0.990560i \(-0.543772\pi\)
−0.137081 + 0.990560i \(0.543772\pi\)
\(614\) −6482.89 11228.7i −0.426104 0.738034i
\(615\) 0 0
\(616\) 6444.38 11162.0i 0.421512 0.730080i
\(617\) −3028.12 + 5244.87i −0.197581 + 0.342221i −0.947744 0.319033i \(-0.896642\pi\)
0.750162 + 0.661254i \(0.229975\pi\)
\(618\) 0 0
\(619\) −8526.27 14767.9i −0.553634 0.958922i −0.998008 0.0630812i \(-0.979907\pi\)
0.444374 0.895841i \(-0.353426\pi\)
\(620\) 1565.34 0.101396
\(621\) 0 0
\(622\) 7631.59 0.491959
\(623\) −14487.7 25093.5i −0.931684 1.61372i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −5422.03 + 9391.23i −0.346179 + 0.599599i
\(627\) 0 0
\(628\) −2996.45 5190.01i −0.190400 0.329783i
\(629\) −36556.9 −2.31736
\(630\) 0 0
\(631\) −22606.8 −1.42625 −0.713123 0.701039i \(-0.752720\pi\)
−0.713123 + 0.701039i \(0.752720\pi\)
\(632\) 4010.57 + 6946.51i 0.252424 + 0.437211i
\(633\) 0 0
\(634\) 265.193 459.327i 0.0166122 0.0287732i
\(635\) 1803.10 3123.06i 0.112683 0.195173i
\(636\) 0 0
\(637\) 5222.90 + 9046.33i 0.324865 + 0.562682i
\(638\) −28359.2 −1.75980
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) 2153.37 + 3729.74i 0.132688 + 0.229822i 0.924712 0.380668i \(-0.124306\pi\)
−0.792024 + 0.610490i \(0.790973\pi\)
\(642\) 0 0
\(643\) 1200.79 2079.84i 0.0736465 0.127559i −0.826850 0.562422i \(-0.809870\pi\)
0.900497 + 0.434862i \(0.143203\pi\)
\(644\) 1951.55 3380.18i 0.119413 0.206829i
\(645\) 0 0
\(646\) 6328.83 + 10961.9i 0.385456 + 0.667629i
\(647\) −15391.0 −0.935212 −0.467606 0.883937i \(-0.654883\pi\)
−0.467606 + 0.883937i \(0.654883\pi\)
\(648\) 0 0
\(649\) 8549.69 0.517110
\(650\) −456.334 790.394i −0.0275368 0.0476951i
\(651\) 0 0
\(652\) −3208.11 + 5556.61i −0.192698 + 0.333763i
\(653\) −12364.6 + 21416.0i −0.740984 + 1.28342i 0.211064 + 0.977472i \(0.432307\pi\)
−0.952048 + 0.305950i \(0.901026\pi\)
\(654\) 0 0
\(655\) 5362.84 + 9288.71i 0.319914 + 0.554107i
\(656\) −1224.32 −0.0728686
\(657\) 0 0
\(658\) 15658.4 0.927700
\(659\) 9298.44 + 16105.4i 0.549644 + 0.952012i 0.998299 + 0.0583067i \(0.0185701\pi\)
−0.448654 + 0.893705i \(0.648097\pi\)
\(660\) 0 0
\(661\) 2254.19 3904.38i 0.132644 0.229747i −0.792051 0.610455i \(-0.790986\pi\)
0.924695 + 0.380708i \(0.124320\pi\)
\(662\) −1647.28 + 2853.17i −0.0967120 + 0.167510i
\(663\) 0 0
\(664\) 2063.89 + 3574.77i 0.120624 + 0.208927i
\(665\) −10816.6 −0.630752
\(666\) 0 0
\(667\) −8588.01 −0.498544
\(668\) −29.5406 51.1658i −0.00171102 0.00296357i
\(669\) 0 0
\(670\) −4457.60 + 7720.79i −0.257033 + 0.445194i
\(671\) −13407.1 + 23221.7i −0.771348 + 1.33601i
\(672\) 0 0
\(673\) −4216.83 7303.77i −0.241526 0.418335i 0.719623 0.694365i \(-0.244315\pi\)
−0.961149 + 0.276030i \(0.910981\pi\)
\(674\) 15978.0 0.913129
\(675\) 0 0
\(676\) −7455.26 −0.424173
\(677\) 9163.33 + 15871.3i 0.520200 + 0.901012i 0.999724 + 0.0234839i \(0.00747584\pi\)
−0.479524 + 0.877529i \(0.659191\pi\)
\(678\) 0 0
\(679\) −26225.3 + 45423.5i −1.48223 + 2.56730i
\(680\) 1770.14 3065.96i 0.0998259 0.172903i
\(681\) 0 0
\(682\) 4167.98 + 7219.15i 0.234018 + 0.405331i
\(683\) 31446.2 1.76172 0.880861 0.473374i \(-0.156964\pi\)
0.880861 + 0.473374i \(0.156964\pi\)
\(684\) 0 0
\(685\) 112.399 0.00626939
\(686\) −6936.10 12013.7i −0.386037 0.668636i
\(687\) 0 0
\(688\) 43.9459 76.1166i 0.00243521 0.00421791i
\(689\) −5291.41 + 9165.00i −0.292579 + 0.506761i
\(690\) 0 0
\(691\) 394.752 + 683.730i 0.0217324 + 0.0376415i 0.876687 0.481061i \(-0.159748\pi\)
−0.854955 + 0.518703i \(0.826415\pi\)
\(692\) −1821.82 −0.100080
\(693\) 0 0
\(694\) 5798.88 0.317179
\(695\) 3728.90 + 6458.65i 0.203518 + 0.352504i
\(696\) 0 0
\(697\) −3386.28 + 5865.21i −0.184024 + 0.318738i
\(698\) −3817.27 + 6611.71i −0.207000 + 0.358534i
\(699\) 0 0
\(700\) 1512.67 + 2620.02i 0.0816764 + 0.141468i
\(701\) −33721.0 −1.81687 −0.908435 0.418027i \(-0.862722\pi\)
−0.908435 + 0.418027i \(0.862722\pi\)
\(702\) 0 0
\(703\) −29535.2 −1.58455
\(704\) 1704.11 + 2951.60i 0.0912301 + 0.158015i
\(705\) 0 0
\(706\) 9898.01 17143.9i 0.527644 0.913906i
\(707\) −14988.4 + 25960.6i −0.797305 + 1.38097i
\(708\) 0 0
\(709\) 3463.06 + 5998.20i 0.183439 + 0.317725i 0.943049 0.332653i \(-0.107944\pi\)
−0.759611 + 0.650378i \(0.774610\pi\)
\(710\) −9937.60 −0.525284
\(711\) 0 0
\(712\) 7662.08 0.403299
\(713\) 1262.19 + 2186.17i 0.0662963 + 0.114828i
\(714\) 0 0
\(715\) 2430.14 4209.12i 0.127108 0.220157i
\(716\) 5532.14 9581.94i 0.288751 0.500131i
\(717\) 0 0
\(718\) 8828.92 + 15292.1i 0.458903 + 0.794843i
\(719\) 33919.7 1.75938 0.879689 0.475550i \(-0.157751\pi\)
0.879689 + 0.475550i \(0.157751\pi\)
\(720\) 0 0
\(721\) 38585.2 1.99305
\(722\) −1745.78 3023.79i −0.0899880 0.155864i
\(723\) 0 0
\(724\) −8309.55 + 14392.6i −0.426550 + 0.738806i
\(725\) 3328.34 5764.85i 0.170498 0.295312i
\(726\) 0 0
\(727\) −17487.4 30289.1i −0.892123 1.54520i −0.837326 0.546704i \(-0.815882\pi\)
−0.0547968 0.998498i \(-0.517451\pi\)
\(728\) −4417.81 −0.224911
\(729\) 0 0
\(730\) −1165.61 −0.0590974
\(731\) −243.095 421.052i −0.0122998 0.0213039i
\(732\) 0 0
\(733\) 5612.04 9720.34i 0.282791 0.489808i −0.689280 0.724495i \(-0.742073\pi\)
0.972071 + 0.234687i \(0.0754065\pi\)
\(734\) −3821.60 + 6619.21i −0.192177 + 0.332860i
\(735\) 0 0
\(736\) 516.054 + 893.832i 0.0258451 + 0.0447651i
\(737\) −47476.5 −2.37289
\(738\) 0 0
\(739\) 18324.6 0.912153 0.456076 0.889941i \(-0.349254\pi\)
0.456076 + 0.889941i \(0.349254\pi\)
\(740\) 4130.41 + 7154.07i 0.205185 + 0.355390i
\(741\) 0 0
\(742\) 17540.1 30380.4i 0.867814 1.50310i
\(743\) −16267.2 + 28175.6i −0.803212 + 1.39120i 0.114280 + 0.993449i \(0.463544\pi\)
−0.917492 + 0.397755i \(0.869789\pi\)
\(744\) 0 0
\(745\) −3668.21 6353.53i −0.180393 0.312450i
\(746\) 20747.3 1.01825
\(747\) 0 0
\(748\) 18853.1 0.921576
\(749\) 6853.82 + 11871.2i 0.334357 + 0.579123i
\(750\) 0 0
\(751\) 8626.30 14941.2i 0.419145 0.725981i −0.576708 0.816950i \(-0.695663\pi\)
0.995854 + 0.0909690i \(0.0289964\pi\)
\(752\) −2070.30 + 3585.86i −0.100394 + 0.173887i
\(753\) 0 0
\(754\) 4860.27 + 8418.24i 0.234749 + 0.406597i
\(755\) −6681.60 −0.322077
\(756\) 0 0
\(757\) −21199.3 −1.01783 −0.508917 0.860815i \(-0.669954\pi\)
−0.508917 + 0.860815i \(0.669954\pi\)
\(758\) −8312.15 14397.1i −0.398299 0.689875i
\(759\) 0 0
\(760\) 1430.14 2477.07i 0.0682585 0.118227i
\(761\) −3090.85 + 5353.51i −0.147231 + 0.255012i −0.930203 0.367045i \(-0.880370\pi\)
0.782972 + 0.622057i \(0.213703\pi\)
\(762\) 0 0
\(763\) −8151.09 14118.1i −0.386749 0.669868i
\(764\) 11115.4 0.526364
\(765\) 0 0
\(766\) 20148.0 0.950361
\(767\) −1465.27 2537.91i −0.0689800 0.119477i
\(768\) 0 0
\(769\) −16770.2 + 29046.9i −0.786411 + 1.36210i 0.141742 + 0.989904i \(0.454730\pi\)
−0.928153 + 0.372200i \(0.878604\pi\)
\(770\) −8055.47 + 13952.5i −0.377012 + 0.653004i
\(771\) 0 0
\(772\) 2764.80 + 4788.77i 0.128895 + 0.223253i
\(773\) −26574.6 −1.23651 −0.618256 0.785977i \(-0.712160\pi\)
−0.618256 + 0.785977i \(0.712160\pi\)
\(774\) 0 0
\(775\) −1956.67 −0.0906913
\(776\) −6934.84 12011.5i −0.320807 0.555654i
\(777\) 0 0
\(778\) −8356.75 + 14474.3i −0.385095 + 0.667004i
\(779\) −2735.86 + 4738.65i −0.125831 + 0.217946i
\(780\) 0 0
\(781\) −26460.5 45831.0i −1.21233 2.09982i
\(782\) 5709.28 0.261079
\(783\) 0 0
\(784\) 9156.27 0.417104
\(785\) 3745.57 + 6487.51i 0.170299 + 0.294967i
\(786\) 0 0
\(787\) −7354.19 + 12737.8i −0.333099 + 0.576944i −0.983118 0.182974i \(-0.941428\pi\)
0.650019 + 0.759918i \(0.274761\pi\)
\(788\) −5467.17 + 9469.41i −0.247157 + 0.428089i
\(789\) 0 0
\(790\) −5013.21 8683.13i −0.225775 0.391053i
\(791\) −40979.2 −1.84204
\(792\) 0 0
\(793\) 9190.95 0.411576
\(794\) 14024.3 + 24290.8i 0.626831 + 1.08570i
\(795\) 0 0
\(796\) −6742.95 + 11679.1i −0.300248 + 0.520045i
\(797\) 19144.1 33158.5i 0.850839 1.47370i −0.0296136 0.999561i \(-0.509428\pi\)
0.880452 0.474135i \(-0.157239\pi\)
\(798\) 0 0
\(799\) 11452.2 + 19835.8i 0.507071 + 0.878273i
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) −21988.1 −0.968114
\(803\) −3103.63 5375.64i −0.136394 0.236242i
\(804\) 0 0
\(805\) −2439.43 + 4225.22i −0.106806 + 0.184993i
\(806\) 1428.64 2474.47i 0.0624337 0.108138i
\(807\) 0 0
\(808\) −3963.42 6864.84i −0.172565 0.298891i
\(809\) 1761.26 0.0765423 0.0382712 0.999267i \(-0.487815\pi\)
0.0382712 + 0.999267i \(0.487815\pi\)
\(810\) 0 0
\(811\) −7347.55 −0.318135 −0.159067 0.987268i \(-0.550849\pi\)
−0.159067 + 0.987268i \(0.550849\pi\)
\(812\) −16110.9 27905.0i −0.696285 1.20600i
\(813\) 0 0
\(814\) −21995.8 + 38097.9i −0.947116 + 1.64045i
\(815\) 4010.14 6945.76i 0.172354 0.298527i
\(816\) 0 0
\(817\) −196.402 340.178i −0.00841033 0.0145671i
\(818\) 7988.80 0.341469
\(819\) 0 0
\(820\) 1530.41 0.0651757
\(821\) −4744.70 8218.06i −0.201695 0.349345i 0.747380 0.664397i \(-0.231311\pi\)
−0.949075 + 0.315052i \(0.897978\pi\)
\(822\) 0 0
\(823\) 14232.6 24651.6i 0.602816 1.04411i −0.389577 0.920994i \(-0.627379\pi\)
0.992393 0.123113i \(-0.0392878\pi\)
\(824\) −5101.61 + 8836.24i −0.215683 + 0.373574i
\(825\) 0 0
\(826\) 4857.10 + 8412.74i 0.204601 + 0.354379i
\(827\) 5990.54 0.251888 0.125944 0.992037i \(-0.459804\pi\)
0.125944 + 0.992037i \(0.459804\pi\)
\(828\) 0 0
\(829\) 27736.9 1.16205 0.581027 0.813885i \(-0.302651\pi\)
0.581027 + 0.813885i \(0.302651\pi\)
\(830\) −2579.86 4468.46i −0.107890 0.186870i
\(831\) 0 0
\(832\) 584.108 1011.70i 0.0243393 0.0421569i
\(833\) 25324.7 43863.7i 1.05336 1.82448i
\(834\) 0 0
\(835\) 36.9257 + 63.9572i 0.00153038 + 0.00265070i
\(836\) 15231.9 0.630151
\(837\) 0 0
\(838\) 5315.41 0.219114
\(839\) 6554.11 + 11352.1i 0.269694 + 0.467123i 0.968783 0.247911i \(-0.0797442\pi\)
−0.699089 + 0.715035i \(0.746411\pi\)
\(840\) 0 0
\(841\) −23254.5 + 40278.0i −0.953484 + 1.65148i
\(842\) 14813.8 25658.2i 0.606314 1.05017i
\(843\) 0 0
\(844\) 11375.9 + 19703.6i 0.463950 + 0.803585i
\(845\) 9319.07 0.379391
\(846\) 0 0
\(847\) −45529.0 −1.84698
\(848\) 4638.19 + 8033.58i 0.187826 + 0.325323i
\(849\) 0 0
\(850\) −2212.67 + 3832.45i −0.0892870 + 0.154650i
\(851\) −6660.98 + 11537.1i −0.268314 + 0.464734i
\(852\) 0 0
\(853\) 20612.5 + 35701.8i 0.827382 + 1.43307i 0.900085 + 0.435714i \(0.143504\pi\)
−0.0727027 + 0.997354i \(0.523162\pi\)
\(854\) −30466.4 −1.22077
\(855\) 0 0
\(856\) −3624.76 −0.144733
\(857\) −8832.73 15298.7i −0.352066 0.609796i 0.634545 0.772886i \(-0.281187\pi\)
−0.986611 + 0.163090i \(0.947854\pi\)
\(858\) 0 0
\(859\) −5844.43 + 10122.8i −0.232141 + 0.402080i −0.958438 0.285301i \(-0.907906\pi\)
0.726297 + 0.687381i \(0.241240\pi\)
\(860\) −54.9324 + 95.1458i −0.00217812 + 0.00377261i
\(861\) 0 0
\(862\) −4219.77 7308.86i −0.166736 0.288794i
\(863\) 18801.0 0.741591 0.370795 0.928715i \(-0.379085\pi\)
0.370795 + 0.928715i \(0.379085\pi\)
\(864\) 0 0
\(865\) 2277.28 0.0895143
\(866\) 11227.5 + 19446.6i 0.440560 + 0.763073i
\(867\) 0 0
\(868\) −4735.68 + 8202.43i −0.185184 + 0.320747i
\(869\) 26697.0 46240.6i 1.04216 1.80507i
\(870\) 0 0
\(871\) 8136.63 + 14093.1i 0.316532 + 0.548249i
\(872\) 4310.84 0.167412
\(873\) 0 0
\(874\) 4612.67 0.178519
\(875\) −1890.84 3275.02i −0.0730536 0.126533i
\(876\) 0 0
\(877\) −3677.53 + 6369.67i −0.141598 + 0.245255i −0.928098 0.372335i \(-0.878557\pi\)
0.786501 + 0.617589i \(0.211891\pi\)
\(878\) −15683.0 + 27163.8i −0.602821 + 1.04412i
\(879\) 0 0
\(880\) −2130.14 3689.50i −0.0815987 0.141333i
\(881\) 23538.6 0.900155 0.450077 0.892990i \(-0.351396\pi\)
0.450077 + 0.892990i \(0.351396\pi\)
\(882\) 0 0
\(883\) 33937.6 1.29342 0.646711 0.762735i \(-0.276144\pi\)
0.646711 + 0.762735i \(0.276144\pi\)
\(884\) −3231.09 5596.42i −0.122934 0.212928i
\(885\) 0 0
\(886\) −4207.24 + 7287.16i −0.159532 + 0.276317i
\(887\) 12708.0 22010.8i 0.481051 0.833204i −0.518713 0.854948i \(-0.673589\pi\)
0.999764 + 0.0217445i \(0.00692203\pi\)
\(888\) 0 0
\(889\) 10910.0 + 18896.6i 0.411596 + 0.712905i
\(890\) −9577.60 −0.360721
\(891\) 0 0
\(892\) −21701.6 −0.814599
\(893\) 9252.52 + 16025.8i 0.346723 + 0.600542i
\(894\) 0 0
\(895\) −6915.17 + 11977.4i −0.258267 + 0.447331i
\(896\) −1936.22 + 3353.62i −0.0721925 + 0.125041i
\(897\) 0 0
\(898\) −16724.0 28966.9i −0.621479 1.07643i
\(899\) 20839.9 0.773136
\(900\) 0 0
\(901\) 51313.9 1.89735
\(902\) 4074.96 + 7058.04i 0.150423 + 0.260540i
\(903\) 0 0
\(904\) 5418.14 9384.49i 0.199341 0.345269i
\(905\) 10386.9 17990.7i 0.381518 0.660808i
\(906\) 0 0
\(907\) −4586.22 7943.56i −0.167897 0.290807i 0.769783 0.638306i \(-0.220364\pi\)
−0.937680 + 0.347499i \(0.887031\pi\)
\(908\) −15865.6 −0.579867
\(909\) 0 0
\(910\) 5522.26 0.201166
\(911\) 3344.15 + 5792.24i 0.121621 + 0.210654i 0.920407 0.390961i \(-0.127857\pi\)
−0.798786 + 0.601615i \(0.794524\pi\)
\(912\) 0 0
\(913\) 13738.7 23796.0i 0.498010 0.862578i
\(914\) −15475.5 + 26804.4i −0.560050 + 0.970035i
\(915\) 0 0
\(916\) 1193.18 + 2066.64i 0.0430389 + 0.0745456i
\(917\) −64897.6 −2.33709
\(918\) 0 0
\(919\) −19386.0 −0.695848 −0.347924 0.937523i \(-0.613113\pi\)
−0.347924 + 0.937523i \(0.613113\pi\)
\(920\) −645.068 1117.29i −0.0231166 0.0400391i
\(921\) 0 0
\(922\) −17438.5 + 30204.4i −0.622892 + 1.07888i
\(923\) −9069.74 + 15709.3i −0.323439 + 0.560213i
\(924\) 0 0
\(925\) −5163.01 8942.59i −0.183523 0.317871i
\(926\) 8886.48 0.315365
\(927\) 0 0
\(928\) 8520.54 0.301401
\(929\) 12812.3 + 22191.5i 0.452484 + 0.783725i 0.998540 0.0540237i \(-0.0172047\pi\)
−0.546056 + 0.837749i \(0.683871\pi\)
\(930\) 0 0
\(931\) 20460.5 35438.6i 0.720263 1.24753i
\(932\) −2660.80 + 4608.64i −0.0935164 + 0.161975i
\(933\) 0 0
\(934\) 12491.1 + 21635.3i 0.437604 + 0.757952i
\(935\) −23566.4 −0.824283
\(936\) 0 0
\(937\) 12320.7 0.429563 0.214782 0.976662i \(-0.431096\pi\)
0.214782 + 0.976662i \(0.431096\pi\)
\(938\) −26971.5 46716.0i −0.938860 1.62615i
\(939\) 0 0
\(940\) 2587.87 4482.33i 0.0897947 0.155529i
\(941\) −12542.8 + 21724.8i −0.434520 + 0.752611i −0.997256 0.0740253i \(-0.976415\pi\)
0.562736 + 0.826637i \(0.309749\pi\)
\(942\) 0 0
\(943\) 1234.02 + 2137.38i 0.0426142 + 0.0738099i
\(944\) −2568.76 −0.0885656
\(945\) 0 0
\(946\) −585.068 −0.0201080
\(947\) −2117.64 3667.86i −0.0726653 0.125860i 0.827403 0.561608i \(-0.189817\pi\)
−0.900069 + 0.435748i \(0.856484\pi\)
\(948\) 0 0
\(949\) −1063.81 + 1842.58i −0.0363887 + 0.0630271i
\(950\) −1787.67 + 3096.33i −0.0610523 + 0.105746i
\(951\) 0 0
\(952\) 10710.5 + 18551.2i 0.364632 + 0.631561i
\(953\) 34165.2 1.16130 0.580650 0.814153i \(-0.302798\pi\)
0.580650 + 0.814153i \(0.302798\pi\)
\(954\) 0 0
\(955\) −13894.3 −0.470794
\(956\) −669.500 1159.61i −0.0226498 0.0392305i
\(957\) 0 0
\(958\) −7387.96 + 12796.3i −0.249159 + 0.431556i
\(959\) −340.044 + 588.973i −0.0114500 + 0.0198321i
\(960\) 0 0
\(961\) 11832.6 + 20494.7i 0.397189 + 0.687951i
\(962\) 15078.8 0.505363
\(963\) 0 0
\(964\) −15152.4 −0.506253
\(965\) −3456.00 5985.96i −0.115288 0.199684i
\(966\) 0 0
\(967\) 5939.53 10287.6i 0.197520 0.342116i −0.750203 0.661207i \(-0.770044\pi\)
0.947724 + 0.319092i \(0.103378\pi\)
\(968\) 6019.69 10426.4i 0.199876 0.346196i
\(969\) 0 0
\(970\) 8668.55 + 15014.4i 0.286938 + 0.496992i
\(971\) −48679.3 −1.60885 −0.804425 0.594054i \(-0.797527\pi\)
−0.804425 + 0.594054i \(0.797527\pi\)
\(972\) 0 0
\(973\) −45124.8 −1.48678
\(974\) 11726.6 + 20311.1i 0.385776 + 0.668184i
\(975\) 0 0
\(976\) 4028.16 6976.98i 0.132109 0.228819i
\(977\) 1601.79 2774.38i 0.0524521 0.0908497i −0.838607 0.544737i \(-0.816630\pi\)
0.891059 + 0.453887i \(0.149963\pi\)
\(978\) 0 0
\(979\) −25502.0 44170.7i −0.832530 1.44198i
\(980\) −11445.3 −0.373069
\(981\) 0 0
\(982\) −14197.4 −0.461361
\(983\) 13592.4 + 23542.7i 0.441028 + 0.763883i 0.997766 0.0668054i \(-0.0212807\pi\)
−0.556738 + 0.830688i \(0.687947\pi\)
\(984\) 0 0
\(985\) 6833.96 11836.8i 0.221064 0.382894i
\(986\) 23566.4 40818.2i 0.761164 1.31837i
\(987\) 0 0
\(988\) −2610.48 4521.48i −0.0840591 0.145595i
\(989\) −177.176 −0.00569652
\(990\) 0 0
\(991\) −37424.6 −1.19963 −0.599815 0.800139i \(-0.704759\pi\)
−0.599815 + 0.800139i \(0.704759\pi\)
\(992\) −1252.27 2169.00i −0.0400803 0.0694211i
\(993\) 0 0
\(994\) 30064.6 52073.4i 0.959347 1.66164i
\(995\) 8428.68 14598.9i 0.268550 0.465142i
\(996\) 0 0
\(997\) −10540.7 18257.0i −0.334831 0.579944i 0.648622 0.761111i \(-0.275346\pi\)
−0.983452 + 0.181167i \(0.942012\pi\)
\(998\) −386.297 −0.0122525
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.e.be.271.2 4
3.2 odd 2 810.4.e.ba.271.2 4
9.2 odd 6 810.4.e.ba.541.2 4
9.4 even 3 810.4.a.h.1.1 2
9.5 odd 6 810.4.a.n.1.1 yes 2
9.7 even 3 inner 810.4.e.be.541.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.4.a.h.1.1 2 9.4 even 3
810.4.a.n.1.1 yes 2 9.5 odd 6
810.4.e.ba.271.2 4 3.2 odd 2
810.4.e.ba.541.2 4 9.2 odd 6
810.4.e.be.271.2 4 1.1 even 1 trivial
810.4.e.be.541.2 4 9.7 even 3 inner