Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8100,2,Mod(1,8100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8100.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8100.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(64.6788256372\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.564.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{3} - x^{2} - 5x + 3 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 180) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.3 | ||
Root | \(2.51414\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8100.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 3.83502 | 1.44950 | 0.724751 | − | 0.689011i | \(-0.241955\pi\) | ||||
0.724751 | + | 0.689011i | \(0.241955\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 1.70739 | 0.514797 | 0.257399 | − | 0.966305i | \(-0.417135\pi\) | ||||
0.257399 | + | 0.966305i | \(0.417135\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −3.70739 | −1.02824 | −0.514122 | − | 0.857717i | \(-0.671882\pi\) | ||||
−0.514122 | + | 0.857717i | \(0.671882\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 1.70739 | 0.414103 | 0.207051 | − | 0.978330i | \(-0.433613\pi\) | ||||
0.207051 | + | 0.978330i | \(0.433613\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0.292611 | 0.0671295 | 0.0335647 | − | 0.999437i | \(-0.489314\pi\) | ||||
0.0335647 | + | 0.999437i | \(0.489314\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −5.83502 | −1.21669 | −0.608343 | − | 0.793674i | \(-0.708165\pi\) | ||||
−0.608343 | + | 0.793674i | \(0.708165\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −8.67004 | −1.60999 | −0.804993 | − | 0.593284i | \(-0.797831\pi\) | ||||
−0.804993 | + | 0.593284i | \(0.797831\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0.292611 | 0.0525544 | 0.0262772 | − | 0.999655i | \(-0.491635\pi\) | ||||
0.0262772 | + | 0.999655i | \(0.491635\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −11.9627 | −1.96665 | −0.983324 | − | 0.181862i | \(-0.941788\pi\) | ||||
−0.983324 | + | 0.181862i | \(0.941788\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.96265 | 1.08738 | 0.543692 | − | 0.839285i | \(-0.317026\pi\) | ||||
0.543692 | + | 0.839285i | \(0.317026\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −3.70739 | −0.565372 | −0.282686 | − | 0.959213i | \(-0.591225\pi\) | ||||
−0.282686 | + | 0.959213i | \(0.591225\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 1.87237 | 0.273113 | 0.136556 | − | 0.990632i | \(-0.456396\pi\) | ||||
0.136556 | + | 0.990632i | \(0.456396\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.70739 | 1.10106 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −11.6700 | −1.60300 | −0.801502 | − | 0.597992i | \(-0.795965\pi\) | ||||
−0.801502 | + | 0.597992i | \(0.795965\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −11.6700 | −1.51931 | −0.759655 | − | 0.650326i | \(-0.774632\pi\) | ||||
−0.759655 | + | 0.650326i | \(0.774632\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 14.9627 | 1.91577 | 0.957886 | − | 0.287150i | \(-0.0927077\pi\) | ||||
0.957886 | + | 0.287150i | \(0.0927077\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −9.54241 | −1.16579 | −0.582896 | − | 0.812547i | \(-0.698080\pi\) | ||||
−0.582896 | + | 0.812547i | \(0.698080\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −15.9627 | −1.89442 | −0.947209 | − | 0.320616i | \(-0.896110\pi\) | ||||
−0.947209 | + | 0.320616i | \(0.896110\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −8.00000 | −0.936329 | −0.468165 | − | 0.883641i | \(-0.655085\pi\) | ||||
−0.468165 | + | 0.883641i | \(0.655085\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 6.54787 | 0.746200 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 2.00000 | 0.225018 | 0.112509 | − | 0.993651i | \(-0.464111\pi\) | ||||
0.112509 | + | 0.993651i | \(0.464111\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −11.8350 | −1.29906 | −0.649531 | − | 0.760335i | \(-0.725035\pi\) | ||||
−0.649531 | + | 0.760335i | \(0.725035\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 3.00000 | 0.317999 | 0.159000 | − | 0.987279i | \(-0.449173\pi\) | ||||
0.159000 | + | 0.987279i | \(0.449173\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −14.2179 | −1.49044 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 3.67004 | 0.372636 | 0.186318 | − | 0.982489i | \(-0.440344\pi\) | ||||
0.186318 | + | 0.982489i | \(0.440344\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −0.329957 | −0.0328320 | −0.0164160 | − | 0.999865i | \(-0.505226\pi\) | ||||
−0.0164160 | + | 0.999865i | \(0.505226\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 3.12217 | 0.307636 | 0.153818 | − | 0.988099i | \(-0.450843\pi\) | ||||
0.153818 | + | 0.988099i | \(0.450843\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −14.9198 | −1.44236 | −0.721178 | − | 0.692750i | \(-0.756399\pi\) | ||||
−0.721178 | + | 0.692750i | \(0.756399\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 6.70739 | 0.642451 | 0.321226 | − | 0.947003i | \(-0.395905\pi\) | ||||
0.321226 | + | 0.947003i | \(0.395905\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 5.67004 | 0.533393 | 0.266696 | − | 0.963781i | \(-0.414068\pi\) | ||||
0.266696 | + | 0.963781i | \(0.414068\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 6.54787 | 0.600243 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −8.08482 | −0.734984 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 5.54241 | 0.491809 | 0.245905 | − | 0.969294i | \(-0.420915\pi\) | ||||
0.245905 | + | 0.969294i | \(0.420915\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −12.8296 | −1.12092 | −0.560462 | − | 0.828180i | \(-0.689376\pi\) | ||||
−0.560462 | + | 0.828180i | \(0.689376\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 1.12217 | 0.0973043 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 9.08482 | 0.776169 | 0.388084 | − | 0.921624i | \(-0.373137\pi\) | ||||
0.388084 | + | 0.921624i | \(0.373137\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −6.32996 | −0.529338 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 8.12217 | 0.665394 | 0.332697 | − | 0.943034i | \(-0.392041\pi\) | ||||
0.332697 | + | 0.943034i | \(0.392041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 21.0475 | 1.71282 | 0.856410 | − | 0.516297i | \(-0.172690\pi\) | ||||
0.856410 | + | 0.516297i | \(0.172690\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0.255264 | 0.0203723 | 0.0101861 | − | 0.999948i | \(-0.496758\pi\) | ||||
0.0101861 | + | 0.999948i | \(0.496758\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −22.3774 | −1.76359 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 11.7074 | 0.916994 | 0.458497 | − | 0.888696i | \(-0.348388\pi\) | ||||
0.458497 | + | 0.888696i | \(0.348388\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 16.1276 | 1.24799 | 0.623997 | − | 0.781427i | \(-0.285508\pi\) | ||||
0.623997 | + | 0.781427i | \(0.285508\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0.744736 | 0.0572874 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −8.58522 | −0.652722 | −0.326361 | − | 0.945245i | \(-0.605823\pi\) | ||||
−0.326361 | + | 0.945245i | \(0.605823\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 7.37743 | 0.551415 | 0.275708 | − | 0.961242i | \(-0.411088\pi\) | ||||
0.275708 | + | 0.961242i | \(0.411088\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 17.4996 | 1.30074 | 0.650368 | − | 0.759620i | \(-0.274615\pi\) | ||||
0.650368 | + | 0.759620i | \(0.274615\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 2.91518 | 0.213179 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −6.54787 | −0.473788 | −0.236894 | − | 0.971536i | \(-0.576129\pi\) | ||||
−0.236894 | + | 0.971536i | \(0.576129\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −7.12217 | −0.512665 | −0.256332 | − | 0.966589i | \(-0.582514\pi\) | ||||
−0.256332 | + | 0.966589i | \(0.582514\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −17.6700 | −1.25894 | −0.629469 | − | 0.777025i | \(-0.716728\pi\) | ||||
−0.629469 | + | 0.777025i | \(0.716728\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 11.6327 | 0.824620 | 0.412310 | − | 0.911044i | \(-0.364722\pi\) | ||||
0.412310 | + | 0.911044i | \(0.364722\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −33.2498 | −2.33368 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0.499600 | 0.0345581 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 5.63270 | 0.387771 | 0.193885 | − | 0.981024i | \(-0.437891\pi\) | ||||
0.193885 | + | 0.981024i | \(0.437891\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 1.12217 | 0.0761777 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −6.32996 | −0.425799 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 8.12763 | 0.544266 | 0.272133 | − | 0.962260i | \(-0.412271\pi\) | ||||
0.272133 | + | 0.962260i | \(0.412271\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 9.96265 | 0.661245 | 0.330622 | − | 0.943763i | \(-0.392741\pi\) | ||||
0.330622 | + | 0.943763i | \(0.392741\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 1.25526 | 0.0829502 | 0.0414751 | − | 0.999140i | \(-0.486794\pi\) | ||||
0.0414751 | + | 0.999140i | \(0.486794\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 3.96265 | 0.259602 | 0.129801 | − | 0.991540i | \(-0.458566\pi\) | ||||
0.129801 | + | 0.991540i | \(0.458566\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 5.67004 | 0.366765 | 0.183382 | − | 0.983042i | \(-0.441295\pi\) | ||||
0.183382 | + | 0.983042i | \(0.441295\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −16.6327 | −1.07141 | −0.535703 | − | 0.844406i | \(-0.679953\pi\) | ||||
−0.535703 | + | 0.844406i | \(0.679953\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −1.08482 | −0.0690255 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −13.3774 | −0.844376 | −0.422188 | − | 0.906508i | \(-0.638738\pi\) | ||||
−0.422188 | + | 0.906508i | \(0.638738\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −9.96265 | −0.626347 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 0.829557 | 0.0517464 | 0.0258732 | − | 0.999665i | \(-0.491763\pi\) | ||||
0.0258732 | + | 0.999665i | \(0.491763\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −45.8770 | −2.85066 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 12.2179 | 0.753389 | 0.376695 | − | 0.926338i | \(-0.377061\pi\) | ||||
0.376695 | + | 0.926338i | \(0.377061\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −17.5369 | −1.06925 | −0.534623 | − | 0.845091i | \(-0.679546\pi\) | ||||
−0.534623 | + | 0.845091i | \(0.679546\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −15.1222 | −0.918606 | −0.459303 | − | 0.888280i | \(-0.651901\pi\) | ||||
−0.459303 | + | 0.888280i | \(0.651901\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 5.70739 | 0.342924 | 0.171462 | − | 0.985191i | \(-0.445151\pi\) | ||||
0.171462 | + | 0.985191i | \(0.445151\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −7.29261 | −0.435041 | −0.217520 | − | 0.976056i | \(-0.569797\pi\) | ||||
−0.217520 | + | 0.976056i | \(0.569797\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 10.1650 | 0.604245 | 0.302123 | − | 0.953269i | \(-0.402305\pi\) | ||||
0.302123 | + | 0.953269i | \(0.402305\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 26.7019 | 1.57616 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −14.0848 | −0.828519 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 13.0475 | 0.762242 | 0.381121 | − | 0.924525i | \(-0.375538\pi\) | ||||
0.381121 | + | 0.924525i | \(0.375538\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 21.6327 | 1.25105 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −14.2179 | −0.819507 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −1.50506 | −0.0858986 | −0.0429493 | − | 0.999077i | \(-0.513675\pi\) | ||||
−0.0429493 | + | 0.999077i | \(0.513675\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 5.45213 | 0.309162 | 0.154581 | − | 0.987980i | \(-0.450597\pi\) | ||||
0.154581 | + | 0.987980i | \(0.450597\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 10.5479 | 0.596201 | 0.298101 | − | 0.954534i | \(-0.403647\pi\) | ||||
0.298101 | + | 0.954534i | \(0.403647\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 25.3774 | 1.42534 | 0.712669 | − | 0.701500i | \(-0.247486\pi\) | ||||
0.712669 | + | 0.701500i | \(0.247486\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −14.8031 | −0.828817 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0.499600 | 0.0277985 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 7.18057 | 0.395878 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −31.0848 | −1.70858 | −0.854288 | − | 0.519800i | \(-0.826007\pi\) | ||||
−0.854288 | + | 0.519800i | \(0.826007\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −10.2553 | −0.558640 | −0.279320 | − | 0.960198i | \(-0.590109\pi\) | ||||
−0.279320 | + | 0.960198i | \(0.590109\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0.499600 | 0.0270549 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 2.71285 | 0.146480 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −7.04748 | −0.378328 | −0.189164 | − | 0.981945i | \(-0.560578\pi\) | ||||
−0.189164 | + | 0.981945i | \(0.560578\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 29.1696 | 1.56142 | 0.780708 | − | 0.624897i | \(-0.214859\pi\) | ||||
0.780708 | + | 0.624897i | \(0.214859\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −24.0000 | −1.27739 | −0.638696 | − | 0.769460i | \(-0.720526\pi\) | ||||
−0.638696 | + | 0.769460i | \(0.720526\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 28.7922 | 1.51959 | 0.759797 | − | 0.650160i | \(-0.225298\pi\) | ||||
0.759797 | + | 0.650160i | \(0.225298\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −18.9144 | −0.995494 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 11.0475 | 0.576674 | 0.288337 | − | 0.957529i | \(-0.406898\pi\) | ||||
0.288337 | + | 0.957529i | \(0.406898\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −44.7549 | −2.32356 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 15.6700 | 0.811364 | 0.405682 | − | 0.914014i | \(-0.367034\pi\) | ||||
0.405682 | + | 0.914014i | \(0.367034\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 32.1432 | 1.65546 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −6.58522 | −0.338260 | −0.169130 | − | 0.985594i | \(-0.554096\pi\) | ||||
−0.169130 | + | 0.985594i | \(0.554096\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −12.2179 | −0.624306 | −0.312153 | − | 0.950032i | \(-0.601050\pi\) | ||||
−0.312153 | + | 0.950032i | \(0.601050\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −27.7175 | −1.40533 | −0.702667 | − | 0.711519i | \(-0.748008\pi\) | ||||
−0.702667 | + | 0.711519i | \(0.748008\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −9.96265 | −0.503833 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 26.5105 | 1.33053 | 0.665263 | − | 0.746609i | \(-0.268320\pi\) | ||||
0.665263 | + | 0.746609i | \(0.268320\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −16.8405 | −0.840974 | −0.420487 | − | 0.907299i | \(-0.638141\pi\) | ||||
−0.420487 | + | 0.907299i | \(0.638141\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −1.08482 | −0.0540388 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −20.4249 | −1.01243 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 15.0957 | 0.746437 | 0.373218 | − | 0.927744i | \(-0.378254\pi\) | ||||
0.373218 | + | 0.927744i | \(0.378254\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −44.7549 | −2.20224 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 2.36730 | 0.115650 | 0.0578252 | − | 0.998327i | \(-0.481583\pi\) | ||||
0.0578252 | + | 0.998327i | \(0.481583\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 9.92531 | 0.483730 | 0.241865 | − | 0.970310i | \(-0.422241\pi\) | ||||
0.241865 | + | 0.970310i | \(0.422241\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 57.3821 | 2.77691 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 13.9253 | 0.670758 | 0.335379 | − | 0.942083i | \(-0.391136\pi\) | ||||
0.335379 | + | 0.942083i | \(0.391136\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 2.29261 | 0.110176 | 0.0550879 | − | 0.998482i | \(-0.482456\pi\) | ||||
0.0550879 | + | 0.998482i | \(0.482456\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −1.70739 | −0.0816755 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 25.0101 | 1.19367 | 0.596834 | − | 0.802365i | \(-0.296425\pi\) | ||||
0.596834 | + | 0.802365i | \(0.296425\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −19.8724 | −0.944165 | −0.472082 | − | 0.881554i | \(-0.656498\pi\) | ||||
−0.472082 | + | 0.881554i | \(0.656498\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −32.2553 | −1.52222 | −0.761110 | − | 0.648623i | \(-0.775345\pi\) | ||||
−0.761110 | + | 0.648623i | \(0.775345\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 11.8880 | 0.559782 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −19.8880 | −0.930320 | −0.465160 | − | 0.885227i | \(-0.654003\pi\) | ||||
−0.465160 | + | 0.885227i | \(0.654003\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 21.7658 | 1.01373 | 0.506867 | − | 0.862024i | \(-0.330804\pi\) | ||||
0.506867 | + | 0.862024i | \(0.330804\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −17.9627 | −0.834795 | −0.417398 | − | 0.908724i | \(-0.637058\pi\) | ||||
−0.417398 | + | 0.908724i | \(0.637058\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 19.0475 | 0.881412 | 0.440706 | − | 0.897651i | \(-0.354728\pi\) | ||||
0.440706 | + | 0.897651i | \(0.354728\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −36.5953 | −1.68982 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −6.32996 | −0.291052 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −20.7549 | −0.948314 | −0.474157 | − | 0.880440i | \(-0.657247\pi\) | ||||
−0.474157 | + | 0.880440i | \(0.657247\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 44.3502 | 2.02220 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −4.86690 | −0.220540 | −0.110270 | − | 0.993902i | \(-0.535172\pi\) | ||||
−0.110270 | + | 0.993902i | \(0.535172\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −38.2553 | −1.72644 | −0.863218 | − | 0.504831i | \(-0.831555\pi\) | ||||
−0.863218 | + | 0.504831i | \(0.831555\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −14.8031 | −0.666700 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −61.2171 | −2.74596 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −26.8405 | −1.20155 | −0.600773 | − | 0.799420i | \(-0.705140\pi\) | ||||
−0.600773 | + | 0.799420i | \(0.705140\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −18.8825 | −0.841929 | −0.420964 | − | 0.907077i | \(-0.638308\pi\) | ||||
−0.420964 | + | 0.907077i | \(0.638308\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −33.1696 | −1.47022 | −0.735109 | − | 0.677949i | \(-0.762869\pi\) | ||||
−0.735109 | + | 0.677949i | \(0.762869\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −30.6802 | −1.35721 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 3.19686 | 0.140598 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 38.0101 | 1.66525 | 0.832627 | − | 0.553834i | \(-0.186836\pi\) | ||||
0.832627 | + | 0.553834i | \(0.186836\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 37.4677 | 1.63835 | 0.819174 | − | 0.573544i | \(-0.194432\pi\) | ||||
0.819174 | + | 0.573544i | \(0.194432\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0.499600 | 0.0217629 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 11.0475 | 0.480325 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −25.8133 | −1.11810 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 13.1595 | 0.566820 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 31.7549 | 1.36525 | 0.682624 | − | 0.730770i | \(-0.260839\pi\) | ||||
0.682624 | + | 0.730770i | \(0.260839\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −13.5051 | −0.577435 | −0.288717 | − | 0.957414i | \(-0.593229\pi\) | ||||
−0.288717 | + | 0.957414i | \(0.593229\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −2.53695 | −0.108078 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 7.67004 | 0.326163 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 6.00000 | 0.254228 | 0.127114 | − | 0.991888i | \(-0.459429\pi\) | ||||
0.127114 | + | 0.991888i | \(0.459429\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 13.7447 | 0.581340 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −31.2125 | −1.31545 | −0.657724 | − | 0.753259i | \(-0.728481\pi\) | ||||
−0.657724 | + | 0.753259i | \(0.728481\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 12.8296 | 0.537843 | 0.268922 | − | 0.963162i | \(-0.413333\pi\) | ||||
0.268922 | + | 0.963162i | \(0.413333\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −15.3401 | −0.641963 | −0.320981 | − | 0.947086i | \(-0.604013\pi\) | ||||
−0.320981 | + | 0.947086i | \(0.604013\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −33.3292 | −1.38751 | −0.693755 | − | 0.720211i | \(-0.744045\pi\) | ||||
−0.693755 | + | 0.720211i | \(0.744045\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −45.3876 | −1.88299 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −19.9253 | −0.825222 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 41.5051 | 1.71310 | 0.856549 | − | 0.516066i | \(-0.172604\pi\) | ||||
0.856549 | + | 0.516066i | \(0.172604\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0.0856210 | 0.00352795 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 17.0584 | 0.700505 | 0.350252 | − | 0.936655i | \(-0.386096\pi\) | ||||
0.350252 | + | 0.936655i | \(0.386096\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −25.9253 | −1.05928 | −0.529640 | − | 0.848223i | \(-0.677673\pi\) | ||||
−0.529640 | + | 0.848223i | \(0.677673\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −11.0957 | −0.452605 | −0.226303 | − | 0.974057i | \(-0.572664\pi\) | ||||
−0.226303 | + | 0.974057i | \(0.572664\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −26.3829 | −1.07085 | −0.535424 | − | 0.844583i | \(-0.679848\pi\) | ||||
−0.535424 | + | 0.844583i | \(0.679848\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −6.94160 | −0.280827 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −2.87783 | −0.116235 | −0.0581173 | − | 0.998310i | \(-0.518510\pi\) | ||||
−0.0581173 | + | 0.998310i | \(0.518510\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −10.8405 | −0.436422 | −0.218211 | − | 0.975902i | \(-0.570022\pi\) | ||||
−0.218211 | + | 0.975902i | \(0.570022\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 8.87783 | 0.356830 | 0.178415 | − | 0.983955i | \(-0.442903\pi\) | ||||
0.178415 | + | 0.983955i | \(0.442903\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 11.5051 | 0.460941 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −20.4249 | −0.814394 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 14.3300 | 0.570467 | 0.285233 | − | 0.958458i | \(-0.407929\pi\) | ||||
0.285233 | + | 0.958458i | \(0.407929\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −28.5743 | −1.13215 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −46.0475 | −1.81877 | −0.909383 | − | 0.415960i | \(-0.863446\pi\) | ||||
−0.909383 | + | 0.415960i | \(0.863446\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −3.54241 | −0.139699 | −0.0698495 | − | 0.997558i | \(-0.522252\pi\) | ||||
−0.0698495 | + | 0.997558i | \(0.522252\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 16.1276 | 0.634043 | 0.317021 | − | 0.948418i | \(-0.397317\pi\) | ||||
0.317021 | + | 0.948418i | \(0.397317\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −19.9253 | −0.782137 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −25.5471 | −0.999734 | −0.499867 | − | 0.866102i | \(-0.666618\pi\) | ||||
−0.499867 | + | 0.866102i | \(0.666618\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 36.4996 | 1.42182 | 0.710911 | − | 0.703282i | \(-0.248283\pi\) | ||||
0.710911 | + | 0.703282i | \(0.248283\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −7.68097 | −0.298755 | −0.149378 | − | 0.988780i | \(-0.547727\pi\) | ||||
−0.149378 | + | 0.988780i | \(0.547727\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 50.5899 | 1.95885 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 25.5471 | 0.986234 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −10.0373 | −0.386911 | −0.193456 | − | 0.981109i | \(-0.561970\pi\) | ||||
−0.193456 | + | 0.981109i | \(0.561970\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −29.4521 | −1.13194 | −0.565969 | − | 0.824427i | \(-0.691498\pi\) | ||||
−0.565969 | + | 0.824427i | \(0.691498\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 14.0747 | 0.540137 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −24.2179 | −0.926673 | −0.463336 | − | 0.886182i | \(-0.653348\pi\) | ||||
−0.463336 | + | 0.886182i | \(0.653348\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 43.2654 | 1.64828 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 0.244336 | 0.00929499 | 0.00464749 | − | 0.999989i | \(-0.498521\pi\) | ||||
0.00464749 | + | 0.999989i | \(0.498521\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 11.8880 | 0.450289 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 7.79221 | 0.294308 | 0.147154 | − | 0.989114i | \(-0.452989\pi\) | ||||
0.147154 | + | 0.989114i | \(0.452989\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −3.50040 | −0.132020 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −1.26539 | −0.0475900 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −24.8397 | −0.932874 | −0.466437 | − | 0.884554i | \(-0.654463\pi\) | ||||
−0.466437 | + | 0.884554i | \(0.654463\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −1.70739 | −0.0639422 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −35.0101 | −1.30566 | −0.652829 | − | 0.757506i | \(-0.726418\pi\) | ||||
−0.652829 | + | 0.757506i | \(0.726418\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 11.9736 | 0.445919 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −22.3082 | −0.827365 | −0.413683 | − | 0.910421i | \(-0.635758\pi\) | ||||
−0.413683 | + | 0.910421i | \(0.635758\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −6.32996 | −0.234122 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 16.1696 | 0.597239 | 0.298620 | − | 0.954372i | \(-0.403474\pi\) | ||||
0.298620 | + | 0.954372i | \(0.403474\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −16.2926 | −0.600146 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 38.9354 | 1.43226 | 0.716132 | − | 0.697965i | \(-0.245911\pi\) | ||||
0.716132 | + | 0.697965i | \(0.245911\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −5.33542 | −0.195738 | −0.0978688 | − | 0.995199i | \(-0.531203\pi\) | ||||
−0.0978688 | + | 0.995199i | \(0.531203\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −57.2179 | −2.09070 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 34.2070 | 1.24823 | 0.624115 | − | 0.781332i | \(-0.285460\pi\) | ||||
0.624115 | + | 0.781332i | \(0.285460\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −0.952525 | −0.0346201 | −0.0173101 | − | 0.999850i | \(-0.505510\pi\) | ||||
−0.0173101 | + | 0.999850i | \(0.505510\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −16.5953 | −0.601581 | −0.300790 | − | 0.953690i | \(-0.597250\pi\) | ||||
−0.300790 | + | 0.953690i | \(0.597250\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 25.7230 | 0.931234 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 43.2654 | 1.56222 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 6.59535 | 0.237834 | 0.118917 | − | 0.992904i | \(-0.462058\pi\) | ||||
0.118917 | + | 0.992904i | \(0.462058\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 18.8296 | 0.677252 | 0.338626 | − | 0.940921i | \(-0.390038\pi\) | ||||
0.338626 | + | 0.940921i | \(0.390038\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 2.03735 | 0.0729955 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −27.2545 | −0.975241 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −7.12217 | −0.253878 | −0.126939 | − | 0.991911i | \(-0.540515\pi\) | ||||
−0.126939 | + | 0.991911i | \(0.540515\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 21.7447 | 0.773154 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −55.4724 | −1.96988 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −48.7175 | −1.72566 | −0.862832 | − | 0.505492i | \(-0.831311\pi\) | ||||
−0.862832 | + | 0.505492i | \(0.831311\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 3.19686 | 0.113097 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −13.6591 | −0.482020 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −19.1595 | −0.673613 | −0.336806 | − | 0.941574i | \(-0.609347\pi\) | ||||
−0.336806 | + | 0.941574i | \(0.609347\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 13.3401 | 0.468434 | 0.234217 | − | 0.972184i | \(-0.424747\pi\) | ||||
0.234217 | + | 0.972184i | \(0.424747\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −1.08482 | −0.0379531 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 1.62257 | 0.0566280 | 0.0283140 | − | 0.999599i | \(-0.490986\pi\) | ||||
0.0283140 | + | 0.999599i | \(0.490986\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −26.0529 | −0.908148 | −0.454074 | − | 0.890964i | \(-0.650030\pi\) | ||||
−0.454074 | + | 0.890964i | \(0.650030\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 37.4786 | 1.30326 | 0.651630 | − | 0.758537i | \(-0.274085\pi\) | ||||
0.651630 | + | 0.758537i | \(0.274085\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 32.9627 | 1.14484 | 0.572420 | − | 0.819960i | \(-0.306005\pi\) | ||||
0.572420 | + | 0.819960i | \(0.306005\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 13.1595 | 0.455950 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 12.8778 | 0.444592 | 0.222296 | − | 0.974979i | \(-0.428645\pi\) | ||||
0.222296 | + | 0.974979i | \(0.428645\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 46.1696 | 1.59206 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −31.0055 | −1.06536 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 69.8023 | 2.39279 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 44.1323 | 1.51106 | 0.755531 | − | 0.655113i | \(-0.227379\pi\) | ||||
0.755531 | + | 0.655113i | \(0.227379\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −15.6327 | −0.534003 | −0.267001 | − | 0.963696i | \(-0.586033\pi\) | ||||
−0.267001 | + | 0.963696i | \(0.586033\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 7.88796 | 0.269134 | 0.134567 | − | 0.990905i | \(-0.457036\pi\) | ||||
0.134567 | + | 0.990905i | \(0.457036\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 9.53148 | 0.324455 | 0.162228 | − | 0.986753i | \(-0.448132\pi\) | ||||
0.162228 | + | 0.986753i | \(0.448132\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 3.41478 | 0.115838 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 35.3774 | 1.19872 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −37.9517 | −1.28154 | −0.640769 | − | 0.767733i | \(-0.721385\pi\) | ||||
−0.640769 | + | 0.767733i | \(0.721385\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −23.2070 | −0.781863 | −0.390932 | − | 0.920420i | \(-0.627847\pi\) | ||||
−0.390932 | + | 0.920420i | \(0.627847\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −30.9572 | −1.04179 | −0.520896 | − | 0.853620i | \(-0.674402\pi\) | ||||
−0.520896 | + | 0.853620i | \(0.674402\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 37.8770 | 1.27179 | 0.635893 | − | 0.771777i | \(-0.280632\pi\) | ||||
0.635893 | + | 0.771777i | \(0.280632\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 21.2553 | 0.712879 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0.547875 | 0.0183339 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −2.53695 | −0.0846119 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −19.9253 | −0.663808 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −32.3829 | −1.07526 | −0.537628 | − | 0.843182i | \(-0.680680\pi\) | ||||
−0.537628 | + | 0.843182i | \(0.680680\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 45.2545 | 1.49935 | 0.749674 | − | 0.661808i | \(-0.230210\pi\) | ||||
0.749674 | + | 0.661808i | \(0.230210\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −20.2070 | −0.668754 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −49.2016 | −1.62478 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 21.9253 | 0.723249 | 0.361625 | − | 0.932324i | \(-0.382222\pi\) | ||||
0.361625 | + | 0.932324i | \(0.382222\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 59.1798 | 1.94793 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 13.2654 | 0.435223 | 0.217612 | − | 0.976035i | \(-0.430173\pi\) | ||||
0.217612 | + | 0.976035i | \(0.430173\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2.25526 | 0.0739133 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 40.4996 | 1.32306 | 0.661532 | − | 0.749917i | \(-0.269907\pi\) | ||||
0.661532 | + | 0.749917i | \(0.269907\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −2.67004 | −0.0870409 | −0.0435205 | − | 0.999053i | \(-0.513857\pi\) | ||||
−0.0435205 | + | 0.999053i | \(0.513857\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −40.6272 | −1.32300 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 36.8825 | 1.19852 | 0.599260 | − | 0.800554i | \(-0.295462\pi\) | ||||
0.599260 | + | 0.800554i | \(0.295462\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 29.6591 | 0.962776 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 12.7175 | 0.411961 | 0.205980 | − | 0.978556i | \(-0.433962\pi\) | ||||
0.205980 | + | 0.978556i | \(0.433962\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 34.8405 | 1.12506 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.9144 | −0.997238 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −42.3455 | −1.36174 | −0.680871 | − | 0.732404i | \(-0.738398\pi\) | ||||
−0.680871 | + | 0.732404i | \(0.738398\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −5.38836 | −0.172921 | −0.0864604 | − | 0.996255i | \(-0.527556\pi\) | ||||
−0.0864604 | + | 0.996255i | \(0.527556\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −15.3401 | −0.491781 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 28.1323 | 0.900032 | 0.450016 | − | 0.893021i | \(-0.351418\pi\) | ||||
0.450016 | + | 0.893021i | \(0.351418\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 5.12217 | 0.163705 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −25.7603 | −0.821627 | −0.410813 | − | 0.911719i | \(-0.634755\pi\) | ||||
−0.410813 | + | 0.911719i | \(0.634755\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 21.6327 | 0.687880 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 23.0848 | 0.733314 | 0.366657 | − | 0.930356i | \(-0.380502\pi\) | ||||
0.366657 | + | 0.930356i | \(0.380502\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 32.8405 | 1.04007 | 0.520034 | − | 0.854145i | \(-0.325919\pi\) | ||||
0.520034 | + | 0.854145i | \(0.325919\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
180.2.i.b.61.2 | ✓ | 6 | 45.14 | odd | 6 | ||
180.2.i.b.121.2 | yes | 6 | 45.29 | odd | 6 | ||
540.2.i.b.181.3 | 6 | 45.4 | even | 6 | |||
540.2.i.b.361.3 | 6 | 45.34 | even | 6 | |||
720.2.q.k.241.2 | 6 | 180.59 | even | 6 | |||
720.2.q.k.481.2 | 6 | 180.119 | even | 6 | |||
900.2.i.c.301.2 | 6 | 9.2 | odd | 6 | |||
900.2.i.c.601.2 | 6 | 9.5 | odd | 6 | |||
900.2.s.c.49.1 | 12 | 45.2 | even | 12 | |||
900.2.s.c.49.6 | 12 | 45.38 | even | 12 | |||
900.2.s.c.349.1 | 12 | 45.23 | even | 12 | |||
900.2.s.c.349.6 | 12 | 45.32 | even | 12 | |||
1620.2.a.i.1.1 | 3 | 15.14 | odd | 2 | |||
1620.2.a.j.1.1 | 3 | 5.4 | even | 2 | |||
2160.2.q.i.721.1 | 6 | 180.139 | odd | 6 | |||
2160.2.q.i.1441.1 | 6 | 180.79 | odd | 6 | |||
2700.2.i.c.901.1 | 6 | 9.7 | even | 3 | |||
2700.2.i.c.1801.1 | 6 | 9.4 | even | 3 | |||
2700.2.s.c.1549.2 | 12 | 45.43 | odd | 12 | |||
2700.2.s.c.1549.5 | 12 | 45.7 | odd | 12 | |||
2700.2.s.c.2449.2 | 12 | 45.22 | odd | 12 | |||
2700.2.s.c.2449.5 | 12 | 45.13 | odd | 12 | |||
6480.2.a.bt.1.3 | 3 | 60.59 | even | 2 | |||
6480.2.a.bw.1.3 | 3 | 20.19 | odd | 2 | |||
8100.2.a.u.1.3 | 3 | 1.1 | even | 1 | trivial | ||
8100.2.a.v.1.3 | 3 | 3.2 | odd | 2 | |||
8100.2.d.o.649.2 | 6 | 5.3 | odd | 4 | |||
8100.2.d.o.649.5 | 6 | 5.2 | odd | 4 | |||
8100.2.d.p.649.2 | 6 | 15.8 | even | 4 | |||
8100.2.d.p.649.5 | 6 | 15.2 | even | 4 |