Properties

Label 900.2.i.c.601.2
Level $900$
Weight $2$
Character 900.601
Analytic conductor $7.187$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(301,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.2
Root \(0.403374 - 1.68443i\) of defining polynomial
Character \(\chi\) \(=\) 900.601
Dual form 900.2.i.c.301.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.403374 + 1.68443i) q^{3} +(-1.91751 + 3.32123i) q^{7} +(-2.67458 + 1.35891i) q^{9} +(0.853695 - 1.47864i) q^{11} +(1.85369 + 3.21069i) q^{13} -1.70739 q^{17} +0.292611 q^{19} +(-6.36783 - 1.89021i) q^{21} +(-2.91751 - 5.05328i) q^{23} +(-3.36783 - 3.95698i) q^{27} +(-4.33502 + 7.50848i) q^{29} +(-0.146305 - 0.253408i) q^{31} +(2.83502 + 0.841540i) q^{33} -11.9627 q^{37} +(-4.66044 + 4.41752i) q^{39} +(3.48133 + 6.02983i) q^{41} +(1.85369 - 3.21069i) q^{43} +(0.936184 - 1.62152i) q^{47} +(-3.85369 - 6.67479i) q^{49} +(-0.688716 - 2.87597i) q^{51} +11.6700 q^{53} +(0.118031 + 0.492881i) q^{57} +(-5.83502 - 10.1066i) q^{59} +(-7.48133 + 12.9580i) q^{61} +(0.615299 - 11.4886i) q^{63} +(4.77121 + 8.26397i) q^{67} +(7.33502 - 6.95269i) q^{69} +15.9627 q^{71} -8.00000 q^{73} +(3.27394 + 5.67063i) q^{77} +(-1.00000 + 1.73205i) q^{79} +(5.30675 - 7.26900i) q^{81} +(-5.91751 + 10.2494i) q^{83} +(-14.3961 - 4.27330i) q^{87} -3.00000 q^{89} -14.2179 q^{91} +(0.367832 - 0.348659i) q^{93} +(-1.83502 + 3.17835i) q^{97} +(-0.273937 + 5.11484i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + 3 q^{7} + 5 q^{9} + 6 q^{13} + 12 q^{19} - 20 q^{21} - 3 q^{23} - 2 q^{27} + 3 q^{29} - 6 q^{31} - 12 q^{33} - 24 q^{37} - 20 q^{39} - 3 q^{41} + 6 q^{43} + 15 q^{47} - 18 q^{49} + 30 q^{51}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.403374 + 1.68443i 0.232888 + 0.972504i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.91751 + 3.32123i −0.724751 + 1.25531i 0.234326 + 0.972158i \(0.424712\pi\)
−0.959076 + 0.283147i \(0.908621\pi\)
\(8\) 0 0
\(9\) −2.67458 + 1.35891i −0.891526 + 0.452969i
\(10\) 0 0
\(11\) 0.853695 1.47864i 0.257399 0.445828i −0.708146 0.706066i \(-0.750468\pi\)
0.965544 + 0.260239i \(0.0838013\pi\)
\(12\) 0 0
\(13\) 1.85369 + 3.21069i 0.514122 + 0.890486i 0.999866 + 0.0163846i \(0.00521563\pi\)
−0.485743 + 0.874101i \(0.661451\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.70739 −0.414103 −0.207051 0.978330i \(-0.566387\pi\)
−0.207051 + 0.978330i \(0.566387\pi\)
\(18\) 0 0
\(19\) 0.292611 0.0671295 0.0335647 0.999437i \(-0.489314\pi\)
0.0335647 + 0.999437i \(0.489314\pi\)
\(20\) 0 0
\(21\) −6.36783 1.89021i −1.38957 0.412477i
\(22\) 0 0
\(23\) −2.91751 5.05328i −0.608343 1.05368i −0.991514 0.130003i \(-0.958501\pi\)
0.383171 0.923678i \(-0.374832\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.36783 3.95698i −0.648139 0.761522i
\(28\) 0 0
\(29\) −4.33502 + 7.50848i −0.804993 + 1.39429i 0.111302 + 0.993787i \(0.464498\pi\)
−0.916296 + 0.400503i \(0.868836\pi\)
\(30\) 0 0
\(31\) −0.146305 0.253408i −0.0262772 0.0455135i 0.852588 0.522584i \(-0.175032\pi\)
−0.878865 + 0.477071i \(0.841699\pi\)
\(32\) 0 0
\(33\) 2.83502 + 0.841540i 0.493514 + 0.146493i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −11.9627 −1.96665 −0.983324 0.181862i \(-0.941788\pi\)
−0.983324 + 0.181862i \(0.941788\pi\)
\(38\) 0 0
\(39\) −4.66044 + 4.41752i −0.746268 + 0.707369i
\(40\) 0 0
\(41\) 3.48133 + 6.02983i 0.543692 + 0.941702i 0.998688 + 0.0512085i \(0.0163073\pi\)
−0.454996 + 0.890493i \(0.650359\pi\)
\(42\) 0 0
\(43\) 1.85369 3.21069i 0.282686 0.489626i −0.689360 0.724419i \(-0.742108\pi\)
0.972045 + 0.234793i \(0.0754413\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.936184 1.62152i 0.136556 0.236523i −0.789634 0.613578i \(-0.789730\pi\)
0.926191 + 0.377055i \(0.123063\pi\)
\(48\) 0 0
\(49\) −3.85369 6.67479i −0.550528 0.953542i
\(50\) 0 0
\(51\) −0.688716 2.87597i −0.0964395 0.402716i
\(52\) 0 0
\(53\) 11.6700 1.60300 0.801502 0.597992i \(-0.204035\pi\)
0.801502 + 0.597992i \(0.204035\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.118031 + 0.492881i 0.0156336 + 0.0652837i
\(58\) 0 0
\(59\) −5.83502 10.1066i −0.759655 1.31576i −0.943027 0.332718i \(-0.892034\pi\)
0.183371 0.983044i \(-0.441299\pi\)
\(60\) 0 0
\(61\) −7.48133 + 12.9580i −0.957886 + 1.65911i −0.230264 + 0.973128i \(0.573959\pi\)
−0.727622 + 0.685979i \(0.759374\pi\)
\(62\) 0 0
\(63\) 0.615299 11.4886i 0.0775204 1.44743i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.77121 + 8.26397i 0.582896 + 1.00960i 0.995134 + 0.0985288i \(0.0314136\pi\)
−0.412239 + 0.911076i \(0.635253\pi\)
\(68\) 0 0
\(69\) 7.33502 6.95269i 0.883033 0.837005i
\(70\) 0 0
\(71\) 15.9627 1.89442 0.947209 0.320616i \(-0.103890\pi\)
0.947209 + 0.320616i \(0.103890\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.27394 + 5.67063i 0.373100 + 0.646228i
\(78\) 0 0
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) 0 0
\(81\) 5.30675 7.26900i 0.589639 0.807667i
\(82\) 0 0
\(83\) −5.91751 + 10.2494i −0.649531 + 1.12502i 0.333704 + 0.942678i \(0.391701\pi\)
−0.983235 + 0.182343i \(0.941632\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −14.3961 4.27330i −1.54342 0.458146i
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) −14.2179 −1.49044
\(92\) 0 0
\(93\) 0.367832 0.348659i 0.0381424 0.0361542i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.83502 + 3.17835i −0.186318 + 0.322713i −0.944020 0.329888i \(-0.892989\pi\)
0.757702 + 0.652601i \(0.226322\pi\)
\(98\) 0 0
\(99\) −0.273937 + 5.11484i −0.0275317 + 0.514061i
\(100\) 0 0
\(101\) −0.164979 + 0.285751i −0.0164160 + 0.0284333i −0.874117 0.485716i \(-0.838559\pi\)
0.857701 + 0.514149i \(0.171892\pi\)
\(102\) 0 0
\(103\) −1.56108 2.70388i −0.153818 0.266421i 0.778810 0.627260i \(-0.215824\pi\)
−0.932628 + 0.360839i \(0.882490\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.9198 1.44236 0.721178 0.692750i \(-0.243601\pi\)
0.721178 + 0.692750i \(0.243601\pi\)
\(108\) 0 0
\(109\) 6.70739 0.642451 0.321226 0.947003i \(-0.395905\pi\)
0.321226 + 0.947003i \(0.395905\pi\)
\(110\) 0 0
\(111\) −4.82542 20.1502i −0.458009 1.91257i
\(112\) 0 0
\(113\) 2.83502 + 4.91040i 0.266696 + 0.461932i 0.968007 0.250924i \(-0.0807346\pi\)
−0.701310 + 0.712856i \(0.747401\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −9.32088 6.06826i −0.861716 0.561010i
\(118\) 0 0
\(119\) 3.27394 5.67063i 0.300121 0.519825i
\(120\) 0 0
\(121\) 4.04241 + 7.00166i 0.367492 + 0.636515i
\(122\) 0 0
\(123\) −8.75253 + 8.29631i −0.789189 + 0.748053i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.54241 0.491809 0.245905 0.969294i \(-0.420915\pi\)
0.245905 + 0.969294i \(0.420915\pi\)
\(128\) 0 0
\(129\) 6.15591 + 1.82730i 0.541997 + 0.160885i
\(130\) 0 0
\(131\) −6.41478 11.1107i −0.560462 0.970748i −0.997456 0.0712840i \(-0.977290\pi\)
0.436994 0.899464i \(-0.356043\pi\)
\(132\) 0 0
\(133\) −0.561084 + 0.971826i −0.0486522 + 0.0842680i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.54241 7.86769i 0.388084 0.672182i −0.604108 0.796903i \(-0.706470\pi\)
0.992192 + 0.124721i \(0.0398036\pi\)
\(138\) 0 0
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) 0 0
\(141\) 3.10896 + 0.922854i 0.261822 + 0.0777184i
\(142\) 0 0
\(143\) 6.32996 0.529338
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 9.68872 9.18370i 0.799112 0.757459i
\(148\) 0 0
\(149\) 4.06108 + 7.03400i 0.332697 + 0.576248i 0.983040 0.183393i \(-0.0587080\pi\)
−0.650343 + 0.759641i \(0.725375\pi\)
\(150\) 0 0
\(151\) −10.5237 + 18.2276i −0.856410 + 1.48334i 0.0189215 + 0.999821i \(0.493977\pi\)
−0.875331 + 0.483524i \(0.839357\pi\)
\(152\) 0 0
\(153\) 4.56655 2.32018i 0.369184 0.187576i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.127632 0.221065i −0.0101861 0.0176429i 0.860887 0.508796i \(-0.169909\pi\)
−0.871074 + 0.491153i \(0.836576\pi\)
\(158\) 0 0
\(159\) 4.70739 + 19.6573i 0.373320 + 1.55893i
\(160\) 0 0
\(161\) 22.3774 1.76359
\(162\) 0 0
\(163\) 11.7074 0.916994 0.458497 0.888696i \(-0.348388\pi\)
0.458497 + 0.888696i \(0.348388\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.06382 + 13.9669i 0.623997 + 1.08079i 0.988734 + 0.149684i \(0.0478255\pi\)
−0.364737 + 0.931111i \(0.618841\pi\)
\(168\) 0 0
\(169\) −0.372368 + 0.644960i −0.0286437 + 0.0496123i
\(170\) 0 0
\(171\) −0.782610 + 0.397630i −0.0598477 + 0.0304076i
\(172\) 0 0
\(173\) −4.29261 + 7.43502i −0.326361 + 0.565274i −0.981787 0.189986i \(-0.939156\pi\)
0.655426 + 0.755260i \(0.272489\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 14.6700 13.9054i 1.10267 1.04519i
\(178\) 0 0
\(179\) −7.37743 −0.551415 −0.275708 0.961242i \(-0.588912\pi\)
−0.275708 + 0.961242i \(0.588912\pi\)
\(180\) 0 0
\(181\) 17.4996 1.30074 0.650368 0.759620i \(-0.274615\pi\)
0.650368 + 0.759620i \(0.274615\pi\)
\(182\) 0 0
\(183\) −24.8446 7.37481i −1.83657 0.545161i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.45759 + 2.52462i −0.106589 + 0.184618i
\(188\) 0 0
\(189\) 19.5999 3.59777i 1.42568 0.261700i
\(190\) 0 0
\(191\) −3.27394 + 5.67063i −0.236894 + 0.410312i −0.959821 0.280612i \(-0.909463\pi\)
0.722928 + 0.690924i \(0.242796\pi\)
\(192\) 0 0
\(193\) 3.56108 + 6.16798i 0.256332 + 0.443981i 0.965257 0.261304i \(-0.0841525\pi\)
−0.708924 + 0.705285i \(0.750819\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.6700 1.25894 0.629469 0.777025i \(-0.283272\pi\)
0.629469 + 0.777025i \(0.283272\pi\)
\(198\) 0 0
\(199\) 11.6327 0.824620 0.412310 0.911044i \(-0.364722\pi\)
0.412310 + 0.911044i \(0.364722\pi\)
\(200\) 0 0
\(201\) −11.9955 + 11.3702i −0.846095 + 0.801993i
\(202\) 0 0
\(203\) −16.6249 28.7952i −1.16684 2.02102i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 14.6700 + 9.55077i 1.01964 + 0.663824i
\(208\) 0 0
\(209\) 0.249800 0.432667i 0.0172790 0.0299282i
\(210\) 0 0
\(211\) −2.81635 4.87806i −0.193885 0.335819i 0.752649 0.658422i \(-0.228776\pi\)
−0.946535 + 0.322602i \(0.895442\pi\)
\(212\) 0 0
\(213\) 6.43892 + 26.8879i 0.441187 + 1.84233i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.12217 0.0761777
\(218\) 0 0
\(219\) −3.22699 13.4754i −0.218060 0.910583i
\(220\) 0 0
\(221\) −3.16498 5.48190i −0.212899 0.368753i
\(222\) 0 0
\(223\) −4.06382 + 7.03874i −0.272133 + 0.471349i −0.969408 0.245455i \(-0.921062\pi\)
0.697275 + 0.716804i \(0.254396\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.98133 8.62791i 0.330622 0.572655i −0.652012 0.758209i \(-0.726075\pi\)
0.982634 + 0.185554i \(0.0594081\pi\)
\(228\) 0 0
\(229\) −0.627632 1.08709i −0.0414751 0.0718370i 0.844543 0.535488i \(-0.179872\pi\)
−0.886018 + 0.463651i \(0.846539\pi\)
\(230\) 0 0
\(231\) −8.23113 + 7.80209i −0.541568 + 0.513340i
\(232\) 0 0
\(233\) −3.96265 −0.259602 −0.129801 0.991540i \(-0.541434\pi\)
−0.129801 + 0.991540i \(0.541434\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.32088 0.985762i −0.215715 0.0640321i
\(238\) 0 0
\(239\) 2.83502 + 4.91040i 0.183382 + 0.317627i 0.943030 0.332707i \(-0.107962\pi\)
−0.759648 + 0.650335i \(0.774629\pi\)
\(240\) 0 0
\(241\) 8.31635 14.4043i 0.535703 0.927865i −0.463426 0.886136i \(-0.653380\pi\)
0.999129 0.0417293i \(-0.0132867\pi\)
\(242\) 0 0
\(243\) 14.3847 + 6.00670i 0.922779 + 0.385330i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.542411 + 0.939483i 0.0345128 + 0.0597779i
\(248\) 0 0
\(249\) −19.6514 5.83326i −1.24535 0.369668i
\(250\) 0 0
\(251\) 13.3774 0.844376 0.422188 0.906508i \(-0.361262\pi\)
0.422188 + 0.906508i \(0.361262\pi\)
\(252\) 0 0
\(253\) −9.96265 −0.626347
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.414779 + 0.718418i 0.0258732 + 0.0448137i 0.878672 0.477426i \(-0.158430\pi\)
−0.852799 + 0.522239i \(0.825097\pi\)
\(258\) 0 0
\(259\) 22.9385 39.7307i 1.42533 2.46874i
\(260\) 0 0
\(261\) 1.39104 25.9729i 0.0861033 1.60768i
\(262\) 0 0
\(263\) 6.10896 10.5810i 0.376695 0.652454i −0.613885 0.789396i \(-0.710394\pi\)
0.990579 + 0.136942i \(0.0437273\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.21012 5.05328i −0.0740582 0.309256i
\(268\) 0 0
\(269\) 17.5369 1.06925 0.534623 0.845091i \(-0.320454\pi\)
0.534623 + 0.845091i \(0.320454\pi\)
\(270\) 0 0
\(271\) −15.1222 −0.918606 −0.459303 0.888280i \(-0.651901\pi\)
−0.459303 + 0.888280i \(0.651901\pi\)
\(272\) 0 0
\(273\) −5.73514 23.9490i −0.347106 1.44946i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.85369 + 4.94274i −0.171462 + 0.296981i −0.938931 0.344105i \(-0.888182\pi\)
0.767469 + 0.641086i \(0.221516\pi\)
\(278\) 0 0
\(279\) 0.735663 + 0.478945i 0.0440430 + 0.0286737i
\(280\) 0 0
\(281\) −3.64631 + 6.31559i −0.217520 + 0.376756i −0.954049 0.299650i \(-0.903130\pi\)
0.736529 + 0.676406i \(0.236464\pi\)
\(282\) 0 0
\(283\) −5.08249 8.80313i −0.302123 0.523292i 0.674494 0.738280i \(-0.264362\pi\)
−0.976617 + 0.214989i \(0.931029\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26.7019 −1.57616
\(288\) 0 0
\(289\) −14.0848 −0.828519
\(290\) 0 0
\(291\) −6.09389 1.80889i −0.357230 0.106039i
\(292\) 0 0
\(293\) 6.52374 + 11.2994i 0.381121 + 0.660121i 0.991223 0.132202i \(-0.0422049\pi\)
−0.610102 + 0.792323i \(0.708872\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −8.72606 + 1.60176i −0.506338 + 0.0929438i
\(298\) 0 0
\(299\) 10.8163 18.7345i 0.625526 1.08344i
\(300\) 0 0
\(301\) 7.10896 + 12.3131i 0.409754 + 0.709714i
\(302\) 0 0
\(303\) −0.547875 0.162630i −0.0314746 0.00934282i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.50506 −0.0858986 −0.0429493 0.999077i \(-0.513675\pi\)
−0.0429493 + 0.999077i \(0.513675\pi\)
\(308\) 0 0
\(309\) 3.92478 3.72020i 0.223273 0.211635i
\(310\) 0 0
\(311\) 2.72606 + 4.72168i 0.154581 + 0.267742i 0.932906 0.360119i \(-0.117264\pi\)
−0.778325 + 0.627861i \(0.783931\pi\)
\(312\) 0 0
\(313\) −5.27394 + 9.13473i −0.298101 + 0.516325i −0.975701 0.219105i \(-0.929686\pi\)
0.677601 + 0.735430i \(0.263020\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.6887 21.9775i 0.712669 1.23438i −0.251182 0.967940i \(-0.580819\pi\)
0.963852 0.266440i \(-0.0858473\pi\)
\(318\) 0 0
\(319\) 7.40157 + 12.8199i 0.414408 + 0.717776i
\(320\) 0 0
\(321\) 6.01827 + 25.1314i 0.335907 + 1.40270i
\(322\) 0 0
\(323\) −0.499600 −0.0277985
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.70559 + 11.2981i 0.149619 + 0.624786i
\(328\) 0 0
\(329\) 3.59029 + 6.21856i 0.197939 + 0.342840i
\(330\) 0 0
\(331\) 15.5424 26.9202i 0.854288 1.47967i −0.0230157 0.999735i \(-0.507327\pi\)
0.877304 0.479935i \(-0.159340\pi\)
\(332\) 0 0
\(333\) 31.9951 16.2561i 1.75332 0.890830i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5.12763 + 8.88132i 0.279320 + 0.483796i 0.971216 0.238201i \(-0.0765577\pi\)
−0.691896 + 0.721997i \(0.743224\pi\)
\(338\) 0 0
\(339\) −7.12763 + 6.75611i −0.387120 + 0.366942i
\(340\) 0 0
\(341\) −0.499600 −0.0270549
\(342\) 0 0
\(343\) 2.71285 0.146480
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.52374 6.10329i −0.189164 0.327642i 0.755808 0.654794i \(-0.227244\pi\)
−0.944972 + 0.327152i \(0.893911\pi\)
\(348\) 0 0
\(349\) −14.5848 + 25.2617i −0.780708 + 1.35223i 0.150822 + 0.988561i \(0.451808\pi\)
−0.931530 + 0.363664i \(0.881526\pi\)
\(350\) 0 0
\(351\) 6.46173 18.1481i 0.344901 0.968675i
\(352\) 0 0
\(353\) −12.0000 + 20.7846i −0.638696 + 1.10625i 0.347024 + 0.937856i \(0.387192\pi\)
−0.985719 + 0.168397i \(0.946141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.8724 + 3.22732i 0.575427 + 0.170808i
\(358\) 0 0
\(359\) −28.7922 −1.51959 −0.759797 0.650160i \(-0.774702\pi\)
−0.759797 + 0.650160i \(0.774702\pi\)
\(360\) 0 0
\(361\) −18.9144 −0.995494
\(362\) 0 0
\(363\) −10.1632 + 9.63343i −0.533428 + 0.505624i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.52374 + 9.56739i −0.288337 + 0.499414i −0.973413 0.229058i \(-0.926436\pi\)
0.685076 + 0.728471i \(0.259769\pi\)
\(368\) 0 0
\(369\) −17.5051 11.3965i −0.911277 0.593277i
\(370\) 0 0
\(371\) −22.3774 + 38.7588i −1.16178 + 2.01226i
\(372\) 0 0
\(373\) −7.83502 13.5707i −0.405682 0.702662i 0.588719 0.808338i \(-0.299633\pi\)
−0.994401 + 0.105676i \(0.966299\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −32.1432 −1.65546
\(378\) 0 0
\(379\) −6.58522 −0.338260 −0.169130 0.985594i \(-0.554096\pi\)
−0.169130 + 0.985594i \(0.554096\pi\)
\(380\) 0 0
\(381\) 2.23566 + 9.33578i 0.114536 + 0.478286i
\(382\) 0 0
\(383\) −6.10896 10.5810i −0.312153 0.540665i 0.666675 0.745348i \(-0.267717\pi\)
−0.978828 + 0.204683i \(0.934384\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.594822 + 11.1063i −0.0302365 + 0.564562i
\(388\) 0 0
\(389\) −13.8588 + 24.0041i −0.702667 + 1.21705i 0.264860 + 0.964287i \(0.414674\pi\)
−0.967527 + 0.252768i \(0.918659\pi\)
\(390\) 0 0
\(391\) 4.98133 + 8.62791i 0.251917 + 0.436332i
\(392\) 0 0
\(393\) 16.1276 15.2870i 0.813531 0.771127i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 26.5105 1.33053 0.665263 0.746609i \(-0.268320\pi\)
0.665263 + 0.746609i \(0.268320\pi\)
\(398\) 0 0
\(399\) −1.86330 0.553095i −0.0932814 0.0276894i
\(400\) 0 0
\(401\) −8.42024 14.5843i −0.420487 0.728305i 0.575500 0.817802i \(-0.304807\pi\)
−0.995987 + 0.0894970i \(0.971474\pi\)
\(402\) 0 0
\(403\) 0.542411 0.939483i 0.0270194 0.0467990i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.2125 + 17.6885i −0.506213 + 0.876786i
\(408\) 0 0
\(409\) −7.54787 13.0733i −0.373218 0.646433i 0.616840 0.787088i \(-0.288412\pi\)
−0.990059 + 0.140655i \(0.955079\pi\)
\(410\) 0 0
\(411\) 15.0848 + 4.47773i 0.744079 + 0.220870i
\(412\) 0 0
\(413\) 44.7549 2.20224
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −5.02827 + 4.76618i −0.246236 + 0.233401i
\(418\) 0 0
\(419\) 1.18365 + 2.05015i 0.0578252 + 0.100156i 0.893489 0.449085i \(-0.148250\pi\)
−0.835664 + 0.549241i \(0.814917\pi\)
\(420\) 0 0
\(421\) −4.96265 + 8.59557i −0.241865 + 0.418922i −0.961246 0.275694i \(-0.911092\pi\)
0.719381 + 0.694616i \(0.244426\pi\)
\(422\) 0 0
\(423\) −0.300407 + 5.60907i −0.0146063 + 0.272722i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −28.6910 49.6944i −1.38846 2.40488i
\(428\) 0 0
\(429\) 2.55334 + 10.6623i 0.123276 + 0.514783i
\(430\) 0 0
\(431\) −13.9253 −0.670758 −0.335379 0.942083i \(-0.608864\pi\)
−0.335379 + 0.942083i \(0.608864\pi\)
\(432\) 0 0
\(433\) 2.29261 0.110176 0.0550879 0.998482i \(-0.482456\pi\)
0.0550879 + 0.998482i \(0.482456\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.853695 1.47864i −0.0408378 0.0707331i
\(438\) 0 0
\(439\) −12.5051 + 21.6594i −0.596834 + 1.03375i 0.396451 + 0.918056i \(0.370242\pi\)
−0.993285 + 0.115691i \(0.963092\pi\)
\(440\) 0 0
\(441\) 19.3774 + 12.6155i 0.922735 + 0.600736i
\(442\) 0 0
\(443\) −9.93618 + 17.2100i −0.472082 + 0.817671i −0.999490 0.0319419i \(-0.989831\pi\)
0.527407 + 0.849613i \(0.323164\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −10.2101 + 9.67793i −0.482922 + 0.457750i
\(448\) 0 0
\(449\) 32.2553 1.52222 0.761110 0.648623i \(-0.224655\pi\)
0.761110 + 0.648623i \(0.224655\pi\)
\(450\) 0 0
\(451\) 11.8880 0.559782
\(452\) 0 0
\(453\) −34.9481 10.3739i −1.64201 0.487408i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.94398 17.2235i 0.465160 0.805680i −0.534049 0.845454i \(-0.679330\pi\)
0.999209 + 0.0397732i \(0.0126635\pi\)
\(458\) 0 0
\(459\) 5.75020 + 6.75611i 0.268396 + 0.315348i
\(460\) 0 0
\(461\) 10.8829 18.8497i 0.506867 0.877919i −0.493101 0.869972i \(-0.664137\pi\)
0.999968 0.00794757i \(-0.00252982\pi\)
\(462\) 0 0
\(463\) 8.98133 + 15.5561i 0.417398 + 0.722954i 0.995677 0.0928850i \(-0.0296089\pi\)
−0.578279 + 0.815839i \(0.696276\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.0475 −0.881412 −0.440706 0.897651i \(-0.645272\pi\)
−0.440706 + 0.897651i \(0.645272\pi\)
\(468\) 0 0
\(469\) −36.5953 −1.68982
\(470\) 0 0
\(471\) 0.320884 0.304159i 0.0147856 0.0140149i
\(472\) 0 0
\(473\) −3.16498 5.48190i −0.145526 0.252058i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −31.2125 + 15.8585i −1.42912 + 0.726111i
\(478\) 0 0
\(479\) −10.3774 + 17.9742i −0.474157 + 0.821264i −0.999562 0.0295882i \(-0.990580\pi\)
0.525405 + 0.850852i \(0.323914\pi\)
\(480\) 0 0
\(481\) −22.1751 38.4084i −1.01110 1.75127i
\(482\) 0 0
\(483\) 9.02647 + 37.6931i 0.410719 + 1.71510i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4.86690 −0.220540 −0.110270 0.993902i \(-0.535172\pi\)
−0.110270 + 0.993902i \(0.535172\pi\)
\(488\) 0 0
\(489\) 4.72245 + 19.7202i 0.213557 + 0.891779i
\(490\) 0 0
\(491\) −19.1276 33.1300i −0.863218 1.49514i −0.868806 0.495153i \(-0.835112\pi\)
0.00558786 0.999984i \(-0.498221\pi\)
\(492\) 0 0
\(493\) 7.40157 12.8199i 0.333350 0.577379i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −30.6086 + 53.0156i −1.37298 + 2.37807i
\(498\) 0 0
\(499\) 13.4202 + 23.2445i 0.600773 + 1.04057i 0.992704 + 0.120574i \(0.0384736\pi\)
−0.391932 + 0.919994i \(0.628193\pi\)
\(500\) 0 0
\(501\) −20.2735 + 19.2168i −0.905755 + 0.858543i
\(502\) 0 0
\(503\) 18.8825 0.841929 0.420964 0.907077i \(-0.361692\pi\)
0.420964 + 0.907077i \(0.361692\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.23659 0.367066i −0.0549189 0.0163020i
\(508\) 0 0
\(509\) −16.5848 28.7258i −0.735109 1.27325i −0.954675 0.297649i \(-0.903797\pi\)
0.219566 0.975598i \(-0.429536\pi\)
\(510\) 0 0
\(511\) 15.3401 26.5698i 0.678605 1.17538i
\(512\) 0 0
\(513\) −0.985463 1.15786i −0.0435093 0.0511206i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.59843 2.76856i −0.0702989 0.121761i
\(518\) 0 0
\(519\) −14.2553 4.23149i −0.625737 0.185742i
\(520\) 0 0
\(521\) −38.0101 −1.66525 −0.832627 0.553834i \(-0.813164\pi\)
−0.832627 + 0.553834i \(0.813164\pi\)
\(522\) 0 0
\(523\) 37.4677 1.63835 0.819174 0.573544i \(-0.194432\pi\)
0.819174 + 0.573544i \(0.194432\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.249800 + 0.432667i 0.0108815 + 0.0188473i
\(528\) 0 0
\(529\) −5.52374 + 9.56739i −0.240163 + 0.415974i
\(530\) 0 0
\(531\) 29.3401 + 19.1015i 1.27325 + 0.828936i
\(532\) 0 0
\(533\) −12.9066 + 22.3549i −0.559048 + 0.968300i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.97586 12.4267i −0.128418 0.536253i
\(538\) 0 0
\(539\) −13.1595 −0.566820
\(540\) 0 0
\(541\) 31.7549 1.36525 0.682624 0.730770i \(-0.260839\pi\)
0.682624 + 0.730770i \(0.260839\pi\)
\(542\) 0 0
\(543\) 7.05888 + 29.4768i 0.302926 + 1.26497i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.75253 11.6957i 0.288717 0.500073i −0.684786 0.728744i \(-0.740105\pi\)
0.973504 + 0.228671i \(0.0734379\pi\)
\(548\) 0 0
\(549\) 2.40064 44.8237i 0.102457 1.91303i
\(550\) 0 0
\(551\) −1.26847 + 2.19706i −0.0540388 + 0.0935979i
\(552\) 0 0
\(553\) −3.83502 6.64245i −0.163082 0.282466i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.00000 −0.254228 −0.127114 0.991888i \(-0.540571\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(558\) 0 0
\(559\) 13.7447 0.581340
\(560\) 0 0
\(561\) −4.84049 1.43684i −0.204365 0.0606632i
\(562\) 0 0
\(563\) −15.6062 27.0308i −0.657724 1.13921i −0.981203 0.192976i \(-0.938186\pi\)
0.323479 0.946235i \(-0.395147\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 13.9663 + 31.5633i 0.586528 + 1.32553i
\(568\) 0 0
\(569\) 6.41478 11.1107i 0.268922 0.465786i −0.699662 0.714474i \(-0.746666\pi\)
0.968584 + 0.248688i \(0.0799994\pi\)
\(570\) 0 0
\(571\) 7.67004 + 13.2849i 0.320981 + 0.555956i 0.980691 0.195565i \(-0.0626540\pi\)
−0.659709 + 0.751521i \(0.729321\pi\)
\(572\) 0 0
\(573\) −10.8724 3.22732i −0.454200 0.134823i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −33.3292 −1.38751 −0.693755 0.720211i \(-0.744045\pi\)
−0.693755 + 0.720211i \(0.744045\pi\)
\(578\) 0 0
\(579\) −8.95305 + 8.48638i −0.372076 + 0.352682i
\(580\) 0 0
\(581\) −22.6938 39.3068i −0.941497 1.63072i
\(582\) 0 0
\(583\) 9.96265 17.2558i 0.412611 0.714663i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.7525 35.9444i 0.856549 1.48359i −0.0186522 0.999826i \(-0.505938\pi\)
0.875201 0.483760i \(-0.160729\pi\)
\(588\) 0 0
\(589\) −0.0428105 0.0741499i −0.00176398 0.00305530i
\(590\) 0 0
\(591\) 7.12763 + 29.7639i 0.293192 + 1.22432i
\(592\) 0 0
\(593\) −17.0584 −0.700505 −0.350252 0.936655i \(-0.613904\pi\)
−0.350252 + 0.936655i \(0.613904\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.69232 + 19.5944i 0.192044 + 0.801946i
\(598\) 0 0
\(599\) −12.9627 22.4520i −0.529640 0.917363i −0.999402 0.0345700i \(-0.988994\pi\)
0.469763 0.882793i \(-0.344340\pi\)
\(600\) 0 0
\(601\) 5.54787 9.60920i 0.226303 0.391967i −0.730407 0.683012i \(-0.760670\pi\)
0.956709 + 0.291045i \(0.0940029\pi\)
\(602\) 0 0
\(603\) −23.9909 15.6190i −0.976986 0.636056i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.1914 + 22.8483i 0.535424 + 0.927382i 0.999143 + 0.0413995i \(0.0131816\pi\)
−0.463718 + 0.885983i \(0.653485\pi\)
\(608\) 0 0
\(609\) 41.7973 39.6186i 1.69371 1.60543i
\(610\) 0 0
\(611\) 6.94160 0.280827
\(612\) 0 0
\(613\) −2.87783 −0.116235 −0.0581173 0.998310i \(-0.518510\pi\)
−0.0581173 + 0.998310i \(0.518510\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.42024 9.38814i −0.218211 0.377952i 0.736050 0.676927i \(-0.236689\pi\)
−0.954261 + 0.298975i \(0.903355\pi\)
\(618\) 0 0
\(619\) −4.43892 + 7.68843i −0.178415 + 0.309024i −0.941338 0.337466i \(-0.890430\pi\)
0.762923 + 0.646490i \(0.223764\pi\)
\(620\) 0 0
\(621\) −10.1700 + 28.5631i −0.408110 + 1.14620i
\(622\) 0 0
\(623\) 5.75253 9.96368i 0.230470 0.399186i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.829557 + 0.246243i 0.0331293 + 0.00983401i
\(628\) 0 0
\(629\) 20.4249 0.814394
\(630\) 0 0
\(631\) 14.3300 0.570467 0.285233 0.958458i \(-0.407929\pi\)
0.285233 + 0.958458i \(0.407929\pi\)
\(632\) 0 0
\(633\) 7.08068 6.71161i 0.281432 0.266763i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 14.2871 24.7461i 0.566077 0.980475i
\(638\) 0 0
\(639\) −42.6934 + 21.6917i −1.68892 + 0.858112i
\(640\) 0 0
\(641\) −23.0237 + 39.8783i −0.909383 + 1.57510i −0.0944596 + 0.995529i \(0.530112\pi\)
−0.814923 + 0.579569i \(0.803221\pi\)
\(642\) 0 0
\(643\) 1.77121 + 3.06782i 0.0698495 + 0.120983i 0.898835 0.438287i \(-0.144415\pi\)
−0.828985 + 0.559270i \(0.811081\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.1276 −0.634043 −0.317021 0.948418i \(-0.602683\pi\)
−0.317021 + 0.948418i \(0.602683\pi\)
\(648\) 0 0
\(649\) −19.9253 −0.782137
\(650\) 0 0
\(651\) 0.452653 + 1.89021i 0.0177409 + 0.0740831i
\(652\) 0 0
\(653\) −12.7735 22.1244i −0.499867 0.865795i 0.500133 0.865949i \(-0.333285\pi\)
−1.00000 0.000153387i \(0.999951\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 21.3966 10.8713i 0.834762 0.424128i
\(658\) 0 0
\(659\) 18.2498 31.6096i 0.710911 1.23133i −0.253604 0.967308i \(-0.581616\pi\)
0.964515 0.264026i \(-0.0850506\pi\)
\(660\) 0 0
\(661\) 3.84049 + 6.65192i 0.149378 + 0.258730i 0.930998 0.365025i \(-0.118940\pi\)
−0.781620 + 0.623755i \(0.785606\pi\)
\(662\) 0 0
\(663\) 7.95719 7.54243i 0.309032 0.292924i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 50.5899 1.95885
\(668\) 0 0
\(669\) −13.4955 4.00595i −0.521765 0.154879i
\(670\) 0 0
\(671\) 12.7735 + 22.1244i 0.493117 + 0.854104i
\(672\) 0 0
\(673\) 5.01867 8.69260i 0.193456 0.335075i −0.752938 0.658092i \(-0.771364\pi\)
0.946393 + 0.323017i \(0.104697\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.7261 + 25.5063i −0.565969 + 0.980286i 0.430990 + 0.902357i \(0.358164\pi\)
−0.996959 + 0.0779297i \(0.975169\pi\)
\(678\) 0 0
\(679\) −7.03735 12.1890i −0.270069 0.467772i
\(680\) 0 0
\(681\) 16.5424 + 4.91040i 0.633907 + 0.188167i
\(682\) 0 0
\(683\) 24.2179 0.926673 0.463336 0.886182i \(-0.346652\pi\)
0.463336 + 0.886182i \(0.346652\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.57795 1.49570i 0.0602027 0.0570646i
\(688\) 0 0
\(689\) 21.6327 + 37.4689i 0.824140 + 1.42745i
\(690\) 0 0
\(691\) −0.122168 + 0.211601i −0.00464749 + 0.00804969i −0.868340 0.495970i \(-0.834813\pi\)
0.863692 + 0.504019i \(0.168146\pi\)
\(692\) 0 0
\(693\) −16.4623 10.7176i −0.625349 0.407127i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −5.94398 10.2953i −0.225144 0.389961i
\(698\) 0 0
\(699\) −1.59843 6.67479i −0.0604582 0.252464i
\(700\) 0 0
\(701\) −7.79221 −0.294308 −0.147154 0.989114i \(-0.547011\pi\)
−0.147154 + 0.989114i \(0.547011\pi\)
\(702\) 0 0
\(703\) −3.50040 −0.132020
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.632696 1.09586i −0.0237950 0.0412141i
\(708\) 0 0
\(709\) 12.4198 21.5118i 0.466437 0.807893i −0.532828 0.846223i \(-0.678871\pi\)
0.999265 + 0.0383309i \(0.0122041\pi\)
\(710\) 0 0
\(711\) 0.320884 5.99141i 0.0120341 0.224696i
\(712\) 0 0
\(713\) −0.853695 + 1.47864i −0.0319711 + 0.0553756i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.12763 + 6.75611i −0.266186 + 0.252312i
\(718\) 0 0
\(719\) 35.0101 1.30566 0.652829 0.757506i \(-0.273582\pi\)
0.652829 + 0.757506i \(0.273582\pi\)
\(720\) 0 0
\(721\) 11.9736 0.445919
\(722\) 0 0
\(723\) 27.6176 + 8.19794i 1.02711 + 0.304885i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 11.1541 19.3195i 0.413683 0.716520i −0.581606 0.813470i \(-0.697576\pi\)
0.995289 + 0.0969508i \(0.0309089\pi\)
\(728\) 0 0
\(729\) −4.31542 + 26.6529i −0.159830 + 0.987144i
\(730\) 0 0
\(731\) −3.16498 + 5.48190i −0.117061 + 0.202756i
\(732\) 0 0
\(733\) −8.08482 14.0033i −0.298620 0.517224i 0.677201 0.735798i \(-0.263193\pi\)
−0.975820 + 0.218574i \(0.929860\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.2926 0.600146
\(738\) 0 0
\(739\) 38.9354 1.43226 0.716132 0.697965i \(-0.245911\pi\)
0.716132 + 0.697965i \(0.245911\pi\)
\(740\) 0 0
\(741\) −1.36369 + 1.29261i −0.0500966 + 0.0474853i
\(742\) 0 0
\(743\) −2.66771 4.62061i −0.0978688 0.169514i 0.812933 0.582357i \(-0.197869\pi\)
−0.910802 + 0.412843i \(0.864536\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.89884 35.4543i 0.0694748 1.29720i
\(748\) 0 0
\(749\) −28.6090 + 49.5522i −1.04535 + 1.81060i
\(750\) 0 0
\(751\) −17.1035 29.6241i −0.624115 1.08100i −0.988711 0.149834i \(-0.952126\pi\)
0.364596 0.931166i \(-0.381207\pi\)
\(752\) 0 0
\(753\) 5.39611 + 22.5333i 0.196645 + 0.821159i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −0.952525 −0.0346201 −0.0173101 0.999850i \(-0.505510\pi\)
−0.0173101 + 0.999850i \(0.505510\pi\)
\(758\) 0 0
\(759\) −4.01867 16.7813i −0.145869 0.609124i
\(760\) 0 0
\(761\) −8.29767 14.3720i −0.300790 0.520984i 0.675525 0.737337i \(-0.263917\pi\)
−0.976315 + 0.216353i \(0.930584\pi\)
\(762\) 0 0
\(763\) −12.8615 + 22.2768i −0.465617 + 0.806473i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.6327 37.4689i 0.781111 1.35292i
\(768\) 0 0
\(769\) −3.29767 5.71174i −0.118917 0.205971i 0.800422 0.599437i \(-0.204609\pi\)
−0.919339 + 0.393467i \(0.871276\pi\)
\(770\) 0 0
\(771\) −1.04281 + 0.988455i −0.0375559 + 0.0355983i
\(772\) 0 0
\(773\) −18.8296 −0.677252 −0.338626 0.940921i \(-0.609962\pi\)
−0.338626 + 0.940921i \(0.609962\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 76.1762 + 22.6119i 2.73280 + 0.811198i
\(778\) 0 0
\(779\) 1.01867 + 1.76439i 0.0364978 + 0.0632160i
\(780\) 0 0
\(781\) 13.6272 23.6031i 0.487621 0.844584i
\(782\) 0 0
\(783\) 44.3105 8.13368i 1.58353 0.290674i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3.56108 + 6.16798i 0.126939 + 0.219865i 0.922489 0.386023i \(-0.126151\pi\)
−0.795550 + 0.605888i \(0.792818\pi\)
\(788\) 0 0
\(789\) 20.2871 + 6.02198i 0.722242 + 0.214388i
\(790\) 0 0
\(791\) −21.7447 −0.773154
\(792\) 0 0
\(793\) −55.4724 −1.96988
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.3588 42.1906i −0.862832 1.49447i −0.869184 0.494488i \(-0.835356\pi\)
0.00635283 0.999980i \(-0.497978\pi\)
\(798\) 0 0
\(799\) −1.59843 + 2.76856i −0.0565484 + 0.0979447i
\(800\) 0 0
\(801\) 8.02374 4.07672i 0.283505 0.144044i
\(802\) 0 0
\(803\) −6.82956 + 11.8291i −0.241010 + 0.417441i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.07394 + 29.5397i 0.249015 + 1.03985i
\(808\) 0 0
\(809\) 19.1595 0.673613 0.336806 0.941574i \(-0.390653\pi\)
0.336806 + 0.941574i \(0.390653\pi\)
\(810\) 0 0
\(811\) 13.3401 0.468434 0.234217 0.972184i \(-0.424747\pi\)
0.234217 + 0.972184i \(0.424747\pi\)
\(812\) 0 0
\(813\) −6.09989 25.4722i −0.213932 0.893348i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.542411 0.939483i 0.0189766 0.0328684i
\(818\) 0 0
\(819\) 38.0269 19.3208i 1.32877 0.675124i
\(820\) 0 0
\(821\) 0.811284 1.40518i 0.0283140 0.0490413i −0.851521 0.524320i \(-0.824320\pi\)
0.879835 + 0.475279i \(0.157653\pi\)
\(822\) 0 0
\(823\) 13.0265 + 22.5625i 0.454074 + 0.786480i 0.998634 0.0522422i \(-0.0166368\pi\)
−0.544560 + 0.838722i \(0.683303\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −37.4786 −1.30326 −0.651630 0.758537i \(-0.725915\pi\)
−0.651630 + 0.758537i \(0.725915\pi\)
\(828\) 0 0
\(829\) 32.9627 1.14484 0.572420 0.819960i \(-0.306005\pi\)
0.572420 + 0.819960i \(0.306005\pi\)
\(830\) 0 0
\(831\) −9.47679 2.81306i −0.328746 0.0975841i
\(832\) 0 0
\(833\) 6.57976 + 11.3965i 0.227975 + 0.394864i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.510000 + 1.43236i −0.0176282 + 0.0495097i
\(838\) 0 0
\(839\) 6.43892 11.1525i 0.222296 0.385028i −0.733209 0.680004i \(-0.761978\pi\)
0.955505 + 0.294976i \(0.0953115\pi\)
\(840\) 0 0
\(841\) −23.0848 39.9841i −0.796028 1.37876i
\(842\) 0 0
\(843\) −12.1090 3.59439i −0.417055 0.123797i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −31.0055 −1.06536
\(848\) 0 0
\(849\) 12.7781 12.1120i 0.438542 0.415684i
\(850\) 0 0
\(851\) 34.9012 + 60.4506i 1.19640 + 2.07222i
\(852\) 0 0
\(853\) −22.0661 + 38.2197i −0.755531 + 1.30862i 0.189580 + 0.981865i \(0.439287\pi\)
−0.945110 + 0.326752i \(0.894046\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.81635 + 13.5383i −0.267001 + 0.462460i −0.968086 0.250618i \(-0.919366\pi\)
0.701085 + 0.713078i \(0.252699\pi\)
\(858\) 0 0
\(859\) −3.94398 6.83117i −0.134567 0.233077i 0.790865 0.611991i \(-0.209631\pi\)
−0.925432 + 0.378914i \(0.876298\pi\)
\(860\) 0 0
\(861\) −10.7709 44.9774i −0.367070 1.53283i
\(862\) 0 0
\(863\) −9.53148 −0.324455 −0.162228 0.986753i \(-0.551868\pi\)
−0.162228 + 0.986753i \(0.551868\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −5.68145 23.7248i −0.192952 0.805738i
\(868\) 0 0
\(869\) 1.70739 + 2.95729i 0.0579192 + 0.100319i
\(870\) 0 0
\(871\) −17.6887 + 30.6378i −0.599359 + 1.03812i
\(872\) 0 0
\(873\) 0.588830 10.9944i 0.0199289 0.372103i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 18.9759 + 32.8672i 0.640769 + 1.10985i 0.985261 + 0.171056i \(0.0547178\pi\)
−0.344492 + 0.938789i \(0.611949\pi\)
\(878\) 0 0
\(879\) −16.4016 + 15.5467i −0.553211 + 0.524376i
\(880\) 0 0
\(881\) 23.2070 0.781863 0.390932 0.920420i \(-0.372153\pi\)
0.390932 + 0.920420i \(0.372153\pi\)
\(882\) 0 0
\(883\) −30.9572 −1.04179 −0.520896 0.853620i \(-0.674402\pi\)
−0.520896 + 0.853620i \(0.674402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.9385 + 32.8025i 0.635893 + 1.10140i 0.986325 + 0.164811i \(0.0527014\pi\)
−0.350432 + 0.936588i \(0.613965\pi\)
\(888\) 0 0
\(889\) −10.6276 + 18.4076i −0.356439 + 0.617371i
\(890\) 0 0
\(891\) −6.21792 14.0523i −0.208308 0.470770i
\(892\) 0 0
\(893\) 0.273937 0.474473i 0.00916697 0.0158776i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 35.9198 + 10.6623i 1.19933 + 0.356005i
\(898\) 0 0
\(899\) 2.53695 0.0846119
\(900\) 0 0
\(901\) −19.9253 −0.663808
\(902\) 0 0
\(903\) −17.8729 + 16.9413i −0.594773 + 0.563771i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.1914 28.0444i 0.537628 0.931199i −0.461403 0.887191i \(-0.652654\pi\)
0.999031 0.0440087i \(-0.0140129\pi\)
\(908\) 0 0
\(909\) 0.0529391 0.988455i 0.00175588 0.0327850i
\(910\) 0 0
\(911\) 22.6272 39.1915i 0.749674 1.29847i −0.198305 0.980140i \(-0.563544\pi\)
0.947979 0.318333i \(-0.103123\pi\)
\(912\) 0 0
\(913\) 10.1035 + 17.4998i 0.334377 + 0.579158i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 49.2016 1.62478
\(918\) 0 0
\(919\) 21.9253 0.723249 0.361625 0.932324i \(-0.382222\pi\)
0.361625 + 0.932324i \(0.382222\pi\)
\(920\) 0 0
\(921\) −0.607103 2.53517i −0.0200047 0.0835367i
\(922\) 0 0
\(923\) 29.5899 + 51.2512i 0.973963 + 1.68695i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7.84956 + 5.11037i 0.257813 + 0.167846i
\(928\) 0 0
\(929\) 6.63270 11.4882i 0.217612 0.376915i −0.736466 0.676475i \(-0.763507\pi\)
0.954077 + 0.299560i \(0.0968400\pi\)
\(930\) 0 0
\(931\) −1.12763 1.95312i −0.0369566 0.0640108i
\(932\) 0 0
\(933\) −6.85369 + 6.49645i −0.224380 + 0.212684i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 40.4996 1.32306 0.661532 0.749917i \(-0.269907\pi\)
0.661532 + 0.749917i \(0.269907\pi\)
\(938\) 0 0
\(939\) −17.5141 5.19885i −0.571552 0.169658i
\(940\) 0 0
\(941\) −1.33502 2.31232i −0.0435205 0.0753796i 0.843445 0.537216i \(-0.180524\pi\)
−0.886965 + 0.461836i \(0.847191\pi\)
\(942\) 0 0
\(943\) 20.3136 35.1842i 0.661502 1.14576i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.4412 31.9412i 0.599260 1.03795i −0.393670 0.919252i \(-0.628795\pi\)
0.992930 0.118697i \(-0.0378718\pi\)
\(948\) 0 0
\(949\) −14.8296 25.6855i −0.481388 0.833788i
\(950\) 0 0
\(951\) 42.1378 + 12.5081i 1.36641 + 0.405601i
\(952\) 0 0
\(953\) −12.7175 −0.411961 −0.205980 0.978556i \(-0.566038\pi\)
−0.205980 + 0.978556i \(0.566038\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −18.6086 + 17.6386i −0.601529 + 0.570175i
\(958\) 0 0
\(959\) 17.4202 + 30.1727i 0.562529 + 0.974329i
\(960\) 0 0
\(961\) 15.4572 26.7726i 0.498619 0.863633i
\(962\) 0 0
\(963\) −39.9043 + 20.2747i −1.28590 + 0.653342i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 21.1728 + 36.6723i 0.680871 + 1.17930i 0.974716 + 0.223449i \(0.0717317\pi\)
−0.293845 + 0.955853i \(0.594935\pi\)
\(968\) 0 0
\(969\) −0.201526 0.841540i −0.00647394 0.0270341i
\(970\) 0 0
\(971\) 5.38836 0.172921 0.0864604 0.996255i \(-0.472444\pi\)
0.0864604 + 0.996255i \(0.472444\pi\)
\(972\) 0 0
\(973\) −15.3401 −0.491781
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.0661 + 24.3633i 0.450016 + 0.779450i 0.998386 0.0567850i \(-0.0180850\pi\)
−0.548370 + 0.836236i \(0.684752\pi\)
\(978\) 0 0
\(979\) −2.56108 + 4.43593i −0.0818526 + 0.141773i
\(980\) 0 0
\(981\) −17.9394 + 9.11471i −0.572762 + 0.291010i
\(982\) 0 0
\(983\) −12.8802 + 22.3091i −0.410813 + 0.711550i −0.994979 0.100085i \(-0.968089\pi\)
0.584165 + 0.811635i \(0.301422\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −9.02647 + 8.55597i −0.287316 + 0.272340i
\(988\) 0 0
\(989\) −21.6327 −0.687880
\(990\) 0 0
\(991\) 23.0848 0.733314 0.366657 0.930356i \(-0.380502\pi\)
0.366657 + 0.930356i \(0.380502\pi\)
\(992\) 0 0
\(993\) 51.6146 + 15.3211i 1.63794 + 0.486201i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −16.4202 + 28.4407i −0.520034 + 0.900726i 0.479694 + 0.877436i \(0.340748\pi\)
−0.999729 + 0.0232902i \(0.992586\pi\)
\(998\) 0 0
\(999\) 40.2882 + 47.3360i 1.27466 + 1.49765i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.i.c.601.2 6
3.2 odd 2 2700.2.i.c.1801.1 6
5.2 odd 4 900.2.s.c.349.6 12
5.3 odd 4 900.2.s.c.349.1 12
5.4 even 2 180.2.i.b.61.2 6
9.2 odd 6 8100.2.a.u.1.3 3
9.4 even 3 inner 900.2.i.c.301.2 6
9.5 odd 6 2700.2.i.c.901.1 6
9.7 even 3 8100.2.a.v.1.3 3
15.2 even 4 2700.2.s.c.2449.2 12
15.8 even 4 2700.2.s.c.2449.5 12
15.14 odd 2 540.2.i.b.181.3 6
20.19 odd 2 720.2.q.k.241.2 6
45.2 even 12 8100.2.d.o.649.5 6
45.4 even 6 180.2.i.b.121.2 yes 6
45.7 odd 12 8100.2.d.p.649.5 6
45.13 odd 12 900.2.s.c.49.6 12
45.14 odd 6 540.2.i.b.361.3 6
45.22 odd 12 900.2.s.c.49.1 12
45.23 even 12 2700.2.s.c.1549.2 12
45.29 odd 6 1620.2.a.j.1.1 3
45.32 even 12 2700.2.s.c.1549.5 12
45.34 even 6 1620.2.a.i.1.1 3
45.38 even 12 8100.2.d.o.649.2 6
45.43 odd 12 8100.2.d.p.649.2 6
60.59 even 2 2160.2.q.i.721.1 6
180.59 even 6 2160.2.q.i.1441.1 6
180.79 odd 6 6480.2.a.bt.1.3 3
180.119 even 6 6480.2.a.bw.1.3 3
180.139 odd 6 720.2.q.k.481.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.2 6 5.4 even 2
180.2.i.b.121.2 yes 6 45.4 even 6
540.2.i.b.181.3 6 15.14 odd 2
540.2.i.b.361.3 6 45.14 odd 6
720.2.q.k.241.2 6 20.19 odd 2
720.2.q.k.481.2 6 180.139 odd 6
900.2.i.c.301.2 6 9.4 even 3 inner
900.2.i.c.601.2 6 1.1 even 1 trivial
900.2.s.c.49.1 12 45.22 odd 12
900.2.s.c.49.6 12 45.13 odd 12
900.2.s.c.349.1 12 5.3 odd 4
900.2.s.c.349.6 12 5.2 odd 4
1620.2.a.i.1.1 3 45.34 even 6
1620.2.a.j.1.1 3 45.29 odd 6
2160.2.q.i.721.1 6 60.59 even 2
2160.2.q.i.1441.1 6 180.59 even 6
2700.2.i.c.901.1 6 9.5 odd 6
2700.2.i.c.1801.1 6 3.2 odd 2
2700.2.s.c.1549.2 12 45.23 even 12
2700.2.s.c.1549.5 12 45.32 even 12
2700.2.s.c.2449.2 12 15.2 even 4
2700.2.s.c.2449.5 12 15.8 even 4
6480.2.a.bt.1.3 3 180.79 odd 6
6480.2.a.bw.1.3 3 180.119 even 6
8100.2.a.u.1.3 3 9.2 odd 6
8100.2.a.v.1.3 3 9.7 even 3
8100.2.d.o.649.2 6 45.38 even 12
8100.2.d.o.649.5 6 45.2 even 12
8100.2.d.p.649.2 6 45.43 odd 12
8100.2.d.p.649.5 6 45.7 odd 12