Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8100,2,Mod(649,8100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8100.649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8100.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(64.6788256372\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.0.5089536.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{3}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 180) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.5 | ||
Root | \(1.66044 + 1.66044i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8100.649 |
Dual form | 8100.2.d.o.649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8100\mathbb{Z}\right)^\times\).
\(n\) | \(4051\) | \(6401\) | \(7777\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 3.83502i | 1.44950i | 0.689011 | + | 0.724751i | \(0.258045\pi\) | ||||
−0.689011 | + | 0.724751i | \(0.741955\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 1.70739 | 0.514797 | 0.257399 | − | 0.966305i | \(-0.417135\pi\) | ||||
0.257399 | + | 0.966305i | \(0.417135\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 3.70739i | 1.02824i | 0.857717 | + | 0.514122i | \(0.171882\pi\) | ||||
−0.857717 | + | 0.514122i | \(0.828118\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 1.70739i | 0.414103i | 0.978330 | + | 0.207051i | \(0.0663867\pi\) | ||||
−0.978330 | + | 0.207051i | \(0.933613\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −0.292611 | −0.0671295 | −0.0335647 | − | 0.999437i | \(-0.510686\pi\) | ||||
−0.0335647 | + | 0.999437i | \(0.510686\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 5.83502i | 1.21669i | 0.793674 | + | 0.608343i | \(0.208165\pi\) | ||||
−0.793674 | + | 0.608343i | \(0.791835\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 8.67004 | 1.60999 | 0.804993 | − | 0.593284i | \(-0.202169\pi\) | ||||
0.804993 | + | 0.593284i | \(0.202169\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0.292611 | 0.0525544 | 0.0262772 | − | 0.999655i | \(-0.491635\pi\) | ||||
0.0262772 | + | 0.999655i | \(0.491635\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 11.9627i | − 1.96665i | −0.181862 | − | 0.983324i | \(-0.558212\pi\) | ||||
0.181862 | − | 0.983324i | \(-0.441788\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.96265 | 1.08738 | 0.543692 | − | 0.839285i | \(-0.317026\pi\) | ||||
0.543692 | + | 0.839285i | \(0.317026\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 3.70739i | 0.565372i | 0.959213 | + | 0.282686i | \(0.0912254\pi\) | ||||
−0.959213 | + | 0.282686i | \(0.908775\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 1.87237i | 0.273113i | 0.990632 | + | 0.136556i | \(0.0436035\pi\) | ||||
−0.990632 | + | 0.136556i | \(0.956396\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.70739 | −1.10106 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 11.6700i | 1.60300i | 0.597992 | + | 0.801502i | \(0.295965\pi\) | ||||
−0.597992 | + | 0.801502i | \(0.704035\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 11.6700 | 1.51931 | 0.759655 | − | 0.650326i | \(-0.225368\pi\) | ||||
0.759655 | + | 0.650326i | \(0.225368\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 14.9627 | 1.91577 | 0.957886 | − | 0.287150i | \(-0.0927077\pi\) | ||||
0.957886 | + | 0.287150i | \(0.0927077\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 9.54241i | − 1.16579i | −0.812547 | − | 0.582896i | \(-0.801920\pi\) | ||||
0.812547 | − | 0.582896i | \(-0.198080\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −15.9627 | −1.89442 | −0.947209 | − | 0.320616i | \(-0.896110\pi\) | ||||
−0.947209 | + | 0.320616i | \(0.896110\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 8.00000i | 0.936329i | 0.883641 | + | 0.468165i | \(0.155085\pi\) | ||||
−0.883641 | + | 0.468165i | \(0.844915\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 6.54787i | 0.746200i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −2.00000 | −0.225018 | −0.112509 | − | 0.993651i | \(-0.535889\pi\) | ||||
−0.112509 | + | 0.993651i | \(0.535889\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 11.8350i | 1.29906i | 0.760335 | + | 0.649531i | \(0.225035\pi\) | ||||
−0.760335 | + | 0.649531i | \(0.774965\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −3.00000 | −0.317999 | −0.159000 | − | 0.987279i | \(-0.550827\pi\) | ||||
−0.159000 | + | 0.987279i | \(0.550827\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −14.2179 | −1.49044 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 3.67004i | 0.372636i | 0.982489 | + | 0.186318i | \(0.0596555\pi\) | ||||
−0.982489 | + | 0.186318i | \(0.940344\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −0.329957 | −0.0328320 | −0.0164160 | − | 0.999865i | \(-0.505226\pi\) | ||||
−0.0164160 | + | 0.999865i | \(0.505226\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 3.12217i | − 0.307636i | −0.988099 | − | 0.153818i | \(-0.950843\pi\) | ||||
0.988099 | − | 0.153818i | \(-0.0491570\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 14.9198i | − 1.44236i | −0.692750 | − | 0.721178i | \(-0.743601\pi\) | ||||
0.692750 | − | 0.721178i | \(-0.256399\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −6.70739 | −0.642451 | −0.321226 | − | 0.947003i | \(-0.604095\pi\) | ||||
−0.321226 | + | 0.947003i | \(0.604095\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 5.67004i | − 0.533393i | −0.963781 | − | 0.266696i | \(-0.914068\pi\) | ||||
0.963781 | − | 0.266696i | \(-0.0859321\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −6.54787 | −0.600243 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −8.08482 | −0.734984 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 5.54241i | 0.491809i | 0.969294 | + | 0.245905i | \(0.0790850\pi\) | ||||
−0.969294 | + | 0.245905i | \(0.920915\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −12.8296 | −1.12092 | −0.560462 | − | 0.828180i | \(-0.689376\pi\) | ||||
−0.560462 | + | 0.828180i | \(0.689376\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 1.12217i | − 0.0973043i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 9.08482i | 0.776169i | 0.921624 | + | 0.388084i | \(0.126863\pi\) | ||||
−0.921624 | + | 0.388084i | \(0.873137\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 4.00000 | 0.339276 | 0.169638 | − | 0.985506i | \(-0.445740\pi\) | ||||
0.169638 | + | 0.985506i | \(0.445740\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 6.32996i | 0.529338i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −8.12217 | −0.665394 | −0.332697 | − | 0.943034i | \(-0.607959\pi\) | ||||
−0.332697 | + | 0.943034i | \(0.607959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 21.0475 | 1.71282 | 0.856410 | − | 0.516297i | \(-0.172690\pi\) | ||||
0.856410 | + | 0.516297i | \(0.172690\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0.255264i | 0.0203723i | 0.999948 | + | 0.0101861i | \(0.00324241\pi\) | ||||
−0.999948 | + | 0.0101861i | \(0.996758\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −22.3774 | −1.76359 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 11.7074i | − 0.916994i | −0.888696 | − | 0.458497i | \(-0.848388\pi\) | ||||
0.888696 | − | 0.458497i | \(-0.151612\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 16.1276i | 1.24799i | 0.781427 | + | 0.623997i | \(0.214492\pi\) | ||||
−0.781427 | + | 0.623997i | \(0.785508\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −0.744736 | −0.0572874 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 8.58522i | 0.652722i | 0.945245 | + | 0.326361i | \(0.105823\pi\) | ||||
−0.945245 | + | 0.326361i | \(0.894177\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −7.37743 | −0.551415 | −0.275708 | − | 0.961242i | \(-0.588912\pi\) | ||||
−0.275708 | + | 0.961242i | \(0.588912\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 17.4996 | 1.30074 | 0.650368 | − | 0.759620i | \(-0.274615\pi\) | ||||
0.650368 | + | 0.759620i | \(0.274615\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 2.91518i | 0.213179i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −6.54787 | −0.473788 | −0.236894 | − | 0.971536i | \(-0.576129\pi\) | ||||
−0.236894 | + | 0.971536i | \(0.576129\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 7.12217i | 0.512665i | 0.966589 | + | 0.256332i | \(0.0825142\pi\) | ||||
−0.966589 | + | 0.256332i | \(0.917486\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 17.6700i | − 1.25894i | −0.777025 | − | 0.629469i | \(-0.783272\pi\) | ||||
0.777025 | − | 0.629469i | \(-0.216728\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −11.6327 | −0.824620 | −0.412310 | − | 0.911044i | \(-0.635278\pi\) | ||||
−0.412310 | + | 0.911044i | \(0.635278\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 33.2498i | 2.33368i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −0.499600 | −0.0345581 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 5.63270 | 0.387771 | 0.193885 | − | 0.981024i | \(-0.437891\pi\) | ||||
0.193885 | + | 0.981024i | \(0.437891\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 1.12217i | 0.0761777i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −6.32996 | −0.425799 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 8.12763i | − 0.544266i | −0.962260 | − | 0.272133i | \(-0.912271\pi\) | ||||
0.962260 | − | 0.272133i | \(-0.0877292\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 9.96265i | 0.661245i | 0.943763 | + | 0.330622i | \(0.107259\pi\) | ||||
−0.943763 | + | 0.330622i | \(0.892741\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −1.25526 | −0.0829502 | −0.0414751 | − | 0.999140i | \(-0.513206\pi\) | ||||
−0.0414751 | + | 0.999140i | \(0.513206\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 3.96265i | − 0.259602i | −0.991540 | − | 0.129801i | \(-0.958566\pi\) | ||||
0.991540 | − | 0.129801i | \(-0.0414339\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −5.67004 | −0.366765 | −0.183382 | − | 0.983042i | \(-0.558705\pi\) | ||||
−0.183382 | + | 0.983042i | \(0.558705\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −16.6327 | −1.07141 | −0.535703 | − | 0.844406i | \(-0.679953\pi\) | ||||
−0.535703 | + | 0.844406i | \(0.679953\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 1.08482i | − 0.0690255i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −13.3774 | −0.844376 | −0.422188 | − | 0.906508i | \(-0.638738\pi\) | ||||
−0.422188 | + | 0.906508i | \(0.638738\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 9.96265i | 0.626347i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 0.829557i | 0.0517464i | 0.999665 | + | 0.0258732i | \(0.00823661\pi\) | ||||
−0.999665 | + | 0.0258732i | \(0.991763\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 45.8770 | 2.85066 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 12.2179i | − 0.753389i | −0.926338 | − | 0.376695i | \(-0.877061\pi\) | ||||
0.926338 | − | 0.376695i | \(-0.122939\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 17.5369 | 1.06925 | 0.534623 | − | 0.845091i | \(-0.320454\pi\) | ||||
0.534623 | + | 0.845091i | \(0.320454\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −15.1222 | −0.918606 | −0.459303 | − | 0.888280i | \(-0.651901\pi\) | ||||
−0.459303 | + | 0.888280i | \(0.651901\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 5.70739i | 0.342924i | 0.985191 | + | 0.171462i | \(0.0548490\pi\) | ||||
−0.985191 | + | 0.171462i | \(0.945151\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −7.29261 | −0.435041 | −0.217520 | − | 0.976056i | \(-0.569797\pi\) | ||||
−0.217520 | + | 0.976056i | \(0.569797\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 10.1650i | − 0.604245i | −0.953269 | − | 0.302123i | \(-0.902305\pi\) | ||||
0.953269 | − | 0.302123i | \(-0.0976952\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 26.7019i | 1.57616i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 14.0848 | 0.828519 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 13.0475i | − 0.762242i | −0.924525 | − | 0.381121i | \(-0.875538\pi\) | ||||
0.924525 | − | 0.381121i | \(-0.124462\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −21.6327 | −1.25105 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −14.2179 | −0.819507 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 1.50506i | − 0.0858986i | −0.999077 | − | 0.0429493i | \(-0.986325\pi\) | ||||
0.999077 | − | 0.0429493i | \(-0.0136754\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 5.45213 | 0.309162 | 0.154581 | − | 0.987980i | \(-0.450597\pi\) | ||||
0.154581 | + | 0.987980i | \(0.450597\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 10.5479i | − 0.596201i | −0.954534 | − | 0.298101i | \(-0.903647\pi\) | ||||
0.954534 | − | 0.298101i | \(-0.0963531\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 25.3774i | 1.42534i | 0.701500 | + | 0.712669i | \(0.252514\pi\) | ||||
−0.701500 | + | 0.712669i | \(0.747486\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 14.8031 | 0.828817 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 0.499600i | − 0.0277985i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −7.18057 | −0.395878 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −31.0848 | −1.70858 | −0.854288 | − | 0.519800i | \(-0.826007\pi\) | ||||
−0.854288 | + | 0.519800i | \(0.826007\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 10.2553i | − 0.558640i | −0.960198 | − | 0.279320i | \(-0.909891\pi\) | ||||
0.960198 | − | 0.279320i | \(-0.0901090\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0.499600 | 0.0270549 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 2.71285i | − 0.146480i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 7.04748i | − 0.378328i | −0.981945 | − | 0.189164i | \(-0.939422\pi\) | ||||
0.981945 | − | 0.189164i | \(-0.0605778\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −29.1696 | −1.56142 | −0.780708 | − | 0.624897i | \(-0.785141\pi\) | ||||
−0.780708 | + | 0.624897i | \(0.785141\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 24.0000i | 1.27739i | 0.769460 | + | 0.638696i | \(0.220526\pi\) | ||||
−0.769460 | + | 0.638696i | \(0.779474\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −28.7922 | −1.51959 | −0.759797 | − | 0.650160i | \(-0.774702\pi\) | ||||
−0.759797 | + | 0.650160i | \(0.774702\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −18.9144 | −0.995494 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 11.0475i | 0.576674i | 0.957529 | + | 0.288337i | \(0.0931023\pi\) | ||||
−0.957529 | + | 0.288337i | \(0.906898\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −44.7549 | −2.32356 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 15.6700i | − 0.811364i | −0.914014 | − | 0.405682i | \(-0.867034\pi\) | ||||
0.914014 | − | 0.405682i | \(-0.132966\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 32.1432i | 1.65546i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 6.58522 | 0.338260 | 0.169130 | − | 0.985594i | \(-0.445904\pi\) | ||||
0.169130 | + | 0.985594i | \(0.445904\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 12.2179i | 0.624306i | 0.950032 | + | 0.312153i | \(0.101050\pi\) | ||||
−0.950032 | + | 0.312153i | \(0.898950\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 27.7175 | 1.40533 | 0.702667 | − | 0.711519i | \(-0.251992\pi\) | ||||
0.702667 | + | 0.711519i | \(0.251992\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −9.96265 | −0.503833 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 26.5105i | 1.33053i | 0.746609 | + | 0.665263i | \(0.231680\pi\) | ||||
−0.746609 | + | 0.665263i | \(0.768320\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −16.8405 | −0.840974 | −0.420487 | − | 0.907299i | \(-0.638141\pi\) | ||||
−0.420487 | + | 0.907299i | \(0.638141\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 1.08482i | 0.0540388i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 20.4249i | − 1.01243i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −15.0957 | −0.746437 | −0.373218 | − | 0.927744i | \(-0.621746\pi\) | ||||
−0.373218 | + | 0.927744i | \(0.621746\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 44.7549i | 2.20224i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −2.36730 | −0.115650 | −0.0578252 | − | 0.998327i | \(-0.518417\pi\) | ||||
−0.0578252 | + | 0.998327i | \(0.518417\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 9.92531 | 0.483730 | 0.241865 | − | 0.970310i | \(-0.422241\pi\) | ||||
0.241865 | + | 0.970310i | \(0.422241\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 57.3821i | 2.77691i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 13.9253 | 0.670758 | 0.335379 | − | 0.942083i | \(-0.391136\pi\) | ||||
0.335379 | + | 0.942083i | \(0.391136\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 2.29261i | − 0.110176i | −0.998482 | − | 0.0550879i | \(-0.982456\pi\) | ||||
0.998482 | − | 0.0550879i | \(-0.0175439\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 1.70739i | − 0.0816755i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −25.0101 | −1.19367 | −0.596834 | − | 0.802365i | \(-0.703575\pi\) | ||||
−0.596834 | + | 0.802365i | \(0.703575\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 19.8724i | 0.944165i | 0.881554 | + | 0.472082i | \(0.156498\pi\) | ||||
−0.881554 | + | 0.472082i | \(0.843502\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 32.2553 | 1.52222 | 0.761110 | − | 0.648623i | \(-0.224655\pi\) | ||||
0.761110 | + | 0.648623i | \(0.224655\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 11.8880 | 0.559782 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 19.8880i | − 0.930320i | −0.885227 | − | 0.465160i | \(-0.845997\pi\) | ||||
0.885227 | − | 0.465160i | \(-0.154003\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 21.7658 | 1.01373 | 0.506867 | − | 0.862024i | \(-0.330804\pi\) | ||||
0.506867 | + | 0.862024i | \(0.330804\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 17.9627i | 0.834795i | 0.908724 | + | 0.417398i | \(0.137058\pi\) | ||||
−0.908724 | + | 0.417398i | \(0.862942\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 19.0475i | 0.881412i | 0.897651 | + | 0.440706i | \(0.145272\pi\) | ||||
−0.897651 | + | 0.440706i | \(0.854728\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 36.5953 | 1.68982 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 6.32996i | 0.291052i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 20.7549 | 0.948314 | 0.474157 | − | 0.880440i | \(-0.342753\pi\) | ||||
0.474157 | + | 0.880440i | \(0.342753\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 44.3502 | 2.02220 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 4.86690i | − 0.220540i | −0.993902 | − | 0.110270i | \(-0.964828\pi\) | ||||
0.993902 | − | 0.110270i | \(-0.0351716\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −38.2553 | −1.72644 | −0.863218 | − | 0.504831i | \(-0.831555\pi\) | ||||
−0.863218 | + | 0.504831i | \(0.831555\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 14.8031i | 0.666700i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 61.2171i | − 2.74596i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 26.8405 | 1.20155 | 0.600773 | − | 0.799420i | \(-0.294860\pi\) | ||||
0.600773 | + | 0.799420i | \(0.294860\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 18.8825i | 0.841929i | 0.907077 | + | 0.420964i | \(0.138308\pi\) | ||||
−0.907077 | + | 0.420964i | \(0.861692\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 33.1696 | 1.47022 | 0.735109 | − | 0.677949i | \(-0.237131\pi\) | ||||
0.735109 | + | 0.677949i | \(0.237131\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −30.6802 | −1.35721 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 3.19686i | 0.140598i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 38.0101 | 1.66525 | 0.832627 | − | 0.553834i | \(-0.186836\pi\) | ||||
0.832627 | + | 0.553834i | \(0.186836\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 37.4677i | − 1.63835i | −0.573544 | − | 0.819174i | \(-0.694432\pi\) | ||||
0.573544 | − | 0.819174i | \(-0.305568\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0.499600i | 0.0217629i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −11.0475 | −0.480325 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 25.8133i | 1.11810i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −13.1595 | −0.566820 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 31.7549 | 1.36525 | 0.682624 | − | 0.730770i | \(-0.260839\pi\) | ||||
0.682624 | + | 0.730770i | \(0.260839\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 13.5051i | − 0.577435i | −0.957414 | − | 0.288717i | \(-0.906771\pi\) | ||||
0.957414 | − | 0.288717i | \(-0.0932288\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −2.53695 | −0.108078 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 7.67004i | − 0.326163i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 6.00000i | 0.254228i | 0.991888 | + | 0.127114i | \(0.0405714\pi\) | ||||
−0.991888 | + | 0.127114i | \(0.959429\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −13.7447 | −0.581340 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 31.2125i | 1.31545i | 0.753259 | + | 0.657724i | \(0.228481\pi\) | ||||
−0.753259 | + | 0.657724i | \(0.771519\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −12.8296 | −0.537843 | −0.268922 | − | 0.963162i | \(-0.586667\pi\) | ||||
−0.268922 | + | 0.963162i | \(0.586667\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −15.3401 | −0.641963 | −0.320981 | − | 0.947086i | \(-0.604013\pi\) | ||||
−0.320981 | + | 0.947086i | \(0.604013\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 33.3292i | − 1.38751i | −0.720211 | − | 0.693755i | \(-0.755955\pi\) | ||||
0.720211 | − | 0.693755i | \(-0.244045\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −45.3876 | −1.88299 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 19.9253i | 0.825222i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 41.5051i | 1.71310i | 0.516066 | + | 0.856549i | \(0.327396\pi\) | ||||
−0.516066 | + | 0.856549i | \(0.672604\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −0.0856210 | −0.00352795 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 17.0584i | − 0.700505i | −0.936655 | − | 0.350252i | \(-0.886096\pi\) | ||||
0.936655 | − | 0.350252i | \(-0.113904\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 25.9253 | 1.05928 | 0.529640 | − | 0.848223i | \(-0.322327\pi\) | ||||
0.529640 | + | 0.848223i | \(0.322327\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −11.0957 | −0.452605 | −0.226303 | − | 0.974057i | \(-0.572664\pi\) | ||||
−0.226303 | + | 0.974057i | \(0.572664\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 26.3829i | − 1.07085i | −0.844583 | − | 0.535424i | \(-0.820152\pi\) | ||||
0.844583 | − | 0.535424i | \(-0.179848\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −6.94160 | −0.280827 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 2.87783i | 0.116235i | 0.998310 | + | 0.0581173i | \(0.0185097\pi\) | ||||
−0.998310 | + | 0.0581173i | \(0.981490\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 10.8405i | − 0.436422i | −0.975902 | − | 0.218211i | \(-0.929978\pi\) | ||||
0.975902 | − | 0.218211i | \(-0.0700220\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −8.87783 | −0.356830 | −0.178415 | − | 0.983955i | \(-0.557097\pi\) | ||||
−0.178415 | + | 0.983955i | \(0.557097\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 11.5051i | − 0.460941i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 20.4249 | 0.814394 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 14.3300 | 0.570467 | 0.285233 | − | 0.958458i | \(-0.407929\pi\) | ||||
0.285233 | + | 0.958458i | \(0.407929\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 28.5743i | − 1.13215i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −46.0475 | −1.81877 | −0.909383 | − | 0.415960i | \(-0.863446\pi\) | ||||
−0.909383 | + | 0.415960i | \(0.863446\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 3.54241i | 0.139699i | 0.997558 | + | 0.0698495i | \(0.0222519\pi\) | ||||
−0.997558 | + | 0.0698495i | \(0.977748\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 16.1276i | 0.634043i | 0.948418 | + | 0.317021i | \(0.102683\pi\) | ||||
−0.948418 | + | 0.317021i | \(0.897317\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 19.9253 | 0.782137 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 25.5471i | 0.999734i | 0.866102 | + | 0.499867i | \(0.166618\pi\) | ||||
−0.866102 | + | 0.499867i | \(0.833382\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −36.4996 | −1.42182 | −0.710911 | − | 0.703282i | \(-0.751717\pi\) | ||||
−0.710911 | + | 0.703282i | \(0.751717\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −7.68097 | −0.298755 | −0.149378 | − | 0.988780i | \(-0.547727\pi\) | ||||
−0.149378 | + | 0.988780i | \(0.547727\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 50.5899i | 1.95885i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 25.5471 | 0.986234 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 10.0373i | 0.386911i | 0.981109 | + | 0.193456i | \(0.0619696\pi\) | ||||
−0.981109 | + | 0.193456i | \(0.938030\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 29.4521i | − 1.13194i | −0.824427 | − | 0.565969i | \(-0.808502\pi\) | ||||
0.824427 | − | 0.565969i | \(-0.191498\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −14.0747 | −0.540137 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 24.2179i | 0.926673i | 0.886182 | + | 0.463336i | \(0.153348\pi\) | ||||
−0.886182 | + | 0.463336i | \(0.846652\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −43.2654 | −1.64828 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 0.244336 | 0.00929499 | 0.00464749 | − | 0.999989i | \(-0.498521\pi\) | ||||
0.00464749 | + | 0.999989i | \(0.498521\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 11.8880i | 0.450289i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 7.79221 | 0.294308 | 0.147154 | − | 0.989114i | \(-0.452989\pi\) | ||||
0.147154 | + | 0.989114i | \(0.452989\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 3.50040i | 0.132020i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 1.26539i | − 0.0475900i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 24.8397 | 0.932874 | 0.466437 | − | 0.884554i | \(-0.345537\pi\) | ||||
0.466437 | + | 0.884554i | \(0.345537\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 1.70739i | 0.0639422i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 35.0101 | 1.30566 | 0.652829 | − | 0.757506i | \(-0.273582\pi\) | ||||
0.652829 | + | 0.757506i | \(0.273582\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 11.9736 | 0.445919 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 22.3082i | − 0.827365i | −0.910421 | − | 0.413683i | \(-0.864242\pi\) | ||||
0.910421 | − | 0.413683i | \(-0.135758\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −6.32996 | −0.234122 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 16.1696i | − 0.597239i | −0.954372 | − | 0.298620i | \(-0.903474\pi\) | ||||
0.954372 | − | 0.298620i | \(-0.0965262\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 16.2926i | − 0.600146i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −38.9354 | −1.43226 | −0.716132 | − | 0.697965i | \(-0.754089\pi\) | ||||
−0.716132 | + | 0.697965i | \(0.754089\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 5.33542i | 0.195738i | 0.995199 | + | 0.0978688i | \(0.0312026\pi\) | ||||
−0.995199 | + | 0.0978688i | \(0.968797\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 57.2179 | 2.09070 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 34.2070 | 1.24823 | 0.624115 | − | 0.781332i | \(-0.285460\pi\) | ||||
0.624115 | + | 0.781332i | \(0.285460\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 0.952525i | − 0.0346201i | −0.999850 | − | 0.0173101i | \(-0.994490\pi\) | ||||
0.999850 | − | 0.0173101i | \(-0.00551024\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −16.5953 | −0.601581 | −0.300790 | − | 0.953690i | \(-0.597250\pi\) | ||||
−0.300790 | + | 0.953690i | \(0.597250\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 25.7230i | − 0.931234i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 43.2654i | 1.56222i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −6.59535 | −0.237834 | −0.118917 | − | 0.992904i | \(-0.537942\pi\) | ||||
−0.118917 | + | 0.992904i | \(0.537942\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 18.8296i | − 0.677252i | −0.940921 | − | 0.338626i | \(-0.890038\pi\) | ||||
0.940921 | − | 0.338626i | \(-0.109962\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −2.03735 | −0.0729955 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −27.2545 | −0.975241 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 7.12217i | − 0.253878i | −0.991911 | − | 0.126939i | \(-0.959485\pi\) | ||||
0.991911 | − | 0.126939i | \(-0.0405152\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 21.7447 | 0.773154 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 55.4724i | 1.96988i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 48.7175i | − 1.72566i | −0.505492 | − | 0.862832i | \(-0.668689\pi\) | ||||
0.505492 | − | 0.862832i | \(-0.331311\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −3.19686 | −0.113097 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 13.6591i | 0.482020i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 19.1595 | 0.673613 | 0.336806 | − | 0.941574i | \(-0.390653\pi\) | ||||
0.336806 | + | 0.941574i | \(0.390653\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 13.3401 | 0.468434 | 0.234217 | − | 0.972184i | \(-0.424747\pi\) | ||||
0.234217 | + | 0.972184i | \(0.424747\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 1.08482i | − 0.0379531i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 1.62257 | 0.0566280 | 0.0283140 | − | 0.999599i | \(-0.490986\pi\) | ||||
0.0283140 | + | 0.999599i | \(0.490986\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 26.0529i | 0.908148i | 0.890964 | + | 0.454074i | \(0.150030\pi\) | ||||
−0.890964 | + | 0.454074i | \(0.849970\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 37.4786i | 1.30326i | 0.758537 | + | 0.651630i | \(0.225915\pi\) | ||||
−0.758537 | + | 0.651630i | \(0.774085\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −32.9627 | −1.14484 | −0.572420 | − | 0.819960i | \(-0.693995\pi\) | ||||
−0.572420 | + | 0.819960i | \(0.693995\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 13.1595i | − 0.455950i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −12.8778 | −0.444592 | −0.222296 | − | 0.974979i | \(-0.571355\pi\) | ||||
−0.222296 | + | 0.974979i | \(0.571355\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 46.1696 | 1.59206 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 31.0055i | − 1.06536i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 69.8023 | 2.39279 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 44.1323i | − 1.51106i | −0.655113 | − | 0.755531i | \(-0.727379\pi\) | ||||
0.655113 | − | 0.755531i | \(-0.272621\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 15.6327i | − 0.534003i | −0.963696 | − | 0.267001i | \(-0.913967\pi\) | ||||
0.963696 | − | 0.267001i | \(-0.0860328\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −7.88796 | −0.269134 | −0.134567 | − | 0.990905i | \(-0.542964\pi\) | ||||
−0.134567 | + | 0.990905i | \(0.542964\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 9.53148i | − 0.324455i | −0.986753 | − | 0.162228i | \(-0.948132\pi\) | ||||
0.986753 | − | 0.162228i | \(-0.0518679\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −3.41478 | −0.115838 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 35.3774 | 1.19872 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 37.9517i | − 1.28154i | −0.767733 | − | 0.640769i | \(-0.778615\pi\) | ||||
0.767733 | − | 0.640769i | \(-0.221385\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −23.2070 | −0.781863 | −0.390932 | − | 0.920420i | \(-0.627847\pi\) | ||||
−0.390932 | + | 0.920420i | \(0.627847\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 30.9572i | 1.04179i | 0.853620 | + | 0.520896i | \(0.174402\pi\) | ||||
−0.853620 | + | 0.520896i | \(0.825598\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 37.8770i | 1.27179i | 0.771777 | + | 0.635893i | \(0.219368\pi\) | ||||
−0.771777 | + | 0.635893i | \(0.780632\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −21.2553 | −0.712879 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 0.547875i | − 0.0183339i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 2.53695 | 0.0846119 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −19.9253 | −0.663808 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 32.3829i | − 1.07526i | −0.843182 | − | 0.537628i | \(-0.819320\pi\) | ||||
0.843182 | − | 0.537628i | \(-0.180680\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 45.2545 | 1.49935 | 0.749674 | − | 0.661808i | \(-0.230210\pi\) | ||||
0.749674 | + | 0.661808i | \(0.230210\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 20.2070i | 0.668754i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 49.2016i | − 1.62478i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −21.9253 | −0.723249 | −0.361625 | − | 0.932324i | \(-0.617778\pi\) | ||||
−0.361625 | + | 0.932324i | \(0.617778\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 59.1798i | − 1.94793i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −13.2654 | −0.435223 | −0.217612 | − | 0.976035i | \(-0.569827\pi\) | ||||
−0.217612 | + | 0.976035i | \(0.569827\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2.25526 | 0.0739133 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 40.4996i | 1.32306i | 0.749917 | + | 0.661532i | \(0.230093\pi\) | ||||
−0.749917 | + | 0.661532i | \(0.769907\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −2.67004 | −0.0870409 | −0.0435205 | − | 0.999053i | \(-0.513857\pi\) | ||||
−0.0435205 | + | 0.999053i | \(0.513857\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 40.6272i | 1.32300i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 36.8825i | 1.19852i | 0.800554 | + | 0.599260i | \(0.204538\pi\) | ||||
−0.800554 | + | 0.599260i | \(0.795462\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −29.6591 | −0.962776 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 12.7175i | − 0.411961i | −0.978556 | − | 0.205980i | \(-0.933962\pi\) | ||||
0.978556 | − | 0.205980i | \(-0.0660383\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −34.8405 | −1.12506 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.9144 | −0.997238 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 42.3455i | − 1.36174i | −0.732404 | − | 0.680871i | \(-0.761602\pi\) | ||||
0.732404 | − | 0.680871i | \(-0.238398\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −5.38836 | −0.172921 | −0.0864604 | − | 0.996255i | \(-0.527556\pi\) | ||||
−0.0864604 | + | 0.996255i | \(0.527556\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 15.3401i | 0.491781i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 28.1323i | 0.900032i | 0.893021 | + | 0.450016i | \(0.148582\pi\) | ||||
−0.893021 | + | 0.450016i | \(0.851418\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −5.12217 | −0.163705 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 25.7603i | 0.821627i | 0.911719 | + | 0.410813i | \(0.134755\pi\) | ||||
−0.911719 | + | 0.410813i | \(0.865245\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −21.6327 | −0.687880 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 23.0848 | 0.733314 | 0.366657 | − | 0.930356i | \(-0.380502\pi\) | ||||
0.366657 | + | 0.930356i | \(0.380502\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 32.8405i | 1.04007i | 0.854145 | + | 0.520034i | \(0.174081\pi\) | ||||
−0.854145 | + | 0.520034i | \(0.825919\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))