Properties

Label 8100.2.d.o.649.5
Level $8100$
Weight $2$
Character 8100.649
Analytic conductor $64.679$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8100,2,Mod(649,8100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8100.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.6788256372\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.5
Root \(1.66044 + 1.66044i\) of defining polynomial
Character \(\chi\) \(=\) 8100.649
Dual form 8100.2.d.o.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.83502i q^{7} +1.70739 q^{11} +3.70739i q^{13} +1.70739i q^{17} -0.292611 q^{19} +5.83502i q^{23} +8.67004 q^{29} +0.292611 q^{31} -11.9627i q^{37} +6.96265 q^{41} +3.70739i q^{43} +1.87237i q^{47} -7.70739 q^{49} +11.6700i q^{53} +11.6700 q^{59} +14.9627 q^{61} -9.54241i q^{67} -15.9627 q^{71} +8.00000i q^{73} +6.54787i q^{77} -2.00000 q^{79} +11.8350i q^{83} -3.00000 q^{89} -14.2179 q^{91} +3.67004i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{19} - 6 q^{29} + 12 q^{31} - 6 q^{41} - 36 q^{49} + 12 q^{59} + 42 q^{61} - 48 q^{71} - 12 q^{79} - 18 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8100\mathbb{Z}\right)^\times\).

\(n\) \(4051\) \(6401\) \(7777\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.83502i 1.44950i 0.689011 + 0.724751i \(0.258045\pi\)
−0.689011 + 0.724751i \(0.741955\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.70739 0.514797 0.257399 0.966305i \(-0.417135\pi\)
0.257399 + 0.966305i \(0.417135\pi\)
\(12\) 0 0
\(13\) 3.70739i 1.02824i 0.857717 + 0.514122i \(0.171882\pi\)
−0.857717 + 0.514122i \(0.828118\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.70739i 0.414103i 0.978330 + 0.207051i \(0.0663867\pi\)
−0.978330 + 0.207051i \(0.933613\pi\)
\(18\) 0 0
\(19\) −0.292611 −0.0671295 −0.0335647 0.999437i \(-0.510686\pi\)
−0.0335647 + 0.999437i \(0.510686\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.83502i 1.21669i 0.793674 + 0.608343i \(0.208165\pi\)
−0.793674 + 0.608343i \(0.791835\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.67004 1.60999 0.804993 0.593284i \(-0.202169\pi\)
0.804993 + 0.593284i \(0.202169\pi\)
\(30\) 0 0
\(31\) 0.292611 0.0525544 0.0262772 0.999655i \(-0.491635\pi\)
0.0262772 + 0.999655i \(0.491635\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 11.9627i − 1.96665i −0.181862 0.983324i \(-0.558212\pi\)
0.181862 0.983324i \(-0.441788\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.96265 1.08738 0.543692 0.839285i \(-0.317026\pi\)
0.543692 + 0.839285i \(0.317026\pi\)
\(42\) 0 0
\(43\) 3.70739i 0.565372i 0.959213 + 0.282686i \(0.0912254\pi\)
−0.959213 + 0.282686i \(0.908775\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.87237i 0.273113i 0.990632 + 0.136556i \(0.0436035\pi\)
−0.990632 + 0.136556i \(0.956396\pi\)
\(48\) 0 0
\(49\) −7.70739 −1.10106
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.6700i 1.60300i 0.597992 + 0.801502i \(0.295965\pi\)
−0.597992 + 0.801502i \(0.704035\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.6700 1.51931 0.759655 0.650326i \(-0.225368\pi\)
0.759655 + 0.650326i \(0.225368\pi\)
\(60\) 0 0
\(61\) 14.9627 1.91577 0.957886 0.287150i \(-0.0927077\pi\)
0.957886 + 0.287150i \(0.0927077\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 9.54241i − 1.16579i −0.812547 0.582896i \(-0.801920\pi\)
0.812547 0.582896i \(-0.198080\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −15.9627 −1.89442 −0.947209 0.320616i \(-0.896110\pi\)
−0.947209 + 0.320616i \(0.896110\pi\)
\(72\) 0 0
\(73\) 8.00000i 0.936329i 0.883641 + 0.468165i \(0.155085\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.54787i 0.746200i
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.8350i 1.29906i 0.760335 + 0.649531i \(0.225035\pi\)
−0.760335 + 0.649531i \(0.774965\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) −14.2179 −1.49044
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.67004i 0.372636i 0.982489 + 0.186318i \(0.0596555\pi\)
−0.982489 + 0.186318i \(0.940344\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.329957 −0.0328320 −0.0164160 0.999865i \(-0.505226\pi\)
−0.0164160 + 0.999865i \(0.505226\pi\)
\(102\) 0 0
\(103\) − 3.12217i − 0.307636i −0.988099 0.153818i \(-0.950843\pi\)
0.988099 0.153818i \(-0.0491570\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 14.9198i − 1.44236i −0.692750 0.721178i \(-0.743601\pi\)
0.692750 0.721178i \(-0.256399\pi\)
\(108\) 0 0
\(109\) −6.70739 −0.642451 −0.321226 0.947003i \(-0.604095\pi\)
−0.321226 + 0.947003i \(0.604095\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 5.67004i − 0.533393i −0.963781 0.266696i \(-0.914068\pi\)
0.963781 0.266696i \(-0.0859321\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.54787 −0.600243
\(120\) 0 0
\(121\) −8.08482 −0.734984
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.54241i 0.491809i 0.969294 + 0.245905i \(0.0790850\pi\)
−0.969294 + 0.245905i \(0.920915\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.8296 −1.12092 −0.560462 0.828180i \(-0.689376\pi\)
−0.560462 + 0.828180i \(0.689376\pi\)
\(132\) 0 0
\(133\) − 1.12217i − 0.0973043i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.08482i 0.776169i 0.921624 + 0.388084i \(0.126863\pi\)
−0.921624 + 0.388084i \(0.873137\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.32996i 0.529338i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.12217 −0.665394 −0.332697 0.943034i \(-0.607959\pi\)
−0.332697 + 0.943034i \(0.607959\pi\)
\(150\) 0 0
\(151\) 21.0475 1.71282 0.856410 0.516297i \(-0.172690\pi\)
0.856410 + 0.516297i \(0.172690\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.255264i 0.0203723i 0.999948 + 0.0101861i \(0.00324241\pi\)
−0.999948 + 0.0101861i \(0.996758\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −22.3774 −1.76359
\(162\) 0 0
\(163\) − 11.7074i − 0.916994i −0.888696 0.458497i \(-0.848388\pi\)
0.888696 0.458497i \(-0.151612\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.1276i 1.24799i 0.781427 + 0.623997i \(0.214492\pi\)
−0.781427 + 0.623997i \(0.785508\pi\)
\(168\) 0 0
\(169\) −0.744736 −0.0572874
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.58522i 0.652722i 0.945245 + 0.326361i \(0.105823\pi\)
−0.945245 + 0.326361i \(0.894177\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −7.37743 −0.551415 −0.275708 0.961242i \(-0.588912\pi\)
−0.275708 + 0.961242i \(0.588912\pi\)
\(180\) 0 0
\(181\) 17.4996 1.30074 0.650368 0.759620i \(-0.274615\pi\)
0.650368 + 0.759620i \(0.274615\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.91518i 0.213179i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.54787 −0.473788 −0.236894 0.971536i \(-0.576129\pi\)
−0.236894 + 0.971536i \(0.576129\pi\)
\(192\) 0 0
\(193\) 7.12217i 0.512665i 0.966589 + 0.256332i \(0.0825142\pi\)
−0.966589 + 0.256332i \(0.917486\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 17.6700i − 1.25894i −0.777025 0.629469i \(-0.783272\pi\)
0.777025 0.629469i \(-0.216728\pi\)
\(198\) 0 0
\(199\) −11.6327 −0.824620 −0.412310 0.911044i \(-0.635278\pi\)
−0.412310 + 0.911044i \(0.635278\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 33.2498i 2.33368i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.499600 −0.0345581
\(210\) 0 0
\(211\) 5.63270 0.387771 0.193885 0.981024i \(-0.437891\pi\)
0.193885 + 0.981024i \(0.437891\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.12217i 0.0761777i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.32996 −0.425799
\(222\) 0 0
\(223\) − 8.12763i − 0.544266i −0.962260 0.272133i \(-0.912271\pi\)
0.962260 0.272133i \(-0.0877292\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.96265i 0.661245i 0.943763 + 0.330622i \(0.107259\pi\)
−0.943763 + 0.330622i \(0.892741\pi\)
\(228\) 0 0
\(229\) −1.25526 −0.0829502 −0.0414751 0.999140i \(-0.513206\pi\)
−0.0414751 + 0.999140i \(0.513206\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 3.96265i − 0.259602i −0.991540 0.129801i \(-0.958566\pi\)
0.991540 0.129801i \(-0.0414339\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.67004 −0.366765 −0.183382 0.983042i \(-0.558705\pi\)
−0.183382 + 0.983042i \(0.558705\pi\)
\(240\) 0 0
\(241\) −16.6327 −1.07141 −0.535703 0.844406i \(-0.679953\pi\)
−0.535703 + 0.844406i \(0.679953\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.08482i − 0.0690255i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.3774 −0.844376 −0.422188 0.906508i \(-0.638738\pi\)
−0.422188 + 0.906508i \(0.638738\pi\)
\(252\) 0 0
\(253\) 9.96265i 0.626347i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.829557i 0.0517464i 0.999665 + 0.0258732i \(0.00823661\pi\)
−0.999665 + 0.0258732i \(0.991763\pi\)
\(258\) 0 0
\(259\) 45.8770 2.85066
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 12.2179i − 0.753389i −0.926338 0.376695i \(-0.877061\pi\)
0.926338 0.376695i \(-0.122939\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 17.5369 1.06925 0.534623 0.845091i \(-0.320454\pi\)
0.534623 + 0.845091i \(0.320454\pi\)
\(270\) 0 0
\(271\) −15.1222 −0.918606 −0.459303 0.888280i \(-0.651901\pi\)
−0.459303 + 0.888280i \(0.651901\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.70739i 0.342924i 0.985191 + 0.171462i \(0.0548490\pi\)
−0.985191 + 0.171462i \(0.945151\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.29261 −0.435041 −0.217520 0.976056i \(-0.569797\pi\)
−0.217520 + 0.976056i \(0.569797\pi\)
\(282\) 0 0
\(283\) − 10.1650i − 0.604245i −0.953269 0.302123i \(-0.902305\pi\)
0.953269 0.302123i \(-0.0976952\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.7019i 1.57616i
\(288\) 0 0
\(289\) 14.0848 0.828519
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 13.0475i − 0.762242i −0.924525 0.381121i \(-0.875538\pi\)
0.924525 0.381121i \(-0.124462\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −21.6327 −1.25105
\(300\) 0 0
\(301\) −14.2179 −0.819507
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.50506i − 0.0858986i −0.999077 0.0429493i \(-0.986325\pi\)
0.999077 0.0429493i \(-0.0136754\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.45213 0.309162 0.154581 0.987980i \(-0.450597\pi\)
0.154581 + 0.987980i \(0.450597\pi\)
\(312\) 0 0
\(313\) − 10.5479i − 0.596201i −0.954534 0.298101i \(-0.903647\pi\)
0.954534 0.298101i \(-0.0963531\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.3774i 1.42534i 0.701500 + 0.712669i \(0.252514\pi\)
−0.701500 + 0.712669i \(0.747486\pi\)
\(318\) 0 0
\(319\) 14.8031 0.828817
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 0.499600i − 0.0277985i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.18057 −0.395878
\(330\) 0 0
\(331\) −31.0848 −1.70858 −0.854288 0.519800i \(-0.826007\pi\)
−0.854288 + 0.519800i \(0.826007\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 10.2553i − 0.558640i −0.960198 0.279320i \(-0.909891\pi\)
0.960198 0.279320i \(-0.0901090\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.499600 0.0270549
\(342\) 0 0
\(343\) − 2.71285i − 0.146480i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 7.04748i − 0.378328i −0.981945 0.189164i \(-0.939422\pi\)
0.981945 0.189164i \(-0.0605778\pi\)
\(348\) 0 0
\(349\) −29.1696 −1.56142 −0.780708 0.624897i \(-0.785141\pi\)
−0.780708 + 0.624897i \(0.785141\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.0000i 1.27739i 0.769460 + 0.638696i \(0.220526\pi\)
−0.769460 + 0.638696i \(0.779474\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.7922 −1.51959 −0.759797 0.650160i \(-0.774702\pi\)
−0.759797 + 0.650160i \(0.774702\pi\)
\(360\) 0 0
\(361\) −18.9144 −0.995494
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.0475i 0.576674i 0.957529 + 0.288337i \(0.0931023\pi\)
−0.957529 + 0.288337i \(0.906898\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −44.7549 −2.32356
\(372\) 0 0
\(373\) − 15.6700i − 0.811364i −0.914014 0.405682i \(-0.867034\pi\)
0.914014 0.405682i \(-0.132966\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 32.1432i 1.65546i
\(378\) 0 0
\(379\) 6.58522 0.338260 0.169130 0.985594i \(-0.445904\pi\)
0.169130 + 0.985594i \(0.445904\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.2179i 0.624306i 0.950032 + 0.312153i \(0.101050\pi\)
−0.950032 + 0.312153i \(0.898950\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.7175 1.40533 0.702667 0.711519i \(-0.251992\pi\)
0.702667 + 0.711519i \(0.251992\pi\)
\(390\) 0 0
\(391\) −9.96265 −0.503833
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 26.5105i 1.33053i 0.746609 + 0.665263i \(0.231680\pi\)
−0.746609 + 0.665263i \(0.768320\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.8405 −0.840974 −0.420487 0.907299i \(-0.638141\pi\)
−0.420487 + 0.907299i \(0.638141\pi\)
\(402\) 0 0
\(403\) 1.08482i 0.0540388i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 20.4249i − 1.01243i
\(408\) 0 0
\(409\) −15.0957 −0.746437 −0.373218 0.927744i \(-0.621746\pi\)
−0.373218 + 0.927744i \(0.621746\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 44.7549i 2.20224i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.36730 −0.115650 −0.0578252 0.998327i \(-0.518417\pi\)
−0.0578252 + 0.998327i \(0.518417\pi\)
\(420\) 0 0
\(421\) 9.92531 0.483730 0.241865 0.970310i \(-0.422241\pi\)
0.241865 + 0.970310i \(0.422241\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 57.3821i 2.77691i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.9253 0.670758 0.335379 0.942083i \(-0.391136\pi\)
0.335379 + 0.942083i \(0.391136\pi\)
\(432\) 0 0
\(433\) − 2.29261i − 0.110176i −0.998482 0.0550879i \(-0.982456\pi\)
0.998482 0.0550879i \(-0.0175439\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.70739i − 0.0816755i
\(438\) 0 0
\(439\) −25.0101 −1.19367 −0.596834 0.802365i \(-0.703575\pi\)
−0.596834 + 0.802365i \(0.703575\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.8724i 0.944165i 0.881554 + 0.472082i \(0.156498\pi\)
−0.881554 + 0.472082i \(0.843502\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.2553 1.52222 0.761110 0.648623i \(-0.224655\pi\)
0.761110 + 0.648623i \(0.224655\pi\)
\(450\) 0 0
\(451\) 11.8880 0.559782
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 19.8880i − 0.930320i −0.885227 0.465160i \(-0.845997\pi\)
0.885227 0.465160i \(-0.154003\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.7658 1.01373 0.506867 0.862024i \(-0.330804\pi\)
0.506867 + 0.862024i \(0.330804\pi\)
\(462\) 0 0
\(463\) 17.9627i 0.834795i 0.908724 + 0.417398i \(0.137058\pi\)
−0.908724 + 0.417398i \(0.862942\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.0475i 0.881412i 0.897651 + 0.440706i \(0.145272\pi\)
−0.897651 + 0.440706i \(0.854728\pi\)
\(468\) 0 0
\(469\) 36.5953 1.68982
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.32996i 0.291052i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.7549 0.948314 0.474157 0.880440i \(-0.342753\pi\)
0.474157 + 0.880440i \(0.342753\pi\)
\(480\) 0 0
\(481\) 44.3502 2.02220
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 4.86690i − 0.220540i −0.993902 0.110270i \(-0.964828\pi\)
0.993902 0.110270i \(-0.0351716\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −38.2553 −1.72644 −0.863218 0.504831i \(-0.831555\pi\)
−0.863218 + 0.504831i \(0.831555\pi\)
\(492\) 0 0
\(493\) 14.8031i 0.666700i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 61.2171i − 2.74596i
\(498\) 0 0
\(499\) 26.8405 1.20155 0.600773 0.799420i \(-0.294860\pi\)
0.600773 + 0.799420i \(0.294860\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.8825i 0.841929i 0.907077 + 0.420964i \(0.138308\pi\)
−0.907077 + 0.420964i \(0.861692\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.1696 1.47022 0.735109 0.677949i \(-0.237131\pi\)
0.735109 + 0.677949i \(0.237131\pi\)
\(510\) 0 0
\(511\) −30.6802 −1.35721
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.19686i 0.140598i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 38.0101 1.66525 0.832627 0.553834i \(-0.186836\pi\)
0.832627 + 0.553834i \(0.186836\pi\)
\(522\) 0 0
\(523\) − 37.4677i − 1.63835i −0.573544 0.819174i \(-0.694432\pi\)
0.573544 0.819174i \(-0.305568\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.499600i 0.0217629i
\(528\) 0 0
\(529\) −11.0475 −0.480325
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.8133i 1.11810i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −13.1595 −0.566820
\(540\) 0 0
\(541\) 31.7549 1.36525 0.682624 0.730770i \(-0.260839\pi\)
0.682624 + 0.730770i \(0.260839\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 13.5051i − 0.577435i −0.957414 0.288717i \(-0.906771\pi\)
0.957414 0.288717i \(-0.0932288\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.53695 −0.108078
\(552\) 0 0
\(553\) − 7.67004i − 0.326163i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) 0 0
\(559\) −13.7447 −0.581340
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 31.2125i 1.31545i 0.753259 + 0.657724i \(0.228481\pi\)
−0.753259 + 0.657724i \(0.771519\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.8296 −0.537843 −0.268922 0.963162i \(-0.586667\pi\)
−0.268922 + 0.963162i \(0.586667\pi\)
\(570\) 0 0
\(571\) −15.3401 −0.641963 −0.320981 0.947086i \(-0.604013\pi\)
−0.320981 + 0.947086i \(0.604013\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 33.3292i − 1.38751i −0.720211 0.693755i \(-0.755955\pi\)
0.720211 0.693755i \(-0.244045\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −45.3876 −1.88299
\(582\) 0 0
\(583\) 19.9253i 0.825222i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 41.5051i 1.71310i 0.516066 + 0.856549i \(0.327396\pi\)
−0.516066 + 0.856549i \(0.672604\pi\)
\(588\) 0 0
\(589\) −0.0856210 −0.00352795
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 17.0584i − 0.700505i −0.936655 0.350252i \(-0.886096\pi\)
0.936655 0.350252i \(-0.113904\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.9253 1.05928 0.529640 0.848223i \(-0.322327\pi\)
0.529640 + 0.848223i \(0.322327\pi\)
\(600\) 0 0
\(601\) −11.0957 −0.452605 −0.226303 0.974057i \(-0.572664\pi\)
−0.226303 + 0.974057i \(0.572664\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 26.3829i − 1.07085i −0.844583 0.535424i \(-0.820152\pi\)
0.844583 0.535424i \(-0.179848\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.94160 −0.280827
\(612\) 0 0
\(613\) 2.87783i 0.116235i 0.998310 + 0.0581173i \(0.0185097\pi\)
−0.998310 + 0.0581173i \(0.981490\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 10.8405i − 0.436422i −0.975902 0.218211i \(-0.929978\pi\)
0.975902 0.218211i \(-0.0700220\pi\)
\(618\) 0 0
\(619\) −8.87783 −0.356830 −0.178415 0.983955i \(-0.557097\pi\)
−0.178415 + 0.983955i \(0.557097\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 11.5051i − 0.460941i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.4249 0.814394
\(630\) 0 0
\(631\) 14.3300 0.570467 0.285233 0.958458i \(-0.407929\pi\)
0.285233 + 0.958458i \(0.407929\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 28.5743i − 1.13215i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −46.0475 −1.81877 −0.909383 0.415960i \(-0.863446\pi\)
−0.909383 + 0.415960i \(0.863446\pi\)
\(642\) 0 0
\(643\) 3.54241i 0.139699i 0.997558 + 0.0698495i \(0.0222519\pi\)
−0.997558 + 0.0698495i \(0.977748\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.1276i 0.634043i 0.948418 + 0.317021i \(0.102683\pi\)
−0.948418 + 0.317021i \(0.897317\pi\)
\(648\) 0 0
\(649\) 19.9253 0.782137
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.5471i 0.999734i 0.866102 + 0.499867i \(0.166618\pi\)
−0.866102 + 0.499867i \(0.833382\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −36.4996 −1.42182 −0.710911 0.703282i \(-0.751717\pi\)
−0.710911 + 0.703282i \(0.751717\pi\)
\(660\) 0 0
\(661\) −7.68097 −0.298755 −0.149378 0.988780i \(-0.547727\pi\)
−0.149378 + 0.988780i \(0.547727\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 50.5899i 1.95885i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.5471 0.986234
\(672\) 0 0
\(673\) 10.0373i 0.386911i 0.981109 + 0.193456i \(0.0619696\pi\)
−0.981109 + 0.193456i \(0.938030\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 29.4521i − 1.13194i −0.824427 0.565969i \(-0.808502\pi\)
0.824427 0.565969i \(-0.191498\pi\)
\(678\) 0 0
\(679\) −14.0747 −0.540137
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.2179i 0.926673i 0.886182 + 0.463336i \(0.153348\pi\)
−0.886182 + 0.463336i \(0.846652\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −43.2654 −1.64828
\(690\) 0 0
\(691\) 0.244336 0.00929499 0.00464749 0.999989i \(-0.498521\pi\)
0.00464749 + 0.999989i \(0.498521\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.8880i 0.450289i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.79221 0.294308 0.147154 0.989114i \(-0.452989\pi\)
0.147154 + 0.989114i \(0.452989\pi\)
\(702\) 0 0
\(703\) 3.50040i 0.132020i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.26539i − 0.0475900i
\(708\) 0 0
\(709\) 24.8397 0.932874 0.466437 0.884554i \(-0.345537\pi\)
0.466437 + 0.884554i \(0.345537\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.70739i 0.0639422i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 35.0101 1.30566 0.652829 0.757506i \(-0.273582\pi\)
0.652829 + 0.757506i \(0.273582\pi\)
\(720\) 0 0
\(721\) 11.9736 0.445919
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 22.3082i − 0.827365i −0.910421 0.413683i \(-0.864242\pi\)
0.910421 0.413683i \(-0.135758\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.32996 −0.234122
\(732\) 0 0
\(733\) − 16.1696i − 0.597239i −0.954372 0.298620i \(-0.903474\pi\)
0.954372 0.298620i \(-0.0965262\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 16.2926i − 0.600146i
\(738\) 0 0
\(739\) −38.9354 −1.43226 −0.716132 0.697965i \(-0.754089\pi\)
−0.716132 + 0.697965i \(0.754089\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.33542i 0.195738i 0.995199 + 0.0978688i \(0.0312026\pi\)
−0.995199 + 0.0978688i \(0.968797\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 57.2179 2.09070
\(750\) 0 0
\(751\) 34.2070 1.24823 0.624115 0.781332i \(-0.285460\pi\)
0.624115 + 0.781332i \(0.285460\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 0.952525i − 0.0346201i −0.999850 0.0173101i \(-0.994490\pi\)
0.999850 0.0173101i \(-0.00551024\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16.5953 −0.601581 −0.300790 0.953690i \(-0.597250\pi\)
−0.300790 + 0.953690i \(0.597250\pi\)
\(762\) 0 0
\(763\) − 25.7230i − 0.931234i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 43.2654i 1.56222i
\(768\) 0 0
\(769\) −6.59535 −0.237834 −0.118917 0.992904i \(-0.537942\pi\)
−0.118917 + 0.992904i \(0.537942\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 18.8296i − 0.677252i −0.940921 0.338626i \(-0.890038\pi\)
0.940921 0.338626i \(-0.109962\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.03735 −0.0729955
\(780\) 0 0
\(781\) −27.2545 −0.975241
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 7.12217i − 0.253878i −0.991911 0.126939i \(-0.959485\pi\)
0.991911 0.126939i \(-0.0405152\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21.7447 0.773154
\(792\) 0 0
\(793\) 55.4724i 1.96988i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 48.7175i − 1.72566i −0.505492 0.862832i \(-0.668689\pi\)
0.505492 0.862832i \(-0.331311\pi\)
\(798\) 0 0
\(799\) −3.19686 −0.113097
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.6591i 0.482020i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19.1595 0.673613 0.336806 0.941574i \(-0.390653\pi\)
0.336806 + 0.941574i \(0.390653\pi\)
\(810\) 0 0
\(811\) 13.3401 0.468434 0.234217 0.972184i \(-0.424747\pi\)
0.234217 + 0.972184i \(0.424747\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1.08482i − 0.0379531i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.62257 0.0566280 0.0283140 0.999599i \(-0.490986\pi\)
0.0283140 + 0.999599i \(0.490986\pi\)
\(822\) 0 0
\(823\) 26.0529i 0.908148i 0.890964 + 0.454074i \(0.150030\pi\)
−0.890964 + 0.454074i \(0.849970\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.4786i 1.30326i 0.758537 + 0.651630i \(0.225915\pi\)
−0.758537 + 0.651630i \(0.774085\pi\)
\(828\) 0 0
\(829\) −32.9627 −1.14484 −0.572420 0.819960i \(-0.693995\pi\)
−0.572420 + 0.819960i \(0.693995\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 13.1595i − 0.455950i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.8778 −0.444592 −0.222296 0.974979i \(-0.571355\pi\)
−0.222296 + 0.974979i \(0.571355\pi\)
\(840\) 0 0
\(841\) 46.1696 1.59206
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 31.0055i − 1.06536i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 69.8023 2.39279
\(852\) 0 0
\(853\) − 44.1323i − 1.51106i −0.655113 0.755531i \(-0.727379\pi\)
0.655113 0.755531i \(-0.272621\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 15.6327i − 0.534003i −0.963696 0.267001i \(-0.913967\pi\)
0.963696 0.267001i \(-0.0860328\pi\)
\(858\) 0 0
\(859\) −7.88796 −0.269134 −0.134567 0.990905i \(-0.542964\pi\)
−0.134567 + 0.990905i \(0.542964\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 9.53148i − 0.324455i −0.986753 0.162228i \(-0.948132\pi\)
0.986753 0.162228i \(-0.0518679\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.41478 −0.115838
\(870\) 0 0
\(871\) 35.3774 1.19872
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 37.9517i − 1.28154i −0.767733 0.640769i \(-0.778615\pi\)
0.767733 0.640769i \(-0.221385\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.2070 −0.781863 −0.390932 0.920420i \(-0.627847\pi\)
−0.390932 + 0.920420i \(0.627847\pi\)
\(882\) 0 0
\(883\) 30.9572i 1.04179i 0.853620 + 0.520896i \(0.174402\pi\)
−0.853620 + 0.520896i \(0.825598\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37.8770i 1.27179i 0.771777 + 0.635893i \(0.219368\pi\)
−0.771777 + 0.635893i \(0.780632\pi\)
\(888\) 0 0
\(889\) −21.2553 −0.712879
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 0.547875i − 0.0183339i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.53695 0.0846119
\(900\) 0 0
\(901\) −19.9253 −0.663808
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 32.3829i − 1.07526i −0.843182 0.537628i \(-0.819320\pi\)
0.843182 0.537628i \(-0.180680\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 45.2545 1.49935 0.749674 0.661808i \(-0.230210\pi\)
0.749674 + 0.661808i \(0.230210\pi\)
\(912\) 0 0
\(913\) 20.2070i 0.668754i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 49.2016i − 1.62478i
\(918\) 0 0
\(919\) −21.9253 −0.723249 −0.361625 0.932324i \(-0.617778\pi\)
−0.361625 + 0.932324i \(0.617778\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 59.1798i − 1.94793i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.2654 −0.435223 −0.217612 0.976035i \(-0.569827\pi\)
−0.217612 + 0.976035i \(0.569827\pi\)
\(930\) 0 0
\(931\) 2.25526 0.0739133
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 40.4996i 1.32306i 0.749917 + 0.661532i \(0.230093\pi\)
−0.749917 + 0.661532i \(0.769907\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.67004 −0.0870409 −0.0435205 0.999053i \(-0.513857\pi\)
−0.0435205 + 0.999053i \(0.513857\pi\)
\(942\) 0 0
\(943\) 40.6272i 1.32300i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.8825i 1.19852i 0.800554 + 0.599260i \(0.204538\pi\)
−0.800554 + 0.599260i \(0.795462\pi\)
\(948\) 0 0
\(949\) −29.6591 −0.962776
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 12.7175i − 0.411961i −0.978556 0.205980i \(-0.933962\pi\)
0.978556 0.205980i \(-0.0660383\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −34.8405 −1.12506
\(960\) 0 0
\(961\) −30.9144 −0.997238
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 42.3455i − 1.36174i −0.732404 0.680871i \(-0.761602\pi\)
0.732404 0.680871i \(-0.238398\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.38836 −0.172921 −0.0864604 0.996255i \(-0.527556\pi\)
−0.0864604 + 0.996255i \(0.527556\pi\)
\(972\) 0 0
\(973\) 15.3401i 0.491781i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.1323i 0.900032i 0.893021 + 0.450016i \(0.148582\pi\)
−0.893021 + 0.450016i \(0.851418\pi\)
\(978\) 0 0
\(979\) −5.12217 −0.163705
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25.7603i 0.821627i 0.911719 + 0.410813i \(0.134755\pi\)
−0.911719 + 0.410813i \(0.865245\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.6327 −0.687880
\(990\) 0 0
\(991\) 23.0848 0.733314 0.366657 0.930356i \(-0.380502\pi\)
0.366657 + 0.930356i \(0.380502\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.8405i 1.04007i 0.854145 + 0.520034i \(0.174081\pi\)
−0.854145 + 0.520034i \(0.825919\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8100.2.d.o.649.5 6
3.2 odd 2 8100.2.d.p.649.5 6
5.2 odd 4 1620.2.a.j.1.1 3
5.3 odd 4 8100.2.a.u.1.3 3
5.4 even 2 inner 8100.2.d.o.649.2 6
9.2 odd 6 900.2.s.c.49.1 12
9.4 even 3 2700.2.s.c.2449.2 12
9.5 odd 6 900.2.s.c.349.6 12
9.7 even 3 2700.2.s.c.1549.5 12
15.2 even 4 1620.2.a.i.1.1 3
15.8 even 4 8100.2.a.v.1.3 3
15.14 odd 2 8100.2.d.p.649.2 6
20.7 even 4 6480.2.a.bw.1.3 3
45.2 even 12 180.2.i.b.121.2 yes 6
45.4 even 6 2700.2.s.c.2449.5 12
45.7 odd 12 540.2.i.b.361.3 6
45.13 odd 12 2700.2.i.c.1801.1 6
45.14 odd 6 900.2.s.c.349.1 12
45.22 odd 12 540.2.i.b.181.3 6
45.23 even 12 900.2.i.c.601.2 6
45.29 odd 6 900.2.s.c.49.6 12
45.32 even 12 180.2.i.b.61.2 6
45.34 even 6 2700.2.s.c.1549.2 12
45.38 even 12 900.2.i.c.301.2 6
45.43 odd 12 2700.2.i.c.901.1 6
60.47 odd 4 6480.2.a.bt.1.3 3
180.7 even 12 2160.2.q.i.1441.1 6
180.47 odd 12 720.2.q.k.481.2 6
180.67 even 12 2160.2.q.i.721.1 6
180.167 odd 12 720.2.q.k.241.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.2 6 45.32 even 12
180.2.i.b.121.2 yes 6 45.2 even 12
540.2.i.b.181.3 6 45.22 odd 12
540.2.i.b.361.3 6 45.7 odd 12
720.2.q.k.241.2 6 180.167 odd 12
720.2.q.k.481.2 6 180.47 odd 12
900.2.i.c.301.2 6 45.38 even 12
900.2.i.c.601.2 6 45.23 even 12
900.2.s.c.49.1 12 9.2 odd 6
900.2.s.c.49.6 12 45.29 odd 6
900.2.s.c.349.1 12 45.14 odd 6
900.2.s.c.349.6 12 9.5 odd 6
1620.2.a.i.1.1 3 15.2 even 4
1620.2.a.j.1.1 3 5.2 odd 4
2160.2.q.i.721.1 6 180.67 even 12
2160.2.q.i.1441.1 6 180.7 even 12
2700.2.i.c.901.1 6 45.43 odd 12
2700.2.i.c.1801.1 6 45.13 odd 12
2700.2.s.c.1549.2 12 45.34 even 6
2700.2.s.c.1549.5 12 9.7 even 3
2700.2.s.c.2449.2 12 9.4 even 3
2700.2.s.c.2449.5 12 45.4 even 6
6480.2.a.bt.1.3 3 60.47 odd 4
6480.2.a.bw.1.3 3 20.7 even 4
8100.2.a.u.1.3 3 5.3 odd 4
8100.2.a.v.1.3 3 15.8 even 4
8100.2.d.o.649.2 6 5.4 even 2 inner
8100.2.d.o.649.5 6 1.1 even 1 trivial
8100.2.d.p.649.2 6 15.14 odd 2
8100.2.d.p.649.5 6 3.2 odd 2