Properties

Label 8112.2.a.cv
Level 81128112
Weight 22
Character orbit 8112.a
Self dual yes
Analytic conductor 64.77564.775
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8112,2,Mod(1,8112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8112.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 64.774646119764.7746461197
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.27700337.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x519x4+17x3+103x271x127 x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 4056)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q3β5q5+(β1+1)q7+q9+(β4+β2β1+1)q11β5q15+(β52β4+2β2)q17+(β5+β3+2β2+2)q19++(β4+β2β1+1)q99+O(q100) q + q^{3} - \beta_{5} q^{5} + (\beta_1 + 1) q^{7} + q^{9} + ( - \beta_{4} + \beta_{2} - \beta_1 + 1) q^{11} - \beta_{5} q^{15} + ( - \beta_{5} - 2 \beta_{4} + \cdots - 2 \beta_{2}) q^{17} + (\beta_{5} + \beta_{3} + 2 \beta_{2} + 2) q^{19}+ \cdots + ( - \beta_{4} + \beta_{2} - \beta_1 + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+6q3q5+7q7+6q9+8q11q155q17+19q19+7q21+6q23+17q25+6q27+3q29+9q31+8q334q356q37+15q4111q43++8q99+O(q100) 6 q + 6 q^{3} - q^{5} + 7 q^{7} + 6 q^{9} + 8 q^{11} - q^{15} - 5 q^{17} + 19 q^{19} + 7 q^{21} + 6 q^{23} + 17 q^{25} + 6 q^{27} + 3 q^{29} + 9 q^{31} + 8 q^{33} - 4 q^{35} - 6 q^{37} + 15 q^{41} - 11 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x519x4+17x3+103x271x127 x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (4ν5+11ν4+15ν3136ν2+160ν+338)/167 ( -4\nu^{5} + 11\nu^{4} + 15\nu^{3} - 136\nu^{2} + 160\nu + 338 ) / 167 Copy content Toggle raw display
β3\beta_{3}== (9ν517ν4+159ν3+195ν2642ν325)/167 ( -9\nu^{5} - 17\nu^{4} + 159\nu^{3} + 195\nu^{2} - 642\nu - 325 ) / 167 Copy content Toggle raw display
β4\beta_{4}== (10ν5+56ν4121ν3662ν2+268ν+1326)/167 ( 10\nu^{5} + 56\nu^{4} - 121\nu^{3} - 662\nu^{2} + 268\nu + 1326 ) / 167 Copy content Toggle raw display
β5\beta_{5}== (13ν56ν4+174ν3+226ν2482ν1156)/167 ( -13\nu^{5} - 6\nu^{4} + 174\nu^{3} + 226\nu^{2} - 482\nu - 1156 ) / 167 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5β3β2+7 \beta_{5} - \beta_{3} - \beta_{2} + 7 Copy content Toggle raw display
ν3\nu^{3}== β4+2β32β2+8β1 \beta_{4} + 2\beta_{3} - 2\beta_{2} + 8\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 12β5+3β410β39β2+58 12\beta_{5} + 3\beta_{4} - 10\beta_{3} - 9\beta_{2} + 58 Copy content Toggle raw display
ν5\nu^{5}== β5+12β4+14β340β2+70β1+6 -\beta_{5} + 12\beta_{4} + 14\beta_{3} - 40\beta_{2} + 70\beta _1 + 6 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.12925
2.72245
3.16419
−2.71914
1.88227
−0.920510
0 1.00000 0 −3.34715 0 −2.12925 0 1.00000 0
1.2 0 1.00000 0 −2.65870 0 3.72245 0 1.00000 0
1.3 0 1.00000 0 −2.21013 0 4.16419 0 1.00000 0
1.4 0 1.00000 0 0.408195 0 −1.71914 0 1.00000 0
1.5 0 1.00000 0 2.90211 0 2.88227 0 1.00000 0
1.6 0 1.00000 0 3.90568 0 0.0794899 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8112.2.a.cv 6
4.b odd 2 1 4056.2.a.bf 6
13.b even 2 1 8112.2.a.cw 6
52.b odd 2 1 4056.2.a.bg yes 6
52.f even 4 2 4056.2.c.q 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4056.2.a.bf 6 4.b odd 2 1
4056.2.a.bg yes 6 52.b odd 2 1
4056.2.c.q 12 52.f even 4 2
8112.2.a.cv 6 1.a even 1 1 trivial
8112.2.a.cw 6 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8112))S_{2}^{\mathrm{new}}(\Gamma_0(8112)):

T56+T5523T5429T53+133T52+175T591 T_{5}^{6} + T_{5}^{5} - 23T_{5}^{4} - 29T_{5}^{3} + 133T_{5}^{2} + 175T_{5} - 91 Copy content Toggle raw display
T767T75+T74+63T7337T72161T7+13 T_{7}^{6} - 7T_{7}^{5} + T_{7}^{4} + 63T_{7}^{3} - 37T_{7}^{2} - 161T_{7} + 13 Copy content Toggle raw display
T1168T11523T114+344T113756T112518T11+2149 T_{11}^{6} - 8T_{11}^{5} - 23T_{11}^{4} + 344T_{11}^{3} - 756T_{11}^{2} - 518T_{11} + 2149 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T1)6 (T - 1)^{6} Copy content Toggle raw display
55 T6+T5+91 T^{6} + T^{5} + \cdots - 91 Copy content Toggle raw display
77 T67T5++13 T^{6} - 7 T^{5} + \cdots + 13 Copy content Toggle raw display
1111 T68T5++2149 T^{6} - 8 T^{5} + \cdots + 2149 Copy content Toggle raw display
1313 T6 T^{6} Copy content Toggle raw display
1717 T6+5T5+26648 T^{6} + 5 T^{5} + \cdots - 26648 Copy content Toggle raw display
1919 T619T5+64 T^{6} - 19 T^{5} + \cdots - 64 Copy content Toggle raw display
2323 T66T5++1352 T^{6} - 6 T^{5} + \cdots + 1352 Copy content Toggle raw display
2929 T63T5++29 T^{6} - 3 T^{5} + \cdots + 29 Copy content Toggle raw display
3131 T69T5+3529 T^{6} - 9 T^{5} + \cdots - 3529 Copy content Toggle raw display
3737 T6+6T5+278216 T^{6} + 6 T^{5} + \cdots - 278216 Copy content Toggle raw display
4141 T615T5++32872 T^{6} - 15 T^{5} + \cdots + 32872 Copy content Toggle raw display
4343 T6+11T5++5944 T^{6} + 11 T^{5} + \cdots + 5944 Copy content Toggle raw display
4747 T65T5++34112 T^{6} - 5 T^{5} + \cdots + 34112 Copy content Toggle raw display
5353 T612T5++30997 T^{6} - 12 T^{5} + \cdots + 30997 Copy content Toggle raw display
5959 T6+5T5++5096 T^{6} + 5 T^{5} + \cdots + 5096 Copy content Toggle raw display
6161 T617T5++9304 T^{6} - 17 T^{5} + \cdots + 9304 Copy content Toggle raw display
6767 T613T5++241816 T^{6} - 13 T^{5} + \cdots + 241816 Copy content Toggle raw display
7171 T626T5+326024 T^{6} - 26 T^{5} + \cdots - 326024 Copy content Toggle raw display
7373 T649T5+6889 T^{6} - 49 T^{5} + \cdots - 6889 Copy content Toggle raw display
7979 T6+14T5++4843 T^{6} + 14 T^{5} + \cdots + 4843 Copy content Toggle raw display
8383 T6+3T5+796159 T^{6} + 3 T^{5} + \cdots - 796159 Copy content Toggle raw display
8989 T6+13T5+15736 T^{6} + 13 T^{5} + \cdots - 15736 Copy content Toggle raw display
9797 T614T5+26083 T^{6} - 14 T^{5} + \cdots - 26083 Copy content Toggle raw display
show more
show less