Properties

Label 8112.2.a.cv
Level $8112$
Weight $2$
Character orbit 8112.a
Self dual yes
Analytic conductor $64.775$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8112,2,Mod(1,8112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8112.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.27700337.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4056)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - \beta_{5} q^{5} + (\beta_1 + 1) q^{7} + q^{9} + ( - \beta_{4} + \beta_{2} - \beta_1 + 1) q^{11} - \beta_{5} q^{15} + ( - \beta_{5} - 2 \beta_{4} + \cdots - 2 \beta_{2}) q^{17} + (\beta_{5} + \beta_{3} + 2 \beta_{2} + 2) q^{19}+ \cdots + ( - \beta_{4} + \beta_{2} - \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - q^{5} + 7 q^{7} + 6 q^{9} + 8 q^{11} - q^{15} - 5 q^{17} + 19 q^{19} + 7 q^{21} + 6 q^{23} + 17 q^{25} + 6 q^{27} + 3 q^{29} + 9 q^{31} + 8 q^{33} - 4 q^{35} - 6 q^{37} + 15 q^{41} - 11 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{5} + 11\nu^{4} + 15\nu^{3} - 136\nu^{2} + 160\nu + 338 ) / 167 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -9\nu^{5} - 17\nu^{4} + 159\nu^{3} + 195\nu^{2} - 642\nu - 325 ) / 167 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 10\nu^{5} + 56\nu^{4} - 121\nu^{3} - 662\nu^{2} + 268\nu + 1326 ) / 167 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -13\nu^{5} - 6\nu^{4} + 174\nu^{3} + 226\nu^{2} - 482\nu - 1156 ) / 167 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{3} - \beta_{2} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + 2\beta_{3} - 2\beta_{2} + 8\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{5} + 3\beta_{4} - 10\beta_{3} - 9\beta_{2} + 58 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{5} + 12\beta_{4} + 14\beta_{3} - 40\beta_{2} + 70\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.12925
2.72245
3.16419
−2.71914
1.88227
−0.920510
0 1.00000 0 −3.34715 0 −2.12925 0 1.00000 0
1.2 0 1.00000 0 −2.65870 0 3.72245 0 1.00000 0
1.3 0 1.00000 0 −2.21013 0 4.16419 0 1.00000 0
1.4 0 1.00000 0 0.408195 0 −1.71914 0 1.00000 0
1.5 0 1.00000 0 2.90211 0 2.88227 0 1.00000 0
1.6 0 1.00000 0 3.90568 0 0.0794899 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8112.2.a.cv 6
4.b odd 2 1 4056.2.a.bf 6
13.b even 2 1 8112.2.a.cw 6
52.b odd 2 1 4056.2.a.bg yes 6
52.f even 4 2 4056.2.c.q 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4056.2.a.bf 6 4.b odd 2 1
4056.2.a.bg yes 6 52.b odd 2 1
4056.2.c.q 12 52.f even 4 2
8112.2.a.cv 6 1.a even 1 1 trivial
8112.2.a.cw 6 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8112))\):

\( T_{5}^{6} + T_{5}^{5} - 23T_{5}^{4} - 29T_{5}^{3} + 133T_{5}^{2} + 175T_{5} - 91 \) Copy content Toggle raw display
\( T_{7}^{6} - 7T_{7}^{5} + T_{7}^{4} + 63T_{7}^{3} - 37T_{7}^{2} - 161T_{7} + 13 \) Copy content Toggle raw display
\( T_{11}^{6} - 8T_{11}^{5} - 23T_{11}^{4} + 344T_{11}^{3} - 756T_{11}^{2} - 518T_{11} + 2149 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + T^{5} + \cdots - 91 \) Copy content Toggle raw display
$7$ \( T^{6} - 7 T^{5} + \cdots + 13 \) Copy content Toggle raw display
$11$ \( T^{6} - 8 T^{5} + \cdots + 2149 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 5 T^{5} + \cdots - 26648 \) Copy content Toggle raw display
$19$ \( T^{6} - 19 T^{5} + \cdots - 64 \) Copy content Toggle raw display
$23$ \( T^{6} - 6 T^{5} + \cdots + 1352 \) Copy content Toggle raw display
$29$ \( T^{6} - 3 T^{5} + \cdots + 29 \) Copy content Toggle raw display
$31$ \( T^{6} - 9 T^{5} + \cdots - 3529 \) Copy content Toggle raw display
$37$ \( T^{6} + 6 T^{5} + \cdots - 278216 \) Copy content Toggle raw display
$41$ \( T^{6} - 15 T^{5} + \cdots + 32872 \) Copy content Toggle raw display
$43$ \( T^{6} + 11 T^{5} + \cdots + 5944 \) Copy content Toggle raw display
$47$ \( T^{6} - 5 T^{5} + \cdots + 34112 \) Copy content Toggle raw display
$53$ \( T^{6} - 12 T^{5} + \cdots + 30997 \) Copy content Toggle raw display
$59$ \( T^{6} + 5 T^{5} + \cdots + 5096 \) Copy content Toggle raw display
$61$ \( T^{6} - 17 T^{5} + \cdots + 9304 \) Copy content Toggle raw display
$67$ \( T^{6} - 13 T^{5} + \cdots + 241816 \) Copy content Toggle raw display
$71$ \( T^{6} - 26 T^{5} + \cdots - 326024 \) Copy content Toggle raw display
$73$ \( T^{6} - 49 T^{5} + \cdots - 6889 \) Copy content Toggle raw display
$79$ \( T^{6} + 14 T^{5} + \cdots + 4843 \) Copy content Toggle raw display
$83$ \( T^{6} + 3 T^{5} + \cdots - 796159 \) Copy content Toggle raw display
$89$ \( T^{6} + 13 T^{5} + \cdots - 15736 \) Copy content Toggle raw display
$97$ \( T^{6} - 14 T^{5} + \cdots - 26083 \) Copy content Toggle raw display
show more
show less