Properties

Label 816.2.bq.f.49.3
Level $816$
Weight $2$
Character 816.49
Analytic conductor $6.516$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,2,Mod(49,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.bq (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 466x^{12} + 2956x^{10} + 10049x^{8} + 18032x^{6} + 14800x^{4} + 3200x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 49.3
Root \(-1.71472i\) of defining polynomial
Character \(\chi\) \(=\) 816.49
Dual form 816.2.bq.f.433.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.382683 + 0.923880i) q^{3} +(-2.50807 + 1.03888i) q^{5} +(-2.22010 - 0.919595i) q^{7} +(-0.707107 + 0.707107i) q^{9} +(1.87280 - 4.52134i) q^{11} -1.07051i q^{13} +(-1.91959 - 1.91959i) q^{15} +(3.25570 + 2.52991i) q^{17} +(-1.61272 - 1.61272i) q^{19} -2.40302i q^{21} +(2.41400 - 5.82790i) q^{23} +(1.67562 - 1.67562i) q^{25} +(-0.923880 - 0.382683i) q^{27} +(3.13555 - 1.29879i) q^{29} +(-2.67656 - 6.46178i) q^{31} +4.89386 q^{33} +6.52351 q^{35} +(-1.63047 - 3.93630i) q^{37} +(0.989020 - 0.409666i) q^{39} +(7.08028 + 2.93275i) q^{41} +(4.37197 - 4.37197i) q^{43} +(1.03888 - 2.50807i) q^{45} +8.19868i q^{47} +(-0.866566 - 0.866566i) q^{49} +(-1.09143 + 3.97603i) q^{51} +(-7.97888 - 7.97888i) q^{53} +13.2855i q^{55} +(0.872800 - 2.10713i) q^{57} +(8.89888 - 8.89888i) q^{59} +(-2.52414 - 1.04553i) q^{61} +(2.22010 - 0.919595i) q^{63} +(1.11213 + 2.68491i) q^{65} -12.8012 q^{67} +6.30808 q^{69} +(1.62627 + 3.92615i) q^{71} +(-9.47623 + 3.92518i) q^{73} +(2.18931 + 0.906841i) q^{75} +(-8.31560 + 8.31560i) q^{77} +(-0.464750 + 1.12200i) q^{79} -1.00000i q^{81} +(-2.92403 - 2.92403i) q^{83} +(-10.7938 - 2.96293i) q^{85} +(2.39984 + 2.39984i) q^{87} +2.96634i q^{89} +(-0.984434 + 2.37663i) q^{91} +(4.94563 - 4.94563i) q^{93} +(5.72025 + 2.36941i) q^{95} +(16.8658 - 6.98605i) q^{97} +(1.87280 + 4.52134i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{15} + 8 q^{19} + 8 q^{23} - 8 q^{25} + 32 q^{29} - 8 q^{31} - 8 q^{33} - 16 q^{35} + 8 q^{37} + 8 q^{39} + 40 q^{41} + 24 q^{43} + 8 q^{45} + 24 q^{49} - 8 q^{51} - 24 q^{53} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.382683 + 0.923880i 0.220942 + 0.533402i
\(4\) 0 0
\(5\) −2.50807 + 1.03888i −1.12164 + 0.464600i −0.864933 0.501888i \(-0.832639\pi\)
−0.256711 + 0.966488i \(0.582639\pi\)
\(6\) 0 0
\(7\) −2.22010 0.919595i −0.839118 0.347574i −0.0786124 0.996905i \(-0.525049\pi\)
−0.760506 + 0.649331i \(0.775049\pi\)
\(8\) 0 0
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) 0 0
\(11\) 1.87280 4.52134i 0.564671 1.36324i −0.341324 0.939946i \(-0.610875\pi\)
0.905994 0.423290i \(-0.139125\pi\)
\(12\) 0 0
\(13\) 1.07051i 0.296906i −0.988920 0.148453i \(-0.952571\pi\)
0.988920 0.148453i \(-0.0474293\pi\)
\(14\) 0 0
\(15\) −1.91959 1.91959i −0.495637 0.495637i
\(16\) 0 0
\(17\) 3.25570 + 2.52991i 0.789622 + 0.613593i
\(18\) 0 0
\(19\) −1.61272 1.61272i −0.369984 0.369984i 0.497487 0.867471i \(-0.334256\pi\)
−0.867471 + 0.497487i \(0.834256\pi\)
\(20\) 0 0
\(21\) 2.40302i 0.524381i
\(22\) 0 0
\(23\) 2.41400 5.82790i 0.503353 1.21520i −0.444294 0.895881i \(-0.646545\pi\)
0.947647 0.319321i \(-0.103455\pi\)
\(24\) 0 0
\(25\) 1.67562 1.67562i 0.335125 0.335125i
\(26\) 0 0
\(27\) −0.923880 0.382683i −0.177801 0.0736475i
\(28\) 0 0
\(29\) 3.13555 1.29879i 0.582257 0.241179i −0.0720587 0.997400i \(-0.522957\pi\)
0.654315 + 0.756222i \(0.272957\pi\)
\(30\) 0 0
\(31\) −2.67656 6.46178i −0.480724 1.16057i −0.959266 0.282506i \(-0.908834\pi\)
0.478542 0.878065i \(-0.341166\pi\)
\(32\) 0 0
\(33\) 4.89386 0.851912
\(34\) 0 0
\(35\) 6.52351 1.10267
\(36\) 0 0
\(37\) −1.63047 3.93630i −0.268047 0.647123i 0.731344 0.682009i \(-0.238893\pi\)
−0.999391 + 0.0348855i \(0.988893\pi\)
\(38\) 0 0
\(39\) 0.989020 0.409666i 0.158370 0.0655990i
\(40\) 0 0
\(41\) 7.08028 + 2.93275i 1.10575 + 0.458018i 0.859473 0.511180i \(-0.170792\pi\)
0.246280 + 0.969199i \(0.420792\pi\)
\(42\) 0 0
\(43\) 4.37197 4.37197i 0.666719 0.666719i −0.290236 0.956955i \(-0.593734\pi\)
0.956955 + 0.290236i \(0.0937339\pi\)
\(44\) 0 0
\(45\) 1.03888 2.50807i 0.154867 0.373881i
\(46\) 0 0
\(47\) 8.19868i 1.19590i 0.801533 + 0.597950i \(0.204018\pi\)
−0.801533 + 0.597950i \(0.795982\pi\)
\(48\) 0 0
\(49\) −0.866566 0.866566i −0.123795 0.123795i
\(50\) 0 0
\(51\) −1.09143 + 3.97603i −0.152831 + 0.556755i
\(52\) 0 0
\(53\) −7.97888 7.97888i −1.09598 1.09598i −0.994875 0.101108i \(-0.967761\pi\)
−0.101108 0.994875i \(-0.532239\pi\)
\(54\) 0 0
\(55\) 13.2855i 1.79141i
\(56\) 0 0
\(57\) 0.872800 2.10713i 0.115605 0.279096i
\(58\) 0 0
\(59\) 8.89888 8.89888i 1.15854 1.15854i 0.173745 0.984791i \(-0.444413\pi\)
0.984791 0.173745i \(-0.0555869\pi\)
\(60\) 0 0
\(61\) −2.52414 1.04553i −0.323183 0.133867i 0.215193 0.976572i \(-0.430962\pi\)
−0.538376 + 0.842705i \(0.680962\pi\)
\(62\) 0 0
\(63\) 2.22010 0.919595i 0.279706 0.115858i
\(64\) 0 0
\(65\) 1.11213 + 2.68491i 0.137942 + 0.333022i
\(66\) 0 0
\(67\) −12.8012 −1.56392 −0.781958 0.623331i \(-0.785779\pi\)
−0.781958 + 0.623331i \(0.785779\pi\)
\(68\) 0 0
\(69\) 6.30808 0.759403
\(70\) 0 0
\(71\) 1.62627 + 3.92615i 0.193002 + 0.465948i 0.990524 0.137342i \(-0.0438559\pi\)
−0.797521 + 0.603291i \(0.793856\pi\)
\(72\) 0 0
\(73\) −9.47623 + 3.92518i −1.10911 + 0.459408i −0.860631 0.509229i \(-0.829931\pi\)
−0.248478 + 0.968637i \(0.579931\pi\)
\(74\) 0 0
\(75\) 2.18931 + 0.906841i 0.252799 + 0.104713i
\(76\) 0 0
\(77\) −8.31560 + 8.31560i −0.947651 + 0.947651i
\(78\) 0 0
\(79\) −0.464750 + 1.12200i −0.0522884 + 0.126235i −0.947865 0.318672i \(-0.896763\pi\)
0.895577 + 0.444907i \(0.146763\pi\)
\(80\) 0 0
\(81\) 1.00000i 0.111111i
\(82\) 0 0
\(83\) −2.92403 2.92403i −0.320954 0.320954i 0.528179 0.849133i \(-0.322875\pi\)
−0.849133 + 0.528179i \(0.822875\pi\)
\(84\) 0 0
\(85\) −10.7938 2.96293i −1.17075 0.321374i
\(86\) 0 0
\(87\) 2.39984 + 2.39984i 0.257290 + 0.257290i
\(88\) 0 0
\(89\) 2.96634i 0.314431i 0.987564 + 0.157216i \(0.0502518\pi\)
−0.987564 + 0.157216i \(0.949748\pi\)
\(90\) 0 0
\(91\) −0.984434 + 2.37663i −0.103197 + 0.249139i
\(92\) 0 0
\(93\) 4.94563 4.94563i 0.512838 0.512838i
\(94\) 0 0
\(95\) 5.72025 + 2.36941i 0.586886 + 0.243096i
\(96\) 0 0
\(97\) 16.8658 6.98605i 1.71247 0.709326i 0.712495 0.701678i \(-0.247565\pi\)
0.999971 0.00764885i \(-0.00243473\pi\)
\(98\) 0 0
\(99\) 1.87280 + 4.52134i 0.188224 + 0.454412i
\(100\) 0 0
\(101\) −9.04503 −0.900014 −0.450007 0.893025i \(-0.648579\pi\)
−0.450007 + 0.893025i \(0.648579\pi\)
\(102\) 0 0
\(103\) 2.23568 0.220288 0.110144 0.993916i \(-0.464869\pi\)
0.110144 + 0.993916i \(0.464869\pi\)
\(104\) 0 0
\(105\) 2.49644 + 6.02694i 0.243628 + 0.588169i
\(106\) 0 0
\(107\) −5.04118 + 2.08813i −0.487350 + 0.201867i −0.612808 0.790232i \(-0.709960\pi\)
0.125458 + 0.992099i \(0.459960\pi\)
\(108\) 0 0
\(109\) −2.44258 1.01175i −0.233956 0.0969079i 0.262625 0.964898i \(-0.415412\pi\)
−0.496582 + 0.867990i \(0.665412\pi\)
\(110\) 0 0
\(111\) 3.01271 3.01271i 0.285954 0.285954i
\(112\) 0 0
\(113\) 5.35434 12.9265i 0.503694 1.21602i −0.443764 0.896144i \(-0.646357\pi\)
0.947458 0.319880i \(-0.103643\pi\)
\(114\) 0 0
\(115\) 17.1246i 1.59688i
\(116\) 0 0
\(117\) 0.756964 + 0.756964i 0.0699813 + 0.0699813i
\(118\) 0 0
\(119\) −4.90147 8.61057i −0.449317 0.789330i
\(120\) 0 0
\(121\) −9.15696 9.15696i −0.832451 0.832451i
\(122\) 0 0
\(123\) 7.66364i 0.691007i
\(124\) 0 0
\(125\) 2.73257 6.59701i 0.244409 0.590054i
\(126\) 0 0
\(127\) −10.2828 + 10.2828i −0.912449 + 0.912449i −0.996464 0.0840159i \(-0.973225\pi\)
0.0840159 + 0.996464i \(0.473225\pi\)
\(128\) 0 0
\(129\) 5.71225 + 2.36609i 0.502936 + 0.208323i
\(130\) 0 0
\(131\) 2.23079 0.924024i 0.194905 0.0807323i −0.283096 0.959092i \(-0.591361\pi\)
0.478001 + 0.878359i \(0.341361\pi\)
\(132\) 0 0
\(133\) 2.09735 + 5.06346i 0.181864 + 0.439058i
\(134\) 0 0
\(135\) 2.71472 0.233646
\(136\) 0 0
\(137\) −1.42184 −0.121476 −0.0607382 0.998154i \(-0.519345\pi\)
−0.0607382 + 0.998154i \(0.519345\pi\)
\(138\) 0 0
\(139\) −5.94425 14.3507i −0.504184 1.21721i −0.947185 0.320687i \(-0.896086\pi\)
0.443001 0.896521i \(-0.353914\pi\)
\(140\) 0 0
\(141\) −7.57460 + 3.13750i −0.637896 + 0.264225i
\(142\) 0 0
\(143\) −4.84013 2.00485i −0.404752 0.167654i
\(144\) 0 0
\(145\) −6.51490 + 6.51490i −0.541033 + 0.541033i
\(146\) 0 0
\(147\) 0.468982 1.13222i 0.0386810 0.0933842i
\(148\) 0 0
\(149\) 16.2390i 1.33035i −0.746687 0.665176i \(-0.768357\pi\)
0.746687 0.665176i \(-0.231643\pi\)
\(150\) 0 0
\(151\) −2.48539 2.48539i −0.202258 0.202258i 0.598709 0.800967i \(-0.295681\pi\)
−0.800967 + 0.598709i \(0.795681\pi\)
\(152\) 0 0
\(153\) −4.09104 + 0.513208i −0.330741 + 0.0414904i
\(154\) 0 0
\(155\) 13.4260 + 13.4260i 1.07840 + 1.07840i
\(156\) 0 0
\(157\) 21.3904i 1.70714i 0.520975 + 0.853572i \(0.325568\pi\)
−0.520975 + 0.853572i \(0.674432\pi\)
\(158\) 0 0
\(159\) 4.31814 10.4249i 0.342451 0.826749i
\(160\) 0 0
\(161\) −10.7186 + 10.7186i −0.844746 + 0.844746i
\(162\) 0 0
\(163\) −18.3602 7.60506i −1.43809 0.595675i −0.478752 0.877950i \(-0.658911\pi\)
−0.959333 + 0.282275i \(0.908911\pi\)
\(164\) 0 0
\(165\) −12.2742 + 5.08412i −0.955542 + 0.395798i
\(166\) 0 0
\(167\) −3.03768 7.33360i −0.235063 0.567491i 0.761697 0.647934i \(-0.224367\pi\)
−0.996759 + 0.0804426i \(0.974367\pi\)
\(168\) 0 0
\(169\) 11.8540 0.911847
\(170\) 0 0
\(171\) 2.28074 0.174412
\(172\) 0 0
\(173\) 9.18012 + 22.1628i 0.697951 + 1.68500i 0.728112 + 0.685458i \(0.240398\pi\)
−0.0301604 + 0.999545i \(0.509602\pi\)
\(174\) 0 0
\(175\) −5.26094 + 2.17915i −0.397690 + 0.164728i
\(176\) 0 0
\(177\) 11.6269 + 4.81604i 0.873935 + 0.361996i
\(178\) 0 0
\(179\) −17.0828 + 17.0828i −1.27683 + 1.27683i −0.334392 + 0.942434i \(0.608531\pi\)
−0.942434 + 0.334392i \(0.891469\pi\)
\(180\) 0 0
\(181\) 4.65785 11.2451i 0.346216 0.835838i −0.650844 0.759211i \(-0.725585\pi\)
0.997060 0.0766270i \(-0.0244151\pi\)
\(182\) 0 0
\(183\) 2.73211i 0.201964i
\(184\) 0 0
\(185\) 8.17866 + 8.17866i 0.601307 + 0.601307i
\(186\) 0 0
\(187\) 17.5359 9.98209i 1.28235 0.729963i
\(188\) 0 0
\(189\) 1.69919 + 1.69919i 0.123598 + 0.123598i
\(190\) 0 0
\(191\) 3.27804i 0.237191i −0.992943 0.118595i \(-0.962161\pi\)
0.992943 0.118595i \(-0.0378392\pi\)
\(192\) 0 0
\(193\) −7.94091 + 19.1711i −0.571599 + 1.37996i 0.328593 + 0.944472i \(0.393425\pi\)
−0.900193 + 0.435492i \(0.856575\pi\)
\(194\) 0 0
\(195\) −2.05494 + 2.05494i −0.147157 + 0.147157i
\(196\) 0 0
\(197\) 18.2135 + 7.54429i 1.29766 + 0.537508i 0.921259 0.388949i \(-0.127162\pi\)
0.376401 + 0.926457i \(0.377162\pi\)
\(198\) 0 0
\(199\) 14.0934 5.83768i 0.999055 0.413822i 0.177605 0.984102i \(-0.443165\pi\)
0.821451 + 0.570280i \(0.193165\pi\)
\(200\) 0 0
\(201\) −4.89881 11.8268i −0.345535 0.834196i
\(202\) 0 0
\(203\) −8.15558 −0.572410
\(204\) 0 0
\(205\) −20.8046 −1.45306
\(206\) 0 0
\(207\) 2.41400 + 5.82790i 0.167784 + 0.405067i
\(208\) 0 0
\(209\) −10.3120 + 4.27137i −0.713295 + 0.295457i
\(210\) 0 0
\(211\) 11.5631 + 4.78961i 0.796039 + 0.329730i 0.743369 0.668882i \(-0.233227\pi\)
0.0526704 + 0.998612i \(0.483227\pi\)
\(212\) 0 0
\(213\) −3.00495 + 3.00495i −0.205896 + 0.205896i
\(214\) 0 0
\(215\) −6.42327 + 15.5071i −0.438063 + 1.05758i
\(216\) 0 0
\(217\) 16.8071i 1.14094i
\(218\) 0 0
\(219\) −7.25280 7.25280i −0.490099 0.490099i
\(220\) 0 0
\(221\) 2.70829 3.48525i 0.182179 0.234443i
\(222\) 0 0
\(223\) 5.32288 + 5.32288i 0.356446 + 0.356446i 0.862501 0.506055i \(-0.168897\pi\)
−0.506055 + 0.862501i \(0.668897\pi\)
\(224\) 0 0
\(225\) 2.36969i 0.157979i
\(226\) 0 0
\(227\) −1.83963 + 4.44126i −0.122101 + 0.294777i −0.973097 0.230394i \(-0.925999\pi\)
0.850997 + 0.525171i \(0.175999\pi\)
\(228\) 0 0
\(229\) −9.47732 + 9.47732i −0.626279 + 0.626279i −0.947130 0.320851i \(-0.896031\pi\)
0.320851 + 0.947130i \(0.396031\pi\)
\(230\) 0 0
\(231\) −10.8649 4.50037i −0.714855 0.296103i
\(232\) 0 0
\(233\) 12.7306 5.27318i 0.834008 0.345457i 0.0755198 0.997144i \(-0.475938\pi\)
0.758488 + 0.651687i \(0.225938\pi\)
\(234\) 0 0
\(235\) −8.51742 20.5629i −0.555616 1.34137i
\(236\) 0 0
\(237\) −1.21445 −0.0788870
\(238\) 0 0
\(239\) 17.0060 1.10003 0.550014 0.835155i \(-0.314622\pi\)
0.550014 + 0.835155i \(0.314622\pi\)
\(240\) 0 0
\(241\) −7.42077 17.9153i −0.478014 1.15403i −0.960539 0.278145i \(-0.910280\pi\)
0.482525 0.875882i \(-0.339720\pi\)
\(242\) 0 0
\(243\) 0.923880 0.382683i 0.0592669 0.0245492i
\(244\) 0 0
\(245\) 3.07366 + 1.27315i 0.196369 + 0.0813388i
\(246\) 0 0
\(247\) −1.72644 + 1.72644i −0.109850 + 0.109850i
\(248\) 0 0
\(249\) 1.58247 3.82042i 0.100285 0.242110i
\(250\) 0 0
\(251\) 21.5316i 1.35906i 0.733646 + 0.679532i \(0.237817\pi\)
−0.733646 + 0.679532i \(0.762183\pi\)
\(252\) 0 0
\(253\) −21.8290 21.8290i −1.37238 1.37238i
\(254\) 0 0
\(255\) −1.39322 11.1060i −0.0872466 0.695486i
\(256\) 0 0
\(257\) 13.5195 + 13.5195i 0.843324 + 0.843324i 0.989290 0.145966i \(-0.0466290\pi\)
−0.145966 + 0.989290i \(0.546629\pi\)
\(258\) 0 0
\(259\) 10.2383i 0.636179i
\(260\) 0 0
\(261\) −1.29879 + 3.13555i −0.0803929 + 0.194086i
\(262\) 0 0
\(263\) −7.83952 + 7.83952i −0.483406 + 0.483406i −0.906218 0.422812i \(-0.861043\pi\)
0.422812 + 0.906218i \(0.361043\pi\)
\(264\) 0 0
\(265\) 28.3007 + 11.7225i 1.73850 + 0.720109i
\(266\) 0 0
\(267\) −2.74054 + 1.13517i −0.167718 + 0.0694712i
\(268\) 0 0
\(269\) 1.69352 + 4.08852i 0.103256 + 0.249282i 0.967061 0.254544i \(-0.0819254\pi\)
−0.863805 + 0.503826i \(0.831925\pi\)
\(270\) 0 0
\(271\) −16.2476 −0.986973 −0.493486 0.869753i \(-0.664278\pi\)
−0.493486 + 0.869753i \(0.664278\pi\)
\(272\) 0 0
\(273\) −2.57245 −0.155692
\(274\) 0 0
\(275\) −4.43795 10.7142i −0.267619 0.646089i
\(276\) 0 0
\(277\) −0.591916 + 0.245180i −0.0355648 + 0.0147314i −0.400395 0.916343i \(-0.631127\pi\)
0.364830 + 0.931074i \(0.381127\pi\)
\(278\) 0 0
\(279\) 6.46178 + 2.67656i 0.386857 + 0.160241i
\(280\) 0 0
\(281\) 0.0521155 0.0521155i 0.00310895 0.00310895i −0.705551 0.708660i \(-0.749300\pi\)
0.708660 + 0.705551i \(0.249300\pi\)
\(282\) 0 0
\(283\) 7.82868 18.9001i 0.465367 1.12350i −0.500797 0.865565i \(-0.666960\pi\)
0.966164 0.257930i \(-0.0830404\pi\)
\(284\) 0 0
\(285\) 6.19156i 0.366756i
\(286\) 0 0
\(287\) −13.0220 13.0220i −0.768663 0.768663i
\(288\) 0 0
\(289\) 4.19911 + 16.4732i 0.247007 + 0.969014i
\(290\) 0 0
\(291\) 12.9085 + 12.9085i 0.756712 + 0.756712i
\(292\) 0 0
\(293\) 7.88796i 0.460820i −0.973094 0.230410i \(-0.925993\pi\)
0.973094 0.230410i \(-0.0740067\pi\)
\(294\) 0 0
\(295\) −13.0742 + 31.5639i −0.761209 + 1.83772i
\(296\) 0 0
\(297\) −3.46048 + 3.46048i −0.200798 + 0.200798i
\(298\) 0 0
\(299\) −6.23882 2.58420i −0.360800 0.149448i
\(300\) 0 0
\(301\) −13.7266 + 5.68576i −0.791190 + 0.327722i
\(302\) 0 0
\(303\) −3.46138 8.35652i −0.198851 0.480069i
\(304\) 0 0
\(305\) 7.41691 0.424691
\(306\) 0 0
\(307\) 4.63954 0.264793 0.132396 0.991197i \(-0.457733\pi\)
0.132396 + 0.991197i \(0.457733\pi\)
\(308\) 0 0
\(309\) 0.855556 + 2.06550i 0.0486709 + 0.117502i
\(310\) 0 0
\(311\) 5.16892 2.14104i 0.293103 0.121407i −0.231287 0.972886i \(-0.574294\pi\)
0.524389 + 0.851479i \(0.324294\pi\)
\(312\) 0 0
\(313\) 0.810266 + 0.335623i 0.0457990 + 0.0189705i 0.405465 0.914110i \(-0.367109\pi\)
−0.359666 + 0.933081i \(0.617109\pi\)
\(314\) 0 0
\(315\) −4.61282 + 4.61282i −0.259903 + 0.259903i
\(316\) 0 0
\(317\) 11.3854 27.4867i 0.639467 1.54381i −0.187925 0.982183i \(-0.560176\pi\)
0.827392 0.561625i \(-0.189824\pi\)
\(318\) 0 0
\(319\) 16.6092i 0.929939i
\(320\) 0 0
\(321\) −3.85836 3.85836i −0.215352 0.215352i
\(322\) 0 0
\(323\) −1.17049 9.33059i −0.0651280 0.519168i
\(324\) 0 0
\(325\) −1.79377 1.79377i −0.0995003 0.0995003i
\(326\) 0 0
\(327\) 2.64382i 0.146204i
\(328\) 0 0
\(329\) 7.53947 18.2019i 0.415664 1.00350i
\(330\) 0 0
\(331\) 8.18438 8.18438i 0.449854 0.449854i −0.445452 0.895306i \(-0.646957\pi\)
0.895306 + 0.445452i \(0.146957\pi\)
\(332\) 0 0
\(333\) 3.93630 + 1.63047i 0.215708 + 0.0893491i
\(334\) 0 0
\(335\) 32.1063 13.2989i 1.75416 0.726595i
\(336\) 0 0
\(337\) 6.47644 + 15.6355i 0.352794 + 0.851720i 0.996273 + 0.0862562i \(0.0274904\pi\)
−0.643479 + 0.765464i \(0.722510\pi\)
\(338\) 0 0
\(339\) 13.9916 0.759917
\(340\) 0 0
\(341\) −34.2286 −1.85358
\(342\) 0 0
\(343\) 7.56414 + 18.2614i 0.408425 + 0.986025i
\(344\) 0 0
\(345\) −15.8211 + 6.55332i −0.851780 + 0.352819i
\(346\) 0 0
\(347\) 2.02695 + 0.839592i 0.108813 + 0.0450716i 0.436426 0.899740i \(-0.356244\pi\)
−0.327613 + 0.944812i \(0.606244\pi\)
\(348\) 0 0
\(349\) 18.7192 18.7192i 1.00201 1.00201i 0.00201610 0.999998i \(-0.499358\pi\)
0.999998 0.00201610i \(-0.000641744\pi\)
\(350\) 0 0
\(351\) −0.409666 + 0.989020i −0.0218663 + 0.0527900i
\(352\) 0 0
\(353\) 24.9345i 1.32713i −0.748120 0.663564i \(-0.769043\pi\)
0.748120 0.663564i \(-0.230957\pi\)
\(354\) 0 0
\(355\) −8.15758 8.15758i −0.432959 0.432959i
\(356\) 0 0
\(357\) 6.07942 7.82349i 0.321757 0.414063i
\(358\) 0 0
\(359\) −2.09699 2.09699i −0.110675 0.110675i 0.649601 0.760276i \(-0.274936\pi\)
−0.760276 + 0.649601i \(0.774936\pi\)
\(360\) 0 0
\(361\) 13.7982i 0.726223i
\(362\) 0 0
\(363\) 4.95571 11.9641i 0.260107 0.627955i
\(364\) 0 0
\(365\) 19.6893 19.6893i 1.03058 1.03058i
\(366\) 0 0
\(367\) 21.6341 + 8.96114i 1.12929 + 0.467768i 0.867540 0.497368i \(-0.165700\pi\)
0.261751 + 0.965135i \(0.415700\pi\)
\(368\) 0 0
\(369\) −7.08028 + 2.93275i −0.368585 + 0.152673i
\(370\) 0 0
\(371\) 10.3766 + 25.0512i 0.538724 + 1.30060i
\(372\) 0 0
\(373\) 30.4720 1.57778 0.788890 0.614534i \(-0.210656\pi\)
0.788890 + 0.614534i \(0.210656\pi\)
\(374\) 0 0
\(375\) 7.14055 0.368736
\(376\) 0 0
\(377\) −1.39036 3.35663i −0.0716073 0.172875i
\(378\) 0 0
\(379\) 2.43151 1.00717i 0.124898 0.0517346i −0.319359 0.947634i \(-0.603468\pi\)
0.444257 + 0.895899i \(0.353468\pi\)
\(380\) 0 0
\(381\) −13.4351 5.56500i −0.688301 0.285103i
\(382\) 0 0
\(383\) −13.8259 + 13.8259i −0.706473 + 0.706473i −0.965792 0.259319i \(-0.916502\pi\)
0.259319 + 0.965792i \(0.416502\pi\)
\(384\) 0 0
\(385\) 12.2172 29.4950i 0.622648 1.50321i
\(386\) 0 0
\(387\) 6.18290i 0.314294i
\(388\) 0 0
\(389\) −10.3694 10.3694i −0.525748 0.525748i 0.393553 0.919302i \(-0.371246\pi\)
−0.919302 + 0.393553i \(0.871246\pi\)
\(390\) 0 0
\(391\) 22.6033 12.8667i 1.14310 0.650696i
\(392\) 0 0
\(393\) 1.70737 + 1.70737i 0.0861256 + 0.0861256i
\(394\) 0 0
\(395\) 3.29689i 0.165884i
\(396\) 0 0
\(397\) 5.12132 12.3639i 0.257031 0.620529i −0.741708 0.670723i \(-0.765984\pi\)
0.998739 + 0.0501941i \(0.0159840\pi\)
\(398\) 0 0
\(399\) −3.87541 + 3.87541i −0.194013 + 0.194013i
\(400\) 0 0
\(401\) −6.03313 2.49900i −0.301280 0.124794i 0.226922 0.973913i \(-0.427134\pi\)
−0.528202 + 0.849119i \(0.677134\pi\)
\(402\) 0 0
\(403\) −6.91739 + 2.86528i −0.344580 + 0.142730i
\(404\) 0 0
\(405\) 1.03888 + 2.50807i 0.0516222 + 0.124627i
\(406\) 0 0
\(407\) −20.8509 −1.03354
\(408\) 0 0
\(409\) −6.45254 −0.319058 −0.159529 0.987193i \(-0.550997\pi\)
−0.159529 + 0.987193i \(0.550997\pi\)
\(410\) 0 0
\(411\) −0.544116 1.31361i −0.0268393 0.0647958i
\(412\) 0 0
\(413\) −27.9398 + 11.5730i −1.37483 + 0.569471i
\(414\) 0 0
\(415\) 10.3714 + 4.29596i 0.509111 + 0.210881i
\(416\) 0 0
\(417\) 10.9835 10.9835i 0.537866 0.537866i
\(418\) 0 0
\(419\) −8.77323 + 21.1805i −0.428600 + 1.03473i 0.551131 + 0.834419i \(0.314196\pi\)
−0.979732 + 0.200314i \(0.935804\pi\)
\(420\) 0 0
\(421\) 26.8644i 1.30929i −0.755936 0.654645i \(-0.772818\pi\)
0.755936 0.654645i \(-0.227182\pi\)
\(422\) 0 0
\(423\) −5.79734 5.79734i −0.281877 0.281877i
\(424\) 0 0
\(425\) 9.69449 1.21614i 0.470252 0.0589917i
\(426\) 0 0
\(427\) 4.64238 + 4.64238i 0.224660 + 0.224660i
\(428\) 0 0
\(429\) 5.23892i 0.252937i
\(430\) 0 0
\(431\) 14.8232 35.7865i 0.714010 1.72377i 0.0242809 0.999705i \(-0.492270\pi\)
0.689729 0.724068i \(-0.257730\pi\)
\(432\) 0 0
\(433\) −21.6205 + 21.6205i −1.03901 + 1.03901i −0.0398071 + 0.999207i \(0.512674\pi\)
−0.999207 + 0.0398071i \(0.987326\pi\)
\(434\) 0 0
\(435\) −8.51213 3.52584i −0.408125 0.169051i
\(436\) 0 0
\(437\) −13.2919 + 5.50569i −0.635839 + 0.263373i
\(438\) 0 0
\(439\) 0.602318 + 1.45412i 0.0287471 + 0.0694016i 0.937601 0.347713i \(-0.113042\pi\)
−0.908854 + 0.417114i \(0.863042\pi\)
\(440\) 0 0
\(441\) 1.22551 0.0583576
\(442\) 0 0
\(443\) −14.7788 −0.702164 −0.351082 0.936345i \(-0.614186\pi\)
−0.351082 + 0.936345i \(0.614186\pi\)
\(444\) 0 0
\(445\) −3.08166 7.43979i −0.146085 0.352680i
\(446\) 0 0
\(447\) 15.0029 6.21440i 0.709612 0.293931i
\(448\) 0 0
\(449\) −9.04315 3.74579i −0.426773 0.176775i 0.158950 0.987287i \(-0.449189\pi\)
−0.585722 + 0.810512i \(0.699189\pi\)
\(450\) 0 0
\(451\) 26.5199 26.5199i 1.24877 1.24877i
\(452\) 0 0
\(453\) 1.34508 3.24731i 0.0631974 0.152572i
\(454\) 0 0
\(455\) 6.98347i 0.327390i
\(456\) 0 0
\(457\) −17.3054 17.3054i −0.809513 0.809513i 0.175047 0.984560i \(-0.443992\pi\)
−0.984560 + 0.175047i \(0.943992\pi\)
\(458\) 0 0
\(459\) −2.03972 3.58323i −0.0952058 0.167251i
\(460\) 0 0
\(461\) 9.62092 + 9.62092i 0.448091 + 0.448091i 0.894719 0.446629i \(-0.147375\pi\)
−0.446629 + 0.894719i \(0.647375\pi\)
\(462\) 0 0
\(463\) 10.8498i 0.504233i 0.967697 + 0.252117i \(0.0811267\pi\)
−0.967697 + 0.252117i \(0.918873\pi\)
\(464\) 0 0
\(465\) −7.26610 + 17.5419i −0.336957 + 0.813487i
\(466\) 0 0
\(467\) −10.9692 + 10.9692i −0.507594 + 0.507594i −0.913787 0.406193i \(-0.866856\pi\)
0.406193 + 0.913787i \(0.366856\pi\)
\(468\) 0 0
\(469\) 28.4199 + 11.7719i 1.31231 + 0.543577i
\(470\) 0 0
\(471\) −19.7622 + 8.18577i −0.910594 + 0.377180i
\(472\) 0 0
\(473\) −11.5793 27.9550i −0.532418 1.28537i
\(474\) 0 0
\(475\) −5.40464 −0.247982
\(476\) 0 0
\(477\) 11.2838 0.516652
\(478\) 0 0
\(479\) −16.4855 39.7996i −0.753244 1.81849i −0.540407 0.841403i \(-0.681730\pi\)
−0.212836 0.977088i \(-0.568270\pi\)
\(480\) 0 0
\(481\) −4.21384 + 1.74543i −0.192134 + 0.0795847i
\(482\) 0 0
\(483\) −14.0046 5.80087i −0.637229 0.263949i
\(484\) 0 0
\(485\) −35.0430 + 35.0430i −1.59122 + 1.59122i
\(486\) 0 0
\(487\) −16.2097 + 39.1337i −0.734531 + 1.77331i −0.107666 + 0.994187i \(0.534338\pi\)
−0.626865 + 0.779128i \(0.715662\pi\)
\(488\) 0 0
\(489\) 19.8730i 0.898688i
\(490\) 0 0
\(491\) −3.65738 3.65738i −0.165055 0.165055i 0.619747 0.784802i \(-0.287235\pi\)
−0.784802 + 0.619747i \(0.787235\pi\)
\(492\) 0 0
\(493\) 13.4942 + 3.70420i 0.607748 + 0.166829i
\(494\) 0 0
\(495\) −9.39423 9.39423i −0.422239 0.422239i
\(496\) 0 0
\(497\) 10.2119i 0.458068i
\(498\) 0 0
\(499\) 8.48908 20.4945i 0.380023 0.917458i −0.611937 0.790907i \(-0.709609\pi\)
0.991960 0.126551i \(-0.0403907\pi\)
\(500\) 0 0
\(501\) 5.61290 5.61290i 0.250766 0.250766i
\(502\) 0 0
\(503\) 25.0563 + 10.3786i 1.11720 + 0.462761i 0.863413 0.504498i \(-0.168322\pi\)
0.253791 + 0.967259i \(0.418322\pi\)
\(504\) 0 0
\(505\) 22.6856 9.39667i 1.00950 0.418147i
\(506\) 0 0
\(507\) 4.53633 + 10.9517i 0.201466 + 0.486381i
\(508\) 0 0
\(509\) 25.9336 1.14949 0.574743 0.818334i \(-0.305102\pi\)
0.574743 + 0.818334i \(0.305102\pi\)
\(510\) 0 0
\(511\) 24.6478 1.09035
\(512\) 0 0
\(513\) 0.872800 + 2.10713i 0.0385351 + 0.0930319i
\(514\) 0 0
\(515\) −5.60724 + 2.32259i −0.247084 + 0.102346i
\(516\) 0 0
\(517\) 37.0690 + 15.3545i 1.63029 + 0.675290i
\(518\) 0 0
\(519\) −16.9626 + 16.9626i −0.744577 + 0.744577i
\(520\) 0 0
\(521\) −14.8942 + 35.9578i −0.652527 + 1.57534i 0.156573 + 0.987666i \(0.449955\pi\)
−0.809099 + 0.587672i \(0.800045\pi\)
\(522\) 0 0
\(523\) 29.2087i 1.27721i −0.769536 0.638603i \(-0.779512\pi\)
0.769536 0.638603i \(-0.220488\pi\)
\(524\) 0 0
\(525\) −4.02655 4.02655i −0.175733 0.175733i
\(526\) 0 0
\(527\) 7.63367 27.8091i 0.332528 1.21138i
\(528\) 0 0
\(529\) −11.8736 11.8736i −0.516244 0.516244i
\(530\) 0 0
\(531\) 12.5849i 0.546139i
\(532\) 0 0
\(533\) 3.13953 7.57950i 0.135988 0.328304i
\(534\) 0 0
\(535\) 10.4743 10.4743i 0.452845 0.452845i
\(536\) 0 0
\(537\) −22.3197 9.24513i −0.963166 0.398957i
\(538\) 0 0
\(539\) −5.54094 + 2.29513i −0.238665 + 0.0988584i
\(540\) 0 0
\(541\) 5.71438 + 13.7957i 0.245680 + 0.593125i 0.997828 0.0658697i \(-0.0209822\pi\)
−0.752148 + 0.658994i \(0.770982\pi\)
\(542\) 0 0
\(543\) 12.1716 0.522332
\(544\) 0 0
\(545\) 7.17724 0.307439
\(546\) 0 0
\(547\) −8.00943 19.3365i −0.342458 0.826767i −0.997466 0.0711452i \(-0.977335\pi\)
0.655008 0.755622i \(-0.272665\pi\)
\(548\) 0 0
\(549\) 2.52414 1.04553i 0.107728 0.0446223i
\(550\) 0 0
\(551\) −7.15136 2.96219i −0.304658 0.126194i
\(552\) 0 0
\(553\) 2.06358 2.06358i 0.0877523 0.0877523i
\(554\) 0 0
\(555\) −4.42626 + 10.6859i −0.187884 + 0.453592i
\(556\) 0 0
\(557\) 11.4512i 0.485203i 0.970126 + 0.242602i \(0.0780008\pi\)
−0.970126 + 0.242602i \(0.921999\pi\)
\(558\) 0 0
\(559\) −4.68023 4.68023i −0.197952 0.197952i
\(560\) 0 0
\(561\) 15.9329 + 12.3810i 0.672689 + 0.522728i
\(562\) 0 0
\(563\) 16.1023 + 16.1023i 0.678629 + 0.678629i 0.959690 0.281061i \(-0.0906862\pi\)
−0.281061 + 0.959690i \(0.590686\pi\)
\(564\) 0 0
\(565\) 37.9831i 1.59796i
\(566\) 0 0
\(567\) −0.919595 + 2.22010i −0.0386194 + 0.0932354i
\(568\) 0 0
\(569\) −22.4856 + 22.4856i −0.942644 + 0.942644i −0.998442 0.0557985i \(-0.982230\pi\)
0.0557985 + 0.998442i \(0.482230\pi\)
\(570\) 0 0
\(571\) 36.9087 + 15.2881i 1.54458 + 0.639787i 0.982326 0.187176i \(-0.0599335\pi\)
0.562256 + 0.826963i \(0.309933\pi\)
\(572\) 0 0
\(573\) 3.02852 1.25445i 0.126518 0.0524055i
\(574\) 0 0
\(575\) −5.72042 13.8103i −0.238558 0.575930i
\(576\) 0 0
\(577\) 28.3973 1.18219 0.591097 0.806600i \(-0.298695\pi\)
0.591097 + 0.806600i \(0.298695\pi\)
\(578\) 0 0
\(579\) −20.7506 −0.862366
\(580\) 0 0
\(581\) 3.80271 + 9.18055i 0.157763 + 0.380873i
\(582\) 0 0
\(583\) −51.0181 + 21.1324i −2.11295 + 0.875214i
\(584\) 0 0
\(585\) −2.68491 1.11213i −0.111007 0.0459808i
\(586\) 0 0
\(587\) 7.76184 7.76184i 0.320365 0.320365i −0.528542 0.848907i \(-0.677261\pi\)
0.848907 + 0.528542i \(0.177261\pi\)
\(588\) 0 0
\(589\) −6.10453 + 14.7376i −0.251533 + 0.607254i
\(590\) 0 0
\(591\) 19.7142i 0.810933i
\(592\) 0 0
\(593\) −2.22864 2.22864i −0.0915194 0.0915194i 0.659865 0.751384i \(-0.270613\pi\)
−0.751384 + 0.659865i \(0.770613\pi\)
\(594\) 0 0
\(595\) 21.2386 + 16.5039i 0.870696 + 0.676594i
\(596\) 0 0
\(597\) 10.7866 + 10.7866i 0.441467 + 0.441467i
\(598\) 0 0
\(599\) 15.4176i 0.629945i 0.949101 + 0.314972i \(0.101995\pi\)
−0.949101 + 0.314972i \(0.898005\pi\)
\(600\) 0 0
\(601\) 8.10132 19.5583i 0.330460 0.797801i −0.668096 0.744075i \(-0.732890\pi\)
0.998556 0.0537256i \(-0.0171096\pi\)
\(602\) 0 0
\(603\) 9.05182 9.05182i 0.368618 0.368618i
\(604\) 0 0
\(605\) 32.4793 + 13.4534i 1.32047 + 0.546957i
\(606\) 0 0
\(607\) 14.0086 5.80253i 0.568590 0.235518i −0.0798199 0.996809i \(-0.525435\pi\)
0.648409 + 0.761292i \(0.275435\pi\)
\(608\) 0 0
\(609\) −3.12101 7.53478i −0.126470 0.305325i
\(610\) 0 0
\(611\) 8.77676 0.355070
\(612\) 0 0
\(613\) 43.4543 1.75510 0.877551 0.479484i \(-0.159176\pi\)
0.877551 + 0.479484i \(0.159176\pi\)
\(614\) 0 0
\(615\) −7.96158 19.2210i −0.321042 0.775064i
\(616\) 0 0
\(617\) −36.3420 + 15.0534i −1.46307 + 0.606025i −0.965268 0.261263i \(-0.915861\pi\)
−0.497807 + 0.867288i \(0.665861\pi\)
\(618\) 0 0
\(619\) −9.69556 4.01603i −0.389697 0.161418i 0.179227 0.983808i \(-0.442640\pi\)
−0.568924 + 0.822390i \(0.692640\pi\)
\(620\) 0 0
\(621\) −4.46048 + 4.46048i −0.178993 + 0.178993i
\(622\) 0 0
\(623\) 2.72783 6.58557i 0.109288 0.263845i
\(624\) 0 0
\(625\) 31.2330i 1.24932i
\(626\) 0 0
\(627\) −7.89246 7.89246i −0.315194 0.315194i
\(628\) 0 0
\(629\) 4.65017 16.9403i 0.185414 0.675455i
\(630\) 0 0
\(631\) 32.2236 + 32.2236i 1.28280 + 1.28280i 0.939067 + 0.343734i \(0.111692\pi\)
0.343734 + 0.939067i \(0.388308\pi\)
\(632\) 0 0
\(633\) 12.5159i 0.497460i
\(634\) 0 0
\(635\) 15.1074 36.4725i 0.599519 1.44737i
\(636\) 0 0
\(637\) −0.927666 + 0.927666i −0.0367555 + 0.0367555i
\(638\) 0 0
\(639\) −3.92615 1.62627i −0.155316 0.0643341i
\(640\) 0 0
\(641\) 13.8538 5.73842i 0.547191 0.226654i −0.0919230 0.995766i \(-0.529301\pi\)
0.639114 + 0.769112i \(0.279301\pi\)
\(642\) 0 0
\(643\) −7.89107 19.0507i −0.311193 0.751287i −0.999661 0.0260206i \(-0.991716\pi\)
0.688468 0.725267i \(-0.258284\pi\)
\(644\) 0 0
\(645\) −16.7848 −0.660901
\(646\) 0 0
\(647\) −26.8160 −1.05424 −0.527122 0.849790i \(-0.676729\pi\)
−0.527122 + 0.849790i \(0.676729\pi\)
\(648\) 0 0
\(649\) −23.5690 56.9007i −0.925166 2.23355i
\(650\) 0 0
\(651\) −15.5278 + 6.43182i −0.608582 + 0.252083i
\(652\) 0 0
\(653\) −12.6601 5.24399i −0.495428 0.205213i 0.120957 0.992658i \(-0.461404\pi\)
−0.616385 + 0.787445i \(0.711404\pi\)
\(654\) 0 0
\(655\) −4.63504 + 4.63504i −0.181106 + 0.181106i
\(656\) 0 0
\(657\) 3.92518 9.47623i 0.153136 0.369703i
\(658\) 0 0
\(659\) 20.2130i 0.787388i −0.919241 0.393694i \(-0.871197\pi\)
0.919241 0.393694i \(-0.128803\pi\)
\(660\) 0 0
\(661\) 5.04254 + 5.04254i 0.196132 + 0.196132i 0.798340 0.602208i \(-0.205712\pi\)
−0.602208 + 0.798340i \(0.705712\pi\)
\(662\) 0 0
\(663\) 4.25637 + 1.16839i 0.165304 + 0.0453763i
\(664\) 0 0
\(665\) −10.5206 10.5206i −0.407972 0.407972i
\(666\) 0 0
\(667\) 21.4089i 0.828957i
\(668\) 0 0
\(669\) −2.88072 + 6.95468i −0.111375 + 0.268883i
\(670\) 0 0
\(671\) −9.45443 + 9.45443i −0.364984 + 0.364984i
\(672\) 0 0
\(673\) −34.6300 14.3442i −1.33489 0.552929i −0.402844 0.915269i \(-0.631978\pi\)
−0.932046 + 0.362339i \(0.881978\pi\)
\(674\) 0 0
\(675\) −2.18931 + 0.906841i −0.0842665 + 0.0349043i
\(676\) 0 0
\(677\) 14.0912 + 34.0193i 0.541571 + 1.30747i 0.923614 + 0.383323i \(0.125220\pi\)
−0.382044 + 0.924144i \(0.624780\pi\)
\(678\) 0 0
\(679\) −43.8681 −1.68350
\(680\) 0 0
\(681\) −4.80718 −0.184212
\(682\) 0 0
\(683\) −6.42199 15.5041i −0.245731 0.593246i 0.752102 0.659047i \(-0.229040\pi\)
−0.997833 + 0.0658003i \(0.979040\pi\)
\(684\) 0 0
\(685\) 3.56609 1.47712i 0.136253 0.0564379i
\(686\) 0 0
\(687\) −12.3827 5.12909i −0.472430 0.195687i
\(688\) 0 0
\(689\) −8.54146 + 8.54146i −0.325404 + 0.325404i
\(690\) 0 0
\(691\) −5.24785 + 12.6694i −0.199638 + 0.481968i −0.991716 0.128452i \(-0.958999\pi\)
0.792078 + 0.610420i \(0.208999\pi\)
\(692\) 0 0
\(693\) 11.7600i 0.446727i
\(694\) 0 0
\(695\) 29.8172 + 29.8172i 1.13103 + 1.13103i
\(696\) 0 0
\(697\) 15.6316 + 27.4606i 0.592091 + 1.04014i
\(698\) 0 0
\(699\) 9.74356 + 9.74356i 0.368535 + 0.368535i
\(700\) 0 0
\(701\) 11.5629i 0.436724i 0.975868 + 0.218362i \(0.0700713\pi\)
−0.975868 + 0.218362i \(0.929929\pi\)
\(702\) 0 0
\(703\) −3.71867 + 8.97766i −0.140252 + 0.338599i
\(704\) 0 0
\(705\) 15.7381 15.7381i 0.592733 0.592733i
\(706\) 0 0
\(707\) 20.0809 + 8.31776i 0.755218 + 0.312822i
\(708\) 0 0
\(709\) −13.9142 + 5.76346i −0.522560 + 0.216451i −0.628341 0.777938i \(-0.716266\pi\)
0.105781 + 0.994389i \(0.466266\pi\)
\(710\) 0 0
\(711\) −0.464750 1.12200i −0.0174295 0.0420785i
\(712\) 0 0
\(713\) −44.1199 −1.65230
\(714\) 0 0
\(715\) 14.2222 0.531880
\(716\) 0 0
\(717\) 6.50793 + 15.7115i 0.243043 + 0.586758i
\(718\) 0 0
\(719\) −1.76251 + 0.730055i −0.0657305 + 0.0272264i −0.415306 0.909682i \(-0.636326\pi\)
0.349576 + 0.936908i \(0.386326\pi\)
\(720\) 0 0
\(721\) −4.96342 2.05592i −0.184847 0.0765663i
\(722\) 0 0
\(723\) 13.7118 13.7118i 0.509947 0.509947i
\(724\) 0 0
\(725\) 3.07772 7.43027i 0.114304 0.275953i
\(726\) 0 0
\(727\) 4.61649i 0.171216i 0.996329 + 0.0856082i \(0.0272833\pi\)
−0.996329 + 0.0856082i \(0.972717\pi\)
\(728\) 0 0
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) 0 0
\(731\) 25.2945 3.17311i 0.935550 0.117362i
\(732\) 0 0
\(733\) 4.76113 + 4.76113i 0.175856 + 0.175856i 0.789547 0.613691i \(-0.210316\pi\)
−0.613691 + 0.789547i \(0.710316\pi\)
\(734\) 0 0
\(735\) 3.32691i 0.122715i
\(736\) 0 0
\(737\) −23.9741 + 57.8786i −0.883097 + 2.13199i
\(738\) 0 0
\(739\) −6.49918 + 6.49918i −0.239076 + 0.239076i −0.816468 0.577391i \(-0.804071\pi\)
0.577391 + 0.816468i \(0.304071\pi\)
\(740\) 0 0
\(741\) −2.25570 0.934340i −0.0828651 0.0343238i
\(742\) 0 0
\(743\) −7.90655 + 3.27500i −0.290063 + 0.120148i −0.522970 0.852351i \(-0.675176\pi\)
0.232907 + 0.972499i \(0.425176\pi\)
\(744\) 0 0
\(745\) 16.8703 + 40.7286i 0.618081 + 1.49218i
\(746\) 0 0
\(747\) 4.13520 0.151299
\(748\) 0 0
\(749\) 13.1122 0.479108
\(750\) 0 0
\(751\) −3.59617 8.68192i −0.131226 0.316808i 0.844586 0.535420i \(-0.179847\pi\)
−0.975812 + 0.218613i \(0.929847\pi\)
\(752\) 0 0
\(753\) −19.8926 + 8.23980i −0.724928 + 0.300275i
\(754\) 0 0
\(755\) 8.81554 + 3.65151i 0.320830 + 0.132892i
\(756\) 0 0
\(757\) −30.9701 + 30.9701i −1.12563 + 1.12563i −0.134750 + 0.990880i \(0.543023\pi\)
−0.990880 + 0.134750i \(0.956977\pi\)
\(758\) 0 0
\(759\) 11.8138 28.5210i 0.428813 1.03525i
\(760\) 0 0
\(761\) 7.85599i 0.284779i −0.989811 0.142390i \(-0.954521\pi\)
0.989811 0.142390i \(-0.0454786\pi\)
\(762\) 0 0
\(763\) 4.49236 + 4.49236i 0.162634 + 0.162634i
\(764\) 0 0
\(765\) 9.72746 5.53725i 0.351697 0.200200i
\(766\) 0 0
\(767\) −9.52632 9.52632i −0.343976 0.343976i
\(768\) 0 0
\(769\) 33.7233i 1.21609i −0.793901 0.608047i \(-0.791953\pi\)
0.793901 0.608047i \(-0.208047\pi\)
\(770\) 0 0
\(771\) −7.31670 + 17.6641i −0.263505 + 0.636156i
\(772\) 0 0
\(773\) 19.9064 19.9064i 0.715983 0.715983i −0.251797 0.967780i \(-0.581022\pi\)
0.967780 + 0.251797i \(0.0810215\pi\)
\(774\) 0 0
\(775\) −15.3124 6.34261i −0.550038 0.227833i
\(776\) 0 0
\(777\) −9.45899 + 3.91804i −0.339339 + 0.140559i
\(778\) 0 0
\(779\) −6.68883 16.1483i −0.239652 0.578571i
\(780\) 0 0
\(781\) 20.7971 0.744180
\(782\) 0 0
\(783\) −3.39389 −0.121288
\(784\) 0 0
\(785\) −22.2220 53.6488i −0.793139 1.91481i
\(786\) 0 0
\(787\) −31.9518 + 13.2349i −1.13896 + 0.471772i −0.870817 0.491608i \(-0.836409\pi\)
−0.268141 + 0.963380i \(0.586409\pi\)
\(788\) 0 0
\(789\) −10.2428 4.24272i −0.364654 0.151045i
\(790\) 0 0
\(791\) −23.7743 + 23.7743i −0.845317 + 0.845317i
\(792\) 0 0
\(793\) −1.11925 + 2.70211i −0.0397458 + 0.0959549i
\(794\) 0 0
\(795\) 30.6324i 1.08642i
\(796\) 0 0
\(797\) 31.8112 + 31.8112i 1.12681 + 1.12681i 0.990692 + 0.136119i \(0.0434630\pi\)
0.136119 + 0.990692i \(0.456537\pi\)
\(798\) 0 0
\(799\) −20.7419 + 26.6924i −0.733797 + 0.944310i
\(800\) 0 0
\(801\) −2.09752 2.09752i −0.0741122 0.0741122i
\(802\) 0 0
\(803\) 50.1964i 1.77139i
\(804\) 0 0
\(805\) 15.7477 38.0184i 0.555035 1.33997i
\(806\) 0 0
\(807\) −3.12922 + 3.12922i −0.110154 + 0.110154i
\(808\) 0 0
\(809\) 28.7452 + 11.9066i 1.01063 + 0.418615i 0.825683 0.564134i \(-0.190790\pi\)
0.184943 + 0.982749i \(0.440790\pi\)
\(810\) 0 0
\(811\) −44.6958 + 18.5136i −1.56948 + 0.650101i −0.986704 0.162529i \(-0.948035\pi\)
−0.582779 + 0.812631i \(0.698035\pi\)
\(812\) 0 0
\(813\) −6.21770 15.0108i −0.218064 0.526453i
\(814\) 0 0
\(815\) 53.9495 1.88977
\(816\) 0 0
\(817\) −14.1016 −0.493351
\(818\) 0 0
\(819\) −0.984434 2.37663i −0.0343989 0.0830463i
\(820\) 0 0
\(821\) −21.2625 + 8.80722i −0.742067 + 0.307374i −0.721500 0.692414i \(-0.756547\pi\)
−0.0205669 + 0.999788i \(0.506547\pi\)
\(822\) 0 0
\(823\) −10.0413 4.15925i −0.350018 0.144982i 0.200746 0.979643i \(-0.435664\pi\)
−0.550764 + 0.834661i \(0.685664\pi\)
\(824\) 0 0
\(825\) 8.20027 8.20027i 0.285497 0.285497i
\(826\) 0 0
\(827\) −12.2934 + 29.6790i −0.427485 + 1.03204i 0.552598 + 0.833448i \(0.313637\pi\)
−0.980082 + 0.198591i \(0.936363\pi\)
\(828\) 0 0
\(829\) 21.0657i 0.731642i 0.930685 + 0.365821i \(0.119212\pi\)
−0.930685 + 0.365821i \(0.880788\pi\)
\(830\) 0 0
\(831\) −0.453033 0.453033i −0.0157155 0.0157155i
\(832\) 0 0
\(833\) −0.628942 5.01361i −0.0217915 0.173711i
\(834\) 0 0
\(835\) 15.2374 + 15.2374i 0.527313 + 0.527313i
\(836\) 0 0
\(837\) 6.99418i 0.241754i
\(838\) 0 0
\(839\) 16.3781 39.5402i 0.565435 1.36508i −0.339932 0.940450i \(-0.610404\pi\)
0.905367 0.424631i \(-0.139596\pi\)
\(840\) 0 0
\(841\) −12.3613 + 12.3613i −0.426251 + 0.426251i
\(842\) 0 0
\(843\) 0.0680922 + 0.0282047i 0.00234522 + 0.000971422i
\(844\) 0 0
\(845\) −29.7307 + 12.3149i −1.02277 + 0.423644i
\(846\) 0 0
\(847\) 11.9087 + 28.7500i 0.409186 + 0.987863i
\(848\) 0 0
\(849\) 20.4573 0.702094
\(850\) 0 0
\(851\) −26.8763 −0.921307
\(852\) 0 0
\(853\) 5.75449 + 13.8926i 0.197030 + 0.475673i 0.991256 0.131949i \(-0.0421236\pi\)
−0.794226 + 0.607622i \(0.792124\pi\)
\(854\) 0 0
\(855\) −5.72025 + 2.36941i −0.195629 + 0.0810320i
\(856\) 0 0
\(857\) 11.2462 + 4.65833i 0.384163 + 0.159126i 0.566403 0.824129i \(-0.308335\pi\)
−0.182240 + 0.983254i \(0.558335\pi\)
\(858\) 0 0
\(859\) −9.12775 + 9.12775i −0.311435 + 0.311435i −0.845465 0.534030i \(-0.820677\pi\)
0.534030 + 0.845465i \(0.320677\pi\)
\(860\) 0 0
\(861\) 7.04744 17.0140i 0.240176 0.579837i
\(862\) 0 0
\(863\) 21.4811i 0.731226i 0.930767 + 0.365613i \(0.119141\pi\)
−0.930767 + 0.365613i \(0.880859\pi\)
\(864\) 0 0
\(865\) −46.0488 46.0488i −1.56571 1.56571i
\(866\) 0 0
\(867\) −13.6124 + 10.1835i −0.462300 + 0.345850i
\(868\) 0 0
\(869\) 4.20258 + 4.20258i 0.142563 + 0.142563i
\(870\) 0 0
\(871\) 13.7038i 0.464335i
\(872\) 0 0
\(873\) −6.98605 + 16.8658i −0.236442 + 0.570822i
\(874\) 0 0
\(875\) −12.1332 + 12.1332i −0.410175 + 0.410175i
\(876\) 0 0
\(877\) −47.3960 19.6321i −1.60045 0.662928i −0.608971 0.793192i \(-0.708417\pi\)
−0.991479 + 0.130264i \(0.958417\pi\)
\(878\) 0 0
\(879\) 7.28753 3.01859i 0.245802 0.101815i
\(880\) 0 0
\(881\) −15.5491 37.5388i −0.523861 1.26471i −0.935487 0.353361i \(-0.885039\pi\)
0.411626 0.911353i \(-0.364961\pi\)
\(882\) 0 0
\(883\) −3.59541 −0.120995 −0.0604975 0.998168i \(-0.519269\pi\)
−0.0604975 + 0.998168i \(0.519269\pi\)
\(884\) 0 0
\(885\) −34.1645 −1.14843
\(886\) 0 0
\(887\) 15.3637 + 37.0913i 0.515864 + 1.24540i 0.940424 + 0.340005i \(0.110429\pi\)
−0.424560 + 0.905400i \(0.639571\pi\)
\(888\) 0 0
\(889\) 32.2848 13.3728i 1.08280 0.448509i
\(890\) 0 0
\(891\) −4.52134 1.87280i −0.151471 0.0627412i
\(892\) 0 0
\(893\) 13.2222 13.2222i 0.442465 0.442465i
\(894\) 0 0
\(895\) 25.0979 60.5917i 0.838930 2.02536i
\(896\) 0 0
\(897\) 6.75285i 0.225471i
\(898\) 0 0
\(899\) −16.7850 16.7850i −0.559810 0.559810i
\(900\) 0 0
\(901\) −5.79096 46.1627i −0.192925 1.53790i
\(902\) 0 0
\(903\) −10.5059 10.5059i −0.349615 0.349615i
\(904\) 0 0
\(905\) 33.0423i 1.09836i
\(906\) 0 0
\(907\) −16.9424 + 40.9026i −0.562563 + 1.35815i 0.345147 + 0.938549i \(0.387829\pi\)
−0.907710 + 0.419599i \(0.862171\pi\)
\(908\) 0 0
\(909\) 6.39580 6.39580i 0.212135 0.212135i
\(910\) 0 0
\(911\) −8.08964 3.35084i −0.268022 0.111018i 0.244625 0.969618i \(-0.421335\pi\)
−0.512647 + 0.858599i \(0.671335\pi\)
\(912\) 0 0
\(913\) −18.6966 + 7.74440i −0.618768 + 0.256302i
\(914\) 0 0
\(915\) 2.83833 + 6.85233i 0.0938323 + 0.226531i
\(916\) 0 0
\(917\) −5.80230 −0.191609
\(918\) 0 0
\(919\) 32.6562 1.07723 0.538615 0.842552i \(-0.318948\pi\)
0.538615 + 0.842552i \(0.318948\pi\)
\(920\) 0 0
\(921\) 1.77548 + 4.28638i 0.0585039 + 0.141241i
\(922\) 0 0
\(923\) 4.20298 1.74093i 0.138343 0.0573034i
\(924\) 0 0
\(925\) −9.32780 3.86370i −0.306696 0.127038i
\(926\) 0 0
\(927\) −1.58086 + 1.58086i −0.0519223 + 0.0519223i
\(928\) 0 0
\(929\) −18.8006 + 45.3888i −0.616829 + 1.48916i 0.238537 + 0.971133i \(0.423332\pi\)
−0.855366 + 0.518024i \(0.826668\pi\)
\(930\) 0 0
\(931\) 2.79506i 0.0916045i
\(932\) 0 0
\(933\) 3.95612 + 3.95612i 0.129518 + 0.129518i
\(934\) 0 0
\(935\) −33.6110 + 43.2534i −1.09920 + 1.41454i
\(936\) 0 0
\(937\) 28.6009 + 28.6009i 0.934352 + 0.934352i 0.997974 0.0636224i \(-0.0202653\pi\)
−0.0636224 + 0.997974i \(0.520265\pi\)
\(938\) 0 0
\(939\) 0.877026i 0.0286207i
\(940\) 0 0
\(941\) 1.10983 2.67938i 0.0361796 0.0873452i −0.904757 0.425928i \(-0.859948\pi\)
0.940937 + 0.338583i \(0.109948\pi\)
\(942\) 0 0
\(943\) 34.1835 34.1835i 1.11317 1.11317i
\(944\) 0 0
\(945\) −6.02694 2.49644i −0.196056 0.0812092i
\(946\) 0 0
\(947\) 41.7742 17.3034i 1.35748 0.562286i 0.419114 0.907934i \(-0.362341\pi\)
0.938364 + 0.345648i \(0.112341\pi\)
\(948\) 0 0
\(949\) 4.20194 + 10.1444i 0.136401 + 0.329301i
\(950\) 0 0
\(951\) 29.7514 0.964756
\(952\) 0 0
\(953\) 17.8145 0.577069 0.288534 0.957470i \(-0.406832\pi\)
0.288534 + 0.957470i \(0.406832\pi\)
\(954\) 0 0
\(955\) 3.40549 + 8.22157i 0.110199 + 0.266044i
\(956\) 0 0
\(957\) 15.3449 6.35608i 0.496032 0.205463i
\(958\) 0 0
\(959\) 3.15663 + 1.30752i 0.101933 + 0.0422221i
\(960\) 0 0
\(961\) −12.6704 + 12.6704i −0.408722 + 0.408722i
\(962\) 0 0
\(963\) 2.08813 5.04118i 0.0672889 0.162450i
\(964\) 0 0
\(965\) 56.3320i 1.81339i
\(966\) 0 0
\(967\) −19.1664 19.1664i −0.616349 0.616349i 0.328244 0.944593i \(-0.393543\pi\)
−0.944593 + 0.328244i \(0.893543\pi\)
\(968\) 0 0
\(969\) 8.17241 4.65206i 0.262536 0.149446i
\(970\) 0 0
\(971\) −1.02700 1.02700i −0.0329582 0.0329582i 0.690436 0.723394i \(-0.257419\pi\)
−0.723394 + 0.690436i \(0.757419\pi\)
\(972\) 0 0
\(973\) 37.3262i 1.19662i
\(974\) 0 0
\(975\) 0.970780 2.34367i 0.0310898 0.0750575i
\(976\) 0 0
\(977\) 34.2951 34.2951i 1.09720 1.09720i 0.102462 0.994737i \(-0.467328\pi\)
0.994737 0.102462i \(-0.0326720\pi\)
\(978\) 0 0
\(979\) 13.4118 + 5.55536i 0.428644 + 0.177550i
\(980\) 0 0
\(981\) 2.44258 1.01175i 0.0779854 0.0323026i
\(982\) 0 0
\(983\) −6.76821 16.3399i −0.215872 0.521162i 0.778433 0.627727i \(-0.216015\pi\)
−0.994306 + 0.106565i \(0.966015\pi\)
\(984\) 0 0
\(985\) −53.5184 −1.70524
\(986\) 0 0
\(987\) 19.7016 0.627108
\(988\) 0 0
\(989\) −14.9255 36.0333i −0.474603 1.14579i
\(990\) 0 0
\(991\) 26.3051 10.8959i 0.835610 0.346121i 0.0764888 0.997070i \(-0.475629\pi\)
0.759121 + 0.650950i \(0.225629\pi\)
\(992\) 0 0
\(993\) 10.6934 + 4.42935i 0.339345 + 0.140561i
\(994\) 0 0
\(995\) −29.2826 + 29.2826i −0.928322 + 0.928322i
\(996\) 0 0
\(997\) −4.92753 + 11.8961i −0.156056 + 0.376753i −0.982499 0.186267i \(-0.940361\pi\)
0.826443 + 0.563021i \(0.190361\pi\)
\(998\) 0 0
\(999\) 4.26062i 0.134800i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.bq.f.49.3 16
4.3 odd 2 408.2.ba.a.49.1 yes 16
12.11 even 2 1224.2.bq.e.865.4 16
17.8 even 8 inner 816.2.bq.f.433.3 16
68.39 even 16 6936.2.a.bo.1.7 8
68.59 odd 8 408.2.ba.a.25.1 16
68.63 even 16 6936.2.a.bl.1.2 8
204.59 even 8 1224.2.bq.e.433.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.ba.a.25.1 16 68.59 odd 8
408.2.ba.a.49.1 yes 16 4.3 odd 2
816.2.bq.f.49.3 16 1.1 even 1 trivial
816.2.bq.f.433.3 16 17.8 even 8 inner
1224.2.bq.e.433.4 16 204.59 even 8
1224.2.bq.e.865.4 16 12.11 even 2
6936.2.a.bl.1.2 8 68.63 even 16
6936.2.a.bo.1.7 8 68.39 even 16