Properties

Label 1224.2.bq.e.865.4
Level $1224$
Weight $2$
Character 1224.865
Analytic conductor $9.774$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.bq (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 466x^{12} + 2956x^{10} + 10049x^{8} + 18032x^{6} + 14800x^{4} + 3200x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 865.4
Root \(-1.71472i\) of defining polynomial
Character \(\chi\) \(=\) 1224.865
Dual form 1224.2.bq.e.433.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50807 - 1.03888i) q^{5} +(2.22010 + 0.919595i) q^{7} +(1.87280 - 4.52134i) q^{11} -1.07051i q^{13} +(-3.25570 - 2.52991i) q^{17} +(1.61272 + 1.61272i) q^{19} +(2.41400 - 5.82790i) q^{23} +(1.67562 - 1.67562i) q^{25} +(-3.13555 + 1.29879i) q^{29} +(2.67656 + 6.46178i) q^{31} +6.52351 q^{35} +(-1.63047 - 3.93630i) q^{37} +(-7.08028 - 2.93275i) q^{41} +(-4.37197 + 4.37197i) q^{43} +8.19868i q^{47} +(-0.866566 - 0.866566i) q^{49} +(7.97888 + 7.97888i) q^{53} -13.2855i q^{55} +(8.89888 - 8.89888i) q^{59} +(-2.52414 - 1.04553i) q^{61} +(-1.11213 - 2.68491i) q^{65} +12.8012 q^{67} +(1.62627 + 3.92615i) q^{71} +(-9.47623 + 3.92518i) q^{73} +(8.31560 - 8.31560i) q^{77} +(0.464750 - 1.12200i) q^{79} +(-2.92403 - 2.92403i) q^{83} +(-10.7938 - 2.96293i) q^{85} -2.96634i q^{89} +(0.984434 - 2.37663i) q^{91} +(5.72025 + 2.36941i) q^{95} +(16.8658 - 6.98605i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{19} + 8 q^{23} - 8 q^{25} - 32 q^{29} + 8 q^{31} - 16 q^{35} + 8 q^{37} - 40 q^{41} - 24 q^{43} + 24 q^{49} + 24 q^{53} + 16 q^{59} + 64 q^{65} + 16 q^{71} + 24 q^{73} - 96 q^{79}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50807 1.03888i 1.12164 0.464600i 0.256711 0.966488i \(-0.417361\pi\)
0.864933 + 0.501888i \(0.167361\pi\)
\(6\) 0 0
\(7\) 2.22010 + 0.919595i 0.839118 + 0.347574i 0.760506 0.649331i \(-0.224951\pi\)
0.0786124 + 0.996905i \(0.474951\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.87280 4.52134i 0.564671 1.36324i −0.341324 0.939946i \(-0.610875\pi\)
0.905994 0.423290i \(-0.139125\pi\)
\(12\) 0 0
\(13\) 1.07051i 0.296906i −0.988920 0.148453i \(-0.952571\pi\)
0.988920 0.148453i \(-0.0474293\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.25570 2.52991i −0.789622 0.613593i
\(18\) 0 0
\(19\) 1.61272 + 1.61272i 0.369984 + 0.369984i 0.867471 0.497487i \(-0.165744\pi\)
−0.497487 + 0.867471i \(0.665744\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.41400 5.82790i 0.503353 1.21520i −0.444294 0.895881i \(-0.646545\pi\)
0.947647 0.319321i \(-0.103455\pi\)
\(24\) 0 0
\(25\) 1.67562 1.67562i 0.335125 0.335125i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.13555 + 1.29879i −0.582257 + 0.241179i −0.654315 0.756222i \(-0.727043\pi\)
0.0720587 + 0.997400i \(0.477043\pi\)
\(30\) 0 0
\(31\) 2.67656 + 6.46178i 0.480724 + 1.16057i 0.959266 + 0.282506i \(0.0911656\pi\)
−0.478542 + 0.878065i \(0.658834\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.52351 1.10267
\(36\) 0 0
\(37\) −1.63047 3.93630i −0.268047 0.647123i 0.731344 0.682009i \(-0.238893\pi\)
−0.999391 + 0.0348855i \(0.988893\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.08028 2.93275i −1.10575 0.458018i −0.246280 0.969199i \(-0.579208\pi\)
−0.859473 + 0.511180i \(0.829208\pi\)
\(42\) 0 0
\(43\) −4.37197 + 4.37197i −0.666719 + 0.666719i −0.956955 0.290236i \(-0.906266\pi\)
0.290236 + 0.956955i \(0.406266\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.19868i 1.19590i 0.801533 + 0.597950i \(0.204018\pi\)
−0.801533 + 0.597950i \(0.795982\pi\)
\(48\) 0 0
\(49\) −0.866566 0.866566i −0.123795 0.123795i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.97888 + 7.97888i 1.09598 + 1.09598i 0.994875 + 0.101108i \(0.0322389\pi\)
0.101108 + 0.994875i \(0.467761\pi\)
\(54\) 0 0
\(55\) 13.2855i 1.79141i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.89888 8.89888i 1.15854 1.15854i 0.173745 0.984791i \(-0.444413\pi\)
0.984791 0.173745i \(-0.0555869\pi\)
\(60\) 0 0
\(61\) −2.52414 1.04553i −0.323183 0.133867i 0.215193 0.976572i \(-0.430962\pi\)
−0.538376 + 0.842705i \(0.680962\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.11213 2.68491i −0.137942 0.333022i
\(66\) 0 0
\(67\) 12.8012 1.56392 0.781958 0.623331i \(-0.214221\pi\)
0.781958 + 0.623331i \(0.214221\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.62627 + 3.92615i 0.193002 + 0.465948i 0.990524 0.137342i \(-0.0438559\pi\)
−0.797521 + 0.603291i \(0.793856\pi\)
\(72\) 0 0
\(73\) −9.47623 + 3.92518i −1.10911 + 0.459408i −0.860631 0.509229i \(-0.829931\pi\)
−0.248478 + 0.968637i \(0.579931\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.31560 8.31560i 0.947651 0.947651i
\(78\) 0 0
\(79\) 0.464750 1.12200i 0.0522884 0.126235i −0.895577 0.444907i \(-0.853237\pi\)
0.947865 + 0.318672i \(0.103237\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.92403 2.92403i −0.320954 0.320954i 0.528179 0.849133i \(-0.322875\pi\)
−0.849133 + 0.528179i \(0.822875\pi\)
\(84\) 0 0
\(85\) −10.7938 2.96293i −1.17075 0.321374i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.96634i 0.314431i −0.987564 0.157216i \(-0.949748\pi\)
0.987564 0.157216i \(-0.0502518\pi\)
\(90\) 0 0
\(91\) 0.984434 2.37663i 0.103197 0.249139i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.72025 + 2.36941i 0.586886 + 0.243096i
\(96\) 0 0
\(97\) 16.8658 6.98605i 1.71247 0.709326i 0.712495 0.701678i \(-0.247565\pi\)
0.999971 0.00764885i \(-0.00243473\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.04503 0.900014 0.450007 0.893025i \(-0.351421\pi\)
0.450007 + 0.893025i \(0.351421\pi\)
\(102\) 0 0
\(103\) −2.23568 −0.220288 −0.110144 0.993916i \(-0.535131\pi\)
−0.110144 + 0.993916i \(0.535131\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.04118 + 2.08813i −0.487350 + 0.201867i −0.612808 0.790232i \(-0.709960\pi\)
0.125458 + 0.992099i \(0.459960\pi\)
\(108\) 0 0
\(109\) −2.44258 1.01175i −0.233956 0.0969079i 0.262625 0.964898i \(-0.415412\pi\)
−0.496582 + 0.867990i \(0.665412\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.35434 + 12.9265i −0.503694 + 1.21602i 0.443764 + 0.896144i \(0.353643\pi\)
−0.947458 + 0.319880i \(0.896357\pi\)
\(114\) 0 0
\(115\) 17.1246i 1.59688i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.90147 8.61057i −0.449317 0.789330i
\(120\) 0 0
\(121\) −9.15696 9.15696i −0.832451 0.832451i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.73257 + 6.59701i −0.244409 + 0.590054i
\(126\) 0 0
\(127\) 10.2828 10.2828i 0.912449 0.912449i −0.0840159 0.996464i \(-0.526775\pi\)
0.996464 + 0.0840159i \(0.0267746\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.23079 0.924024i 0.194905 0.0807323i −0.283096 0.959092i \(-0.591361\pi\)
0.478001 + 0.878359i \(0.341361\pi\)
\(132\) 0 0
\(133\) 2.09735 + 5.06346i 0.181864 + 0.439058i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.42184 0.121476 0.0607382 0.998154i \(-0.480655\pi\)
0.0607382 + 0.998154i \(0.480655\pi\)
\(138\) 0 0
\(139\) 5.94425 + 14.3507i 0.504184 + 1.21721i 0.947185 + 0.320687i \(0.103914\pi\)
−0.443001 + 0.896521i \(0.646086\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.84013 2.00485i −0.404752 0.167654i
\(144\) 0 0
\(145\) −6.51490 + 6.51490i −0.541033 + 0.541033i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.2390i 1.33035i 0.746687 + 0.665176i \(0.231643\pi\)
−0.746687 + 0.665176i \(0.768357\pi\)
\(150\) 0 0
\(151\) 2.48539 + 2.48539i 0.202258 + 0.202258i 0.800967 0.598709i \(-0.204319\pi\)
−0.598709 + 0.800967i \(0.704319\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 13.4260 + 13.4260i 1.07840 + 1.07840i
\(156\) 0 0
\(157\) 21.3904i 1.70714i 0.520975 + 0.853572i \(0.325568\pi\)
−0.520975 + 0.853572i \(0.674432\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.7186 10.7186i 0.844746 0.844746i
\(162\) 0 0
\(163\) 18.3602 + 7.60506i 1.43809 + 0.595675i 0.959333 0.282275i \(-0.0910892\pi\)
0.478752 + 0.877950i \(0.341089\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.03768 7.33360i −0.235063 0.567491i 0.761697 0.647934i \(-0.224367\pi\)
−0.996759 + 0.0804426i \(0.974367\pi\)
\(168\) 0 0
\(169\) 11.8540 0.911847
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.18012 22.1628i −0.697951 1.68500i −0.728112 0.685458i \(-0.759602\pi\)
0.0301604 0.999545i \(-0.490398\pi\)
\(174\) 0 0
\(175\) 5.26094 2.17915i 0.397690 0.164728i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.0828 + 17.0828i −1.27683 + 1.27683i −0.334392 + 0.942434i \(0.608531\pi\)
−0.942434 + 0.334392i \(0.891469\pi\)
\(180\) 0 0
\(181\) 4.65785 11.2451i 0.346216 0.835838i −0.650844 0.759211i \(-0.725585\pi\)
0.997060 0.0766270i \(-0.0244151\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.17866 8.17866i −0.601307 0.601307i
\(186\) 0 0
\(187\) −17.5359 + 9.98209i −1.28235 + 0.729963i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.27804i 0.237191i −0.992943 0.118595i \(-0.962161\pi\)
0.992943 0.118595i \(-0.0378392\pi\)
\(192\) 0 0
\(193\) −7.94091 + 19.1711i −0.571599 + 1.37996i 0.328593 + 0.944472i \(0.393425\pi\)
−0.900193 + 0.435492i \(0.856575\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.2135 7.54429i −1.29766 0.537508i −0.376401 0.926457i \(-0.622838\pi\)
−0.921259 + 0.388949i \(0.872838\pi\)
\(198\) 0 0
\(199\) −14.0934 + 5.83768i −0.999055 + 0.413822i −0.821451 0.570280i \(-0.806835\pi\)
−0.177605 + 0.984102i \(0.556835\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.15558 −0.572410
\(204\) 0 0
\(205\) −20.8046 −1.45306
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.3120 4.27137i 0.713295 0.295457i
\(210\) 0 0
\(211\) −11.5631 4.78961i −0.796039 0.329730i −0.0526704 0.998612i \(-0.516773\pi\)
−0.743369 + 0.668882i \(0.766773\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.42327 + 15.5071i −0.438063 + 1.05758i
\(216\) 0 0
\(217\) 16.8071i 1.14094i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.70829 + 3.48525i −0.182179 + 0.234443i
\(222\) 0 0
\(223\) −5.32288 5.32288i −0.356446 0.356446i 0.506055 0.862501i \(-0.331103\pi\)
−0.862501 + 0.506055i \(0.831103\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.83963 + 4.44126i −0.122101 + 0.294777i −0.973097 0.230394i \(-0.925999\pi\)
0.850997 + 0.525171i \(0.175999\pi\)
\(228\) 0 0
\(229\) −9.47732 + 9.47732i −0.626279 + 0.626279i −0.947130 0.320851i \(-0.896031\pi\)
0.320851 + 0.947130i \(0.396031\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.7306 + 5.27318i −0.834008 + 0.345457i −0.758488 0.651687i \(-0.774062\pi\)
−0.0755198 + 0.997144i \(0.524062\pi\)
\(234\) 0 0
\(235\) 8.51742 + 20.5629i 0.555616 + 1.34137i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.0060 1.10003 0.550014 0.835155i \(-0.314622\pi\)
0.550014 + 0.835155i \(0.314622\pi\)
\(240\) 0 0
\(241\) −7.42077 17.9153i −0.478014 1.15403i −0.960539 0.278145i \(-0.910280\pi\)
0.482525 0.875882i \(-0.339720\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.07366 1.27315i −0.196369 0.0813388i
\(246\) 0 0
\(247\) 1.72644 1.72644i 0.109850 0.109850i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.5316i 1.35906i 0.733646 + 0.679532i \(0.237817\pi\)
−0.733646 + 0.679532i \(0.762183\pi\)
\(252\) 0 0
\(253\) −21.8290 21.8290i −1.37238 1.37238i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.5195 13.5195i −0.843324 0.843324i 0.145966 0.989290i \(-0.453371\pi\)
−0.989290 + 0.145966i \(0.953371\pi\)
\(258\) 0 0
\(259\) 10.2383i 0.636179i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.83952 + 7.83952i −0.483406 + 0.483406i −0.906218 0.422812i \(-0.861043\pi\)
0.422812 + 0.906218i \(0.361043\pi\)
\(264\) 0 0
\(265\) 28.3007 + 11.7225i 1.73850 + 0.720109i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.69352 4.08852i −0.103256 0.249282i 0.863805 0.503826i \(-0.168075\pi\)
−0.967061 + 0.254544i \(0.918075\pi\)
\(270\) 0 0
\(271\) 16.2476 0.986973 0.493486 0.869753i \(-0.335722\pi\)
0.493486 + 0.869753i \(0.335722\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.43795 10.7142i −0.267619 0.646089i
\(276\) 0 0
\(277\) −0.591916 + 0.245180i −0.0355648 + 0.0147314i −0.400395 0.916343i \(-0.631127\pi\)
0.364830 + 0.931074i \(0.381127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.0521155 + 0.0521155i −0.00310895 + 0.00310895i −0.708660 0.705551i \(-0.750700\pi\)
0.705551 + 0.708660i \(0.250700\pi\)
\(282\) 0 0
\(283\) −7.82868 + 18.9001i −0.465367 + 1.12350i 0.500797 + 0.865565i \(0.333040\pi\)
−0.966164 + 0.257930i \(0.916960\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −13.0220 13.0220i −0.768663 0.768663i
\(288\) 0 0
\(289\) 4.19911 + 16.4732i 0.247007 + 0.969014i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.88796i 0.460820i 0.973094 + 0.230410i \(0.0740067\pi\)
−0.973094 + 0.230410i \(0.925993\pi\)
\(294\) 0 0
\(295\) 13.0742 31.5639i 0.761209 1.83772i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.23882 2.58420i −0.360800 0.149448i
\(300\) 0 0
\(301\) −13.7266 + 5.68576i −0.791190 + 0.327722i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.41691 −0.424691
\(306\) 0 0
\(307\) −4.63954 −0.264793 −0.132396 0.991197i \(-0.542267\pi\)
−0.132396 + 0.991197i \(0.542267\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.16892 2.14104i 0.293103 0.121407i −0.231287 0.972886i \(-0.574294\pi\)
0.524389 + 0.851479i \(0.324294\pi\)
\(312\) 0 0
\(313\) 0.810266 + 0.335623i 0.0457990 + 0.0189705i 0.405465 0.914110i \(-0.367109\pi\)
−0.359666 + 0.933081i \(0.617109\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.3854 + 27.4867i −0.639467 + 1.54381i 0.187925 + 0.982183i \(0.439824\pi\)
−0.827392 + 0.561625i \(0.810176\pi\)
\(318\) 0 0
\(319\) 16.6092i 0.929939i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.17049 9.33059i −0.0651280 0.519168i
\(324\) 0 0
\(325\) −1.79377 1.79377i −0.0995003 0.0995003i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.53947 + 18.2019i −0.415664 + 1.00350i
\(330\) 0 0
\(331\) −8.18438 + 8.18438i −0.449854 + 0.449854i −0.895306 0.445452i \(-0.853043\pi\)
0.445452 + 0.895306i \(0.353043\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 32.1063 13.2989i 1.75416 0.726595i
\(336\) 0 0
\(337\) 6.47644 + 15.6355i 0.352794 + 0.851720i 0.996273 + 0.0862562i \(0.0274904\pi\)
−0.643479 + 0.765464i \(0.722510\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 34.2286 1.85358
\(342\) 0 0
\(343\) −7.56414 18.2614i −0.408425 0.986025i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.02695 + 0.839592i 0.108813 + 0.0450716i 0.436426 0.899740i \(-0.356244\pi\)
−0.327613 + 0.944812i \(0.606244\pi\)
\(348\) 0 0
\(349\) 18.7192 18.7192i 1.00201 1.00201i 0.00201610 0.999998i \(-0.499358\pi\)
0.999998 0.00201610i \(-0.000641744\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.9345i 1.32713i 0.748120 + 0.663564i \(0.230957\pi\)
−0.748120 + 0.663564i \(0.769043\pi\)
\(354\) 0 0
\(355\) 8.15758 + 8.15758i 0.432959 + 0.432959i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.09699 2.09699i −0.110675 0.110675i 0.649601 0.760276i \(-0.274936\pi\)
−0.760276 + 0.649601i \(0.774936\pi\)
\(360\) 0 0
\(361\) 13.7982i 0.726223i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −19.6893 + 19.6893i −1.03058 + 1.03058i
\(366\) 0 0
\(367\) −21.6341 8.96114i −1.12929 0.467768i −0.261751 0.965135i \(-0.584300\pi\)
−0.867540 + 0.497368i \(0.834300\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.3766 + 25.0512i 0.538724 + 1.30060i
\(372\) 0 0
\(373\) 30.4720 1.57778 0.788890 0.614534i \(-0.210656\pi\)
0.788890 + 0.614534i \(0.210656\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.39036 + 3.35663i 0.0716073 + 0.172875i
\(378\) 0 0
\(379\) −2.43151 + 1.00717i −0.124898 + 0.0517346i −0.444257 0.895899i \(-0.646532\pi\)
0.319359 + 0.947634i \(0.396532\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.8259 + 13.8259i −0.706473 + 0.706473i −0.965792 0.259319i \(-0.916502\pi\)
0.259319 + 0.965792i \(0.416502\pi\)
\(384\) 0 0
\(385\) 12.2172 29.4950i 0.622648 1.50321i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.3694 + 10.3694i 0.525748 + 0.525748i 0.919302 0.393553i \(-0.128754\pi\)
−0.393553 + 0.919302i \(0.628754\pi\)
\(390\) 0 0
\(391\) −22.6033 + 12.8667i −1.14310 + 0.650696i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.29689i 0.165884i
\(396\) 0 0
\(397\) 5.12132 12.3639i 0.257031 0.620529i −0.741708 0.670723i \(-0.765984\pi\)
0.998739 + 0.0501941i \(0.0159840\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.03313 + 2.49900i 0.301280 + 0.124794i 0.528202 0.849119i \(-0.322866\pi\)
−0.226922 + 0.973913i \(0.572866\pi\)
\(402\) 0 0
\(403\) 6.91739 2.86528i 0.344580 0.142730i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.8509 −1.03354
\(408\) 0 0
\(409\) −6.45254 −0.319058 −0.159529 0.987193i \(-0.550997\pi\)
−0.159529 + 0.987193i \(0.550997\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 27.9398 11.5730i 1.37483 0.569471i
\(414\) 0 0
\(415\) −10.3714 4.29596i −0.509111 0.210881i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.77323 + 21.1805i −0.428600 + 1.03473i 0.551131 + 0.834419i \(0.314196\pi\)
−0.979732 + 0.200314i \(0.935804\pi\)
\(420\) 0 0
\(421\) 26.8644i 1.30929i −0.755936 0.654645i \(-0.772818\pi\)
0.755936 0.654645i \(-0.227182\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.69449 + 1.21614i −0.470252 + 0.0589917i
\(426\) 0 0
\(427\) −4.64238 4.64238i −0.224660 0.224660i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.8232 35.7865i 0.714010 1.72377i 0.0242809 0.999705i \(-0.492270\pi\)
0.689729 0.724068i \(-0.257730\pi\)
\(432\) 0 0
\(433\) −21.6205 + 21.6205i −1.03901 + 1.03901i −0.0398071 + 0.999207i \(0.512674\pi\)
−0.999207 + 0.0398071i \(0.987326\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.2919 5.50569i 0.635839 0.263373i
\(438\) 0 0
\(439\) −0.602318 1.45412i −0.0287471 0.0694016i 0.908854 0.417114i \(-0.136958\pi\)
−0.937601 + 0.347713i \(0.886958\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.7788 −0.702164 −0.351082 0.936345i \(-0.614186\pi\)
−0.351082 + 0.936345i \(0.614186\pi\)
\(444\) 0 0
\(445\) −3.08166 7.43979i −0.146085 0.352680i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.04315 + 3.74579i 0.426773 + 0.176775i 0.585722 0.810512i \(-0.300811\pi\)
−0.158950 + 0.987287i \(0.550811\pi\)
\(450\) 0 0
\(451\) −26.5199 + 26.5199i −1.24877 + 1.24877i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.98347i 0.327390i
\(456\) 0 0
\(457\) −17.3054 17.3054i −0.809513 0.809513i 0.175047 0.984560i \(-0.443992\pi\)
−0.984560 + 0.175047i \(0.943992\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.62092 9.62092i −0.448091 0.448091i 0.446629 0.894719i \(-0.352625\pi\)
−0.894719 + 0.446629i \(0.852625\pi\)
\(462\) 0 0
\(463\) 10.8498i 0.504233i −0.967697 0.252117i \(-0.918873\pi\)
0.967697 0.252117i \(-0.0811267\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.9692 + 10.9692i −0.507594 + 0.507594i −0.913787 0.406193i \(-0.866856\pi\)
0.406193 + 0.913787i \(0.366856\pi\)
\(468\) 0 0
\(469\) 28.4199 + 11.7719i 1.31231 + 0.543577i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.5793 + 27.9550i 0.532418 + 1.28537i
\(474\) 0 0
\(475\) 5.40464 0.247982
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.4855 39.7996i −0.753244 1.81849i −0.540407 0.841403i \(-0.681730\pi\)
−0.212836 0.977088i \(-0.568270\pi\)
\(480\) 0 0
\(481\) −4.21384 + 1.74543i −0.192134 + 0.0795847i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 35.0430 35.0430i 1.59122 1.59122i
\(486\) 0 0
\(487\) 16.2097 39.1337i 0.734531 1.77331i 0.107666 0.994187i \(-0.465662\pi\)
0.626865 0.779128i \(-0.284338\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.65738 3.65738i −0.165055 0.165055i 0.619747 0.784802i \(-0.287235\pi\)
−0.784802 + 0.619747i \(0.787235\pi\)
\(492\) 0 0
\(493\) 13.4942 + 3.70420i 0.607748 + 0.166829i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.2119i 0.458068i
\(498\) 0 0
\(499\) −8.48908 + 20.4945i −0.380023 + 0.917458i 0.611937 + 0.790907i \(0.290391\pi\)
−0.991960 + 0.126551i \(0.959609\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.0563 + 10.3786i 1.11720 + 0.462761i 0.863413 0.504498i \(-0.168322\pi\)
0.253791 + 0.967259i \(0.418322\pi\)
\(504\) 0 0
\(505\) 22.6856 9.39667i 1.00950 0.418147i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −25.9336 −1.14949 −0.574743 0.818334i \(-0.694898\pi\)
−0.574743 + 0.818334i \(0.694898\pi\)
\(510\) 0 0
\(511\) −24.6478 −1.09035
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.60724 + 2.32259i −0.247084 + 0.102346i
\(516\) 0 0
\(517\) 37.0690 + 15.3545i 1.63029 + 0.675290i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.8942 35.9578i 0.652527 1.57534i −0.156573 0.987666i \(-0.550045\pi\)
0.809099 0.587672i \(-0.199955\pi\)
\(522\) 0 0
\(523\) 29.2087i 1.27721i 0.769536 + 0.638603i \(0.220488\pi\)
−0.769536 + 0.638603i \(0.779512\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.63367 27.8091i 0.332528 1.21138i
\(528\) 0 0
\(529\) −11.8736 11.8736i −0.516244 0.516244i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.13953 + 7.57950i −0.135988 + 0.328304i
\(534\) 0 0
\(535\) −10.4743 + 10.4743i −0.452845 + 0.452845i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.54094 + 2.29513i −0.238665 + 0.0988584i
\(540\) 0 0
\(541\) 5.71438 + 13.7957i 0.245680 + 0.593125i 0.997828 0.0658697i \(-0.0209822\pi\)
−0.752148 + 0.658994i \(0.770982\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.17724 −0.307439
\(546\) 0 0
\(547\) 8.00943 + 19.3365i 0.342458 + 0.826767i 0.997466 + 0.0711452i \(0.0226654\pi\)
−0.655008 + 0.755622i \(0.727335\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.15136 2.96219i −0.304658 0.126194i
\(552\) 0 0
\(553\) 2.06358 2.06358i 0.0877523 0.0877523i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.4512i 0.485203i −0.970126 0.242602i \(-0.921999\pi\)
0.970126 0.242602i \(-0.0780008\pi\)
\(558\) 0 0
\(559\) 4.68023 + 4.68023i 0.197952 + 0.197952i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.1023 + 16.1023i 0.678629 + 0.678629i 0.959690 0.281061i \(-0.0906862\pi\)
−0.281061 + 0.959690i \(0.590686\pi\)
\(564\) 0 0
\(565\) 37.9831i 1.59796i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.4856 22.4856i 0.942644 0.942644i −0.0557985 0.998442i \(-0.517770\pi\)
0.998442 + 0.0557985i \(0.0177704\pi\)
\(570\) 0 0
\(571\) −36.9087 15.2881i −1.54458 0.639787i −0.562256 0.826963i \(-0.690067\pi\)
−0.982326 + 0.187176i \(0.940067\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.72042 13.8103i −0.238558 0.575930i
\(576\) 0 0
\(577\) 28.3973 1.18219 0.591097 0.806600i \(-0.298695\pi\)
0.591097 + 0.806600i \(0.298695\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.80271 9.18055i −0.157763 0.380873i
\(582\) 0 0
\(583\) 51.0181 21.1324i 2.11295 0.875214i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.76184 7.76184i 0.320365 0.320365i −0.528542 0.848907i \(-0.677261\pi\)
0.848907 + 0.528542i \(0.177261\pi\)
\(588\) 0 0
\(589\) −6.10453 + 14.7376i −0.251533 + 0.607254i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.22864 + 2.22864i 0.0915194 + 0.0915194i 0.751384 0.659865i \(-0.229387\pi\)
−0.659865 + 0.751384i \(0.729387\pi\)
\(594\) 0 0
\(595\) −21.2386 16.5039i −0.870696 0.676594i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15.4176i 0.629945i 0.949101 + 0.314972i \(0.101995\pi\)
−0.949101 + 0.314972i \(0.898005\pi\)
\(600\) 0 0
\(601\) 8.10132 19.5583i 0.330460 0.797801i −0.668096 0.744075i \(-0.732890\pi\)
0.998556 0.0537256i \(-0.0171096\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −32.4793 13.4534i −1.32047 0.546957i
\(606\) 0 0
\(607\) −14.0086 + 5.80253i −0.568590 + 0.235518i −0.648409 0.761292i \(-0.724565\pi\)
0.0798199 + 0.996809i \(0.474565\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.77676 0.355070
\(612\) 0 0
\(613\) 43.4543 1.75510 0.877551 0.479484i \(-0.159176\pi\)
0.877551 + 0.479484i \(0.159176\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.3420 15.0534i 1.46307 0.606025i 0.497807 0.867288i \(-0.334139\pi\)
0.965268 + 0.261263i \(0.0841388\pi\)
\(618\) 0 0
\(619\) 9.69556 + 4.01603i 0.389697 + 0.161418i 0.568924 0.822390i \(-0.307360\pi\)
−0.179227 + 0.983808i \(0.557360\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.72783 6.58557i 0.109288 0.263845i
\(624\) 0 0
\(625\) 31.2330i 1.24932i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.65017 + 16.9403i −0.185414 + 0.675455i
\(630\) 0 0
\(631\) −32.2236 32.2236i −1.28280 1.28280i −0.939067 0.343734i \(-0.888308\pi\)
−0.343734 0.939067i \(-0.611692\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.1074 36.4725i 0.599519 1.44737i
\(636\) 0 0
\(637\) −0.927666 + 0.927666i −0.0367555 + 0.0367555i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.8538 + 5.73842i −0.547191 + 0.226654i −0.639114 0.769112i \(-0.720699\pi\)
0.0919230 + 0.995766i \(0.470699\pi\)
\(642\) 0 0
\(643\) 7.89107 + 19.0507i 0.311193 + 0.751287i 0.999661 + 0.0260206i \(0.00828356\pi\)
−0.688468 + 0.725267i \(0.741716\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26.8160 −1.05424 −0.527122 0.849790i \(-0.676729\pi\)
−0.527122 + 0.849790i \(0.676729\pi\)
\(648\) 0 0
\(649\) −23.5690 56.9007i −0.925166 2.23355i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.6601 + 5.24399i 0.495428 + 0.205213i 0.616385 0.787445i \(-0.288596\pi\)
−0.120957 + 0.992658i \(0.538596\pi\)
\(654\) 0 0
\(655\) 4.63504 4.63504i 0.181106 0.181106i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.2130i 0.787388i −0.919241 0.393694i \(-0.871197\pi\)
0.919241 0.393694i \(-0.128803\pi\)
\(660\) 0 0
\(661\) 5.04254 + 5.04254i 0.196132 + 0.196132i 0.798340 0.602208i \(-0.205712\pi\)
−0.602208 + 0.798340i \(0.705712\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.5206 + 10.5206i 0.407972 + 0.407972i
\(666\) 0 0
\(667\) 21.4089i 0.828957i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.45443 + 9.45443i −0.364984 + 0.364984i
\(672\) 0 0
\(673\) −34.6300 14.3442i −1.33489 0.552929i −0.402844 0.915269i \(-0.631978\pi\)
−0.932046 + 0.362339i \(0.881978\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.0912 34.0193i −0.541571 1.30747i −0.923614 0.383323i \(-0.874780\pi\)
0.382044 0.924144i \(-0.375220\pi\)
\(678\) 0 0
\(679\) 43.8681 1.68350
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.42199 15.5041i −0.245731 0.593246i 0.752102 0.659047i \(-0.229040\pi\)
−0.997833 + 0.0658003i \(0.979040\pi\)
\(684\) 0 0
\(685\) 3.56609 1.47712i 0.136253 0.0564379i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.54146 8.54146i 0.325404 0.325404i
\(690\) 0 0
\(691\) 5.24785 12.6694i 0.199638 0.481968i −0.792078 0.610420i \(-0.791001\pi\)
0.991716 + 0.128452i \(0.0410007\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 29.8172 + 29.8172i 1.13103 + 1.13103i
\(696\) 0 0
\(697\) 15.6316 + 27.4606i 0.592091 + 1.04014i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.5629i 0.436724i −0.975868 0.218362i \(-0.929929\pi\)
0.975868 0.218362i \(-0.0700713\pi\)
\(702\) 0 0
\(703\) 3.71867 8.97766i 0.140252 0.338599i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.0809 + 8.31776i 0.755218 + 0.312822i
\(708\) 0 0
\(709\) −13.9142 + 5.76346i −0.522560 + 0.216451i −0.628341 0.777938i \(-0.716266\pi\)
0.105781 + 0.994389i \(0.466266\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 44.1199 1.65230
\(714\) 0 0
\(715\) −14.2222 −0.531880
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.76251 + 0.730055i −0.0657305 + 0.0272264i −0.415306 0.909682i \(-0.636326\pi\)
0.349576 + 0.936908i \(0.386326\pi\)
\(720\) 0 0
\(721\) −4.96342 2.05592i −0.184847 0.0765663i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.07772 + 7.43027i −0.114304 + 0.275953i
\(726\) 0 0
\(727\) 4.61649i 0.171216i −0.996329 0.0856082i \(-0.972717\pi\)
0.996329 0.0856082i \(-0.0272833\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 25.2945 3.17311i 0.935550 0.117362i
\(732\) 0 0
\(733\) 4.76113 + 4.76113i 0.175856 + 0.175856i 0.789547 0.613691i \(-0.210316\pi\)
−0.613691 + 0.789547i \(0.710316\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.9741 57.8786i 0.883097 2.13199i
\(738\) 0 0
\(739\) 6.49918 6.49918i 0.239076 0.239076i −0.577391 0.816468i \(-0.695929\pi\)
0.816468 + 0.577391i \(0.195929\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.90655 + 3.27500i −0.290063 + 0.120148i −0.522970 0.852351i \(-0.675176\pi\)
0.232907 + 0.972499i \(0.425176\pi\)
\(744\) 0 0
\(745\) 16.8703 + 40.7286i 0.618081 + 1.49218i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.1122 −0.479108
\(750\) 0 0
\(751\) 3.59617 + 8.68192i 0.131226 + 0.316808i 0.975812 0.218613i \(-0.0701532\pi\)
−0.844586 + 0.535420i \(0.820153\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.81554 + 3.65151i 0.320830 + 0.132892i
\(756\) 0 0
\(757\) −30.9701 + 30.9701i −1.12563 + 1.12563i −0.134750 + 0.990880i \(0.543023\pi\)
−0.990880 + 0.134750i \(0.956977\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.85599i 0.284779i 0.989811 + 0.142390i \(0.0454786\pi\)
−0.989811 + 0.142390i \(0.954521\pi\)
\(762\) 0 0
\(763\) −4.49236 4.49236i −0.162634 0.162634i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.52632 9.52632i −0.343976 0.343976i
\(768\) 0 0
\(769\) 33.7233i 1.21609i −0.793901 0.608047i \(-0.791953\pi\)
0.793901 0.608047i \(-0.208047\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.9064 + 19.9064i −0.715983 + 0.715983i −0.967780 0.251797i \(-0.918978\pi\)
0.251797 + 0.967780i \(0.418978\pi\)
\(774\) 0 0
\(775\) 15.3124 + 6.34261i 0.550038 + 0.227833i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.68883 16.1483i −0.239652 0.578571i
\(780\) 0 0
\(781\) 20.7971 0.744180
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.2220 + 53.6488i 0.793139 + 1.91481i
\(786\) 0 0
\(787\) 31.9518 13.2349i 1.13896 0.471772i 0.268141 0.963380i \(-0.413591\pi\)
0.870817 + 0.491608i \(0.163591\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −23.7743 + 23.7743i −0.845317 + 0.845317i
\(792\) 0 0
\(793\) −1.11925 + 2.70211i −0.0397458 + 0.0959549i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31.8112 31.8112i −1.12681 1.12681i −0.990692 0.136119i \(-0.956537\pi\)
−0.136119 0.990692i \(-0.543463\pi\)
\(798\) 0 0
\(799\) 20.7419 26.6924i 0.733797 0.944310i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 50.1964i 1.77139i
\(804\) 0 0
\(805\) 15.7477 38.0184i 0.555035 1.33997i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.7452 11.9066i −1.01063 0.418615i −0.184943 0.982749i \(-0.559210\pi\)
−0.825683 + 0.564134i \(0.809210\pi\)
\(810\) 0 0
\(811\) 44.6958 18.5136i 1.56948 0.650101i 0.582779 0.812631i \(-0.301965\pi\)
0.986704 + 0.162529i \(0.0519653\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 53.9495 1.88977
\(816\) 0 0
\(817\) −14.1016 −0.493351
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.2625 8.80722i 0.742067 0.307374i 0.0205669 0.999788i \(-0.493453\pi\)
0.721500 + 0.692414i \(0.243453\pi\)
\(822\) 0 0
\(823\) 10.0413 + 4.15925i 0.350018 + 0.144982i 0.550764 0.834661i \(-0.314336\pi\)
−0.200746 + 0.979643i \(0.564336\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.2934 + 29.6790i −0.427485 + 1.03204i 0.552598 + 0.833448i \(0.313637\pi\)
−0.980082 + 0.198591i \(0.936363\pi\)
\(828\) 0 0
\(829\) 21.0657i 0.731642i 0.930685 + 0.365821i \(0.119212\pi\)
−0.930685 + 0.365821i \(0.880788\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.628942 + 5.01361i 0.0217915 + 0.173711i
\(834\) 0 0
\(835\) −15.2374 15.2374i −0.527313 0.527313i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 16.3781 39.5402i 0.565435 1.36508i −0.339932 0.940450i \(-0.610404\pi\)
0.905367 0.424631i \(-0.139596\pi\)
\(840\) 0 0
\(841\) −12.3613 + 12.3613i −0.426251 + 0.426251i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 29.7307 12.3149i 1.02277 0.423644i
\(846\) 0 0
\(847\) −11.9087 28.7500i −0.409186 0.987863i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −26.8763 −0.921307
\(852\) 0 0
\(853\) 5.75449 + 13.8926i 0.197030 + 0.475673i 0.991256 0.131949i \(-0.0421236\pi\)
−0.794226 + 0.607622i \(0.792124\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.2462 4.65833i −0.384163 0.159126i 0.182240 0.983254i \(-0.441665\pi\)
−0.566403 + 0.824129i \(0.691665\pi\)
\(858\) 0 0
\(859\) 9.12775 9.12775i 0.311435 0.311435i −0.534030 0.845465i \(-0.679323\pi\)
0.845465 + 0.534030i \(0.179323\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.4811i 0.731226i 0.930767 + 0.365613i \(0.119141\pi\)
−0.930767 + 0.365613i \(0.880859\pi\)
\(864\) 0 0
\(865\) −46.0488 46.0488i −1.56571 1.56571i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.20258 4.20258i −0.142563 0.142563i
\(870\) 0 0
\(871\) 13.7038i 0.464335i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.1332 + 12.1332i −0.410175 + 0.410175i
\(876\) 0 0
\(877\) −47.3960 19.6321i −1.60045 0.662928i −0.608971 0.793192i \(-0.708417\pi\)
−0.991479 + 0.130264i \(0.958417\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.5491 + 37.5388i 0.523861 + 1.26471i 0.935487 + 0.353361i \(0.114961\pi\)
−0.411626 + 0.911353i \(0.635039\pi\)
\(882\) 0 0
\(883\) 3.59541 0.120995 0.0604975 0.998168i \(-0.480731\pi\)
0.0604975 + 0.998168i \(0.480731\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.3637 + 37.0913i 0.515864 + 1.24540i 0.940424 + 0.340005i \(0.110429\pi\)
−0.424560 + 0.905400i \(0.639571\pi\)
\(888\) 0 0
\(889\) 32.2848 13.3728i 1.08280 0.448509i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.2222 + 13.2222i −0.442465 + 0.442465i
\(894\) 0 0
\(895\) −25.0979 + 60.5917i −0.838930 + 2.02536i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −16.7850 16.7850i −0.559810 0.559810i
\(900\) 0 0
\(901\) −5.79096 46.1627i −0.192925 1.53790i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.0423i 1.09836i
\(906\) 0 0
\(907\) 16.9424 40.9026i 0.562563 1.35815i −0.345147 0.938549i \(-0.612171\pi\)
0.907710 0.419599i \(-0.137829\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.08964 3.35084i −0.268022 0.111018i 0.244625 0.969618i \(-0.421335\pi\)
−0.512647 + 0.858599i \(0.671335\pi\)
\(912\) 0 0
\(913\) −18.6966 + 7.74440i −0.618768 + 0.256302i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.80230 0.191609
\(918\) 0 0
\(919\) −32.6562 −1.07723 −0.538615 0.842552i \(-0.681052\pi\)
−0.538615 + 0.842552i \(0.681052\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.20298 1.74093i 0.138343 0.0573034i
\(924\) 0 0
\(925\) −9.32780 3.86370i −0.306696 0.127038i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.8006 45.3888i 0.616829 1.48916i −0.238537 0.971133i \(-0.576668\pi\)
0.855366 0.518024i \(-0.173332\pi\)
\(930\) 0 0
\(931\) 2.79506i 0.0916045i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −33.6110 + 43.2534i −1.09920 + 1.41454i
\(936\) 0 0
\(937\) 28.6009 + 28.6009i 0.934352 + 0.934352i 0.997974 0.0636224i \(-0.0202653\pi\)
−0.0636224 + 0.997974i \(0.520265\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.10983 + 2.67938i −0.0361796 + 0.0873452i −0.940937 0.338583i \(-0.890052\pi\)
0.904757 + 0.425928i \(0.140052\pi\)
\(942\) 0 0
\(943\) −34.1835 + 34.1835i −1.11317 + 1.11317i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.7742 17.3034i 1.35748 0.562286i 0.419114 0.907934i \(-0.362341\pi\)
0.938364 + 0.345648i \(0.112341\pi\)
\(948\) 0 0
\(949\) 4.20194 + 10.1444i 0.136401 + 0.329301i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17.8145 −0.577069 −0.288534 0.957470i \(-0.593168\pi\)
−0.288534 + 0.957470i \(0.593168\pi\)
\(954\) 0 0
\(955\) −3.40549 8.22157i −0.110199 0.266044i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.15663 + 1.30752i 0.101933 + 0.0422221i
\(960\) 0 0
\(961\) −12.6704 + 12.6704i −0.408722 + 0.408722i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 56.3320i 1.81339i
\(966\) 0 0
\(967\) 19.1664 + 19.1664i 0.616349 + 0.616349i 0.944593 0.328244i \(-0.106457\pi\)
−0.328244 + 0.944593i \(0.606457\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.02700 1.02700i −0.0329582 0.0329582i 0.690436 0.723394i \(-0.257419\pi\)
−0.723394 + 0.690436i \(0.757419\pi\)
\(972\) 0 0
\(973\) 37.3262i 1.19662i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −34.2951 + 34.2951i −1.09720 + 1.09720i −0.102462 + 0.994737i \(0.532672\pi\)
−0.994737 + 0.102462i \(0.967328\pi\)
\(978\) 0 0
\(979\) −13.4118 5.55536i −0.428644 0.177550i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −6.76821 16.3399i −0.215872 0.521162i 0.778433 0.627727i \(-0.216015\pi\)
−0.994306 + 0.106565i \(0.966015\pi\)
\(984\) 0 0
\(985\) −53.5184 −1.70524
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.9255 + 36.0333i 0.474603 + 1.14579i
\(990\) 0 0
\(991\) −26.3051 + 10.8959i −0.835610 + 0.346121i −0.759121 0.650950i \(-0.774371\pi\)
−0.0764888 + 0.997070i \(0.524371\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29.2826 + 29.2826i −0.928322 + 0.928322i
\(996\) 0 0
\(997\) −4.92753 + 11.8961i −0.156056 + 0.376753i −0.982499 0.186267i \(-0.940361\pi\)
0.826443 + 0.563021i \(0.190361\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.bq.e.865.4 16
3.2 odd 2 408.2.ba.a.49.1 yes 16
12.11 even 2 816.2.bq.f.49.3 16
17.8 even 8 inner 1224.2.bq.e.433.4 16
51.5 even 16 6936.2.a.bo.1.7 8
51.8 odd 8 408.2.ba.a.25.1 16
51.29 even 16 6936.2.a.bl.1.2 8
204.59 even 8 816.2.bq.f.433.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.ba.a.25.1 16 51.8 odd 8
408.2.ba.a.49.1 yes 16 3.2 odd 2
816.2.bq.f.49.3 16 12.11 even 2
816.2.bq.f.433.3 16 204.59 even 8
1224.2.bq.e.433.4 16 17.8 even 8 inner
1224.2.bq.e.865.4 16 1.1 even 1 trivial
6936.2.a.bl.1.2 8 51.29 even 16
6936.2.a.bo.1.7 8 51.5 even 16