Properties

Label 816.2.bq.f.529.2
Level $816$
Weight $2$
Character 816.529
Analytic conductor $6.516$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,2,Mod(49,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.bq (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 466x^{12} + 2956x^{10} + 10049x^{8} + 18032x^{6} + 14800x^{4} + 3200x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 529.2
Root \(4.11290i\) of defining polynomial
Character \(\chi\) \(=\) 816.529
Dual form 816.2.bq.f.145.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 + 0.382683i) q^{3} +(1.19125 + 2.87594i) q^{5} +(0.497533 - 1.20115i) q^{7} +(0.707107 - 0.707107i) q^{9} +(0.951637 + 0.394181i) q^{11} +6.68521i q^{13} +(-2.20115 - 2.20115i) q^{15} +(0.866078 - 4.03112i) q^{17} +(0.0370155 + 0.0370155i) q^{19} +1.30012i q^{21} +(2.25820 + 0.935377i) q^{23} +(-3.31643 + 3.31643i) q^{25} +(-0.382683 + 0.923880i) q^{27} +(0.444609 + 1.07338i) q^{29} +(-6.92831 + 2.86980i) q^{31} -1.03004 q^{33} +4.04713 q^{35} +(3.94211 - 1.63287i) q^{37} +(-2.55832 - 6.17632i) q^{39} +(-0.992710 + 2.39661i) q^{41} +(-8.25427 + 8.25427i) q^{43} +(2.87594 + 1.19125i) q^{45} +7.75431i q^{47} +(3.75452 + 3.75452i) q^{49} +(0.742490 + 4.05570i) q^{51} +(-6.10592 - 6.10592i) q^{53} +3.20642i q^{55} +(-0.0483631 - 0.0200326i) q^{57} +(5.46426 - 5.46426i) q^{59} +(-2.67733 + 6.46364i) q^{61} +(-0.497533 - 1.20115i) q^{63} +(-19.2263 + 7.96378i) q^{65} +0.660863 q^{67} -2.44426 q^{69} +(-6.88351 + 2.85124i) q^{71} +(0.530414 + 1.28053i) q^{73} +(1.79484 - 4.33312i) q^{75} +(0.946942 - 0.946942i) q^{77} +(15.4018 + 6.37962i) q^{79} -1.00000i q^{81} +(4.99100 + 4.99100i) q^{83} +(12.6250 - 2.31130i) q^{85} +(-0.821530 - 0.821530i) q^{87} -18.5036i q^{89} +(8.02995 + 3.32611i) q^{91} +(5.30270 - 5.30270i) q^{93} +(-0.0623596 + 0.150549i) q^{95} +(2.87551 + 6.94209i) q^{97} +(0.951637 - 0.394181i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{15} + 8 q^{19} + 8 q^{23} - 8 q^{25} + 32 q^{29} - 8 q^{31} - 8 q^{33} - 16 q^{35} + 8 q^{37} + 8 q^{39} + 40 q^{41} + 24 q^{43} + 8 q^{45} + 24 q^{49} - 8 q^{51} - 24 q^{53} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.923880 + 0.382683i −0.533402 + 0.220942i
\(4\) 0 0
\(5\) 1.19125 + 2.87594i 0.532745 + 1.28616i 0.929698 + 0.368322i \(0.120068\pi\)
−0.396953 + 0.917839i \(0.629932\pi\)
\(6\) 0 0
\(7\) 0.497533 1.20115i 0.188050 0.453993i −0.801534 0.597949i \(-0.795982\pi\)
0.989584 + 0.143956i \(0.0459825\pi\)
\(8\) 0 0
\(9\) 0.707107 0.707107i 0.235702 0.235702i
\(10\) 0 0
\(11\) 0.951637 + 0.394181i 0.286929 + 0.118850i 0.521506 0.853248i \(-0.325370\pi\)
−0.234577 + 0.972098i \(0.575370\pi\)
\(12\) 0 0
\(13\) 6.68521i 1.85414i 0.374885 + 0.927071i \(0.377682\pi\)
−0.374885 + 0.927071i \(0.622318\pi\)
\(14\) 0 0
\(15\) −2.20115 2.20115i −0.568335 0.568335i
\(16\) 0 0
\(17\) 0.866078 4.03112i 0.210055 0.977690i
\(18\) 0 0
\(19\) 0.0370155 + 0.0370155i 0.00849193 + 0.00849193i 0.711340 0.702848i \(-0.248089\pi\)
−0.702848 + 0.711340i \(0.748089\pi\)
\(20\) 0 0
\(21\) 1.30012i 0.283709i
\(22\) 0 0
\(23\) 2.25820 + 0.935377i 0.470867 + 0.195040i 0.605483 0.795858i \(-0.292980\pi\)
−0.134616 + 0.990898i \(0.542980\pi\)
\(24\) 0 0
\(25\) −3.31643 + 3.31643i −0.663286 + 0.663286i
\(26\) 0 0
\(27\) −0.382683 + 0.923880i −0.0736475 + 0.177801i
\(28\) 0 0
\(29\) 0.444609 + 1.07338i 0.0825618 + 0.199322i 0.959769 0.280790i \(-0.0905963\pi\)
−0.877208 + 0.480111i \(0.840596\pi\)
\(30\) 0 0
\(31\) −6.92831 + 2.86980i −1.24436 + 0.515431i −0.905075 0.425252i \(-0.860185\pi\)
−0.339286 + 0.940683i \(0.610185\pi\)
\(32\) 0 0
\(33\) −1.03004 −0.179308
\(34\) 0 0
\(35\) 4.04713 0.684090
\(36\) 0 0
\(37\) 3.94211 1.63287i 0.648078 0.268443i −0.0343338 0.999410i \(-0.510931\pi\)
0.682412 + 0.730968i \(0.260931\pi\)
\(38\) 0 0
\(39\) −2.55832 6.17632i −0.409659 0.989003i
\(40\) 0 0
\(41\) −0.992710 + 2.39661i −0.155035 + 0.374288i −0.982244 0.187606i \(-0.939927\pi\)
0.827209 + 0.561894i \(0.189927\pi\)
\(42\) 0 0
\(43\) −8.25427 + 8.25427i −1.25876 + 1.25876i −0.307080 + 0.951684i \(0.599352\pi\)
−0.951684 + 0.307080i \(0.900648\pi\)
\(44\) 0 0
\(45\) 2.87594 + 1.19125i 0.428720 + 0.177582i
\(46\) 0 0
\(47\) 7.75431i 1.13108i 0.824720 + 0.565541i \(0.191333\pi\)
−0.824720 + 0.565541i \(0.808667\pi\)
\(48\) 0 0
\(49\) 3.75452 + 3.75452i 0.536360 + 0.536360i
\(50\) 0 0
\(51\) 0.742490 + 4.05570i 0.103969 + 0.567912i
\(52\) 0 0
\(53\) −6.10592 6.10592i −0.838713 0.838713i 0.149977 0.988690i \(-0.452080\pi\)
−0.988690 + 0.149977i \(0.952080\pi\)
\(54\) 0 0
\(55\) 3.20642i 0.432354i
\(56\) 0 0
\(57\) −0.0483631 0.0200326i −0.00640584 0.00265339i
\(58\) 0 0
\(59\) 5.46426 5.46426i 0.711386 0.711386i −0.255439 0.966825i \(-0.582220\pi\)
0.966825 + 0.255439i \(0.0822201\pi\)
\(60\) 0 0
\(61\) −2.67733 + 6.46364i −0.342797 + 0.827585i 0.654634 + 0.755946i \(0.272823\pi\)
−0.997431 + 0.0716386i \(0.977177\pi\)
\(62\) 0 0
\(63\) −0.497533 1.20115i −0.0626833 0.151331i
\(64\) 0 0
\(65\) −19.2263 + 7.96378i −2.38473 + 0.987786i
\(66\) 0 0
\(67\) 0.660863 0.0807373 0.0403687 0.999185i \(-0.487147\pi\)
0.0403687 + 0.999185i \(0.487147\pi\)
\(68\) 0 0
\(69\) −2.44426 −0.294254
\(70\) 0 0
\(71\) −6.88351 + 2.85124i −0.816923 + 0.338380i −0.751712 0.659491i \(-0.770772\pi\)
−0.0652104 + 0.997872i \(0.520772\pi\)
\(72\) 0 0
\(73\) 0.530414 + 1.28053i 0.0620802 + 0.149875i 0.951875 0.306485i \(-0.0991529\pi\)
−0.889795 + 0.456360i \(0.849153\pi\)
\(74\) 0 0
\(75\) 1.79484 4.33312i 0.207250 0.500346i
\(76\) 0 0
\(77\) 0.946942 0.946942i 0.107914 0.107914i
\(78\) 0 0
\(79\) 15.4018 + 6.37962i 1.73284 + 0.717764i 0.999272 + 0.0381421i \(0.0121440\pi\)
0.733563 + 0.679622i \(0.237856\pi\)
\(80\) 0 0
\(81\) 1.00000i 0.111111i
\(82\) 0 0
\(83\) 4.99100 + 4.99100i 0.547833 + 0.547833i 0.925814 0.377980i \(-0.123381\pi\)
−0.377980 + 0.925814i \(0.623381\pi\)
\(84\) 0 0
\(85\) 12.6250 2.31130i 1.36937 0.250695i
\(86\) 0 0
\(87\) −0.821530 0.821530i −0.0880772 0.0880772i
\(88\) 0 0
\(89\) 18.5036i 1.96138i −0.195579 0.980688i \(-0.562659\pi\)
0.195579 0.980688i \(-0.437341\pi\)
\(90\) 0 0
\(91\) 8.02995 + 3.32611i 0.841767 + 0.348671i
\(92\) 0 0
\(93\) 5.30270 5.30270i 0.549864 0.549864i
\(94\) 0 0
\(95\) −0.0623596 + 0.150549i −0.00639796 + 0.0154460i
\(96\) 0 0
\(97\) 2.87551 + 6.94209i 0.291964 + 0.704862i 0.999999 0.00131446i \(-0.000418406\pi\)
−0.708036 + 0.706177i \(0.750418\pi\)
\(98\) 0 0
\(99\) 0.951637 0.394181i 0.0956431 0.0396167i
\(100\) 0 0
\(101\) 9.34462 0.929825 0.464912 0.885357i \(-0.346086\pi\)
0.464912 + 0.885357i \(0.346086\pi\)
\(102\) 0 0
\(103\) 5.52226 0.544125 0.272062 0.962280i \(-0.412294\pi\)
0.272062 + 0.962280i \(0.412294\pi\)
\(104\) 0 0
\(105\) −3.73906 + 1.54877i −0.364895 + 0.151145i
\(106\) 0 0
\(107\) 2.19624 + 5.30219i 0.212318 + 0.512582i 0.993779 0.111373i \(-0.0355248\pi\)
−0.781460 + 0.623955i \(0.785525\pi\)
\(108\) 0 0
\(109\) 1.30453 3.14942i 0.124952 0.301660i −0.849009 0.528379i \(-0.822800\pi\)
0.973960 + 0.226719i \(0.0728000\pi\)
\(110\) 0 0
\(111\) −3.01716 + 3.01716i −0.286376 + 0.286376i
\(112\) 0 0
\(113\) −13.4849 5.58561i −1.26855 0.525450i −0.356026 0.934476i \(-0.615868\pi\)
−0.912523 + 0.409026i \(0.865868\pi\)
\(114\) 0 0
\(115\) 7.60873i 0.709517i
\(116\) 0 0
\(117\) 4.72715 + 4.72715i 0.437026 + 0.437026i
\(118\) 0 0
\(119\) −4.41108 3.04591i −0.404363 0.279218i
\(120\) 0 0
\(121\) −7.02794 7.02794i −0.638904 0.638904i
\(122\) 0 0
\(123\) 2.59407i 0.233900i
\(124\) 0 0
\(125\) 0.891145 + 0.369124i 0.0797064 + 0.0330155i
\(126\) 0 0
\(127\) 13.5710 13.5710i 1.20423 1.20423i 0.231364 0.972867i \(-0.425681\pi\)
0.972867 0.231364i \(-0.0743187\pi\)
\(128\) 0 0
\(129\) 4.46718 10.7847i 0.393313 0.949542i
\(130\) 0 0
\(131\) −7.39702 17.8580i −0.646281 1.56026i −0.818066 0.575125i \(-0.804953\pi\)
0.171785 0.985134i \(-0.445047\pi\)
\(132\) 0 0
\(133\) 0.0628777 0.0260448i 0.00545218 0.00225837i
\(134\) 0 0
\(135\) −3.11290 −0.267916
\(136\) 0 0
\(137\) −0.386209 −0.0329961 −0.0164980 0.999864i \(-0.505252\pi\)
−0.0164980 + 0.999864i \(0.505252\pi\)
\(138\) 0 0
\(139\) −13.5179 + 5.59930i −1.14657 + 0.474926i −0.873383 0.487034i \(-0.838079\pi\)
−0.273190 + 0.961960i \(0.588079\pi\)
\(140\) 0 0
\(141\) −2.96745 7.16405i −0.249904 0.603322i
\(142\) 0 0
\(143\) −2.63518 + 6.36189i −0.220365 + 0.532008i
\(144\) 0 0
\(145\) −2.55734 + 2.55734i −0.212375 + 0.212375i
\(146\) 0 0
\(147\) −4.90552 2.03193i −0.404600 0.167591i
\(148\) 0 0
\(149\) 14.8965i 1.22037i −0.792260 0.610184i \(-0.791095\pi\)
0.792260 0.610184i \(-0.208905\pi\)
\(150\) 0 0
\(151\) −11.6525 11.6525i −0.948266 0.948266i 0.0504602 0.998726i \(-0.483931\pi\)
−0.998726 + 0.0504602i \(0.983931\pi\)
\(152\) 0 0
\(153\) −2.23802 3.46284i −0.180933 0.279954i
\(154\) 0 0
\(155\) −16.5068 16.5068i −1.32585 1.32585i
\(156\) 0 0
\(157\) 2.21102i 0.176459i −0.996100 0.0882294i \(-0.971879\pi\)
0.996100 0.0882294i \(-0.0281208\pi\)
\(158\) 0 0
\(159\) 7.97777 + 3.30450i 0.632678 + 0.262064i
\(160\) 0 0
\(161\) 2.24706 2.24706i 0.177093 0.177093i
\(162\) 0 0
\(163\) 0.440482 1.06342i 0.0345012 0.0832933i −0.905690 0.423941i \(-0.860646\pi\)
0.940191 + 0.340648i \(0.110646\pi\)
\(164\) 0 0
\(165\) −1.22705 2.96235i −0.0955253 0.230619i
\(166\) 0 0
\(167\) 13.2193 5.47562i 1.02294 0.423716i 0.192782 0.981242i \(-0.438249\pi\)
0.830160 + 0.557525i \(0.188249\pi\)
\(168\) 0 0
\(169\) −31.6920 −2.43784
\(170\) 0 0
\(171\) 0.0523478 0.00400314
\(172\) 0 0
\(173\) 11.3238 4.69047i 0.860933 0.356610i 0.0918605 0.995772i \(-0.470719\pi\)
0.769072 + 0.639162i \(0.220719\pi\)
\(174\) 0 0
\(175\) 2.33350 + 5.63357i 0.176396 + 0.425858i
\(176\) 0 0
\(177\) −2.95724 + 7.13940i −0.222279 + 0.536630i
\(178\) 0 0
\(179\) 13.4350 13.4350i 1.00418 1.00418i 0.00418615 0.999991i \(-0.498668\pi\)
0.999991 0.00418615i \(-0.00133250\pi\)
\(180\) 0 0
\(181\) 22.7466 + 9.42196i 1.69074 + 0.700329i 0.999746 0.0225276i \(-0.00717138\pi\)
0.690998 + 0.722857i \(0.257171\pi\)
\(182\) 0 0
\(183\) 6.99620i 0.517174i
\(184\) 0 0
\(185\) 9.39211 + 9.39211i 0.690521 + 0.690521i
\(186\) 0 0
\(187\) 2.41318 3.49477i 0.176469 0.255563i
\(188\) 0 0
\(189\) 0.919322 + 0.919322i 0.0668708 + 0.0668708i
\(190\) 0 0
\(191\) 2.98494i 0.215983i 0.994152 + 0.107991i \(0.0344419\pi\)
−0.994152 + 0.107991i \(0.965558\pi\)
\(192\) 0 0
\(193\) 8.02218 + 3.32289i 0.577449 + 0.239187i 0.652241 0.758012i \(-0.273829\pi\)
−0.0747916 + 0.997199i \(0.523829\pi\)
\(194\) 0 0
\(195\) 14.7152 14.7152i 1.05377 1.05377i
\(196\) 0 0
\(197\) 0.380960 0.919719i 0.0271423 0.0655273i −0.909727 0.415206i \(-0.863709\pi\)
0.936870 + 0.349679i \(0.113709\pi\)
\(198\) 0 0
\(199\) −6.42828 15.5192i −0.455689 1.10013i −0.970126 0.242602i \(-0.921999\pi\)
0.514437 0.857528i \(-0.328001\pi\)
\(200\) 0 0
\(201\) −0.610558 + 0.252901i −0.0430654 + 0.0178383i
\(202\) 0 0
\(203\) 1.51050 0.106016
\(204\) 0 0
\(205\) −8.07509 −0.563989
\(206\) 0 0
\(207\) 2.25820 0.935377i 0.156956 0.0650132i
\(208\) 0 0
\(209\) 0.0206345 + 0.0498161i 0.00142732 + 0.00344585i
\(210\) 0 0
\(211\) −3.02853 + 7.31152i −0.208493 + 0.503346i −0.993186 0.116538i \(-0.962820\pi\)
0.784694 + 0.619884i \(0.212820\pi\)
\(212\) 0 0
\(213\) 5.26841 5.26841i 0.360986 0.360986i
\(214\) 0 0
\(215\) −33.5717 13.9059i −2.28957 0.948372i
\(216\) 0 0
\(217\) 9.74977i 0.661857i
\(218\) 0 0
\(219\) −0.980077 0.980077i −0.0662275 0.0662275i
\(220\) 0 0
\(221\) 26.9488 + 5.78991i 1.81278 + 0.389471i
\(222\) 0 0
\(223\) 9.80371 + 9.80371i 0.656505 + 0.656505i 0.954551 0.298047i \(-0.0963351\pi\)
−0.298047 + 0.954551i \(0.596335\pi\)
\(224\) 0 0
\(225\) 4.69014i 0.312676i
\(226\) 0 0
\(227\) 4.24331 + 1.75764i 0.281639 + 0.116659i 0.519031 0.854755i \(-0.326293\pi\)
−0.237393 + 0.971414i \(0.576293\pi\)
\(228\) 0 0
\(229\) 11.2603 11.2603i 0.744103 0.744103i −0.229262 0.973365i \(-0.573631\pi\)
0.973365 + 0.229262i \(0.0736312\pi\)
\(230\) 0 0
\(231\) −0.512481 + 1.23724i −0.0337188 + 0.0814044i
\(232\) 0 0
\(233\) 7.59957 + 18.3470i 0.497864 + 1.20195i 0.950632 + 0.310322i \(0.100437\pi\)
−0.452767 + 0.891629i \(0.649563\pi\)
\(234\) 0 0
\(235\) −22.3010 + 9.23736i −1.45475 + 0.602579i
\(236\) 0 0
\(237\) −16.6708 −1.08288
\(238\) 0 0
\(239\) −5.45935 −0.353136 −0.176568 0.984288i \(-0.556500\pi\)
−0.176568 + 0.984288i \(0.556500\pi\)
\(240\) 0 0
\(241\) 2.35121 0.973903i 0.151455 0.0627346i −0.305668 0.952138i \(-0.598880\pi\)
0.457123 + 0.889403i \(0.348880\pi\)
\(242\) 0 0
\(243\) 0.382683 + 0.923880i 0.0245492 + 0.0592669i
\(244\) 0 0
\(245\) −6.32520 + 15.2704i −0.404102 + 0.975589i
\(246\) 0 0
\(247\) −0.247456 + 0.247456i −0.0157453 + 0.0157453i
\(248\) 0 0
\(249\) −6.52105 2.70111i −0.413255 0.171176i
\(250\) 0 0
\(251\) 5.68072i 0.358564i −0.983798 0.179282i \(-0.942623\pi\)
0.983798 0.179282i \(-0.0573774\pi\)
\(252\) 0 0
\(253\) 1.78028 + 1.78028i 0.111925 + 0.111925i
\(254\) 0 0
\(255\) −10.7795 + 6.96673i −0.675037 + 0.436274i
\(256\) 0 0
\(257\) 5.96917 + 5.96917i 0.372347 + 0.372347i 0.868331 0.495985i \(-0.165193\pi\)
−0.495985 + 0.868331i \(0.665193\pi\)
\(258\) 0 0
\(259\) 5.54748i 0.344704i
\(260\) 0 0
\(261\) 1.07338 + 0.444609i 0.0664406 + 0.0275206i
\(262\) 0 0
\(263\) 17.1500 17.1500i 1.05751 1.05751i 0.0592712 0.998242i \(-0.481122\pi\)
0.998242 0.0592712i \(-0.0188777\pi\)
\(264\) 0 0
\(265\) 10.2866 24.8340i 0.631899 1.52554i
\(266\) 0 0
\(267\) 7.08101 + 17.0951i 0.433351 + 1.04620i
\(268\) 0 0
\(269\) −4.75784 + 1.97076i −0.290090 + 0.120159i −0.522983 0.852343i \(-0.675181\pi\)
0.232893 + 0.972502i \(0.425181\pi\)
\(270\) 0 0
\(271\) 15.6193 0.948808 0.474404 0.880307i \(-0.342664\pi\)
0.474404 + 0.880307i \(0.342664\pi\)
\(272\) 0 0
\(273\) −8.69155 −0.526037
\(274\) 0 0
\(275\) −4.46331 + 1.84876i −0.269148 + 0.111485i
\(276\) 0 0
\(277\) −0.124780 0.301246i −0.00749732 0.0181001i 0.920087 0.391715i \(-0.128118\pi\)
−0.927584 + 0.373615i \(0.878118\pi\)
\(278\) 0 0
\(279\) −2.86980 + 6.92831i −0.171810 + 0.414787i
\(280\) 0 0
\(281\) 19.7997 19.7997i 1.18115 1.18115i 0.201705 0.979446i \(-0.435352\pi\)
0.979446 0.201705i \(-0.0646481\pi\)
\(282\) 0 0
\(283\) −14.5211 6.01482i −0.863188 0.357544i −0.0932345 0.995644i \(-0.529721\pi\)
−0.769953 + 0.638100i \(0.779721\pi\)
\(284\) 0 0
\(285\) 0.162953i 0.00965253i
\(286\) 0 0
\(287\) 2.38479 + 2.38479i 0.140770 + 0.140770i
\(288\) 0 0
\(289\) −15.4998 6.98252i −0.911754 0.410737i
\(290\) 0 0
\(291\) −5.31324 5.31324i −0.311468 0.311468i
\(292\) 0 0
\(293\) 17.3226i 1.01200i 0.862535 + 0.505998i \(0.168876\pi\)
−0.862535 + 0.505998i \(0.831124\pi\)
\(294\) 0 0
\(295\) 22.2242 + 9.20557i 1.29394 + 0.535969i
\(296\) 0 0
\(297\) −0.728351 + 0.728351i −0.0422632 + 0.0422632i
\(298\) 0 0
\(299\) −6.25319 + 15.0965i −0.361631 + 0.873055i
\(300\) 0 0
\(301\) 5.80785 + 14.0214i 0.334759 + 0.808180i
\(302\) 0 0
\(303\) −8.63330 + 3.57603i −0.495970 + 0.205438i
\(304\) 0 0
\(305\) −21.7785 −1.24703
\(306\) 0 0
\(307\) 18.5111 1.05649 0.528244 0.849093i \(-0.322851\pi\)
0.528244 + 0.849093i \(0.322851\pi\)
\(308\) 0 0
\(309\) −5.10191 + 2.11328i −0.290237 + 0.120220i
\(310\) 0 0
\(311\) 10.4069 + 25.1245i 0.590121 + 1.42468i 0.883386 + 0.468646i \(0.155258\pi\)
−0.293265 + 0.956031i \(0.594742\pi\)
\(312\) 0 0
\(313\) −1.43309 + 3.45979i −0.0810031 + 0.195559i −0.959192 0.282755i \(-0.908752\pi\)
0.878189 + 0.478314i \(0.158752\pi\)
\(314\) 0 0
\(315\) 2.86176 2.86176i 0.161242 0.161242i
\(316\) 0 0
\(317\) 12.2064 + 5.05606i 0.685581 + 0.283977i 0.698158 0.715944i \(-0.254003\pi\)
−0.0125770 + 0.999921i \(0.504003\pi\)
\(318\) 0 0
\(319\) 1.19672i 0.0670037i
\(320\) 0 0
\(321\) −4.05812 4.05812i −0.226502 0.226502i
\(322\) 0 0
\(323\) 0.181272 0.117155i 0.0100862 0.00651871i
\(324\) 0 0
\(325\) −22.1710 22.1710i −1.22983 1.22983i
\(326\) 0 0
\(327\) 3.40891i 0.188513i
\(328\) 0 0
\(329\) 9.31410 + 3.85803i 0.513503 + 0.212700i
\(330\) 0 0
\(331\) −3.21190 + 3.21190i −0.176542 + 0.176542i −0.789847 0.613305i \(-0.789840\pi\)
0.613305 + 0.789847i \(0.289840\pi\)
\(332\) 0 0
\(333\) 1.63287 3.94211i 0.0894810 0.216026i
\(334\) 0 0
\(335\) 0.787257 + 1.90061i 0.0430124 + 0.103841i
\(336\) 0 0
\(337\) 0.885943 0.366970i 0.0482604 0.0199901i −0.358423 0.933559i \(-0.616685\pi\)
0.406683 + 0.913569i \(0.366685\pi\)
\(338\) 0 0
\(339\) 14.5959 0.792741
\(340\) 0 0
\(341\) −7.72445 −0.418302
\(342\) 0 0
\(343\) 14.7858 6.12448i 0.798359 0.330691i
\(344\) 0 0
\(345\) −2.91173 7.02955i −0.156762 0.378458i
\(346\) 0 0
\(347\) −2.56881 + 6.20165i −0.137901 + 0.332922i −0.977710 0.209960i \(-0.932667\pi\)
0.839809 + 0.542881i \(0.182667\pi\)
\(348\) 0 0
\(349\) −25.7173 + 25.7173i −1.37661 + 1.37661i −0.526338 + 0.850275i \(0.676435\pi\)
−0.850275 + 0.526338i \(0.823565\pi\)
\(350\) 0 0
\(351\) −6.17632 2.55832i −0.329668 0.136553i
\(352\) 0 0
\(353\) 14.0435i 0.747460i −0.927538 0.373730i \(-0.878079\pi\)
0.927538 0.373730i \(-0.121921\pi\)
\(354\) 0 0
\(355\) −16.4000 16.4000i −0.870424 0.870424i
\(356\) 0 0
\(357\) 5.24093 + 1.12600i 0.277379 + 0.0595944i
\(358\) 0 0
\(359\) −21.4184 21.4184i −1.13042 1.13042i −0.990107 0.140313i \(-0.955189\pi\)
−0.140313 0.990107i \(-0.544811\pi\)
\(360\) 0 0
\(361\) 18.9973i 0.999856i
\(362\) 0 0
\(363\) 9.18245 + 3.80349i 0.481953 + 0.199632i
\(364\) 0 0
\(365\) −3.05088 + 3.05088i −0.159690 + 0.159690i
\(366\) 0 0
\(367\) −7.71162 + 18.6175i −0.402543 + 0.971825i 0.584503 + 0.811391i \(0.301289\pi\)
−0.987047 + 0.160434i \(0.948711\pi\)
\(368\) 0 0
\(369\) 0.992710 + 2.39661i 0.0516784 + 0.124763i
\(370\) 0 0
\(371\) −10.3720 + 4.29624i −0.538489 + 0.223050i
\(372\) 0 0
\(373\) −21.6908 −1.12311 −0.561553 0.827441i \(-0.689796\pi\)
−0.561553 + 0.827441i \(0.689796\pi\)
\(374\) 0 0
\(375\) −0.964568 −0.0498101
\(376\) 0 0
\(377\) −7.17577 + 2.97230i −0.369571 + 0.153081i
\(378\) 0 0
\(379\) 5.98489 + 14.4488i 0.307423 + 0.742185i 0.999787 + 0.0206367i \(0.00656935\pi\)
−0.692364 + 0.721549i \(0.743431\pi\)
\(380\) 0 0
\(381\) −7.34457 + 17.7314i −0.376274 + 0.908405i
\(382\) 0 0
\(383\) −6.95101 + 6.95101i −0.355180 + 0.355180i −0.862033 0.506853i \(-0.830809\pi\)
0.506853 + 0.862033i \(0.330809\pi\)
\(384\) 0 0
\(385\) 3.85140 + 1.59530i 0.196286 + 0.0813042i
\(386\) 0 0
\(387\) 11.6733i 0.593387i
\(388\) 0 0
\(389\) −7.37138 7.37138i −0.373744 0.373744i 0.495095 0.868839i \(-0.335133\pi\)
−0.868839 + 0.495095i \(0.835133\pi\)
\(390\) 0 0
\(391\) 5.72639 8.29296i 0.289596 0.419393i
\(392\) 0 0
\(393\) 13.6679 + 13.6679i 0.689455 + 0.689455i
\(394\) 0 0
\(395\) 51.8944i 2.61109i
\(396\) 0 0
\(397\) −21.3163 8.82952i −1.06984 0.443141i −0.222903 0.974841i \(-0.571553\pi\)
−0.846933 + 0.531700i \(0.821553\pi\)
\(398\) 0 0
\(399\) −0.0481245 + 0.0481245i −0.00240924 + 0.00240924i
\(400\) 0 0
\(401\) 6.99523 16.8880i 0.349325 0.843345i −0.647375 0.762172i \(-0.724133\pi\)
0.996700 0.0811737i \(-0.0258669\pi\)
\(402\) 0 0
\(403\) −19.1852 46.3171i −0.955682 2.30722i
\(404\) 0 0
\(405\) 2.87594 1.19125i 0.142907 0.0591939i
\(406\) 0 0
\(407\) 4.39510 0.217857
\(408\) 0 0
\(409\) 11.9639 0.591574 0.295787 0.955254i \(-0.404418\pi\)
0.295787 + 0.955254i \(0.404418\pi\)
\(410\) 0 0
\(411\) 0.356811 0.147796i 0.0176002 0.00729023i
\(412\) 0 0
\(413\) −3.84475 9.28205i −0.189188 0.456740i
\(414\) 0 0
\(415\) −8.40828 + 20.2994i −0.412746 + 0.996457i
\(416\) 0 0
\(417\) 10.3462 10.3462i 0.506653 0.506653i
\(418\) 0 0
\(419\) 15.8630 + 6.57066i 0.774958 + 0.320998i 0.734879 0.678199i \(-0.237239\pi\)
0.0400789 + 0.999197i \(0.487239\pi\)
\(420\) 0 0
\(421\) 22.0942i 1.07680i 0.842688 + 0.538402i \(0.180972\pi\)
−0.842688 + 0.538402i \(0.819028\pi\)
\(422\) 0 0
\(423\) 5.48313 + 5.48313i 0.266599 + 0.266599i
\(424\) 0 0
\(425\) 10.4966 + 16.2412i 0.509161 + 0.787814i
\(426\) 0 0
\(427\) 6.43176 + 6.43176i 0.311255 + 0.311255i
\(428\) 0 0
\(429\) 6.88606i 0.332462i
\(430\) 0 0
\(431\) −37.1429 15.3851i −1.78911 0.741073i −0.990206 0.139612i \(-0.955414\pi\)
−0.798902 0.601461i \(-0.794586\pi\)
\(432\) 0 0
\(433\) 3.99293 3.99293i 0.191888 0.191888i −0.604623 0.796511i \(-0.706676\pi\)
0.796511 + 0.604623i \(0.206676\pi\)
\(434\) 0 0
\(435\) 1.38402 3.34132i 0.0663588 0.160204i
\(436\) 0 0
\(437\) 0.0489649 + 0.118212i 0.00234231 + 0.00565484i
\(438\) 0 0
\(439\) 27.0721 11.2136i 1.29208 0.535197i 0.372476 0.928042i \(-0.378509\pi\)
0.919605 + 0.392845i \(0.128509\pi\)
\(440\) 0 0
\(441\) 5.30969 0.252843
\(442\) 0 0
\(443\) 32.1170 1.52592 0.762962 0.646443i \(-0.223744\pi\)
0.762962 + 0.646443i \(0.223744\pi\)
\(444\) 0 0
\(445\) 53.2153 22.0425i 2.52265 1.04491i
\(446\) 0 0
\(447\) 5.70064 + 13.7626i 0.269631 + 0.650947i
\(448\) 0 0
\(449\) −12.8408 + 31.0005i −0.605996 + 1.46300i 0.261324 + 0.965251i \(0.415841\pi\)
−0.867319 + 0.497752i \(0.834159\pi\)
\(450\) 0 0
\(451\) −1.88940 + 1.88940i −0.0889683 + 0.0889683i
\(452\) 0 0
\(453\) 15.2247 + 6.30628i 0.715319 + 0.296295i
\(454\) 0 0
\(455\) 27.0559i 1.26840i
\(456\) 0 0
\(457\) −26.7952 26.7952i −1.25343 1.25343i −0.954174 0.299253i \(-0.903263\pi\)
−0.299253 0.954174i \(-0.596737\pi\)
\(458\) 0 0
\(459\) 3.39283 + 2.34279i 0.158364 + 0.109352i
\(460\) 0 0
\(461\) −3.84146 3.84146i −0.178915 0.178915i 0.611968 0.790883i \(-0.290378\pi\)
−0.790883 + 0.611968i \(0.790378\pi\)
\(462\) 0 0
\(463\) 22.0011i 1.02248i 0.859439 + 0.511239i \(0.170813\pi\)
−0.859439 + 0.511239i \(0.829187\pi\)
\(464\) 0 0
\(465\) 21.5671 + 8.93339i 1.00015 + 0.414276i
\(466\) 0 0
\(467\) 7.25522 7.25522i 0.335732 0.335732i −0.519026 0.854758i \(-0.673705\pi\)
0.854758 + 0.519026i \(0.173705\pi\)
\(468\) 0 0
\(469\) 0.328802 0.793797i 0.0151826 0.0366541i
\(470\) 0 0
\(471\) 0.846121 + 2.04272i 0.0389872 + 0.0941235i
\(472\) 0 0
\(473\) −11.1087 + 4.60139i −0.510780 + 0.211572i
\(474\) 0 0
\(475\) −0.245518 −0.0112652
\(476\) 0 0
\(477\) −8.63508 −0.395373
\(478\) 0 0
\(479\) 10.3143 4.27231i 0.471271 0.195207i −0.134392 0.990928i \(-0.542908\pi\)
0.605663 + 0.795722i \(0.292908\pi\)
\(480\) 0 0
\(481\) 10.9161 + 26.3538i 0.497731 + 1.20163i
\(482\) 0 0
\(483\) −1.21610 + 2.93592i −0.0553345 + 0.133589i
\(484\) 0 0
\(485\) −16.5396 + 16.5396i −0.751024 + 0.751024i
\(486\) 0 0
\(487\) 28.6591 + 11.8710i 1.29867 + 0.537925i 0.921557 0.388243i \(-0.126918\pi\)
0.377110 + 0.926169i \(0.376918\pi\)
\(488\) 0 0
\(489\) 1.15104i 0.0520516i
\(490\) 0 0
\(491\) −2.40605 2.40605i −0.108583 0.108583i 0.650728 0.759311i \(-0.274464\pi\)
−0.759311 + 0.650728i \(0.774464\pi\)
\(492\) 0 0
\(493\) 4.71199 0.862639i 0.212217 0.0388513i
\(494\) 0 0
\(495\) 2.26728 + 2.26728i 0.101907 + 0.101907i
\(496\) 0 0
\(497\) 9.68673i 0.434509i
\(498\) 0 0
\(499\) −34.8488 14.4349i −1.56005 0.646193i −0.574951 0.818188i \(-0.694979\pi\)
−0.985098 + 0.171995i \(0.944979\pi\)
\(500\) 0 0
\(501\) −10.1176 + 10.1176i −0.452022 + 0.452022i
\(502\) 0 0
\(503\) 16.8808 40.7538i 0.752676 1.81712i 0.208794 0.977960i \(-0.433046\pi\)
0.543882 0.839161i \(-0.316954\pi\)
\(504\) 0 0
\(505\) 11.1318 + 26.8746i 0.495360 + 1.19590i
\(506\) 0 0
\(507\) 29.2796 12.1280i 1.30035 0.538623i
\(508\) 0 0
\(509\) −19.4799 −0.863431 −0.431716 0.902010i \(-0.642092\pi\)
−0.431716 + 0.902010i \(0.642092\pi\)
\(510\) 0 0
\(511\) 1.80201 0.0797163
\(512\) 0 0
\(513\) −0.0483631 + 0.0200326i −0.00213528 + 0.000884462i
\(514\) 0 0
\(515\) 6.57842 + 15.8817i 0.289880 + 0.699832i
\(516\) 0 0
\(517\) −3.05660 + 7.37929i −0.134429 + 0.324541i
\(518\) 0 0
\(519\) −8.66686 + 8.66686i −0.380433 + 0.380433i
\(520\) 0 0
\(521\) 2.02983 + 0.840785i 0.0889287 + 0.0368355i 0.426704 0.904391i \(-0.359675\pi\)
−0.337776 + 0.941227i \(0.609675\pi\)
\(522\) 0 0
\(523\) 28.7418i 1.25679i 0.777895 + 0.628395i \(0.216288\pi\)
−0.777895 + 0.628395i \(0.783712\pi\)
\(524\) 0 0
\(525\) −4.31175 4.31175i −0.188180 0.188180i
\(526\) 0 0
\(527\) 5.56804 + 30.4143i 0.242548 + 1.32487i
\(528\) 0 0
\(529\) −12.0389 12.0389i −0.523431 0.523431i
\(530\) 0 0
\(531\) 7.72763i 0.335351i
\(532\) 0 0
\(533\) −16.0218 6.63647i −0.693983 0.287457i
\(534\) 0 0
\(535\) −12.6325 + 12.6325i −0.546151 + 0.546151i
\(536\) 0 0
\(537\) −7.27096 + 17.5536i −0.313765 + 0.757496i
\(538\) 0 0
\(539\) 2.09298 + 5.05290i 0.0901511 + 0.217644i
\(540\) 0 0
\(541\) 11.9441 4.94742i 0.513518 0.212706i −0.110849 0.993837i \(-0.535357\pi\)
0.624367 + 0.781131i \(0.285357\pi\)
\(542\) 0 0
\(543\) −24.6208 −1.05658
\(544\) 0 0
\(545\) 10.6116 0.454551
\(546\) 0 0
\(547\) −1.93331 + 0.800804i −0.0826624 + 0.0342399i −0.423632 0.905835i \(-0.639245\pi\)
0.340969 + 0.940075i \(0.389245\pi\)
\(548\) 0 0
\(549\) 2.67733 + 6.46364i 0.114266 + 0.275862i
\(550\) 0 0
\(551\) −0.0232743 + 0.0561891i −0.000991518 + 0.00239374i
\(552\) 0 0
\(553\) 15.3258 15.3258i 0.651719 0.651719i
\(554\) 0 0
\(555\) −12.2714 5.08297i −0.520891 0.215760i
\(556\) 0 0
\(557\) 15.7425i 0.667029i 0.942745 + 0.333515i \(0.108235\pi\)
−0.942745 + 0.333515i \(0.891765\pi\)
\(558\) 0 0
\(559\) −55.1815 55.1815i −2.33393 2.33393i
\(560\) 0 0
\(561\) −0.892099 + 4.15223i −0.0376644 + 0.175307i
\(562\) 0 0
\(563\) 6.86293 + 6.86293i 0.289238 + 0.289238i 0.836779 0.547541i \(-0.184436\pi\)
−0.547541 + 0.836779i \(0.684436\pi\)
\(564\) 0 0
\(565\) 45.4356i 1.91149i
\(566\) 0 0
\(567\) −1.20115 0.497533i −0.0504436 0.0208944i
\(568\) 0 0
\(569\) −3.54867 + 3.54867i −0.148768 + 0.148768i −0.777567 0.628800i \(-0.783547\pi\)
0.628800 + 0.777567i \(0.283547\pi\)
\(570\) 0 0
\(571\) 8.67431 20.9416i 0.363009 0.876380i −0.631849 0.775092i \(-0.717704\pi\)
0.994857 0.101288i \(-0.0322964\pi\)
\(572\) 0 0
\(573\) −1.14229 2.75773i −0.0477198 0.115206i
\(574\) 0 0
\(575\) −10.5913 + 4.38705i −0.441686 + 0.182953i
\(576\) 0 0
\(577\) 17.0022 0.707810 0.353905 0.935281i \(-0.384854\pi\)
0.353905 + 0.935281i \(0.384854\pi\)
\(578\) 0 0
\(579\) −8.68314 −0.360859
\(580\) 0 0
\(581\) 8.47814 3.51176i 0.351732 0.145692i
\(582\) 0 0
\(583\) −3.40378 8.21746i −0.140970 0.340332i
\(584\) 0 0
\(585\) −7.96378 + 19.2263i −0.329262 + 0.794908i
\(586\) 0 0
\(587\) −11.3612 + 11.3612i −0.468929 + 0.468929i −0.901567 0.432639i \(-0.857583\pi\)
0.432639 + 0.901567i \(0.357583\pi\)
\(588\) 0 0
\(589\) −0.362682 0.150228i −0.0149440 0.00619002i
\(590\) 0 0
\(591\) 0.995496i 0.0409493i
\(592\) 0 0
\(593\) −18.0376 18.0376i −0.740714 0.740714i 0.232001 0.972715i \(-0.425473\pi\)
−0.972715 + 0.232001i \(0.925473\pi\)
\(594\) 0 0
\(595\) 3.50513 16.3145i 0.143696 0.668828i
\(596\) 0 0
\(597\) 11.8779 + 11.8779i 0.486131 + 0.486131i
\(598\) 0 0
\(599\) 2.88098i 0.117714i −0.998266 0.0588568i \(-0.981254\pi\)
0.998266 0.0588568i \(-0.0187455\pi\)
\(600\) 0 0
\(601\) 24.3881 + 10.1019i 0.994811 + 0.412064i 0.819892 0.572518i \(-0.194034\pi\)
0.174919 + 0.984583i \(0.444034\pi\)
\(602\) 0 0
\(603\) 0.467301 0.467301i 0.0190300 0.0190300i
\(604\) 0 0
\(605\) 11.8399 28.5840i 0.481360 1.16211i
\(606\) 0 0
\(607\) −7.16567 17.2995i −0.290845 0.702163i 0.709150 0.705057i \(-0.249079\pi\)
−0.999996 + 0.00289420i \(0.999079\pi\)
\(608\) 0 0
\(609\) −1.39552 + 0.578043i −0.0565493 + 0.0234235i
\(610\) 0 0
\(611\) −51.8392 −2.09719
\(612\) 0 0
\(613\) −2.20627 −0.0891105 −0.0445552 0.999007i \(-0.514187\pi\)
−0.0445552 + 0.999007i \(0.514187\pi\)
\(614\) 0 0
\(615\) 7.46041 3.09020i 0.300833 0.124609i
\(616\) 0 0
\(617\) 11.5165 + 27.8032i 0.463635 + 1.11931i 0.966894 + 0.255179i \(0.0821344\pi\)
−0.503258 + 0.864136i \(0.667866\pi\)
\(618\) 0 0
\(619\) −4.38632 + 10.5895i −0.176301 + 0.425628i −0.987185 0.159578i \(-0.948987\pi\)
0.810884 + 0.585207i \(0.198987\pi\)
\(620\) 0 0
\(621\) −1.72835 + 1.72835i −0.0693564 + 0.0693564i
\(622\) 0 0
\(623\) −22.2256 9.20615i −0.890450 0.368837i
\(624\) 0 0
\(625\) 26.4533i 1.05813i
\(626\) 0 0
\(627\) −0.0381276 0.0381276i −0.00152267 0.00152267i
\(628\) 0 0
\(629\) −3.16814 17.3053i −0.126322 0.690007i
\(630\) 0 0
\(631\) −25.8448 25.8448i −1.02886 1.02886i −0.999571 0.0292941i \(-0.990674\pi\)
−0.0292941 0.999571i \(-0.509326\pi\)
\(632\) 0 0
\(633\) 7.91393i 0.314550i
\(634\) 0 0
\(635\) 55.1959 + 22.8629i 2.19038 + 0.907287i
\(636\) 0 0
\(637\) −25.0997 + 25.0997i −0.994488 + 0.994488i
\(638\) 0 0
\(639\) −2.85124 + 6.88351i −0.112793 + 0.272308i
\(640\) 0 0
\(641\) 5.80355 + 14.0110i 0.229226 + 0.553401i 0.996084 0.0884165i \(-0.0281806\pi\)
−0.766857 + 0.641818i \(0.778181\pi\)
\(642\) 0 0
\(643\) −40.7984 + 16.8992i −1.60893 + 0.666441i −0.992643 0.121080i \(-0.961364\pi\)
−0.616288 + 0.787521i \(0.711364\pi\)
\(644\) 0 0
\(645\) 36.3378 1.43080
\(646\) 0 0
\(647\) 40.4822 1.59152 0.795759 0.605613i \(-0.207072\pi\)
0.795759 + 0.605613i \(0.207072\pi\)
\(648\) 0 0
\(649\) 7.35390 3.04608i 0.288666 0.119569i
\(650\) 0 0
\(651\) −3.73107 9.00761i −0.146232 0.353036i
\(652\) 0 0
\(653\) −3.51730 + 8.49152i −0.137643 + 0.332299i −0.977638 0.210295i \(-0.932558\pi\)
0.839995 + 0.542594i \(0.182558\pi\)
\(654\) 0 0
\(655\) 42.5468 42.5468i 1.66244 1.66244i
\(656\) 0 0
\(657\) 1.28053 + 0.530414i 0.0499583 + 0.0206934i
\(658\) 0 0
\(659\) 41.6886i 1.62396i −0.583686 0.811979i \(-0.698390\pi\)
0.583686 0.811979i \(-0.301610\pi\)
\(660\) 0 0
\(661\) −25.4496 25.4496i −0.989876 0.989876i 0.0100728 0.999949i \(-0.496794\pi\)
−0.999949 + 0.0100728i \(0.996794\pi\)
\(662\) 0 0
\(663\) −27.1132 + 4.96370i −1.05299 + 0.192774i
\(664\) 0 0
\(665\) 0.149807 + 0.149807i 0.00580925 + 0.00580925i
\(666\) 0 0
\(667\) 2.83978i 0.109957i
\(668\) 0 0
\(669\) −12.8092 5.30573i −0.495231 0.205131i
\(670\) 0 0
\(671\) −5.09569 + 5.09569i −0.196717 + 0.196717i
\(672\) 0 0
\(673\) −14.0171 + 33.8403i −0.540319 + 1.30445i 0.384178 + 0.923259i \(0.374485\pi\)
−0.924498 + 0.381188i \(0.875515\pi\)
\(674\) 0 0
\(675\) −1.79484 4.33312i −0.0690834 0.166782i
\(676\) 0 0
\(677\) −19.9147 + 8.24892i −0.765382 + 0.317032i −0.731000 0.682377i \(-0.760946\pi\)
−0.0343820 + 0.999409i \(0.510946\pi\)
\(678\) 0 0
\(679\) 9.76916 0.374906
\(680\) 0 0
\(681\) −4.59293 −0.176001
\(682\) 0 0
\(683\) 33.4534 13.8569i 1.28006 0.530218i 0.364051 0.931379i \(-0.381393\pi\)
0.916007 + 0.401161i \(0.131393\pi\)
\(684\) 0 0
\(685\) −0.460073 1.11072i −0.0175785 0.0424383i
\(686\) 0 0
\(687\) −6.09404 + 14.7123i −0.232502 + 0.561310i
\(688\) 0 0
\(689\) 40.8193 40.8193i 1.55509 1.55509i
\(690\) 0 0
\(691\) 2.54578 + 1.05450i 0.0968462 + 0.0401150i 0.430581 0.902552i \(-0.358309\pi\)
−0.333734 + 0.942667i \(0.608309\pi\)
\(692\) 0 0
\(693\) 1.33918i 0.0508712i
\(694\) 0 0
\(695\) −32.2065 32.2065i −1.22166 1.22166i
\(696\) 0 0
\(697\) 8.80126 + 6.07738i 0.333372 + 0.230197i
\(698\) 0 0
\(699\) −14.0422 14.0422i −0.531124 0.531124i
\(700\) 0 0
\(701\) 8.81001i 0.332750i 0.986063 + 0.166375i \(0.0532062\pi\)
−0.986063 + 0.166375i \(0.946794\pi\)
\(702\) 0 0
\(703\) 0.206361 + 0.0854774i 0.00778304 + 0.00322384i
\(704\) 0 0
\(705\) 17.0684 17.0684i 0.642834 0.642834i
\(706\) 0 0
\(707\) 4.64926 11.2243i 0.174853 0.422134i
\(708\) 0 0
\(709\) −15.4637 37.3326i −0.580751 1.40206i −0.892134 0.451772i \(-0.850792\pi\)
0.311383 0.950285i \(-0.399208\pi\)
\(710\) 0 0
\(711\) 15.4018 6.37962i 0.577612 0.239255i
\(712\) 0 0
\(713\) −18.3298 −0.686458
\(714\) 0 0
\(715\) −21.4356 −0.801646
\(716\) 0 0
\(717\) 5.04378 2.08920i 0.188363 0.0780227i
\(718\) 0 0
\(719\) 5.99086 + 14.4632i 0.223421 + 0.539387i 0.995350 0.0963222i \(-0.0307079\pi\)
−0.771929 + 0.635709i \(0.780708\pi\)
\(720\) 0 0
\(721\) 2.74751 6.63308i 0.102323 0.247029i
\(722\) 0 0
\(723\) −1.79954 + 1.79954i −0.0669255 + 0.0669255i
\(724\) 0 0
\(725\) −5.03430 2.08528i −0.186969 0.0774452i
\(726\) 0 0
\(727\) 28.5009i 1.05704i −0.848920 0.528521i \(-0.822747\pi\)
0.848920 0.528521i \(-0.177253\pi\)
\(728\) 0 0
\(729\) −0.707107 0.707107i −0.0261891 0.0261891i
\(730\) 0 0
\(731\) 26.1251 + 40.4228i 0.966271 + 1.49509i
\(732\) 0 0
\(733\) −12.3553 12.3553i −0.456352 0.456352i 0.441104 0.897456i \(-0.354587\pi\)
−0.897456 + 0.441104i \(0.854587\pi\)
\(734\) 0 0
\(735\) 16.5285i 0.609664i
\(736\) 0 0
\(737\) 0.628902 + 0.260500i 0.0231659 + 0.00959563i
\(738\) 0 0
\(739\) 29.8120 29.8120i 1.09665 1.09665i 0.101854 0.994799i \(-0.467523\pi\)
0.994799 0.101854i \(-0.0324775\pi\)
\(740\) 0 0
\(741\) 0.133922 0.323317i 0.00491976 0.0118773i
\(742\) 0 0
\(743\) 9.82649 + 23.7232i 0.360499 + 0.870321i 0.995227 + 0.0975858i \(0.0311121\pi\)
−0.634728 + 0.772735i \(0.718888\pi\)
\(744\) 0 0
\(745\) 42.8415 17.7455i 1.56959 0.650146i
\(746\) 0 0
\(747\) 7.05834 0.258251
\(748\) 0 0
\(749\) 7.46144 0.272635
\(750\) 0 0
\(751\) −21.6108 + 8.95147i −0.788588 + 0.326644i −0.740376 0.672193i \(-0.765352\pi\)
−0.0482124 + 0.998837i \(0.515352\pi\)
\(752\) 0 0
\(753\) 2.17392 + 5.24830i 0.0792220 + 0.191259i
\(754\) 0 0
\(755\) 19.6308 47.3930i 0.714438 1.72481i
\(756\) 0 0
\(757\) −25.6060 + 25.6060i −0.930664 + 0.930664i −0.997747 0.0670830i \(-0.978631\pi\)
0.0670830 + 0.997747i \(0.478631\pi\)
\(758\) 0 0
\(759\) −2.32605 0.963480i −0.0844301 0.0349721i
\(760\) 0 0
\(761\) 6.19717i 0.224647i −0.993672 0.112324i \(-0.964171\pi\)
0.993672 0.112324i \(-0.0358293\pi\)
\(762\) 0 0
\(763\) −3.13388 3.13388i −0.113454 0.113454i
\(764\) 0 0
\(765\) 7.29288 10.5615i 0.263675 0.381854i
\(766\) 0 0
\(767\) 36.5297 + 36.5297i 1.31901 + 1.31901i
\(768\) 0 0
\(769\) 28.8712i 1.04112i −0.853825 0.520561i \(-0.825723\pi\)
0.853825 0.520561i \(-0.174277\pi\)
\(770\) 0 0
\(771\) −7.79910 3.23049i −0.280878 0.116343i
\(772\) 0 0
\(773\) 4.61440 4.61440i 0.165968 0.165968i −0.619236 0.785205i \(-0.712558\pi\)
0.785205 + 0.619236i \(0.212558\pi\)
\(774\) 0 0
\(775\) 13.4598 32.4947i 0.483489 1.16724i
\(776\) 0 0
\(777\) 2.12293 + 5.12520i 0.0761596 + 0.183866i
\(778\) 0 0
\(779\) −0.125457 + 0.0519662i −0.00449498 + 0.00186188i
\(780\) 0 0
\(781\) −7.67451 −0.274616
\(782\) 0 0
\(783\) −1.16182 −0.0415200
\(784\) 0 0
\(785\) 6.35877 2.63389i 0.226954 0.0940076i
\(786\) 0 0
\(787\) −3.45953 8.35205i −0.123319 0.297718i 0.850149 0.526543i \(-0.176512\pi\)
−0.973468 + 0.228824i \(0.926512\pi\)
\(788\) 0 0
\(789\) −9.28150 + 22.4075i −0.330430 + 0.797729i
\(790\) 0 0
\(791\) −13.4183 + 13.4183i −0.477101 + 0.477101i
\(792\) 0 0
\(793\) −43.2108 17.8985i −1.53446 0.635594i
\(794\) 0 0
\(795\) 26.8801i 0.953340i
\(796\) 0 0
\(797\) 3.37796 + 3.37796i 0.119654 + 0.119654i 0.764398 0.644745i \(-0.223036\pi\)
−0.644745 + 0.764398i \(0.723036\pi\)
\(798\) 0 0
\(799\) 31.2585 + 6.71584i 1.10585 + 0.237589i
\(800\) 0 0
\(801\) −13.0840 13.0840i −0.462301 0.462301i
\(802\) 0 0
\(803\) 1.42768i 0.0503818i
\(804\) 0 0
\(805\) 9.13924 + 3.78560i 0.322116 + 0.133425i
\(806\) 0 0
\(807\) 3.64149 3.64149i 0.128187 0.128187i
\(808\) 0 0
\(809\) 11.6542 28.1357i 0.409740 0.989199i −0.575467 0.817825i \(-0.695180\pi\)
0.985206 0.171374i \(-0.0548205\pi\)
\(810\) 0 0
\(811\) 3.61699 + 8.73219i 0.127010 + 0.306629i 0.974575 0.224063i \(-0.0719322\pi\)
−0.847565 + 0.530692i \(0.821932\pi\)
\(812\) 0 0
\(813\) −14.4304 + 5.97727i −0.506096 + 0.209632i
\(814\) 0 0
\(815\) 3.58306 0.125509
\(816\) 0 0
\(817\) −0.611071 −0.0213787
\(818\) 0 0
\(819\) 8.02995 3.32611i 0.280589 0.116224i
\(820\) 0 0
\(821\) 9.68739 + 23.3874i 0.338092 + 0.816227i 0.997899 + 0.0647914i \(0.0206382\pi\)
−0.659807 + 0.751435i \(0.729362\pi\)
\(822\) 0 0
\(823\) −2.48711 + 6.00441i −0.0866951 + 0.209301i −0.961281 0.275570i \(-0.911133\pi\)
0.874586 + 0.484871i \(0.161133\pi\)
\(824\) 0 0
\(825\) 3.41607 3.41607i 0.118932 0.118932i
\(826\) 0 0
\(827\) −35.3303 14.6343i −1.22855 0.508884i −0.328435 0.944527i \(-0.606521\pi\)
−0.900120 + 0.435643i \(0.856521\pi\)
\(828\) 0 0
\(829\) 3.18171i 0.110505i −0.998472 0.0552526i \(-0.982404\pi\)
0.998472 0.0552526i \(-0.0175964\pi\)
\(830\) 0 0
\(831\) 0.230564 + 0.230564i 0.00799817 + 0.00799817i
\(832\) 0 0
\(833\) 18.3866 11.8832i 0.637059 0.411729i
\(834\) 0 0
\(835\) 31.4952 + 31.4952i 1.08993 + 1.08993i
\(836\) 0 0
\(837\) 7.49914i 0.259208i
\(838\) 0 0
\(839\) 12.5803 + 5.21093i 0.434320 + 0.179901i 0.589122 0.808044i \(-0.299474\pi\)
−0.154802 + 0.987946i \(0.549474\pi\)
\(840\) 0 0
\(841\) 19.5516 19.5516i 0.674194 0.674194i
\(842\) 0 0
\(843\) −10.7155 + 25.8696i −0.369062 + 0.890995i
\(844\) 0 0
\(845\) −37.7532 91.1443i −1.29875 3.13546i
\(846\) 0 0
\(847\) −11.9383 + 4.94499i −0.410203 + 0.169912i
\(848\) 0 0
\(849\) 15.7175 0.539423
\(850\) 0 0
\(851\) 10.4294 0.357516
\(852\) 0 0
\(853\) 49.8673 20.6557i 1.70742 0.707238i 0.707423 0.706790i \(-0.249857\pi\)
1.00000 0.000447751i \(-0.000142524\pi\)
\(854\) 0 0
\(855\) 0.0623596 + 0.150549i 0.00213265 + 0.00514868i
\(856\) 0 0
\(857\) 10.4987 25.3461i 0.358629 0.865806i −0.636865 0.770976i \(-0.719769\pi\)
0.995493 0.0948308i \(-0.0302310\pi\)
\(858\) 0 0
\(859\) −22.6761 + 22.6761i −0.773698 + 0.773698i −0.978751 0.205053i \(-0.934263\pi\)
0.205053 + 0.978751i \(0.434263\pi\)
\(860\) 0 0
\(861\) −3.11588 1.29064i −0.106189 0.0439849i
\(862\) 0 0
\(863\) 5.64442i 0.192138i 0.995375 + 0.0960692i \(0.0306270\pi\)
−0.995375 + 0.0960692i \(0.969373\pi\)
\(864\) 0 0
\(865\) 26.9791 + 26.9791i 0.917316 + 0.917316i
\(866\) 0 0
\(867\) 16.9921 + 0.519486i 0.577081 + 0.0176427i
\(868\) 0 0
\(869\) 12.1422 + 12.1422i 0.411895 + 0.411895i
\(870\) 0 0
\(871\) 4.41801i 0.149698i
\(872\) 0 0
\(873\) 6.94209 + 2.87551i 0.234954 + 0.0973212i
\(874\) 0 0
\(875\) 0.886748 0.886748i 0.0299776 0.0299776i
\(876\) 0 0
\(877\) 6.38918 15.4249i 0.215747 0.520860i −0.778540 0.627595i \(-0.784040\pi\)
0.994288 + 0.106735i \(0.0340395\pi\)
\(878\) 0 0
\(879\) −6.62906 16.0040i −0.223593 0.539801i
\(880\) 0 0
\(881\) 42.7318 17.7001i 1.43967 0.596331i 0.479952 0.877295i \(-0.340654\pi\)
0.959718 + 0.280964i \(0.0906541\pi\)
\(882\) 0 0
\(883\) −16.0530 −0.540227 −0.270114 0.962828i \(-0.587061\pi\)
−0.270114 + 0.962828i \(0.587061\pi\)
\(884\) 0 0
\(885\) −24.0553 −0.808611
\(886\) 0 0
\(887\) 17.1554 7.10602i 0.576023 0.238597i −0.0756014 0.997138i \(-0.524088\pi\)
0.651625 + 0.758541i \(0.274088\pi\)
\(888\) 0 0
\(889\) −9.54880 23.0528i −0.320257 0.773168i
\(890\) 0 0
\(891\) 0.394181 0.951637i 0.0132056 0.0318810i
\(892\) 0 0
\(893\) −0.287030 + 0.287030i −0.00960508 + 0.00960508i
\(894\) 0 0
\(895\) 54.6427 + 22.6338i 1.82650 + 0.756563i
\(896\) 0 0
\(897\) 16.3404i 0.545589i
\(898\) 0 0
\(899\) −6.16077 6.16077i −0.205473 0.205473i
\(900\) 0 0
\(901\) −29.9019 + 19.3255i −0.996176 + 0.643825i
\(902\) 0 0
\(903\) −10.7315 10.7315i −0.357122 0.357122i
\(904\) 0 0
\(905\) 76.6420i 2.54767i
\(906\) 0 0
\(907\) 27.4248 + 11.3597i 0.910625 + 0.377193i 0.788296 0.615297i \(-0.210964\pi\)
0.122329 + 0.992490i \(0.460964\pi\)
\(908\) 0 0
\(909\) 6.60765 6.60765i 0.219162 0.219162i
\(910\) 0 0
\(911\) −1.13880 + 2.74930i −0.0377300 + 0.0910883i −0.941621 0.336674i \(-0.890698\pi\)
0.903891 + 0.427762i \(0.140698\pi\)
\(912\) 0 0
\(913\) 2.78226 + 6.71698i 0.0920794 + 0.222299i
\(914\) 0 0
\(915\) 20.1207 8.33425i 0.665169 0.275522i
\(916\) 0 0
\(917\) −25.1304 −0.829879
\(918\) 0 0
\(919\) −39.7923 −1.31263 −0.656313 0.754489i \(-0.727885\pi\)
−0.656313 + 0.754489i \(0.727885\pi\)
\(920\) 0 0
\(921\) −17.1021 + 7.08391i −0.563532 + 0.233423i
\(922\) 0 0
\(923\) −19.0612 46.0177i −0.627406 1.51469i
\(924\) 0 0
\(925\) −7.65841 + 18.4890i −0.251807 + 0.607915i
\(926\) 0 0
\(927\) 3.90483 3.90483i 0.128251 0.128251i
\(928\) 0 0
\(929\) −38.1006 15.7818i −1.25004 0.517783i −0.343201 0.939262i \(-0.611511\pi\)
−0.906838 + 0.421479i \(0.861511\pi\)
\(930\) 0 0
\(931\) 0.277951i 0.00910947i
\(932\) 0 0
\(933\) −19.2294 19.2294i −0.629543 0.629543i
\(934\) 0 0
\(935\) 12.9255 + 2.77701i 0.422708 + 0.0908180i
\(936\) 0 0
\(937\) −15.2856 15.2856i −0.499357 0.499357i 0.411881 0.911238i \(-0.364872\pi\)
−0.911238 + 0.411881i \(0.864872\pi\)
\(938\) 0 0
\(939\) 3.74485i 0.122208i
\(940\) 0 0
\(941\) −30.4191 12.6000i −0.991634 0.410748i −0.172911 0.984937i \(-0.555317\pi\)
−0.818723 + 0.574189i \(0.805317\pi\)
\(942\) 0 0
\(943\) −4.48347 + 4.48347i −0.146002 + 0.146002i
\(944\) 0 0
\(945\) −1.54877 + 3.73906i −0.0503815 + 0.121632i
\(946\) 0 0
\(947\) 11.0141 + 26.5904i 0.357911 + 0.864073i 0.995594 + 0.0937739i \(0.0298931\pi\)
−0.637683 + 0.770299i \(0.720107\pi\)
\(948\) 0 0
\(949\) −8.56062 + 3.54593i −0.277890 + 0.115106i
\(950\) 0 0
\(951\) −13.2121 −0.428433
\(952\) 0 0
\(953\) −49.6066 −1.60692 −0.803458 0.595361i \(-0.797009\pi\)
−0.803458 + 0.595361i \(0.797009\pi\)
\(954\) 0 0
\(955\) −8.58453 + 3.55583i −0.277789 + 0.115064i
\(956\) 0 0
\(957\) −0.457967 1.10563i −0.0148040 0.0357399i
\(958\) 0 0
\(959\) −0.192152 + 0.463896i −0.00620491 + 0.0149800i
\(960\) 0 0
\(961\) 17.8454 17.8454i 0.575657 0.575657i
\(962\) 0 0
\(963\) 5.30219 + 2.19624i 0.170861 + 0.0707728i
\(964\) 0 0
\(965\) 27.0297i 0.870118i
\(966\) 0 0
\(967\) 23.4188 + 23.4188i 0.753097 + 0.753097i 0.975056 0.221959i \(-0.0712452\pi\)
−0.221959 + 0.975056i \(0.571245\pi\)
\(968\) 0 0
\(969\) −0.122640 + 0.177607i −0.00393977 + 0.00570557i
\(970\) 0 0
\(971\) −43.2866 43.2866i −1.38913 1.38913i −0.827148 0.561984i \(-0.810038\pi\)
−0.561984 0.827148i \(-0.689962\pi\)
\(972\) 0 0
\(973\) 19.0229i 0.609846i
\(974\) 0 0
\(975\) 28.9678 + 11.9989i 0.927713 + 0.384271i
\(976\) 0 0
\(977\) 5.52735 5.52735i 0.176836 0.176836i −0.613139 0.789975i \(-0.710094\pi\)
0.789975 + 0.613139i \(0.210094\pi\)
\(978\) 0 0
\(979\) 7.29376 17.6087i 0.233110 0.562776i
\(980\) 0 0
\(981\) −1.30453 3.14942i −0.0416505 0.100553i
\(982\) 0 0
\(983\) −20.5607 + 8.51653i −0.655785 + 0.271635i −0.685664 0.727918i \(-0.740488\pi\)
0.0298784 + 0.999554i \(0.490488\pi\)
\(984\) 0 0
\(985\) 3.09888 0.0987385
\(986\) 0 0
\(987\) −10.0815 −0.320898
\(988\) 0 0
\(989\) −26.3606 + 10.9189i −0.838219 + 0.347202i
\(990\) 0 0
\(991\) 6.41970 + 15.4985i 0.203928 + 0.492327i 0.992446 0.122686i \(-0.0391508\pi\)
−0.788517 + 0.615013i \(0.789151\pi\)
\(992\) 0 0
\(993\) 1.73827 4.19655i 0.0551623 0.133174i
\(994\) 0 0
\(995\) 36.9747 36.9747i 1.17218 1.17218i
\(996\) 0 0
\(997\) −38.9013 16.1135i −1.23202 0.510318i −0.330806 0.943699i \(-0.607321\pi\)
−0.901211 + 0.433380i \(0.857321\pi\)
\(998\) 0 0
\(999\) 4.26691i 0.134999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.bq.f.529.2 16
4.3 odd 2 408.2.ba.a.121.4 16
12.11 even 2 1224.2.bq.e.937.1 16
17.9 even 8 inner 816.2.bq.f.145.2 16
68.3 even 16 6936.2.a.bo.1.1 8
68.31 even 16 6936.2.a.bl.1.8 8
68.43 odd 8 408.2.ba.a.145.4 yes 16
204.179 even 8 1224.2.bq.e.145.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.ba.a.121.4 16 4.3 odd 2
408.2.ba.a.145.4 yes 16 68.43 odd 8
816.2.bq.f.145.2 16 17.9 even 8 inner
816.2.bq.f.529.2 16 1.1 even 1 trivial
1224.2.bq.e.145.1 16 204.179 even 8
1224.2.bq.e.937.1 16 12.11 even 2
6936.2.a.bl.1.8 8 68.31 even 16
6936.2.a.bo.1.1 8 68.3 even 16