Properties

Label 6936.2.a.bl.1.8
Level $6936$
Weight $2$
Character 6936.1
Self dual yes
Analytic conductor $55.384$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6936,2,Mod(1,6936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6936.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.3842388420\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.77984694272.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 10x^{6} + 36x^{5} + 39x^{4} - 96x^{3} - 56x^{2} + 64x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.149074\) of defining polynomial
Character \(\chi\) \(=\) 6936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.11290 q^{5} -1.30012 q^{7} +1.00000 q^{9} -1.03004 q^{11} -6.68521 q^{13} -3.11290 q^{15} -0.0523478 q^{19} +1.30012 q^{21} +2.44426 q^{23} +4.69014 q^{25} -1.00000 q^{27} -1.16182 q^{29} +7.49914 q^{31} +1.03004 q^{33} -4.04713 q^{35} -4.26691 q^{37} +6.68521 q^{39} -2.59407 q^{41} +11.6733 q^{43} +3.11290 q^{45} +7.75431 q^{47} -5.30969 q^{49} -8.63508 q^{53} -3.20642 q^{55} +0.0523478 q^{57} +7.72763 q^{59} +6.99620 q^{61} -1.30012 q^{63} -20.8104 q^{65} +0.660863 q^{67} -2.44426 q^{69} -7.45066 q^{71} +1.38604 q^{73} -4.69014 q^{75} +1.33918 q^{77} -16.6708 q^{79} +1.00000 q^{81} +7.05834 q^{83} +1.16182 q^{87} -18.5036 q^{89} +8.69155 q^{91} -7.49914 q^{93} -0.162953 q^{95} -7.51406 q^{97} -1.03004 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 4 q^{5} + 8 q^{9} - 4 q^{11} - 4 q^{13} + 4 q^{15} + 4 q^{19} + 4 q^{23} - 4 q^{25} - 8 q^{27} - 8 q^{31} + 4 q^{33} + 8 q^{35} - 16 q^{37} + 4 q^{39} - 20 q^{41} + 28 q^{43} - 4 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 3.11290 1.39213 0.696065 0.717978i \(-0.254932\pi\)
0.696065 + 0.717978i \(0.254932\pi\)
\(6\) 0 0
\(7\) −1.30012 −0.491398 −0.245699 0.969346i \(-0.579018\pi\)
−0.245699 + 0.969346i \(0.579018\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.03004 −0.310570 −0.155285 0.987870i \(-0.549630\pi\)
−0.155285 + 0.987870i \(0.549630\pi\)
\(12\) 0 0
\(13\) −6.68521 −1.85414 −0.927071 0.374885i \(-0.877682\pi\)
−0.927071 + 0.374885i \(0.877682\pi\)
\(14\) 0 0
\(15\) −3.11290 −0.803747
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −0.0523478 −0.0120094 −0.00600470 0.999982i \(-0.501911\pi\)
−0.00600470 + 0.999982i \(0.501911\pi\)
\(20\) 0 0
\(21\) 1.30012 0.283709
\(22\) 0 0
\(23\) 2.44426 0.509663 0.254832 0.966985i \(-0.417980\pi\)
0.254832 + 0.966985i \(0.417980\pi\)
\(24\) 0 0
\(25\) 4.69014 0.938028
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.16182 −0.215744 −0.107872 0.994165i \(-0.534404\pi\)
−0.107872 + 0.994165i \(0.534404\pi\)
\(30\) 0 0
\(31\) 7.49914 1.34689 0.673443 0.739239i \(-0.264815\pi\)
0.673443 + 0.739239i \(0.264815\pi\)
\(32\) 0 0
\(33\) 1.03004 0.179308
\(34\) 0 0
\(35\) −4.04713 −0.684090
\(36\) 0 0
\(37\) −4.26691 −0.701475 −0.350738 0.936474i \(-0.614069\pi\)
−0.350738 + 0.936474i \(0.614069\pi\)
\(38\) 0 0
\(39\) 6.68521 1.07049
\(40\) 0 0
\(41\) −2.59407 −0.405126 −0.202563 0.979269i \(-0.564927\pi\)
−0.202563 + 0.979269i \(0.564927\pi\)
\(42\) 0 0
\(43\) 11.6733 1.78016 0.890080 0.455804i \(-0.150648\pi\)
0.890080 + 0.455804i \(0.150648\pi\)
\(44\) 0 0
\(45\) 3.11290 0.464044
\(46\) 0 0
\(47\) 7.75431 1.13108 0.565541 0.824720i \(-0.308667\pi\)
0.565541 + 0.824720i \(0.308667\pi\)
\(48\) 0 0
\(49\) −5.30969 −0.758528
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.63508 −1.18612 −0.593060 0.805159i \(-0.702080\pi\)
−0.593060 + 0.805159i \(0.702080\pi\)
\(54\) 0 0
\(55\) −3.20642 −0.432354
\(56\) 0 0
\(57\) 0.0523478 0.00693364
\(58\) 0 0
\(59\) 7.72763 1.00605 0.503026 0.864271i \(-0.332220\pi\)
0.503026 + 0.864271i \(0.332220\pi\)
\(60\) 0 0
\(61\) 6.99620 0.895771 0.447886 0.894091i \(-0.352177\pi\)
0.447886 + 0.894091i \(0.352177\pi\)
\(62\) 0 0
\(63\) −1.30012 −0.163799
\(64\) 0 0
\(65\) −20.8104 −2.58121
\(66\) 0 0
\(67\) 0.660863 0.0807373 0.0403687 0.999185i \(-0.487147\pi\)
0.0403687 + 0.999185i \(0.487147\pi\)
\(68\) 0 0
\(69\) −2.44426 −0.294254
\(70\) 0 0
\(71\) −7.45066 −0.884231 −0.442115 0.896958i \(-0.645772\pi\)
−0.442115 + 0.896958i \(0.645772\pi\)
\(72\) 0 0
\(73\) 1.38604 0.162224 0.0811118 0.996705i \(-0.474153\pi\)
0.0811118 + 0.996705i \(0.474153\pi\)
\(74\) 0 0
\(75\) −4.69014 −0.541571
\(76\) 0 0
\(77\) 1.33918 0.152614
\(78\) 0 0
\(79\) −16.6708 −1.87561 −0.937804 0.347166i \(-0.887144\pi\)
−0.937804 + 0.347166i \(0.887144\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.05834 0.774753 0.387377 0.921922i \(-0.373381\pi\)
0.387377 + 0.921922i \(0.373381\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.16182 0.124560
\(88\) 0 0
\(89\) −18.5036 −1.96138 −0.980688 0.195579i \(-0.937341\pi\)
−0.980688 + 0.195579i \(0.937341\pi\)
\(90\) 0 0
\(91\) 8.69155 0.911122
\(92\) 0 0
\(93\) −7.49914 −0.777625
\(94\) 0 0
\(95\) −0.162953 −0.0167187
\(96\) 0 0
\(97\) −7.51406 −0.762937 −0.381469 0.924382i \(-0.624582\pi\)
−0.381469 + 0.924382i \(0.624582\pi\)
\(98\) 0 0
\(99\) −1.03004 −0.103523
\(100\) 0 0
\(101\) −9.34462 −0.929825 −0.464912 0.885357i \(-0.653914\pi\)
−0.464912 + 0.885357i \(0.653914\pi\)
\(102\) 0 0
\(103\) −5.52226 −0.544125 −0.272062 0.962280i \(-0.587706\pi\)
−0.272062 + 0.962280i \(0.587706\pi\)
\(104\) 0 0
\(105\) 4.04713 0.394960
\(106\) 0 0
\(107\) −5.73905 −0.554815 −0.277407 0.960752i \(-0.589475\pi\)
−0.277407 + 0.960752i \(0.589475\pi\)
\(108\) 0 0
\(109\) 3.40891 0.326514 0.163257 0.986584i \(-0.447800\pi\)
0.163257 + 0.986584i \(0.447800\pi\)
\(110\) 0 0
\(111\) 4.26691 0.404997
\(112\) 0 0
\(113\) −14.5959 −1.37307 −0.686533 0.727098i \(-0.740868\pi\)
−0.686533 + 0.727098i \(0.740868\pi\)
\(114\) 0 0
\(115\) 7.60873 0.709517
\(116\) 0 0
\(117\) −6.68521 −0.618047
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.93901 −0.903546
\(122\) 0 0
\(123\) 2.59407 0.233900
\(124\) 0 0
\(125\) −0.964568 −0.0862736
\(126\) 0 0
\(127\) 19.1923 1.70304 0.851520 0.524322i \(-0.175681\pi\)
0.851520 + 0.524322i \(0.175681\pi\)
\(128\) 0 0
\(129\) −11.6733 −1.02778
\(130\) 0 0
\(131\) −19.3293 −1.68881 −0.844406 0.535703i \(-0.820047\pi\)
−0.844406 + 0.535703i \(0.820047\pi\)
\(132\) 0 0
\(133\) 0.0680583 0.00590140
\(134\) 0 0
\(135\) −3.11290 −0.267916
\(136\) 0 0
\(137\) −0.386209 −0.0329961 −0.0164980 0.999864i \(-0.505252\pi\)
−0.0164980 + 0.999864i \(0.505252\pi\)
\(138\) 0 0
\(139\) −14.6317 −1.24104 −0.620521 0.784190i \(-0.713079\pi\)
−0.620521 + 0.784190i \(0.713079\pi\)
\(140\) 0 0
\(141\) −7.75431 −0.653031
\(142\) 0 0
\(143\) 6.88606 0.575841
\(144\) 0 0
\(145\) −3.61662 −0.300344
\(146\) 0 0
\(147\) 5.30969 0.437936
\(148\) 0 0
\(149\) 14.8965 1.22037 0.610184 0.792260i \(-0.291095\pi\)
0.610184 + 0.792260i \(0.291095\pi\)
\(150\) 0 0
\(151\) −16.4791 −1.34105 −0.670525 0.741887i \(-0.733931\pi\)
−0.670525 + 0.741887i \(0.733931\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 23.3441 1.87504
\(156\) 0 0
\(157\) −2.21102 −0.176459 −0.0882294 0.996100i \(-0.528121\pi\)
−0.0882294 + 0.996100i \(0.528121\pi\)
\(158\) 0 0
\(159\) 8.63508 0.684806
\(160\) 0 0
\(161\) −3.17782 −0.250447
\(162\) 0 0
\(163\) 1.15104 0.0901561 0.0450780 0.998983i \(-0.485646\pi\)
0.0450780 + 0.998983i \(0.485646\pi\)
\(164\) 0 0
\(165\) 3.20642 0.249620
\(166\) 0 0
\(167\) −14.3085 −1.10722 −0.553612 0.832775i \(-0.686751\pi\)
−0.553612 + 0.832775i \(0.686751\pi\)
\(168\) 0 0
\(169\) 31.6920 2.43784
\(170\) 0 0
\(171\) −0.0523478 −0.00400314
\(172\) 0 0
\(173\) −12.2568 −0.931867 −0.465933 0.884820i \(-0.654281\pi\)
−0.465933 + 0.884820i \(0.654281\pi\)
\(174\) 0 0
\(175\) −6.09773 −0.460945
\(176\) 0 0
\(177\) −7.72763 −0.580844
\(178\) 0 0
\(179\) −18.9999 −1.42012 −0.710061 0.704141i \(-0.751332\pi\)
−0.710061 + 0.704141i \(0.751332\pi\)
\(180\) 0 0
\(181\) 24.6208 1.83005 0.915024 0.403399i \(-0.132171\pi\)
0.915024 + 0.403399i \(0.132171\pi\)
\(182\) 0 0
\(183\) −6.99620 −0.517174
\(184\) 0 0
\(185\) −13.2824 −0.976545
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.30012 0.0945696
\(190\) 0 0
\(191\) −2.98494 −0.215983 −0.107991 0.994152i \(-0.534442\pi\)
−0.107991 + 0.994152i \(0.534442\pi\)
\(192\) 0 0
\(193\) −8.68314 −0.625026 −0.312513 0.949913i \(-0.601171\pi\)
−0.312513 + 0.949913i \(0.601171\pi\)
\(194\) 0 0
\(195\) 20.8104 1.49026
\(196\) 0 0
\(197\) −0.995496 −0.0709262 −0.0354631 0.999371i \(-0.511291\pi\)
−0.0354631 + 0.999371i \(0.511291\pi\)
\(198\) 0 0
\(199\) −16.7979 −1.19077 −0.595386 0.803440i \(-0.703001\pi\)
−0.595386 + 0.803440i \(0.703001\pi\)
\(200\) 0 0
\(201\) −0.660863 −0.0466137
\(202\) 0 0
\(203\) 1.51050 0.106016
\(204\) 0 0
\(205\) −8.07509 −0.563989
\(206\) 0 0
\(207\) 2.44426 0.169888
\(208\) 0 0
\(209\) 0.0539206 0.00372976
\(210\) 0 0
\(211\) 7.91393 0.544817 0.272409 0.962182i \(-0.412180\pi\)
0.272409 + 0.962182i \(0.412180\pi\)
\(212\) 0 0
\(213\) 7.45066 0.510511
\(214\) 0 0
\(215\) 36.3378 2.47822
\(216\) 0 0
\(217\) −9.74977 −0.661857
\(218\) 0 0
\(219\) −1.38604 −0.0936598
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.8645 −0.928438 −0.464219 0.885720i \(-0.653665\pi\)
−0.464219 + 0.885720i \(0.653665\pi\)
\(224\) 0 0
\(225\) 4.69014 0.312676
\(226\) 0 0
\(227\) 4.59293 0.304843 0.152422 0.988316i \(-0.451293\pi\)
0.152422 + 0.988316i \(0.451293\pi\)
\(228\) 0 0
\(229\) −15.9245 −1.05232 −0.526160 0.850385i \(-0.676369\pi\)
−0.526160 + 0.850385i \(0.676369\pi\)
\(230\) 0 0
\(231\) −1.33918 −0.0881115
\(232\) 0 0
\(233\) −19.8586 −1.30098 −0.650491 0.759514i \(-0.725437\pi\)
−0.650491 + 0.759514i \(0.725437\pi\)
\(234\) 0 0
\(235\) 24.1384 1.57461
\(236\) 0 0
\(237\) 16.6708 1.08288
\(238\) 0 0
\(239\) 5.45935 0.353136 0.176568 0.984288i \(-0.443500\pi\)
0.176568 + 0.984288i \(0.443500\pi\)
\(240\) 0 0
\(241\) −2.54493 −0.163933 −0.0819667 0.996635i \(-0.526120\pi\)
−0.0819667 + 0.996635i \(0.526120\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −16.5285 −1.05597
\(246\) 0 0
\(247\) 0.349956 0.0222672
\(248\) 0 0
\(249\) −7.05834 −0.447304
\(250\) 0 0
\(251\) −5.68072 −0.358564 −0.179282 0.983798i \(-0.557377\pi\)
−0.179282 + 0.983798i \(0.557377\pi\)
\(252\) 0 0
\(253\) −2.51769 −0.158286
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.44168 0.526578 0.263289 0.964717i \(-0.415193\pi\)
0.263289 + 0.964717i \(0.415193\pi\)
\(258\) 0 0
\(259\) 5.54748 0.344704
\(260\) 0 0
\(261\) −1.16182 −0.0719148
\(262\) 0 0
\(263\) 24.2537 1.49555 0.747775 0.663953i \(-0.231122\pi\)
0.747775 + 0.663953i \(0.231122\pi\)
\(264\) 0 0
\(265\) −26.8801 −1.65123
\(266\) 0 0
\(267\) 18.5036 1.13240
\(268\) 0 0
\(269\) −5.14984 −0.313992 −0.156996 0.987599i \(-0.550181\pi\)
−0.156996 + 0.987599i \(0.550181\pi\)
\(270\) 0 0
\(271\) 15.6193 0.948808 0.474404 0.880307i \(-0.342664\pi\)
0.474404 + 0.880307i \(0.342664\pi\)
\(272\) 0 0
\(273\) −8.69155 −0.526037
\(274\) 0 0
\(275\) −4.83105 −0.291323
\(276\) 0 0
\(277\) −0.326067 −0.0195914 −0.00979572 0.999952i \(-0.503118\pi\)
−0.00979572 + 0.999952i \(0.503118\pi\)
\(278\) 0 0
\(279\) 7.49914 0.448962
\(280\) 0 0
\(281\) 28.0010 1.67040 0.835200 0.549947i \(-0.185352\pi\)
0.835200 + 0.549947i \(0.185352\pi\)
\(282\) 0 0
\(283\) 15.7175 0.934308 0.467154 0.884176i \(-0.345279\pi\)
0.467154 + 0.884176i \(0.345279\pi\)
\(284\) 0 0
\(285\) 0.162953 0.00965253
\(286\) 0 0
\(287\) 3.37260 0.199078
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 7.51406 0.440482
\(292\) 0 0
\(293\) 17.3226 1.01200 0.505998 0.862535i \(-0.331124\pi\)
0.505998 + 0.862535i \(0.331124\pi\)
\(294\) 0 0
\(295\) 24.0553 1.40056
\(296\) 0 0
\(297\) 1.03004 0.0597692
\(298\) 0 0
\(299\) −16.3404 −0.944988
\(300\) 0 0
\(301\) −15.1767 −0.874768
\(302\) 0 0
\(303\) 9.34462 0.536834
\(304\) 0 0
\(305\) 21.7785 1.24703
\(306\) 0 0
\(307\) −18.5111 −1.05649 −0.528244 0.849093i \(-0.677149\pi\)
−0.528244 + 0.849093i \(0.677149\pi\)
\(308\) 0 0
\(309\) 5.52226 0.314151
\(310\) 0 0
\(311\) −27.1945 −1.54206 −0.771030 0.636799i \(-0.780258\pi\)
−0.771030 + 0.636799i \(0.780258\pi\)
\(312\) 0 0
\(313\) −3.74485 −0.211671 −0.105836 0.994384i \(-0.533752\pi\)
−0.105836 + 0.994384i \(0.533752\pi\)
\(314\) 0 0
\(315\) −4.04713 −0.228030
\(316\) 0 0
\(317\) 13.2121 0.742067 0.371034 0.928619i \(-0.379003\pi\)
0.371034 + 0.928619i \(0.379003\pi\)
\(318\) 0 0
\(319\) 1.19672 0.0670037
\(320\) 0 0
\(321\) 5.73905 0.320323
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −31.3545 −1.73924
\(326\) 0 0
\(327\) −3.40891 −0.188513
\(328\) 0 0
\(329\) −10.0815 −0.555812
\(330\) 0 0
\(331\) −4.54231 −0.249668 −0.124834 0.992178i \(-0.539840\pi\)
−0.124834 + 0.992178i \(0.539840\pi\)
\(332\) 0 0
\(333\) −4.26691 −0.233825
\(334\) 0 0
\(335\) 2.05720 0.112397
\(336\) 0 0
\(337\) 0.958938 0.0522367 0.0261183 0.999659i \(-0.491685\pi\)
0.0261183 + 0.999659i \(0.491685\pi\)
\(338\) 0 0
\(339\) 14.5959 0.792741
\(340\) 0 0
\(341\) −7.72445 −0.418302
\(342\) 0 0
\(343\) 16.0040 0.864137
\(344\) 0 0
\(345\) −7.60873 −0.409640
\(346\) 0 0
\(347\) 6.71261 0.360352 0.180176 0.983634i \(-0.442333\pi\)
0.180176 + 0.983634i \(0.442333\pi\)
\(348\) 0 0
\(349\) −36.3697 −1.94683 −0.973413 0.229058i \(-0.926435\pi\)
−0.973413 + 0.229058i \(0.926435\pi\)
\(350\) 0 0
\(351\) 6.68521 0.356830
\(352\) 0 0
\(353\) 14.0435 0.747460 0.373730 0.927538i \(-0.378079\pi\)
0.373730 + 0.927538i \(0.378079\pi\)
\(354\) 0 0
\(355\) −23.1932 −1.23096
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.2902 1.59866 0.799328 0.600896i \(-0.205189\pi\)
0.799328 + 0.600896i \(0.205189\pi\)
\(360\) 0 0
\(361\) −18.9973 −0.999856
\(362\) 0 0
\(363\) 9.93901 0.521663
\(364\) 0 0
\(365\) 4.31460 0.225836
\(366\) 0 0
\(367\) −20.1514 −1.05190 −0.525948 0.850517i \(-0.676289\pi\)
−0.525948 + 0.850517i \(0.676289\pi\)
\(368\) 0 0
\(369\) −2.59407 −0.135042
\(370\) 0 0
\(371\) 11.2266 0.582857
\(372\) 0 0
\(373\) 21.6908 1.12311 0.561553 0.827441i \(-0.310204\pi\)
0.561553 + 0.827441i \(0.310204\pi\)
\(374\) 0 0
\(375\) 0.964568 0.0498101
\(376\) 0 0
\(377\) 7.76700 0.400021
\(378\) 0 0
\(379\) −15.6393 −0.803336 −0.401668 0.915785i \(-0.631569\pi\)
−0.401668 + 0.915785i \(0.631569\pi\)
\(380\) 0 0
\(381\) −19.1923 −0.983251
\(382\) 0 0
\(383\) 9.83021 0.502300 0.251150 0.967948i \(-0.419191\pi\)
0.251150 + 0.967948i \(0.419191\pi\)
\(384\) 0 0
\(385\) 4.16873 0.212458
\(386\) 0 0
\(387\) 11.6733 0.593387
\(388\) 0 0
\(389\) 10.4247 0.528553 0.264277 0.964447i \(-0.414867\pi\)
0.264277 + 0.964447i \(0.414867\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 19.3293 0.975036
\(394\) 0 0
\(395\) −51.8944 −2.61109
\(396\) 0 0
\(397\) 23.0726 1.15798 0.578991 0.815334i \(-0.303447\pi\)
0.578991 + 0.815334i \(0.303447\pi\)
\(398\) 0 0
\(399\) −0.0680583 −0.00340718
\(400\) 0 0
\(401\) −18.2794 −0.912831 −0.456415 0.889767i \(-0.650867\pi\)
−0.456415 + 0.889767i \(0.650867\pi\)
\(402\) 0 0
\(403\) −50.1333 −2.49732
\(404\) 0 0
\(405\) 3.11290 0.154681
\(406\) 0 0
\(407\) 4.39510 0.217857
\(408\) 0 0
\(409\) 11.9639 0.591574 0.295787 0.955254i \(-0.404418\pi\)
0.295787 + 0.955254i \(0.404418\pi\)
\(410\) 0 0
\(411\) 0.386209 0.0190503
\(412\) 0 0
\(413\) −10.0468 −0.494372
\(414\) 0 0
\(415\) 21.9719 1.07856
\(416\) 0 0
\(417\) 14.6317 0.716516
\(418\) 0 0
\(419\) −17.1700 −0.838808 −0.419404 0.907800i \(-0.637761\pi\)
−0.419404 + 0.907800i \(0.637761\pi\)
\(420\) 0 0
\(421\) −22.0942 −1.07680 −0.538402 0.842688i \(-0.680972\pi\)
−0.538402 + 0.842688i \(0.680972\pi\)
\(422\) 0 0
\(423\) 7.75431 0.377027
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −9.09588 −0.440180
\(428\) 0 0
\(429\) −6.88606 −0.332462
\(430\) 0 0
\(431\) −40.2031 −1.93652 −0.968259 0.249951i \(-0.919586\pi\)
−0.968259 + 0.249951i \(0.919586\pi\)
\(432\) 0 0
\(433\) −5.64686 −0.271371 −0.135685 0.990752i \(-0.543324\pi\)
−0.135685 + 0.990752i \(0.543324\pi\)
\(434\) 0 0
\(435\) 3.61662 0.173404
\(436\) 0 0
\(437\) −0.127952 −0.00612075
\(438\) 0 0
\(439\) −29.3026 −1.39854 −0.699269 0.714859i \(-0.746491\pi\)
−0.699269 + 0.714859i \(0.746491\pi\)
\(440\) 0 0
\(441\) −5.30969 −0.252843
\(442\) 0 0
\(443\) −32.1170 −1.52592 −0.762962 0.646443i \(-0.776256\pi\)
−0.762962 + 0.646443i \(0.776256\pi\)
\(444\) 0 0
\(445\) −57.5998 −2.73049
\(446\) 0 0
\(447\) −14.8965 −0.704580
\(448\) 0 0
\(449\) −33.5547 −1.58354 −0.791772 0.610817i \(-0.790841\pi\)
−0.791772 + 0.610817i \(0.790841\pi\)
\(450\) 0 0
\(451\) 2.67201 0.125820
\(452\) 0 0
\(453\) 16.4791 0.774256
\(454\) 0 0
\(455\) 27.0559 1.26840
\(456\) 0 0
\(457\) 37.8941 1.77261 0.886307 0.463099i \(-0.153263\pi\)
0.886307 + 0.463099i \(0.153263\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.43265 −0.253024 −0.126512 0.991965i \(-0.540378\pi\)
−0.126512 + 0.991965i \(0.540378\pi\)
\(462\) 0 0
\(463\) −22.0011 −1.02248 −0.511239 0.859439i \(-0.670813\pi\)
−0.511239 + 0.859439i \(0.670813\pi\)
\(464\) 0 0
\(465\) −23.3441 −1.08256
\(466\) 0 0
\(467\) 10.2604 0.474796 0.237398 0.971412i \(-0.423705\pi\)
0.237398 + 0.971412i \(0.423705\pi\)
\(468\) 0 0
\(469\) −0.859200 −0.0396742
\(470\) 0 0
\(471\) 2.21102 0.101879
\(472\) 0 0
\(473\) −12.0240 −0.552865
\(474\) 0 0
\(475\) −0.245518 −0.0112652
\(476\) 0 0
\(477\) −8.63508 −0.395373
\(478\) 0 0
\(479\) 11.1641 0.510100 0.255050 0.966928i \(-0.417908\pi\)
0.255050 + 0.966928i \(0.417908\pi\)
\(480\) 0 0
\(481\) 28.5251 1.30063
\(482\) 0 0
\(483\) 3.17782 0.144596
\(484\) 0 0
\(485\) −23.3905 −1.06211
\(486\) 0 0
\(487\) −31.0204 −1.40567 −0.702833 0.711355i \(-0.748082\pi\)
−0.702833 + 0.711355i \(0.748082\pi\)
\(488\) 0 0
\(489\) −1.15104 −0.0520516
\(490\) 0 0
\(491\) −3.40267 −0.153560 −0.0767801 0.997048i \(-0.524464\pi\)
−0.0767801 + 0.997048i \(0.524464\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −3.20642 −0.144118
\(496\) 0 0
\(497\) 9.68673 0.434509
\(498\) 0 0
\(499\) −37.7201 −1.68858 −0.844292 0.535883i \(-0.819979\pi\)
−0.844292 + 0.535883i \(0.819979\pi\)
\(500\) 0 0
\(501\) 14.3085 0.639256
\(502\) 0 0
\(503\) 44.1116 1.96684 0.983419 0.181349i \(-0.0580463\pi\)
0.983419 + 0.181349i \(0.0580463\pi\)
\(504\) 0 0
\(505\) −29.0889 −1.29444
\(506\) 0 0
\(507\) −31.6920 −1.40749
\(508\) 0 0
\(509\) 19.4799 0.863431 0.431716 0.902010i \(-0.357908\pi\)
0.431716 + 0.902010i \(0.357908\pi\)
\(510\) 0 0
\(511\) −1.80201 −0.0797163
\(512\) 0 0
\(513\) 0.0523478 0.00231121
\(514\) 0 0
\(515\) −17.1902 −0.757493
\(516\) 0 0
\(517\) −7.98728 −0.351280
\(518\) 0 0
\(519\) 12.2568 0.538014
\(520\) 0 0
\(521\) 2.19708 0.0962557 0.0481279 0.998841i \(-0.484675\pi\)
0.0481279 + 0.998841i \(0.484675\pi\)
\(522\) 0 0
\(523\) 28.7418 1.25679 0.628395 0.777895i \(-0.283712\pi\)
0.628395 + 0.777895i \(0.283712\pi\)
\(524\) 0 0
\(525\) 6.09773 0.266127
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −17.0256 −0.740244
\(530\) 0 0
\(531\) 7.72763 0.335351
\(532\) 0 0
\(533\) 17.3419 0.751162
\(534\) 0 0
\(535\) −17.8651 −0.772375
\(536\) 0 0
\(537\) 18.9999 0.819907
\(538\) 0 0
\(539\) 5.46922 0.235576
\(540\) 0 0
\(541\) 12.9282 0.555828 0.277914 0.960606i \(-0.410357\pi\)
0.277914 + 0.960606i \(0.410357\pi\)
\(542\) 0 0
\(543\) −24.6208 −1.05658
\(544\) 0 0
\(545\) 10.6116 0.454551
\(546\) 0 0
\(547\) −2.09260 −0.0894732 −0.0447366 0.998999i \(-0.514245\pi\)
−0.0447366 + 0.998999i \(0.514245\pi\)
\(548\) 0 0
\(549\) 6.99620 0.298590
\(550\) 0 0
\(551\) 0.0608186 0.00259096
\(552\) 0 0
\(553\) 21.6739 0.921670
\(554\) 0 0
\(555\) 13.2824 0.563808
\(556\) 0 0
\(557\) −15.7425 −0.667029 −0.333515 0.942745i \(-0.608235\pi\)
−0.333515 + 0.942745i \(0.608235\pi\)
\(558\) 0 0
\(559\) −78.0384 −3.30067
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.70565 −0.409044 −0.204522 0.978862i \(-0.565564\pi\)
−0.204522 + 0.978862i \(0.565564\pi\)
\(564\) 0 0
\(565\) −45.4356 −1.91149
\(566\) 0 0
\(567\) −1.30012 −0.0545998
\(568\) 0 0
\(569\) 5.01857 0.210389 0.105195 0.994452i \(-0.466453\pi\)
0.105195 + 0.994452i \(0.466453\pi\)
\(570\) 0 0
\(571\) 22.6671 0.948587 0.474293 0.880367i \(-0.342704\pi\)
0.474293 + 0.880367i \(0.342704\pi\)
\(572\) 0 0
\(573\) 2.98494 0.124698
\(574\) 0 0
\(575\) 11.4639 0.478078
\(576\) 0 0
\(577\) −17.0022 −0.707810 −0.353905 0.935281i \(-0.615146\pi\)
−0.353905 + 0.935281i \(0.615146\pi\)
\(578\) 0 0
\(579\) 8.68314 0.360859
\(580\) 0 0
\(581\) −9.17667 −0.380712
\(582\) 0 0
\(583\) 8.89451 0.368373
\(584\) 0 0
\(585\) −20.8104 −0.860403
\(586\) 0 0
\(587\) 16.0672 0.663165 0.331583 0.943426i \(-0.392417\pi\)
0.331583 + 0.943426i \(0.392417\pi\)
\(588\) 0 0
\(589\) −0.392564 −0.0161753
\(590\) 0 0
\(591\) 0.995496 0.0409493
\(592\) 0 0
\(593\) 25.5090 1.04753 0.523764 0.851863i \(-0.324527\pi\)
0.523764 + 0.851863i \(0.324527\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.7979 0.687493
\(598\) 0 0
\(599\) 2.88098 0.117714 0.0588568 0.998266i \(-0.481254\pi\)
0.0588568 + 0.998266i \(0.481254\pi\)
\(600\) 0 0
\(601\) −26.3975 −1.07678 −0.538388 0.842697i \(-0.680966\pi\)
−0.538388 + 0.842697i \(0.680966\pi\)
\(602\) 0 0
\(603\) 0.660863 0.0269124
\(604\) 0 0
\(605\) −30.9391 −1.25785
\(606\) 0 0
\(607\) −18.7248 −0.760016 −0.380008 0.924983i \(-0.624079\pi\)
−0.380008 + 0.924983i \(0.624079\pi\)
\(608\) 0 0
\(609\) −1.51050 −0.0612086
\(610\) 0 0
\(611\) −51.8392 −2.09719
\(612\) 0 0
\(613\) −2.20627 −0.0891105 −0.0445552 0.999007i \(-0.514187\pi\)
−0.0445552 + 0.999007i \(0.514187\pi\)
\(614\) 0 0
\(615\) 8.07509 0.325619
\(616\) 0 0
\(617\) 30.0940 1.21154 0.605769 0.795641i \(-0.292866\pi\)
0.605769 + 0.795641i \(0.292866\pi\)
\(618\) 0 0
\(619\) 11.4620 0.460697 0.230348 0.973108i \(-0.426013\pi\)
0.230348 + 0.973108i \(0.426013\pi\)
\(620\) 0 0
\(621\) −2.44426 −0.0980847
\(622\) 0 0
\(623\) 24.0568 0.963816
\(624\) 0 0
\(625\) −26.4533 −1.05813
\(626\) 0 0
\(627\) −0.0539206 −0.00215338
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 36.5501 1.45503 0.727517 0.686089i \(-0.240674\pi\)
0.727517 + 0.686089i \(0.240674\pi\)
\(632\) 0 0
\(633\) −7.91393 −0.314550
\(634\) 0 0
\(635\) 59.7436 2.37085
\(636\) 0 0
\(637\) 35.4964 1.40642
\(638\) 0 0
\(639\) −7.45066 −0.294744
\(640\) 0 0
\(641\) −15.1654 −0.598997 −0.299499 0.954097i \(-0.596819\pi\)
−0.299499 + 0.954097i \(0.596819\pi\)
\(642\) 0 0
\(643\) 44.1598 1.74149 0.870747 0.491732i \(-0.163636\pi\)
0.870747 + 0.491732i \(0.163636\pi\)
\(644\) 0 0
\(645\) −36.3378 −1.43080
\(646\) 0 0
\(647\) −40.4822 −1.59152 −0.795759 0.605613i \(-0.792928\pi\)
−0.795759 + 0.605613i \(0.792928\pi\)
\(648\) 0 0
\(649\) −7.95980 −0.312450
\(650\) 0 0
\(651\) 9.74977 0.382123
\(652\) 0 0
\(653\) −9.19116 −0.359678 −0.179839 0.983696i \(-0.557558\pi\)
−0.179839 + 0.983696i \(0.557558\pi\)
\(654\) 0 0
\(655\) −60.1703 −2.35105
\(656\) 0 0
\(657\) 1.38604 0.0540745
\(658\) 0 0
\(659\) −41.6886 −1.62396 −0.811979 0.583686i \(-0.801610\pi\)
−0.811979 + 0.583686i \(0.801610\pi\)
\(660\) 0 0
\(661\) 35.9912 1.39990 0.699948 0.714193i \(-0.253206\pi\)
0.699948 + 0.714193i \(0.253206\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.211859 0.00821552
\(666\) 0 0
\(667\) −2.83978 −0.109957
\(668\) 0 0
\(669\) 13.8645 0.536034
\(670\) 0 0
\(671\) −7.20639 −0.278200
\(672\) 0 0
\(673\) 36.6284 1.41192 0.705961 0.708250i \(-0.250515\pi\)
0.705961 + 0.708250i \(0.250515\pi\)
\(674\) 0 0
\(675\) −4.69014 −0.180524
\(676\) 0 0
\(677\) −21.5555 −0.828444 −0.414222 0.910176i \(-0.635946\pi\)
−0.414222 + 0.910176i \(0.635946\pi\)
\(678\) 0 0
\(679\) 9.76916 0.374906
\(680\) 0 0
\(681\) −4.59293 −0.176001
\(682\) 0 0
\(683\) 36.2097 1.38553 0.692763 0.721166i \(-0.256393\pi\)
0.692763 + 0.721166i \(0.256393\pi\)
\(684\) 0 0
\(685\) −1.20223 −0.0459348
\(686\) 0 0
\(687\) 15.9245 0.607558
\(688\) 0 0
\(689\) 57.7273 2.19923
\(690\) 0 0
\(691\) −2.75554 −0.104826 −0.0524128 0.998626i \(-0.516691\pi\)
−0.0524128 + 0.998626i \(0.516691\pi\)
\(692\) 0 0
\(693\) 1.33918 0.0508712
\(694\) 0 0
\(695\) −45.5469 −1.72769
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 19.8586 0.751122
\(700\) 0 0
\(701\) 8.81001 0.332750 0.166375 0.986063i \(-0.446794\pi\)
0.166375 + 0.986063i \(0.446794\pi\)
\(702\) 0 0
\(703\) 0.223363 0.00842430
\(704\) 0 0
\(705\) −24.1384 −0.909104
\(706\) 0 0
\(707\) 12.1491 0.456914
\(708\) 0 0
\(709\) 40.4085 1.51757 0.758787 0.651338i \(-0.225792\pi\)
0.758787 + 0.651338i \(0.225792\pi\)
\(710\) 0 0
\(711\) −16.6708 −0.625202
\(712\) 0 0
\(713\) 18.3298 0.686458
\(714\) 0 0
\(715\) 21.4356 0.801646
\(716\) 0 0
\(717\) −5.45935 −0.203883
\(718\) 0 0
\(719\) −15.6549 −0.583828 −0.291914 0.956445i \(-0.594292\pi\)
−0.291914 + 0.956445i \(0.594292\pi\)
\(720\) 0 0
\(721\) 7.17959 0.267382
\(722\) 0 0
\(723\) 2.54493 0.0946470
\(724\) 0 0
\(725\) −5.44909 −0.202374
\(726\) 0 0
\(727\) −28.5009 −1.05704 −0.528521 0.848920i \(-0.677253\pi\)
−0.528521 + 0.848920i \(0.677253\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −17.4730 −0.645379 −0.322690 0.946505i \(-0.604587\pi\)
−0.322690 + 0.946505i \(0.604587\pi\)
\(734\) 0 0
\(735\) 16.5285 0.609664
\(736\) 0 0
\(737\) −0.680719 −0.0250746
\(738\) 0 0
\(739\) 42.1606 1.55090 0.775451 0.631408i \(-0.217523\pi\)
0.775451 + 0.631408i \(0.217523\pi\)
\(740\) 0 0
\(741\) −0.349956 −0.0128559
\(742\) 0 0
\(743\) 25.6779 0.942029 0.471014 0.882125i \(-0.343888\pi\)
0.471014 + 0.882125i \(0.343888\pi\)
\(744\) 0 0
\(745\) 46.3713 1.69891
\(746\) 0 0
\(747\) 7.05834 0.258251
\(748\) 0 0
\(749\) 7.46144 0.272635
\(750\) 0 0
\(751\) −23.3913 −0.853562 −0.426781 0.904355i \(-0.640352\pi\)
−0.426781 + 0.904355i \(0.640352\pi\)
\(752\) 0 0
\(753\) 5.68072 0.207017
\(754\) 0 0
\(755\) −51.2978 −1.86692
\(756\) 0 0
\(757\) −36.2123 −1.31616 −0.658079 0.752949i \(-0.728631\pi\)
−0.658079 + 0.752949i \(0.728631\pi\)
\(758\) 0 0
\(759\) 2.51769 0.0913865
\(760\) 0 0
\(761\) 6.19717 0.224647 0.112324 0.993672i \(-0.464171\pi\)
0.112324 + 0.993672i \(0.464171\pi\)
\(762\) 0 0
\(763\) −4.43198 −0.160449
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −51.6608 −1.86536
\(768\) 0 0
\(769\) −28.8712 −1.04112 −0.520561 0.853825i \(-0.674277\pi\)
−0.520561 + 0.853825i \(0.674277\pi\)
\(770\) 0 0
\(771\) −8.44168 −0.304020
\(772\) 0 0
\(773\) −6.52574 −0.234715 −0.117357 0.993090i \(-0.537442\pi\)
−0.117357 + 0.993090i \(0.537442\pi\)
\(774\) 0 0
\(775\) 35.1720 1.26342
\(776\) 0 0
\(777\) −5.54748 −0.199015
\(778\) 0 0
\(779\) 0.135794 0.00486533
\(780\) 0 0
\(781\) 7.67451 0.274616
\(782\) 0 0
\(783\) 1.16182 0.0415200
\(784\) 0 0
\(785\) −6.88269 −0.245654
\(786\) 0 0
\(787\) 9.04019 0.322248 0.161124 0.986934i \(-0.448488\pi\)
0.161124 + 0.986934i \(0.448488\pi\)
\(788\) 0 0
\(789\) −24.2537 −0.863456
\(790\) 0 0
\(791\) 18.9764 0.674723
\(792\) 0 0
\(793\) −46.7710 −1.66089
\(794\) 0 0
\(795\) 26.8801 0.953340
\(796\) 0 0
\(797\) −4.77716 −0.169216 −0.0846078 0.996414i \(-0.526964\pi\)
−0.0846078 + 0.996414i \(0.526964\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −18.5036 −0.653792
\(802\) 0 0
\(803\) −1.42768 −0.0503818
\(804\) 0 0
\(805\) −9.89224 −0.348656
\(806\) 0 0
\(807\) 5.14984 0.181283
\(808\) 0 0
\(809\) −30.4539 −1.07070 −0.535351 0.844630i \(-0.679820\pi\)
−0.535351 + 0.844630i \(0.679820\pi\)
\(810\) 0 0
\(811\) 9.45166 0.331893 0.165946 0.986135i \(-0.446932\pi\)
0.165946 + 0.986135i \(0.446932\pi\)
\(812\) 0 0
\(813\) −15.6193 −0.547794
\(814\) 0 0
\(815\) 3.58306 0.125509
\(816\) 0 0
\(817\) −0.611071 −0.0213787
\(818\) 0 0
\(819\) 8.69155 0.303707
\(820\) 0 0
\(821\) 25.3144 0.883478 0.441739 0.897144i \(-0.354362\pi\)
0.441739 + 0.897144i \(0.354362\pi\)
\(822\) 0 0
\(823\) 6.49912 0.226545 0.113273 0.993564i \(-0.463867\pi\)
0.113273 + 0.993564i \(0.463867\pi\)
\(824\) 0 0
\(825\) 4.83105 0.168196
\(826\) 0 0
\(827\) 38.2412 1.32978 0.664889 0.746942i \(-0.268479\pi\)
0.664889 + 0.746942i \(0.268479\pi\)
\(828\) 0 0
\(829\) 3.18171 0.110505 0.0552526 0.998472i \(-0.482404\pi\)
0.0552526 + 0.998472i \(0.482404\pi\)
\(830\) 0 0
\(831\) 0.326067 0.0113111
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −44.5409 −1.54140
\(836\) 0 0
\(837\) −7.49914 −0.259208
\(838\) 0 0
\(839\) 13.6168 0.470104 0.235052 0.971983i \(-0.424474\pi\)
0.235052 + 0.971983i \(0.424474\pi\)
\(840\) 0 0
\(841\) −27.6502 −0.953454
\(842\) 0 0
\(843\) −28.0010 −0.964406
\(844\) 0 0
\(845\) 98.6539 3.39380
\(846\) 0 0
\(847\) 12.9219 0.444001
\(848\) 0 0
\(849\) −15.7175 −0.539423
\(850\) 0 0
\(851\) −10.4294 −0.357516
\(852\) 0 0
\(853\) −53.9760 −1.84810 −0.924051 0.382270i \(-0.875143\pi\)
−0.924051 + 0.382270i \(0.875143\pi\)
\(854\) 0 0
\(855\) −0.162953 −0.00557289
\(856\) 0 0
\(857\) 27.4344 0.937142 0.468571 0.883426i \(-0.344769\pi\)
0.468571 + 0.883426i \(0.344769\pi\)
\(858\) 0 0
\(859\) 32.0688 1.09417 0.547087 0.837076i \(-0.315737\pi\)
0.547087 + 0.837076i \(0.315737\pi\)
\(860\) 0 0
\(861\) −3.37260 −0.114938
\(862\) 0 0
\(863\) 5.64442 0.192138 0.0960692 0.995375i \(-0.469373\pi\)
0.0960692 + 0.995375i \(0.469373\pi\)
\(864\) 0 0
\(865\) −38.1542 −1.29728
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 17.1716 0.582507
\(870\) 0 0
\(871\) −4.41801 −0.149698
\(872\) 0 0
\(873\) −7.51406 −0.254312
\(874\) 0 0
\(875\) 1.25405 0.0423947
\(876\) 0 0
\(877\) −16.6957 −0.563775 −0.281887 0.959447i \(-0.590960\pi\)
−0.281887 + 0.959447i \(0.590960\pi\)
\(878\) 0 0
\(879\) −17.3226 −0.584276
\(880\) 0 0
\(881\) 46.2525 1.55829 0.779144 0.626845i \(-0.215654\pi\)
0.779144 + 0.626845i \(0.215654\pi\)
\(882\) 0 0
\(883\) −16.0530 −0.540227 −0.270114 0.962828i \(-0.587061\pi\)
−0.270114 + 0.962828i \(0.587061\pi\)
\(884\) 0 0
\(885\) −24.0553 −0.808611
\(886\) 0 0
\(887\) 18.5689 0.623483 0.311742 0.950167i \(-0.399088\pi\)
0.311742 + 0.950167i \(0.399088\pi\)
\(888\) 0 0
\(889\) −24.9522 −0.836871
\(890\) 0 0
\(891\) −1.03004 −0.0345078
\(892\) 0 0
\(893\) −0.405921 −0.0135836
\(894\) 0 0
\(895\) −59.1449 −1.97699
\(896\) 0 0
\(897\) 16.3404 0.545589
\(898\) 0 0
\(899\) −8.71264 −0.290583
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 15.1767 0.505047
\(904\) 0 0
\(905\) 76.6420 2.54767
\(906\) 0 0
\(907\) 29.6844 0.985653 0.492826 0.870128i \(-0.335964\pi\)
0.492826 + 0.870128i \(0.335964\pi\)
\(908\) 0 0
\(909\) −9.34462 −0.309942
\(910\) 0 0
\(911\) −2.97582 −0.0985933 −0.0492966 0.998784i \(-0.515698\pi\)
−0.0492966 + 0.998784i \(0.515698\pi\)
\(912\) 0 0
\(913\) −7.27040 −0.240615
\(914\) 0 0
\(915\) −21.7785 −0.719973
\(916\) 0 0
\(917\) 25.1304 0.829879
\(918\) 0 0
\(919\) 39.7923 1.31263 0.656313 0.754489i \(-0.272115\pi\)
0.656313 + 0.754489i \(0.272115\pi\)
\(920\) 0 0
\(921\) 18.5111 0.609963
\(922\) 0 0
\(923\) 49.8092 1.63949
\(924\) 0 0
\(925\) −20.0124 −0.658003
\(926\) 0 0
\(927\) −5.52226 −0.181375
\(928\) 0 0
\(929\) −41.2397 −1.35303 −0.676516 0.736428i \(-0.736511\pi\)
−0.676516 + 0.736428i \(0.736511\pi\)
\(930\) 0 0
\(931\) 0.277951 0.00910947
\(932\) 0 0
\(933\) 27.1945 0.890309
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −21.6170 −0.706198 −0.353099 0.935586i \(-0.614872\pi\)
−0.353099 + 0.935586i \(0.614872\pi\)
\(938\) 0 0
\(939\) 3.74485 0.122208
\(940\) 0 0
\(941\) 32.9254 1.07334 0.536669 0.843793i \(-0.319683\pi\)
0.536669 + 0.843793i \(0.319683\pi\)
\(942\) 0 0
\(943\) −6.34059 −0.206478
\(944\) 0 0
\(945\) 4.04713 0.131653
\(946\) 0 0
\(947\) 28.7813 0.935266 0.467633 0.883923i \(-0.345107\pi\)
0.467633 + 0.883923i \(0.345107\pi\)
\(948\) 0 0
\(949\) −9.26595 −0.300785
\(950\) 0 0
\(951\) −13.2121 −0.428433
\(952\) 0 0
\(953\) −49.6066 −1.60692 −0.803458 0.595361i \(-0.797009\pi\)
−0.803458 + 0.595361i \(0.797009\pi\)
\(954\) 0 0
\(955\) −9.29183 −0.300676
\(956\) 0 0
\(957\) −1.19672 −0.0386846
\(958\) 0 0
\(959\) 0.502117 0.0162142
\(960\) 0 0
\(961\) 25.2372 0.814102
\(962\) 0 0
\(963\) −5.73905 −0.184938
\(964\) 0 0
\(965\) −27.0297 −0.870118
\(966\) 0 0
\(967\) 33.1191 1.06504 0.532520 0.846418i \(-0.321245\pi\)
0.532520 + 0.846418i \(0.321245\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 61.2165 1.96453 0.982265 0.187499i \(-0.0600382\pi\)
0.982265 + 0.187499i \(0.0600382\pi\)
\(972\) 0 0
\(973\) 19.0229 0.609846
\(974\) 0 0
\(975\) 31.3545 1.00415
\(976\) 0 0
\(977\) −7.81686 −0.250083 −0.125042 0.992151i \(-0.539906\pi\)
−0.125042 + 0.992151i \(0.539906\pi\)
\(978\) 0 0
\(979\) 19.0595 0.609145
\(980\) 0 0
\(981\) 3.40891 0.108838
\(982\) 0 0
\(983\) 22.2548 0.709817 0.354909 0.934901i \(-0.384512\pi\)
0.354909 + 0.934901i \(0.384512\pi\)
\(984\) 0 0
\(985\) −3.09888 −0.0987385
\(986\) 0 0
\(987\) 10.0815 0.320898
\(988\) 0 0
\(989\) 28.5325 0.907282
\(990\) 0 0
\(991\) −16.7755 −0.532891 −0.266445 0.963850i \(-0.585849\pi\)
−0.266445 + 0.963850i \(0.585849\pi\)
\(992\) 0 0
\(993\) 4.54231 0.144146
\(994\) 0 0
\(995\) −52.2902 −1.65771
\(996\) 0 0
\(997\) −42.1065 −1.33353 −0.666763 0.745270i \(-0.732321\pi\)
−0.666763 + 0.745270i \(0.732321\pi\)
\(998\) 0 0
\(999\) 4.26691 0.134999
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6936.2.a.bl.1.8 8
17.11 odd 16 408.2.ba.a.121.4 16
17.14 odd 16 408.2.ba.a.145.4 yes 16
17.16 even 2 6936.2.a.bo.1.1 8
51.11 even 16 1224.2.bq.e.937.1 16
51.14 even 16 1224.2.bq.e.145.1 16
68.11 even 16 816.2.bq.f.529.2 16
68.31 even 16 816.2.bq.f.145.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.ba.a.121.4 16 17.11 odd 16
408.2.ba.a.145.4 yes 16 17.14 odd 16
816.2.bq.f.145.2 16 68.31 even 16
816.2.bq.f.529.2 16 68.11 even 16
1224.2.bq.e.145.1 16 51.14 even 16
1224.2.bq.e.937.1 16 51.11 even 16
6936.2.a.bl.1.8 8 1.1 even 1 trivial
6936.2.a.bo.1.1 8 17.16 even 2