Properties

Label 819.2.fm.g.748.4
Level $819$
Weight $2$
Character 819.748
Analytic conductor $6.540$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(370,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.370");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.fm (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 748.4
Character \(\chi\) \(=\) 819.748
Dual form 819.2.fm.g.496.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.112775 - 0.0302180i) q^{2} +(-1.72025 + 0.993184i) q^{4} +(1.24841 - 1.24841i) q^{5} +(-2.18126 - 1.49736i) q^{7} +(-0.329103 + 0.329103i) q^{8} +(0.103066 - 0.178515i) q^{10} +(0.506699 + 1.89103i) q^{11} +(-1.85749 + 3.09026i) q^{13} +(-0.291240 - 0.102952i) q^{14} +(1.95920 - 3.39343i) q^{16} +(2.13907 + 3.70498i) q^{17} +(4.12248 + 1.10462i) q^{19} +(-0.907674 + 3.38749i) q^{20} +(0.114286 + 0.197949i) q^{22} +(5.53927 + 3.19810i) q^{23} +1.88292i q^{25} +(-0.116097 + 0.404635i) q^{26} +(5.23946 + 0.409435i) q^{28} +(3.57954 - 6.19995i) q^{29} +(-3.02628 + 3.02628i) q^{31} +(0.359327 - 1.34103i) q^{32} +(0.353191 + 0.353191i) q^{34} +(-4.59245 + 0.853791i) q^{35} +(-0.732202 - 2.73261i) q^{37} +0.498293 q^{38} +0.821715i q^{40} +(2.94901 + 11.0059i) q^{41} +(-1.55234 + 0.896243i) q^{43} +(-2.74978 - 2.74978i) q^{44} +(0.721333 + 0.193281i) q^{46} +(4.68665 + 4.68665i) q^{47} +(2.51581 + 6.53228i) q^{49} +(0.0568982 + 0.212347i) q^{50} +(0.126138 - 7.16084i) q^{52} -4.27793 q^{53} +(2.99335 + 1.72821i) q^{55} +(1.21065 - 0.225074i) q^{56} +(0.216333 - 0.807367i) q^{58} +(0.436704 - 1.62980i) q^{59} +(2.66960 - 1.54129i) q^{61} +(-0.249841 + 0.432737i) q^{62} +7.67470i q^{64} +(1.53901 + 6.17685i) q^{65} +(-0.0190380 + 0.00510122i) q^{67} +(-7.35945 - 4.24898i) q^{68} +(-0.492115 + 0.235061i) q^{70} +(-1.23109 + 4.59449i) q^{71} +(0.698492 + 0.698492i) q^{73} +(-0.165148 - 0.286046i) q^{74} +(-8.18877 + 2.19417i) q^{76} +(1.72631 - 4.88353i) q^{77} -5.93719 q^{79} +(-1.79052 - 6.68230i) q^{80} +(0.665151 + 1.15208i) q^{82} +(-9.87683 + 9.87683i) q^{83} +(7.29580 + 1.95490i) q^{85} +(-0.147983 + 0.147983i) q^{86} +(-0.789099 - 0.455587i) q^{88} +(7.76240 - 2.07993i) q^{89} +(8.67892 - 3.95934i) q^{91} -12.7052 q^{92} +(0.670159 + 0.386917i) q^{94} +(6.52558 - 3.76755i) q^{95} +(14.2676 + 3.82300i) q^{97} +(0.481114 + 0.660657i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{2} - 12 q^{4} + 16 q^{8} + 4 q^{11} + 32 q^{14} + 12 q^{16} + 4 q^{22} + 12 q^{23} + 24 q^{28} - 4 q^{29} - 4 q^{32} + 20 q^{35} + 4 q^{37} - 48 q^{43} - 24 q^{44} + 84 q^{46} + 24 q^{49} + 44 q^{50}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.112775 0.0302180i 0.0797441 0.0213674i −0.218726 0.975786i \(-0.570190\pi\)
0.298471 + 0.954419i \(0.403524\pi\)
\(3\) 0 0
\(4\) −1.72025 + 0.993184i −0.860123 + 0.496592i
\(5\) 1.24841 1.24841i 0.558308 0.558308i −0.370518 0.928825i \(-0.620820\pi\)
0.928825 + 0.370518i \(0.120820\pi\)
\(6\) 0 0
\(7\) −2.18126 1.49736i −0.824440 0.565950i
\(8\) −0.329103 + 0.329103i −0.116356 + 0.116356i
\(9\) 0 0
\(10\) 0.103066 0.178515i 0.0325922 0.0564514i
\(11\) 0.506699 + 1.89103i 0.152775 + 0.570166i 0.999286 + 0.0377930i \(0.0120328\pi\)
−0.846510 + 0.532373i \(0.821301\pi\)
\(12\) 0 0
\(13\) −1.85749 + 3.09026i −0.515175 + 0.857085i
\(14\) −0.291240 0.102952i −0.0778371 0.0275151i
\(15\) 0 0
\(16\) 1.95920 3.39343i 0.489800 0.848358i
\(17\) 2.13907 + 3.70498i 0.518801 + 0.898589i 0.999761 + 0.0218471i \(0.00695471\pi\)
−0.480960 + 0.876742i \(0.659712\pi\)
\(18\) 0 0
\(19\) 4.12248 + 1.10462i 0.945762 + 0.253416i 0.698563 0.715549i \(-0.253823\pi\)
0.247199 + 0.968965i \(0.420490\pi\)
\(20\) −0.907674 + 3.38749i −0.202962 + 0.757465i
\(21\) 0 0
\(22\) 0.114286 + 0.197949i 0.0243659 + 0.0422030i
\(23\) 5.53927 + 3.19810i 1.15502 + 0.666850i 0.950105 0.311930i \(-0.100976\pi\)
0.204913 + 0.978780i \(0.434309\pi\)
\(24\) 0 0
\(25\) 1.88292i 0.376585i
\(26\) −0.116097 + 0.404635i −0.0227685 + 0.0793554i
\(27\) 0 0
\(28\) 5.23946 + 0.409435i 0.990166 + 0.0773760i
\(29\) 3.57954 6.19995i 0.664704 1.15130i −0.314661 0.949204i \(-0.601891\pi\)
0.979365 0.202097i \(-0.0647758\pi\)
\(30\) 0 0
\(31\) −3.02628 + 3.02628i −0.543535 + 0.543535i −0.924563 0.381028i \(-0.875570\pi\)
0.381028 + 0.924563i \(0.375570\pi\)
\(32\) 0.359327 1.34103i 0.0635206 0.237062i
\(33\) 0 0
\(34\) 0.353191 + 0.353191i 0.0605718 + 0.0605718i
\(35\) −4.59245 + 0.853791i −0.776265 + 0.144317i
\(36\) 0 0
\(37\) −0.732202 2.73261i −0.120373 0.449239i 0.879259 0.476343i \(-0.158038\pi\)
−0.999633 + 0.0271042i \(0.991371\pi\)
\(38\) 0.498293 0.0808338
\(39\) 0 0
\(40\) 0.821715i 0.129925i
\(41\) 2.94901 + 11.0059i 0.460558 + 1.71883i 0.671212 + 0.741266i \(0.265774\pi\)
−0.210654 + 0.977561i \(0.567559\pi\)
\(42\) 0 0
\(43\) −1.55234 + 0.896243i −0.236730 + 0.136676i −0.613673 0.789561i \(-0.710309\pi\)
0.376943 + 0.926236i \(0.376975\pi\)
\(44\) −2.74978 2.74978i −0.414545 0.414545i
\(45\) 0 0
\(46\) 0.721333 + 0.193281i 0.106355 + 0.0284977i
\(47\) 4.68665 + 4.68665i 0.683618 + 0.683618i 0.960814 0.277196i \(-0.0894050\pi\)
−0.277196 + 0.960814i \(0.589405\pi\)
\(48\) 0 0
\(49\) 2.51581 + 6.53228i 0.359402 + 0.933183i
\(50\) 0.0568982 + 0.212347i 0.00804663 + 0.0300304i
\(51\) 0 0
\(52\) 0.126138 7.16084i 0.0174922 0.993030i
\(53\) −4.27793 −0.587619 −0.293809 0.955864i \(-0.594923\pi\)
−0.293809 + 0.955864i \(0.594923\pi\)
\(54\) 0 0
\(55\) 2.99335 + 1.72821i 0.403624 + 0.233032i
\(56\) 1.21065 0.225074i 0.161780 0.0300768i
\(57\) 0 0
\(58\) 0.216333 0.807367i 0.0284060 0.106013i
\(59\) 0.436704 1.62980i 0.0568541 0.212182i −0.931655 0.363344i \(-0.881635\pi\)
0.988509 + 0.151162i \(0.0483015\pi\)
\(60\) 0 0
\(61\) 2.66960 1.54129i 0.341807 0.197342i −0.319264 0.947666i \(-0.603436\pi\)
0.661071 + 0.750323i \(0.270102\pi\)
\(62\) −0.249841 + 0.432737i −0.0317298 + 0.0549577i
\(63\) 0 0
\(64\) 7.67470i 0.959338i
\(65\) 1.53901 + 6.17685i 0.190891 + 0.766144i
\(66\) 0 0
\(67\) −0.0190380 + 0.00510122i −0.00232586 + 0.000623213i −0.259982 0.965614i \(-0.583717\pi\)
0.257656 + 0.966237i \(0.417050\pi\)
\(68\) −7.35945 4.24898i −0.892465 0.515265i
\(69\) 0 0
\(70\) −0.492115 + 0.235061i −0.0588189 + 0.0280952i
\(71\) −1.23109 + 4.59449i −0.146104 + 0.545266i 0.853600 + 0.520929i \(0.174414\pi\)
−0.999704 + 0.0243373i \(0.992252\pi\)
\(72\) 0 0
\(73\) 0.698492 + 0.698492i 0.0817523 + 0.0817523i 0.746800 0.665048i \(-0.231589\pi\)
−0.665048 + 0.746800i \(0.731589\pi\)
\(74\) −0.165148 0.286046i −0.0191981 0.0332521i
\(75\) 0 0
\(76\) −8.18877 + 2.19417i −0.939316 + 0.251689i
\(77\) 1.72631 4.88353i 0.196731 0.556530i
\(78\) 0 0
\(79\) −5.93719 −0.667987 −0.333993 0.942575i \(-0.608396\pi\)
−0.333993 + 0.942575i \(0.608396\pi\)
\(80\) −1.79052 6.68230i −0.200186 0.747104i
\(81\) 0 0
\(82\) 0.665151 + 1.15208i 0.0734536 + 0.127225i
\(83\) −9.87683 + 9.87683i −1.08412 + 1.08412i −0.0880033 + 0.996120i \(0.528049\pi\)
−0.996120 + 0.0880033i \(0.971951\pi\)
\(84\) 0 0
\(85\) 7.29580 + 1.95490i 0.791340 + 0.212039i
\(86\) −0.147983 + 0.147983i −0.0159574 + 0.0159574i
\(87\) 0 0
\(88\) −0.789099 0.455587i −0.0841183 0.0485657i
\(89\) 7.76240 2.07993i 0.822813 0.220472i 0.177237 0.984168i \(-0.443284\pi\)
0.645576 + 0.763696i \(0.276617\pi\)
\(90\) 0 0
\(91\) 8.67892 3.95934i 0.909798 0.415052i
\(92\) −12.7052 −1.32461
\(93\) 0 0
\(94\) 0.670159 + 0.386917i 0.0691216 + 0.0399074i
\(95\) 6.52558 3.76755i 0.669511 0.386542i
\(96\) 0 0
\(97\) 14.2676 + 3.82300i 1.44866 + 0.388167i 0.895557 0.444946i \(-0.146777\pi\)
0.553102 + 0.833113i \(0.313444\pi\)
\(98\) 0.481114 + 0.660657i 0.0485999 + 0.0667364i
\(99\) 0 0
\(100\) −1.87009 3.23909i −0.187009 0.323909i
\(101\) 8.00479 13.8647i 0.796506 1.37959i −0.125372 0.992110i \(-0.540012\pi\)
0.921878 0.387480i \(-0.126654\pi\)
\(102\) 0 0
\(103\) −11.8151 −1.16418 −0.582088 0.813126i \(-0.697764\pi\)
−0.582088 + 0.813126i \(0.697764\pi\)
\(104\) −0.405710 1.62832i −0.0397831 0.159670i
\(105\) 0 0
\(106\) −0.482444 + 0.129271i −0.0468591 + 0.0125559i
\(107\) 3.99556 6.92051i 0.386265 0.669031i −0.605679 0.795709i \(-0.707098\pi\)
0.991944 + 0.126678i \(0.0404316\pi\)
\(108\) 0 0
\(109\) −8.75647 8.75647i −0.838718 0.838718i 0.149972 0.988690i \(-0.452082\pi\)
−0.988690 + 0.149972i \(0.952082\pi\)
\(110\) 0.389799 + 0.104446i 0.0371659 + 0.00995857i
\(111\) 0 0
\(112\) −9.35472 + 4.46833i −0.883938 + 0.422218i
\(113\) −4.27217 7.39961i −0.401892 0.696097i 0.592063 0.805892i \(-0.298314\pi\)
−0.993954 + 0.109795i \(0.964981\pi\)
\(114\) 0 0
\(115\) 10.9079 2.92275i 1.01716 0.272548i
\(116\) 14.2206i 1.32035i
\(117\) 0 0
\(118\) 0.196998i 0.0181351i
\(119\) 0.881822 11.2845i 0.0808365 1.03445i
\(120\) 0 0
\(121\) 6.20705 3.58364i 0.564277 0.325785i
\(122\) 0.254490 0.254490i 0.0230404 0.0230404i
\(123\) 0 0
\(124\) 2.20029 8.21159i 0.197592 0.737422i
\(125\) 8.59274 + 8.59274i 0.768558 + 0.768558i
\(126\) 0 0
\(127\) −5.29483 3.05697i −0.469840 0.271262i 0.246333 0.969185i \(-0.420774\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(128\) 0.950568 + 3.54757i 0.0840191 + 0.313564i
\(129\) 0 0
\(130\) 0.360215 + 0.650090i 0.0315929 + 0.0570166i
\(131\) 5.76435i 0.503634i −0.967775 0.251817i \(-0.918972\pi\)
0.967775 0.251817i \(-0.0810280\pi\)
\(132\) 0 0
\(133\) −7.33820 8.58230i −0.636303 0.744180i
\(134\) −0.00199287 + 0.00115058i −0.000172157 + 9.93951e-5i
\(135\) 0 0
\(136\) −1.92330 0.515346i −0.164921 0.0441905i
\(137\) 6.06188 + 1.62427i 0.517901 + 0.138771i 0.508296 0.861183i \(-0.330276\pi\)
0.00960548 + 0.999954i \(0.496942\pi\)
\(138\) 0 0
\(139\) −18.1314 + 10.4682i −1.53789 + 0.887900i −0.538927 + 0.842353i \(0.681170\pi\)
−0.998962 + 0.0455477i \(0.985497\pi\)
\(140\) 7.05217 6.02988i 0.596017 0.509618i
\(141\) 0 0
\(142\) 0.555346i 0.0466036i
\(143\) −6.78495 1.94673i −0.567386 0.162794i
\(144\) 0 0
\(145\) −3.27135 12.2089i −0.271671 1.01389i
\(146\) 0.0998797 + 0.0576656i 0.00826610 + 0.00477244i
\(147\) 0 0
\(148\) 3.97356 + 3.97356i 0.326624 + 0.326624i
\(149\) −4.00070 + 14.9308i −0.327750 + 1.22318i 0.583768 + 0.811921i \(0.301578\pi\)
−0.911518 + 0.411260i \(0.865089\pi\)
\(150\) 0 0
\(151\) 3.12599 3.12599i 0.254390 0.254390i −0.568378 0.822768i \(-0.692429\pi\)
0.822768 + 0.568378i \(0.192429\pi\)
\(152\) −1.72026 + 0.993190i −0.139531 + 0.0805583i
\(153\) 0 0
\(154\) 0.0471139 0.602907i 0.00379655 0.0485837i
\(155\) 7.55609i 0.606920i
\(156\) 0 0
\(157\) 6.93064i 0.553125i 0.960996 + 0.276563i \(0.0891953\pi\)
−0.960996 + 0.276563i \(0.910805\pi\)
\(158\) −0.669569 + 0.179410i −0.0532680 + 0.0142731i
\(159\) 0 0
\(160\) −1.22557 2.12274i −0.0968896 0.167818i
\(161\) −7.29389 15.2702i −0.574839 1.20346i
\(162\) 0 0
\(163\) −12.4944 3.34785i −0.978634 0.262224i −0.266165 0.963928i \(-0.585757\pi\)
−0.712469 + 0.701703i \(0.752423\pi\)
\(164\) −16.0039 16.0039i −1.24969 1.24969i
\(165\) 0 0
\(166\) −0.815404 + 1.41232i −0.0632876 + 0.109617i
\(167\) 0.900490 0.241286i 0.0696820 0.0186712i −0.223810 0.974633i \(-0.571849\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(168\) 0 0
\(169\) −6.09946 11.4803i −0.469189 0.883098i
\(170\) 0.881858 0.0676355
\(171\) 0 0
\(172\) 1.78027 3.08352i 0.135744 0.235116i
\(173\) 0.263780 + 0.456880i 0.0200548 + 0.0347360i 0.875879 0.482531i \(-0.160283\pi\)
−0.855824 + 0.517267i \(0.826949\pi\)
\(174\) 0 0
\(175\) 2.81942 4.10715i 0.213128 0.310471i
\(176\) 7.40979 + 1.98545i 0.558534 + 0.149659i
\(177\) 0 0
\(178\) 0.812555 0.469129i 0.0609036 0.0351627i
\(179\) −7.16206 4.13502i −0.535317 0.309066i 0.207862 0.978158i \(-0.433350\pi\)
−0.743179 + 0.669093i \(0.766683\pi\)
\(180\) 0 0
\(181\) 14.9785 1.11334 0.556672 0.830732i \(-0.312078\pi\)
0.556672 + 0.830732i \(0.312078\pi\)
\(182\) 0.859124 0.708775i 0.0636825 0.0525379i
\(183\) 0 0
\(184\) −2.87550 + 0.770488i −0.211985 + 0.0568011i
\(185\) −4.32553 2.49734i −0.318019 0.183608i
\(186\) 0 0
\(187\) −5.92234 + 5.92234i −0.433085 + 0.433085i
\(188\) −12.7169 3.40748i −0.927475 0.248516i
\(189\) 0 0
\(190\) 0.622076 0.622076i 0.0451301 0.0451301i
\(191\) −7.26461 12.5827i −0.525649 0.910450i −0.999554 0.0298741i \(-0.990489\pi\)
0.473905 0.880576i \(-0.342844\pi\)
\(192\) 0 0
\(193\) 5.06711 + 18.9107i 0.364738 + 1.36122i 0.867775 + 0.496957i \(0.165549\pi\)
−0.503037 + 0.864265i \(0.667784\pi\)
\(194\) 1.72456 0.123816
\(195\) 0 0
\(196\) −10.8156 8.73846i −0.772541 0.624176i
\(197\) 21.0175 5.63163i 1.49744 0.401237i 0.585196 0.810892i \(-0.301018\pi\)
0.912240 + 0.409655i \(0.134351\pi\)
\(198\) 0 0
\(199\) −9.64065 16.6981i −0.683408 1.18370i −0.973934 0.226830i \(-0.927164\pi\)
0.290527 0.956867i \(-0.406170\pi\)
\(200\) −0.619676 0.619676i −0.0438177 0.0438177i
\(201\) 0 0
\(202\) 0.483778 1.80548i 0.0340385 0.127033i
\(203\) −17.0915 + 8.16384i −1.19959 + 0.572989i
\(204\) 0 0
\(205\) 17.4215 + 10.0583i 1.21677 + 0.702501i
\(206\) −1.33245 + 0.357029i −0.0928363 + 0.0248754i
\(207\) 0 0
\(208\) 6.84741 + 12.3577i 0.474782 + 0.856853i
\(209\) 8.35542i 0.577957i
\(210\) 0 0
\(211\) 1.51130 2.61764i 0.104042 0.180206i −0.809304 0.587389i \(-0.800156\pi\)
0.913346 + 0.407184i \(0.133489\pi\)
\(212\) 7.35909 4.24877i 0.505424 0.291807i
\(213\) 0 0
\(214\) 0.241476 0.901200i 0.0165070 0.0616048i
\(215\) −0.819079 + 3.05685i −0.0558607 + 0.208475i
\(216\) 0 0
\(217\) 11.1325 2.06967i 0.755726 0.140498i
\(218\) −1.25212 0.722910i −0.0848040 0.0489616i
\(219\) 0 0
\(220\) −6.86574 −0.462888
\(221\) −15.4227 0.271670i −1.03744 0.0182745i
\(222\) 0 0
\(223\) 1.13865 + 4.24949i 0.0762495 + 0.284567i 0.993514 0.113712i \(-0.0362742\pi\)
−0.917264 + 0.398279i \(0.869608\pi\)
\(224\) −2.79179 + 2.38709i −0.186534 + 0.159494i
\(225\) 0 0
\(226\) −0.705396 0.705396i −0.0469223 0.0469223i
\(227\) 3.95917 + 1.06086i 0.262780 + 0.0704116i 0.387803 0.921742i \(-0.373234\pi\)
−0.125024 + 0.992154i \(0.539901\pi\)
\(228\) 0 0
\(229\) 9.60039 + 9.60039i 0.634412 + 0.634412i 0.949171 0.314760i \(-0.101924\pi\)
−0.314760 + 0.949171i \(0.601924\pi\)
\(230\) 1.14182 0.659228i 0.0752892 0.0434682i
\(231\) 0 0
\(232\) 0.862385 + 3.21846i 0.0566183 + 0.211303i
\(233\) 16.3500i 1.07113i 0.844495 + 0.535563i \(0.179900\pi\)
−0.844495 + 0.535563i \(0.820100\pi\)
\(234\) 0 0
\(235\) 11.7018 0.763339
\(236\) 0.867456 + 3.23739i 0.0564666 + 0.210736i
\(237\) 0 0
\(238\) −0.241548 1.29926i −0.0156572 0.0842184i
\(239\) −6.11495 6.11495i −0.395543 0.395543i 0.481115 0.876658i \(-0.340232\pi\)
−0.876658 + 0.481115i \(0.840232\pi\)
\(240\) 0 0
\(241\) 3.47625 12.9736i 0.223925 0.835700i −0.758907 0.651199i \(-0.774266\pi\)
0.982832 0.184501i \(-0.0590670\pi\)
\(242\) 0.591711 0.591711i 0.0380366 0.0380366i
\(243\) 0 0
\(244\) −3.06158 + 5.30281i −0.195997 + 0.339478i
\(245\) 11.2958 + 5.01422i 0.721660 + 0.320347i
\(246\) 0 0
\(247\) −11.0710 + 10.6877i −0.704432 + 0.680045i
\(248\) 1.99192i 0.126487i
\(249\) 0 0
\(250\) 1.22870 + 0.709393i 0.0777101 + 0.0448659i
\(251\) 1.74301 + 3.01899i 0.110018 + 0.190557i 0.915777 0.401686i \(-0.131576\pi\)
−0.805759 + 0.592243i \(0.798242\pi\)
\(252\) 0 0
\(253\) −3.24095 + 12.0954i −0.203756 + 0.760430i
\(254\) −0.689501 0.184751i −0.0432631 0.0115923i
\(255\) 0 0
\(256\) −7.46030 12.9216i −0.466269 0.807601i
\(257\) −6.72396 + 11.6462i −0.419429 + 0.726472i −0.995882 0.0906578i \(-0.971103\pi\)
0.576453 + 0.817130i \(0.304436\pi\)
\(258\) 0 0
\(259\) −2.49459 + 7.05692i −0.155006 + 0.438496i
\(260\) −8.78223 9.09717i −0.544651 0.564183i
\(261\) 0 0
\(262\) −0.174187 0.650076i −0.0107613 0.0401618i
\(263\) 10.2679 17.7846i 0.633147 1.09664i −0.353757 0.935337i \(-0.615096\pi\)
0.986904 0.161306i \(-0.0515705\pi\)
\(264\) 0 0
\(265\) −5.34063 + 5.34063i −0.328072 + 0.328072i
\(266\) −1.08691 0.746125i −0.0666426 0.0457479i
\(267\) 0 0
\(268\) 0.0276836 0.0276836i 0.00169104 0.00169104i
\(269\) 9.29875 5.36864i 0.566955 0.327332i −0.188977 0.981981i \(-0.560517\pi\)
0.755932 + 0.654650i \(0.227184\pi\)
\(270\) 0 0
\(271\) −1.44767 + 0.387901i −0.0879396 + 0.0235633i −0.302521 0.953143i \(-0.597828\pi\)
0.214581 + 0.976706i \(0.431161\pi\)
\(272\) 16.7635 1.01643
\(273\) 0 0
\(274\) 0.732712 0.0442647
\(275\) −3.56065 + 0.954075i −0.214716 + 0.0575329i
\(276\) 0 0
\(277\) 4.07919 2.35512i 0.245095 0.141506i −0.372421 0.928064i \(-0.621472\pi\)
0.617516 + 0.786558i \(0.288139\pi\)
\(278\) −1.72845 + 1.72845i −0.103666 + 0.103666i
\(279\) 0 0
\(280\) 1.23041 1.79238i 0.0735308 0.107115i
\(281\) −8.01227 + 8.01227i −0.477972 + 0.477972i −0.904483 0.426511i \(-0.859743\pi\)
0.426511 + 0.904483i \(0.359743\pi\)
\(282\) 0 0
\(283\) −3.93934 + 6.82313i −0.234169 + 0.405593i −0.959031 0.283301i \(-0.908570\pi\)
0.724862 + 0.688894i \(0.241904\pi\)
\(284\) −2.44540 9.12636i −0.145108 0.541550i
\(285\) 0 0
\(286\) −0.824001 0.0145147i −0.0487242 0.000858275i
\(287\) 10.0472 28.4224i 0.593067 1.67772i
\(288\) 0 0
\(289\) −0.651246 + 1.12799i −0.0383086 + 0.0663525i
\(290\) −0.737855 1.27800i −0.0433284 0.0750469i
\(291\) 0 0
\(292\) −1.89531 0.507847i −0.110915 0.0297195i
\(293\) −3.16216 + 11.8013i −0.184735 + 0.689442i 0.809952 + 0.586497i \(0.199493\pi\)
−0.994687 + 0.102945i \(0.967173\pi\)
\(294\) 0 0
\(295\) −1.48948 2.57986i −0.0867210 0.150205i
\(296\) 1.14028 + 0.658343i 0.0662776 + 0.0382654i
\(297\) 0 0
\(298\) 1.80472i 0.104545i
\(299\) −20.1721 + 11.1774i −1.16658 + 0.646404i
\(300\) 0 0
\(301\) 4.72806 + 0.369472i 0.272521 + 0.0212960i
\(302\) 0.258073 0.446996i 0.0148504 0.0257217i
\(303\) 0 0
\(304\) 11.8252 11.8252i 0.678221 0.678221i
\(305\) 1.40859 5.25694i 0.0806558 0.301011i
\(306\) 0 0
\(307\) −7.97207 7.97207i −0.454990 0.454990i 0.442017 0.897007i \(-0.354263\pi\)
−0.897007 + 0.442017i \(0.854263\pi\)
\(308\) 1.88058 + 10.1154i 0.107156 + 0.576380i
\(309\) 0 0
\(310\) 0.228330 + 0.852140i 0.0129683 + 0.0483983i
\(311\) 13.0428 0.739588 0.369794 0.929114i \(-0.379428\pi\)
0.369794 + 0.929114i \(0.379428\pi\)
\(312\) 0 0
\(313\) 3.57391i 0.202009i −0.994886 0.101005i \(-0.967794\pi\)
0.994886 0.101005i \(-0.0322057\pi\)
\(314\) 0.209430 + 0.781604i 0.0118188 + 0.0441085i
\(315\) 0 0
\(316\) 10.2134 5.89673i 0.574551 0.331717i
\(317\) −23.4565 23.4565i −1.31745 1.31745i −0.915788 0.401662i \(-0.868433\pi\)
−0.401662 0.915788i \(-0.631567\pi\)
\(318\) 0 0
\(319\) 13.5380 + 3.62750i 0.757983 + 0.203101i
\(320\) 9.58121 + 9.58121i 0.535606 + 0.535606i
\(321\) 0 0
\(322\) −1.28401 1.50169i −0.0715548 0.0836860i
\(323\) 4.72570 + 17.6366i 0.262945 + 0.981324i
\(324\) 0 0
\(325\) −5.81873 3.49751i −0.322765 0.194007i
\(326\) −1.51022 −0.0836434
\(327\) 0 0
\(328\) −4.59260 2.65154i −0.253584 0.146407i
\(329\) −3.20520 17.2404i −0.176708 0.950495i
\(330\) 0 0
\(331\) −0.245395 + 0.915826i −0.0134881 + 0.0503383i −0.972342 0.233562i \(-0.924962\pi\)
0.958854 + 0.283900i \(0.0916285\pi\)
\(332\) 7.18106 26.8001i 0.394112 1.47085i
\(333\) 0 0
\(334\) 0.0942618 0.0544221i 0.00515778 0.00297784i
\(335\) −0.0173989 + 0.0301357i −0.000950602 + 0.00164649i
\(336\) 0 0
\(337\) 14.1901i 0.772982i −0.922293 0.386491i \(-0.873687\pi\)
0.922293 0.386491i \(-0.126313\pi\)
\(338\) −1.03478 1.11038i −0.0562846 0.0603965i
\(339\) 0 0
\(340\) −14.4921 + 3.88316i −0.785947 + 0.210594i
\(341\) −7.25617 4.18935i −0.392944 0.226866i
\(342\) 0 0
\(343\) 4.29355 18.0157i 0.231830 0.972756i
\(344\) 0.215923 0.805837i 0.0116418 0.0434478i
\(345\) 0 0
\(346\) 0.0435539 + 0.0435539i 0.00234147 + 0.00234147i
\(347\) 6.92103 + 11.9876i 0.371540 + 0.643527i 0.989803 0.142445i \(-0.0454965\pi\)
−0.618262 + 0.785972i \(0.712163\pi\)
\(348\) 0 0
\(349\) 14.7875 3.96231i 0.791559 0.212098i 0.159684 0.987168i \(-0.448952\pi\)
0.631875 + 0.775071i \(0.282286\pi\)
\(350\) 0.193851 0.548382i 0.0103617 0.0293123i
\(351\) 0 0
\(352\) 2.71798 0.144869
\(353\) 4.07649 + 15.2137i 0.216970 + 0.809742i 0.985464 + 0.169885i \(0.0543398\pi\)
−0.768494 + 0.639857i \(0.778994\pi\)
\(354\) 0 0
\(355\) 4.19892 + 7.27274i 0.222856 + 0.385997i
\(356\) −11.2875 + 11.2875i −0.598235 + 0.598235i
\(357\) 0 0
\(358\) −0.932655 0.249904i −0.0492924 0.0132078i
\(359\) 4.68787 4.68787i 0.247416 0.247416i −0.572493 0.819910i \(-0.694024\pi\)
0.819910 + 0.572493i \(0.194024\pi\)
\(360\) 0 0
\(361\) −0.679814 0.392491i −0.0357797 0.0206574i
\(362\) 1.68920 0.452621i 0.0887826 0.0237892i
\(363\) 0 0
\(364\) −10.9975 + 15.4308i −0.576427 + 0.808794i
\(365\) 1.74402 0.0912859
\(366\) 0 0
\(367\) 28.4547 + 16.4284i 1.48533 + 0.857553i 0.999860 0.0167033i \(-0.00531706\pi\)
0.485465 + 0.874256i \(0.338650\pi\)
\(368\) 21.7051 12.5314i 1.13145 0.653246i
\(369\) 0 0
\(370\) −0.563277 0.150930i −0.0292834 0.00784646i
\(371\) 9.33128 + 6.40561i 0.484456 + 0.332563i
\(372\) 0 0
\(373\) −3.93986 6.82405i −0.203998 0.353336i 0.745815 0.666153i \(-0.232060\pi\)
−0.949813 + 0.312818i \(0.898727\pi\)
\(374\) −0.488932 + 0.846855i −0.0252821 + 0.0437899i
\(375\) 0 0
\(376\) −3.08478 −0.159086
\(377\) 12.5105 + 22.5781i 0.644324 + 1.16283i
\(378\) 0 0
\(379\) 10.8095 2.89639i 0.555245 0.148778i 0.0297243 0.999558i \(-0.490537\pi\)
0.525521 + 0.850781i \(0.323870\pi\)
\(380\) −7.48374 + 12.9622i −0.383908 + 0.664947i
\(381\) 0 0
\(382\) −1.19949 1.19949i −0.0613713 0.0613713i
\(383\) −2.32841 0.623897i −0.118976 0.0318796i 0.198840 0.980032i \(-0.436283\pi\)
−0.317816 + 0.948152i \(0.602949\pi\)
\(384\) 0 0
\(385\) −3.94153 8.25182i −0.200879 0.420552i
\(386\) 1.14289 + 1.97954i 0.0581715 + 0.100756i
\(387\) 0 0
\(388\) −28.3408 + 7.59389i −1.43879 + 0.385522i
\(389\) 16.8210i 0.852858i 0.904521 + 0.426429i \(0.140229\pi\)
−0.904521 + 0.426429i \(0.859771\pi\)
\(390\) 0 0
\(391\) 27.3638i 1.38385i
\(392\) −2.97776 1.32183i −0.150400 0.0667627i
\(393\) 0 0
\(394\) 2.20008 1.27022i 0.110838 0.0639926i
\(395\) −7.41208 + 7.41208i −0.372942 + 0.372942i
\(396\) 0 0
\(397\) −6.08873 + 22.7234i −0.305585 + 1.14046i 0.626856 + 0.779135i \(0.284341\pi\)
−0.932441 + 0.361322i \(0.882325\pi\)
\(398\) −1.59181 1.59181i −0.0797903 0.0797903i
\(399\) 0 0
\(400\) 6.38957 + 3.68902i 0.319479 + 0.184451i
\(401\) −2.23318 8.33434i −0.111520 0.416197i 0.887483 0.460840i \(-0.152452\pi\)
−0.999003 + 0.0446427i \(0.985785\pi\)
\(402\) 0 0
\(403\) −3.73071 14.9733i −0.185840 0.745872i
\(404\) 31.8009i 1.58216i
\(405\) 0 0
\(406\) −1.68080 + 1.43715i −0.0834168 + 0.0713246i
\(407\) 4.79644 2.76922i 0.237751 0.137265i
\(408\) 0 0
\(409\) −12.9780 3.47744i −0.641720 0.171948i −0.0767375 0.997051i \(-0.524450\pi\)
−0.564982 + 0.825103i \(0.691117\pi\)
\(410\) 2.26865 + 0.607883i 0.112041 + 0.0300212i
\(411\) 0 0
\(412\) 20.3249 11.7346i 1.00133 0.578121i
\(413\) −3.39297 + 2.90112i −0.166957 + 0.142755i
\(414\) 0 0
\(415\) 24.6608i 1.21055i
\(416\) 3.47668 + 3.60136i 0.170458 + 0.176571i
\(417\) 0 0
\(418\) 0.252484 + 0.942285i 0.0123494 + 0.0460886i
\(419\) 15.0514 + 8.68991i 0.735308 + 0.424530i 0.820361 0.571846i \(-0.193773\pi\)
−0.0850532 + 0.996376i \(0.527106\pi\)
\(420\) 0 0
\(421\) −21.2490 21.2490i −1.03561 1.03561i −0.999342 0.0362722i \(-0.988452\pi\)
−0.0362722 0.999342i \(-0.511548\pi\)
\(422\) 0.0913368 0.340874i 0.00444621 0.0165935i
\(423\) 0 0
\(424\) 1.40788 1.40788i 0.0683727 0.0683727i
\(425\) −6.97619 + 4.02771i −0.338395 + 0.195372i
\(426\) 0 0
\(427\) −8.13097 0.635391i −0.393485 0.0307487i
\(428\) 15.8733i 0.767265i
\(429\) 0 0
\(430\) 0.369487i 0.0178183i
\(431\) −23.3087 + 6.24554i −1.12274 + 0.300837i −0.771991 0.635633i \(-0.780739\pi\)
−0.350748 + 0.936470i \(0.614073\pi\)
\(432\) 0 0
\(433\) −2.27124 3.93391i −0.109149 0.189051i 0.806277 0.591538i \(-0.201479\pi\)
−0.915426 + 0.402487i \(0.868146\pi\)
\(434\) 1.19293 0.569811i 0.0572626 0.0273518i
\(435\) 0 0
\(436\) 23.7601 + 6.36649i 1.13790 + 0.304900i
\(437\) 19.3029 + 19.3029i 0.923381 + 0.923381i
\(438\) 0 0
\(439\) 8.50036 14.7231i 0.405700 0.702693i −0.588703 0.808350i \(-0.700361\pi\)
0.994403 + 0.105657i \(0.0336944\pi\)
\(440\) −1.55388 + 0.416362i −0.0740785 + 0.0198493i
\(441\) 0 0
\(442\) −1.74750 + 0.435405i −0.0831203 + 0.0207101i
\(443\) 36.6165 1.73970 0.869851 0.493315i \(-0.164215\pi\)
0.869851 + 0.493315i \(0.164215\pi\)
\(444\) 0 0
\(445\) 7.09408 12.2873i 0.336292 0.582474i
\(446\) 0.256823 + 0.444830i 0.0121609 + 0.0210633i
\(447\) 0 0
\(448\) 11.4918 16.7405i 0.542937 0.790916i
\(449\) 32.7480 + 8.77481i 1.54547 + 0.414109i 0.928030 0.372505i \(-0.121501\pi\)
0.617445 + 0.786614i \(0.288168\pi\)
\(450\) 0 0
\(451\) −19.3181 + 11.1533i −0.909654 + 0.525189i
\(452\) 14.6984 + 8.48610i 0.691353 + 0.399153i
\(453\) 0 0
\(454\) 0.478554 0.0224596
\(455\) 5.89199 15.7778i 0.276221 0.739674i
\(456\) 0 0
\(457\) −2.18565 + 0.585644i −0.102241 + 0.0273953i −0.309577 0.950874i \(-0.600187\pi\)
0.207336 + 0.978270i \(0.433521\pi\)
\(458\) 1.37279 + 0.792582i 0.0641463 + 0.0370349i
\(459\) 0 0
\(460\) −15.8614 + 15.8614i −0.739540 + 0.739540i
\(461\) 24.5455 + 6.57694i 1.14320 + 0.306319i 0.780235 0.625486i \(-0.215099\pi\)
0.362961 + 0.931804i \(0.381766\pi\)
\(462\) 0 0
\(463\) −22.6265 + 22.6265i −1.05154 + 1.05154i −0.0529442 + 0.998597i \(0.516861\pi\)
−0.998597 + 0.0529442i \(0.983139\pi\)
\(464\) −14.0261 24.2939i −0.651144 1.12781i
\(465\) 0 0
\(466\) 0.494066 + 1.84388i 0.0228871 + 0.0854160i
\(467\) 11.2941 0.522627 0.261314 0.965254i \(-0.415844\pi\)
0.261314 + 0.965254i \(0.415844\pi\)
\(468\) 0 0
\(469\) 0.0491652 + 0.0173797i 0.00227024 + 0.000802520i
\(470\) 1.31967 0.353604i 0.0608718 0.0163105i
\(471\) 0 0
\(472\) 0.392653 + 0.680095i 0.0180733 + 0.0313039i
\(473\) −2.48139 2.48139i −0.114094 0.114094i
\(474\) 0 0
\(475\) −2.07991 + 7.76231i −0.0954326 + 0.356159i
\(476\) 9.69063 + 20.2879i 0.444169 + 0.929895i
\(477\) 0 0
\(478\) −0.874396 0.504833i −0.0399939 0.0230905i
\(479\) −19.3716 + 5.19059i −0.885109 + 0.237164i −0.672610 0.739997i \(-0.734827\pi\)
−0.212499 + 0.977161i \(0.568160\pi\)
\(480\) 0 0
\(481\) 9.80456 + 2.81311i 0.447049 + 0.128267i
\(482\) 1.56814i 0.0714269i
\(483\) 0 0
\(484\) −7.11843 + 12.3295i −0.323565 + 0.560431i
\(485\) 22.5846 13.0392i 1.02551 0.592081i
\(486\) 0 0
\(487\) −8.13109 + 30.3456i −0.368455 + 1.37509i 0.494221 + 0.869336i \(0.335453\pi\)
−0.862676 + 0.505756i \(0.831213\pi\)
\(488\) −0.371329 + 1.38582i −0.0168093 + 0.0627331i
\(489\) 0 0
\(490\) 1.42540 + 0.224144i 0.0643931 + 0.0101258i
\(491\) 16.8341 + 9.71919i 0.759714 + 0.438621i 0.829193 0.558962i \(-0.188800\pi\)
−0.0694792 + 0.997583i \(0.522134\pi\)
\(492\) 0 0
\(493\) 30.6276 1.37940
\(494\) −0.925574 + 1.53986i −0.0416436 + 0.0692814i
\(495\) 0 0
\(496\) 4.34038 + 16.1985i 0.194889 + 0.727336i
\(497\) 9.56495 8.17841i 0.429047 0.366852i
\(498\) 0 0
\(499\) 11.8051 + 11.8051i 0.528471 + 0.528471i 0.920116 0.391645i \(-0.128094\pi\)
−0.391645 + 0.920116i \(0.628094\pi\)
\(500\) −23.3158 6.24745i −1.04271 0.279394i
\(501\) 0 0
\(502\) 0.287797 + 0.287797i 0.0128450 + 0.0128450i
\(503\) −25.9585 + 14.9871i −1.15743 + 0.668243i −0.950687 0.310153i \(-0.899620\pi\)
−0.206743 + 0.978395i \(0.566287\pi\)
\(504\) 0 0
\(505\) −7.31560 27.3022i −0.325540 1.21493i
\(506\) 1.46199i 0.0649935i
\(507\) 0 0
\(508\) 12.1445 0.538827
\(509\) 3.62928 + 13.5446i 0.160865 + 0.600356i 0.998532 + 0.0541739i \(0.0172525\pi\)
−0.837667 + 0.546182i \(0.816081\pi\)
\(510\) 0 0
\(511\) −0.477699 2.56949i −0.0211322 0.113668i
\(512\) −6.42580 6.42580i −0.283983 0.283983i
\(513\) 0 0
\(514\) −0.406370 + 1.51659i −0.0179242 + 0.0668940i
\(515\) −14.7501 + 14.7501i −0.649969 + 0.649969i
\(516\) 0 0
\(517\) −6.48785 + 11.2373i −0.285335 + 0.494215i
\(518\) −0.0680817 + 0.871228i −0.00299134 + 0.0382795i
\(519\) 0 0
\(520\) −2.53932 1.52633i −0.111356 0.0669339i
\(521\) 0.875247i 0.0383452i −0.999816 0.0191726i \(-0.993897\pi\)
0.999816 0.0191726i \(-0.00610321\pi\)
\(522\) 0 0
\(523\) −11.7198 6.76640i −0.512469 0.295874i 0.221379 0.975188i \(-0.428944\pi\)
−0.733848 + 0.679314i \(0.762278\pi\)
\(524\) 5.72506 + 9.91610i 0.250100 + 0.433187i
\(525\) 0 0
\(526\) 0.620553 2.31593i 0.0270574 0.100980i
\(527\) −17.6857 4.73887i −0.770401 0.206428i
\(528\) 0 0
\(529\) 8.95568 + 15.5117i 0.389377 + 0.674421i
\(530\) −0.440907 + 0.763674i −0.0191518 + 0.0331719i
\(531\) 0 0
\(532\) 21.1473 + 7.47548i 0.916853 + 0.324103i
\(533\) −39.4888 11.3301i −1.71045 0.490759i
\(534\) 0 0
\(535\) −3.65155 13.6278i −0.157870 0.589180i
\(536\) 0.00458664 0.00794430i 0.000198113 0.000343141i
\(537\) 0 0
\(538\) 0.886440 0.886440i 0.0382171 0.0382171i
\(539\) −11.0779 + 8.06736i −0.477161 + 0.347486i
\(540\) 0 0
\(541\) 8.68791 8.68791i 0.373522 0.373522i −0.495236 0.868758i \(-0.664918\pi\)
0.868758 + 0.495236i \(0.164918\pi\)
\(542\) −0.151539 + 0.0874914i −0.00650918 + 0.00375808i
\(543\) 0 0
\(544\) 5.73710 1.53725i 0.245976 0.0659091i
\(545\) −21.8634 −0.936526
\(546\) 0 0
\(547\) 16.2786 0.696022 0.348011 0.937490i \(-0.386857\pi\)
0.348011 + 0.937490i \(0.386857\pi\)
\(548\) −12.0411 + 3.22641i −0.514371 + 0.137825i
\(549\) 0 0
\(550\) −0.372723 + 0.215192i −0.0158930 + 0.00917582i
\(551\) 21.6051 21.6051i 0.920410 0.920410i
\(552\) 0 0
\(553\) 12.9506 + 8.89013i 0.550715 + 0.378047i
\(554\) 0.388865 0.388865i 0.0165213 0.0165213i
\(555\) 0 0
\(556\) 20.7937 36.0157i 0.881849 1.52741i
\(557\) −2.13873 7.98185i −0.0906210 0.338202i 0.905698 0.423923i \(-0.139347\pi\)
−0.996319 + 0.0857210i \(0.972681\pi\)
\(558\) 0 0
\(559\) 0.113826 6.46190i 0.00481433 0.273309i
\(560\) −6.10024 + 17.2569i −0.257782 + 0.729237i
\(561\) 0 0
\(562\) −0.661470 + 1.14570i −0.0279024 + 0.0483285i
\(563\) −14.0767 24.3815i −0.593261 1.02756i −0.993790 0.111274i \(-0.964507\pi\)
0.400528 0.916284i \(-0.368827\pi\)
\(564\) 0 0
\(565\) −14.5712 3.90435i −0.613016 0.164257i
\(566\) −0.238078 + 0.888519i −0.0100072 + 0.0373472i
\(567\) 0 0
\(568\) −1.10691 1.91722i −0.0464448 0.0804447i
\(569\) 8.62645 + 4.98048i 0.361640 + 0.208793i 0.669800 0.742542i \(-0.266380\pi\)
−0.308160 + 0.951335i \(0.599713\pi\)
\(570\) 0 0
\(571\) 5.15214i 0.215610i −0.994172 0.107805i \(-0.965618\pi\)
0.994172 0.107805i \(-0.0343823\pi\)
\(572\) 13.6052 3.38986i 0.568864 0.141737i
\(573\) 0 0
\(574\) 0.274205 3.50895i 0.0114451 0.146461i
\(575\) −6.02177 + 10.4300i −0.251125 + 0.434962i
\(576\) 0 0
\(577\) −9.50342 + 9.50342i −0.395633 + 0.395633i −0.876689 0.481057i \(-0.840253\pi\)
0.481057 + 0.876689i \(0.340253\pi\)
\(578\) −0.0393588 + 0.146889i −0.00163711 + 0.00610978i
\(579\) 0 0
\(580\) 17.7532 + 17.7532i 0.737161 + 0.737161i
\(581\) 36.3332 6.75477i 1.50735 0.280235i
\(582\) 0 0
\(583\) −2.16762 8.08967i −0.0897737 0.335040i
\(584\) −0.459752 −0.0190247
\(585\) 0 0
\(586\) 1.42645i 0.0589263i
\(587\) −9.73498 36.3314i −0.401806 1.49956i −0.809872 0.586607i \(-0.800463\pi\)
0.408066 0.912952i \(-0.366203\pi\)
\(588\) 0 0
\(589\) −15.8186 + 9.13289i −0.651795 + 0.376314i
\(590\) −0.245935 0.245935i −0.0101250 0.0101250i
\(591\) 0 0
\(592\) −10.7075 2.86906i −0.440074 0.117918i
\(593\) −25.8396 25.8396i −1.06110 1.06110i −0.998007 0.0630974i \(-0.979902\pi\)
−0.0630974 0.998007i \(-0.520098\pi\)
\(594\) 0 0
\(595\) −12.9868 15.1886i −0.532409 0.622672i
\(596\) −7.94687 29.6581i −0.325517 1.21484i
\(597\) 0 0
\(598\) −1.93716 + 1.87009i −0.0792162 + 0.0764738i
\(599\) −5.32027 −0.217381 −0.108690 0.994076i \(-0.534666\pi\)
−0.108690 + 0.994076i \(0.534666\pi\)
\(600\) 0 0
\(601\) −21.4564 12.3879i −0.875225 0.505312i −0.00614424 0.999981i \(-0.501956\pi\)
−0.869081 + 0.494669i \(0.835289\pi\)
\(602\) 0.544373 0.101205i 0.0221870 0.00412482i
\(603\) 0 0
\(604\) −2.27279 + 8.48216i −0.0924785 + 0.345134i
\(605\) 3.27510 12.2228i 0.133152 0.496929i
\(606\) 0 0
\(607\) 19.5367 11.2795i 0.792971 0.457822i −0.0480365 0.998846i \(-0.515296\pi\)
0.841007 + 0.541024i \(0.181963\pi\)
\(608\) 2.96263 5.13143i 0.120151 0.208107i
\(609\) 0 0
\(610\) 0.635418i 0.0257273i
\(611\) −23.1884 + 5.77758i −0.938102 + 0.233736i
\(612\) 0 0
\(613\) −22.2201 + 5.95385i −0.897459 + 0.240474i −0.677925 0.735131i \(-0.737121\pi\)
−0.219535 + 0.975605i \(0.570454\pi\)
\(614\) −1.13995 0.658151i −0.0460047 0.0265608i
\(615\) 0 0
\(616\) 1.03905 + 2.17532i 0.0418647 + 0.0876462i
\(617\) −7.79350 + 29.0858i −0.313755 + 1.17095i 0.611389 + 0.791330i \(0.290611\pi\)
−0.925143 + 0.379618i \(0.876055\pi\)
\(618\) 0 0
\(619\) 7.55579 + 7.55579i 0.303693 + 0.303693i 0.842457 0.538764i \(-0.181109\pi\)
−0.538764 + 0.842457i \(0.681109\pi\)
\(620\) −7.50459 12.9983i −0.301392 0.522026i
\(621\) 0 0
\(622\) 1.47090 0.394127i 0.0589778 0.0158031i
\(623\) −20.0462 7.08625i −0.803135 0.283905i
\(624\) 0 0
\(625\) 12.0400 0.481599
\(626\) −0.107997 0.403049i −0.00431641 0.0161091i
\(627\) 0 0
\(628\) −6.88340 11.9224i −0.274678 0.475755i
\(629\) 8.55805 8.55805i 0.341232 0.341232i
\(630\) 0 0
\(631\) 13.6759 + 3.66444i 0.544428 + 0.145879i 0.520543 0.853836i \(-0.325730\pi\)
0.0238855 + 0.999715i \(0.492396\pi\)
\(632\) 1.95395 1.95395i 0.0777240 0.0777240i
\(633\) 0 0
\(634\) −3.35413 1.93651i −0.133209 0.0769085i
\(635\) −10.4265 + 2.79377i −0.413763 + 0.110867i
\(636\) 0 0
\(637\) −24.8596 4.35912i −0.984972 0.172715i
\(638\) 1.63637 0.0647844
\(639\) 0 0
\(640\) 5.61554 + 3.24213i 0.221974 + 0.128157i
\(641\) 32.0667 18.5137i 1.26656 0.731248i 0.292224 0.956350i \(-0.405605\pi\)
0.974335 + 0.225102i \(0.0722714\pi\)
\(642\) 0 0
\(643\) −33.2886 8.91965i −1.31277 0.351757i −0.466507 0.884517i \(-0.654488\pi\)
−0.846266 + 0.532761i \(0.821155\pi\)
\(644\) 27.7134 + 19.0243i 1.09206 + 0.749662i
\(645\) 0 0
\(646\) 1.06588 + 1.84617i 0.0419366 + 0.0726364i
\(647\) −3.03363 + 5.25440i −0.119264 + 0.206572i −0.919476 0.393145i \(-0.871387\pi\)
0.800212 + 0.599717i \(0.204720\pi\)
\(648\) 0 0
\(649\) 3.30328 0.129665
\(650\) −0.761896 0.218602i −0.0298840 0.00857428i
\(651\) 0 0
\(652\) 24.8184 6.65007i 0.971964 0.260437i
\(653\) 15.1009 26.1555i 0.590943 1.02354i −0.403162 0.915129i \(-0.632089\pi\)
0.994106 0.108416i \(-0.0345777\pi\)
\(654\) 0 0
\(655\) −7.19630 7.19630i −0.281183 0.281183i
\(656\) 43.1253 + 11.5554i 1.68376 + 0.451162i
\(657\) 0 0
\(658\) −0.882439 1.84744i −0.0344010 0.0720206i
\(659\) −4.37179 7.57216i −0.170301 0.294969i 0.768224 0.640181i \(-0.221141\pi\)
−0.938525 + 0.345211i \(0.887807\pi\)
\(660\) 0 0
\(661\) 17.3494 4.64874i 0.674812 0.180815i 0.0948903 0.995488i \(-0.469750\pi\)
0.579921 + 0.814673i \(0.303083\pi\)
\(662\) 0.110698i 0.00430239i
\(663\) 0 0
\(664\) 6.50100i 0.252288i
\(665\) −19.8754 1.55315i −0.770734 0.0602287i
\(666\) 0 0
\(667\) 39.6561 22.8955i 1.53549 0.886516i
\(668\) −1.30942 + 1.30942i −0.0506631 + 0.0506631i
\(669\) 0 0
\(670\) −0.00105152 + 0.00392433i −4.06238e−5 + 0.000151610i
\(671\) 4.26731 + 4.26731i 0.164738 + 0.164738i
\(672\) 0 0
\(673\) 22.0524 + 12.7319i 0.850057 + 0.490780i 0.860670 0.509163i \(-0.170045\pi\)
−0.0106133 + 0.999944i \(0.503378\pi\)
\(674\) −0.428796 1.60029i −0.0165166 0.0616408i
\(675\) 0 0
\(676\) 21.8946 + 13.6910i 0.842100 + 0.526577i
\(677\) 21.8547i 0.839946i −0.907537 0.419973i \(-0.862039\pi\)
0.907537 0.419973i \(-0.137961\pi\)
\(678\) 0 0
\(679\) −25.3970 29.7028i −0.974649 1.13989i
\(680\) −3.04444 + 1.75771i −0.116749 + 0.0674050i
\(681\) 0 0
\(682\) −0.944911 0.253188i −0.0361825 0.00969507i
\(683\) −30.9579 8.29515i −1.18457 0.317405i −0.387833 0.921729i \(-0.626776\pi\)
−0.796738 + 0.604324i \(0.793443\pi\)
\(684\) 0 0
\(685\) 9.59550 5.53997i 0.366625 0.211671i
\(686\) −0.0601935 2.16147i −0.00229820 0.0825252i
\(687\) 0 0
\(688\) 7.02368i 0.267775i
\(689\) 7.94621 13.2199i 0.302726 0.503639i
\(690\) 0 0
\(691\) −7.27863 27.1642i −0.276892 1.03337i −0.954563 0.298010i \(-0.903677\pi\)
0.677671 0.735365i \(-0.262989\pi\)
\(692\) −0.907533 0.523964i −0.0344992 0.0199181i
\(693\) 0 0
\(694\) 1.14276 + 1.14276i 0.0433786 + 0.0433786i
\(695\) −9.56691 + 35.7042i −0.362894 + 1.35434i
\(696\) 0 0
\(697\) −34.4683 + 34.4683i −1.30558 + 1.30558i
\(698\) 1.54794 0.893701i 0.0585902 0.0338271i
\(699\) 0 0
\(700\) −0.770936 + 9.86551i −0.0291386 + 0.372881i
\(701\) 41.8411i 1.58032i −0.612904 0.790158i \(-0.709999\pi\)
0.612904 0.790158i \(-0.290001\pi\)
\(702\) 0 0
\(703\) 12.0740i 0.455378i
\(704\) −14.5131 + 3.88876i −0.546981 + 0.146563i
\(705\) 0 0
\(706\) 0.919455 + 1.59254i 0.0346041 + 0.0599361i
\(707\) −38.2210 + 18.2565i −1.43745 + 0.686606i
\(708\) 0 0
\(709\) −36.1012 9.67328i −1.35581 0.363288i −0.493532 0.869727i \(-0.664295\pi\)
−0.862275 + 0.506440i \(0.830961\pi\)
\(710\) 0.693302 + 0.693302i 0.0260192 + 0.0260192i
\(711\) 0 0
\(712\) −1.87012 + 3.23914i −0.0700857 + 0.121392i
\(713\) −26.4417 + 7.08503i −0.990249 + 0.265336i
\(714\) 0 0
\(715\) −10.9008 + 6.04011i −0.407665 + 0.225887i
\(716\) 16.4273 0.613918
\(717\) 0 0
\(718\) 0.387018 0.670334i 0.0144434 0.0250166i
\(719\) −14.7469 25.5425i −0.549968 0.952573i −0.998276 0.0586936i \(-0.981307\pi\)
0.448308 0.893879i \(-0.352027\pi\)
\(720\) 0 0
\(721\) 25.7718 + 17.6915i 0.959794 + 0.658866i
\(722\) −0.0885265 0.0237206i −0.00329461 0.000882789i
\(723\) 0 0
\(724\) −25.7667 + 14.8764i −0.957612 + 0.552878i
\(725\) 11.6740 + 6.74000i 0.433562 + 0.250317i
\(726\) 0 0
\(727\) −3.04387 −0.112891 −0.0564455 0.998406i \(-0.517977\pi\)
−0.0564455 + 0.998406i \(0.517977\pi\)
\(728\) −1.55323 + 4.15929i −0.0575665 + 0.154154i
\(729\) 0 0
\(730\) 0.196682 0.0527007i 0.00727952 0.00195054i
\(731\) −6.64113 3.83426i −0.245631 0.141815i
\(732\) 0 0
\(733\) 0.928339 0.928339i 0.0342890 0.0342890i −0.689754 0.724043i \(-0.742282\pi\)
0.724043 + 0.689754i \(0.242282\pi\)
\(734\) 3.70542 + 0.992865i 0.136770 + 0.0366473i
\(735\) 0 0
\(736\) 6.27914 6.27914i 0.231452 0.231452i
\(737\) −0.0192931 0.0334166i −0.000710669 0.00123091i
\(738\) 0 0
\(739\) −7.76649 28.9849i −0.285695 1.06623i −0.948330 0.317285i \(-0.897229\pi\)
0.662635 0.748942i \(-0.269438\pi\)
\(740\) 9.92129 0.364714
\(741\) 0 0
\(742\) 1.24590 + 0.440421i 0.0457385 + 0.0161684i
\(743\) 39.4397 10.5678i 1.44690 0.387697i 0.551958 0.833872i \(-0.313881\pi\)
0.894946 + 0.446175i \(0.147214\pi\)
\(744\) 0 0
\(745\) 13.6453 + 23.6344i 0.499926 + 0.865897i
\(746\) −0.650528 0.650528i −0.0238175 0.0238175i
\(747\) 0 0
\(748\) 4.30591 16.0699i 0.157440 0.587573i
\(749\) −19.0779 + 9.11265i −0.697090 + 0.332969i
\(750\) 0 0
\(751\) −31.0690 17.9377i −1.13372 0.654556i −0.188856 0.982005i \(-0.560478\pi\)
−0.944869 + 0.327448i \(0.893811\pi\)
\(752\) 25.0859 6.72175i 0.914789 0.245117i
\(753\) 0 0
\(754\) 2.09314 + 2.16820i 0.0762277 + 0.0789614i
\(755\) 7.80507i 0.284056i
\(756\) 0 0
\(757\) −0.439138 + 0.760610i −0.0159607 + 0.0276448i −0.873895 0.486114i \(-0.838414\pi\)
0.857935 + 0.513759i \(0.171747\pi\)
\(758\) 1.13152 0.653282i 0.0410986 0.0237283i
\(759\) 0 0
\(760\) −0.907679 + 3.38750i −0.0329250 + 0.122878i
\(761\) 9.46773 35.3341i 0.343205 1.28086i −0.551490 0.834181i \(-0.685941\pi\)
0.894695 0.446677i \(-0.147393\pi\)
\(762\) 0 0
\(763\) 5.98855 + 32.2118i 0.216800 + 1.16614i
\(764\) 24.9938 + 14.4302i 0.904245 + 0.522066i
\(765\) 0 0
\(766\) −0.281440 −0.0101689
\(767\) 4.22535 + 4.37687i 0.152568 + 0.158040i
\(768\) 0 0
\(769\) 7.85943 + 29.3318i 0.283418 + 1.05773i 0.949987 + 0.312288i \(0.101096\pi\)
−0.666569 + 0.745443i \(0.732238\pi\)
\(770\) −0.693860 0.811496i −0.0250050 0.0292443i
\(771\) 0 0
\(772\) −27.4985 27.4985i −0.989692 0.989692i
\(773\) 19.1599 + 5.13389i 0.689134 + 0.184653i 0.586359 0.810052i \(-0.300561\pi\)
0.102776 + 0.994705i \(0.467228\pi\)
\(774\) 0 0
\(775\) −5.69824 5.69824i −0.204687 0.204687i
\(776\) −5.95369 + 3.43737i −0.213725 + 0.123394i
\(777\) 0 0
\(778\) 0.508297 + 1.89699i 0.0182233 + 0.0680104i
\(779\) 48.6290i 1.74231i
\(780\) 0 0
\(781\) −9.31209 −0.333213
\(782\) 0.826882 + 3.08596i 0.0295692 + 0.110354i
\(783\) 0 0
\(784\) 27.0958 + 4.26080i 0.967708 + 0.152171i
\(785\) 8.65231 + 8.65231i 0.308814 + 0.308814i
\(786\) 0 0
\(787\) 2.27486 8.48989i 0.0810900 0.302632i −0.913455 0.406940i \(-0.866596\pi\)
0.994545 + 0.104308i \(0.0332626\pi\)
\(788\) −30.5620 + 30.5620i −1.08873 + 1.08873i
\(789\) 0 0
\(790\) −0.611921 + 1.05988i −0.0217712 + 0.0377087i
\(791\) −1.76118 + 22.5375i −0.0626204 + 0.801340i
\(792\) 0 0
\(793\) −0.195750 + 11.1127i −0.00695128 + 0.394624i
\(794\) 2.74663i 0.0974743i
\(795\) 0 0
\(796\) 33.1686 + 19.1499i 1.17563 + 0.678750i
\(797\) −12.3887 21.4579i −0.438832 0.760079i 0.558768 0.829324i \(-0.311274\pi\)
−0.997600 + 0.0692450i \(0.977941\pi\)
\(798\) 0 0
\(799\) −7.33886 + 27.3890i −0.259630 + 0.968953i
\(800\) 2.52505 + 0.676585i 0.0892739 + 0.0239209i
\(801\) 0 0
\(802\) −0.503695 0.872425i −0.0177861 0.0308064i
\(803\) −0.966941 + 1.67479i −0.0341226 + 0.0591021i
\(804\) 0 0
\(805\) −28.1693 9.95773i −0.992838 0.350964i
\(806\) −0.873195 1.57588i −0.0307570 0.0555080i
\(807\) 0 0
\(808\) 1.92852 + 7.19733i 0.0678450 + 0.253201i
\(809\) 3.75373 6.50166i 0.131974 0.228586i −0.792463 0.609920i \(-0.791202\pi\)
0.924438 + 0.381334i \(0.124535\pi\)
\(810\) 0 0
\(811\) 32.4572 32.4572i 1.13973 1.13973i 0.151229 0.988499i \(-0.451677\pi\)
0.988499 0.151229i \(-0.0483229\pi\)
\(812\) 21.2934 31.0188i 0.747250 1.08855i
\(813\) 0 0
\(814\) 0.457239 0.457239i 0.0160262 0.0160262i
\(815\) −19.7777 + 11.4186i −0.692781 + 0.399977i
\(816\) 0 0
\(817\) −7.38949 + 1.98001i −0.258526 + 0.0692717i
\(818\) −1.56868 −0.0548475
\(819\) 0 0
\(820\) −39.9589 −1.39543
\(821\) −30.4367 + 8.15549i −1.06225 + 0.284629i −0.747305 0.664482i \(-0.768652\pi\)
−0.314944 + 0.949110i \(0.601986\pi\)
\(822\) 0 0
\(823\) 27.4139 15.8274i 0.955590 0.551710i 0.0607767 0.998151i \(-0.480642\pi\)
0.894813 + 0.446442i \(0.147309\pi\)
\(824\) 3.88839 3.88839i 0.135459 0.135459i
\(825\) 0 0
\(826\) −0.294977 + 0.429704i −0.0102636 + 0.0149513i
\(827\) −25.1824 + 25.1824i −0.875678 + 0.875678i −0.993084 0.117406i \(-0.962542\pi\)
0.117406 + 0.993084i \(0.462542\pi\)
\(828\) 0 0
\(829\) 1.05432 1.82614i 0.0366182 0.0634246i −0.847135 0.531377i \(-0.821675\pi\)
0.883754 + 0.467952i \(0.155008\pi\)
\(830\) 0.745200 + 2.78112i 0.0258663 + 0.0965342i
\(831\) 0 0
\(832\) −23.7169 14.2557i −0.822234 0.494227i
\(833\) −18.8205 + 23.2940i −0.652090 + 0.807091i
\(834\) 0 0
\(835\) 0.822960 1.42541i 0.0284797 0.0493283i
\(836\) −8.29847 14.3734i −0.287009 0.497114i
\(837\) 0 0
\(838\) 1.96001 + 0.525184i 0.0677076 + 0.0181422i
\(839\) 6.14897 22.9483i 0.212286 0.792262i −0.774818 0.632184i \(-0.782159\pi\)
0.987104 0.160078i \(-0.0511746\pi\)
\(840\) 0 0
\(841\) −11.1262 19.2712i −0.383663 0.664525i
\(842\) −3.03847 1.75426i −0.104713 0.0604558i
\(843\) 0 0
\(844\) 6.00398i 0.206666i
\(845\) −21.9468 6.71748i −0.754992 0.231088i
\(846\) 0 0
\(847\) −18.9052 1.47734i −0.649591 0.0507620i
\(848\) −8.38131 + 14.5169i −0.287815 + 0.498511i
\(849\) 0 0
\(850\) −0.665032 + 0.665032i −0.0228104 + 0.0228104i
\(851\) 4.68331 17.4783i 0.160542 0.599150i
\(852\) 0 0
\(853\) −4.73993 4.73993i −0.162292 0.162292i 0.621289 0.783581i \(-0.286609\pi\)
−0.783581 + 0.621289i \(0.786609\pi\)
\(854\) −0.936173 + 0.174046i −0.0320352 + 0.00595572i
\(855\) 0 0
\(856\) 0.962612 + 3.59252i 0.0329014 + 0.122790i
\(857\) 11.3220 0.386751 0.193376 0.981125i \(-0.438056\pi\)
0.193376 + 0.981125i \(0.438056\pi\)
\(858\) 0 0
\(859\) 48.4452i 1.65293i −0.562988 0.826465i \(-0.690348\pi\)
0.562988 0.826465i \(-0.309652\pi\)
\(860\) −1.62699 6.07202i −0.0554800 0.207054i
\(861\) 0 0
\(862\) −2.43991 + 1.40868i −0.0831038 + 0.0479800i
\(863\) 13.2582 + 13.2582i 0.451313 + 0.451313i 0.895790 0.444477i \(-0.146610\pi\)
−0.444477 + 0.895790i \(0.646610\pi\)
\(864\) 0 0
\(865\) 0.899682 + 0.241069i 0.0305901 + 0.00819660i
\(866\) −0.375015 0.375015i −0.0127435 0.0127435i
\(867\) 0 0
\(868\) −17.0951 + 14.6170i −0.580246 + 0.496133i
\(869\) −3.00837 11.2274i −0.102052 0.380863i
\(870\) 0 0
\(871\) 0.0195988 0.0683079i 0.000664080 0.00231452i
\(872\) 5.76357 0.195179
\(873\) 0 0
\(874\) 2.76018 + 1.59359i 0.0933645 + 0.0539040i
\(875\) −5.87658 31.6095i −0.198665 1.06860i
\(876\) 0 0
\(877\) 1.83431 6.84575i 0.0619403 0.231164i −0.928015 0.372542i \(-0.878486\pi\)
0.989956 + 0.141377i \(0.0451530\pi\)
\(878\) 0.513728 1.91726i 0.0173375 0.0647044i
\(879\) 0 0
\(880\) 11.7291 6.77183i 0.395389 0.228278i
\(881\) 12.1808 21.0977i 0.410380 0.710800i −0.584551 0.811357i \(-0.698729\pi\)
0.994931 + 0.100557i \(0.0320626\pi\)
\(882\) 0 0
\(883\) 4.51673i 0.152000i 0.997108 + 0.0760000i \(0.0242149\pi\)
−0.997108 + 0.0760000i \(0.975785\pi\)
\(884\) 26.8006 14.8502i 0.901401 0.499467i
\(885\) 0 0
\(886\) 4.12943 1.10648i 0.138731 0.0371729i
\(887\) −38.3035 22.1145i −1.28611 0.742533i −0.308148 0.951338i \(-0.599709\pi\)
−0.977957 + 0.208805i \(0.933042\pi\)
\(888\) 0 0
\(889\) 6.97202 + 14.5963i 0.233834 + 0.489545i
\(890\) 0.428738 1.60007i 0.0143713 0.0536346i
\(891\) 0 0
\(892\) −6.17928 6.17928i −0.206898 0.206898i
\(893\) 14.1437 + 24.4976i 0.473300 + 0.819780i
\(894\) 0 0
\(895\) −14.1034 + 3.77900i −0.471426 + 0.126318i
\(896\) 3.23856 9.16152i 0.108193 0.306065i
\(897\) 0 0
\(898\) 3.95832 0.132091
\(899\) 7.93007 + 29.5954i 0.264483 + 0.987063i
\(900\) 0 0
\(901\) −9.15079 15.8496i −0.304857 0.528028i
\(902\) −1.84157 + 1.84157i −0.0613176 + 0.0613176i
\(903\) 0 0
\(904\) 3.84122 + 1.02925i 0.127757 + 0.0342324i
\(905\) 18.6994 18.6994i 0.621589 0.621589i
\(906\) 0 0
\(907\) 29.3466 + 16.9433i 0.974439 + 0.562593i 0.900587 0.434676i \(-0.143137\pi\)
0.0738526 + 0.997269i \(0.476471\pi\)
\(908\) −7.86438 + 2.10725i −0.260989 + 0.0699317i
\(909\) 0 0
\(910\) 0.187697 1.95739i 0.00622209 0.0648868i
\(911\) −4.66390 −0.154522 −0.0772610 0.997011i \(-0.524617\pi\)
−0.0772610 + 0.997011i \(0.524617\pi\)
\(912\) 0 0
\(913\) −23.6819 13.6728i −0.783757 0.452502i
\(914\) −0.228791 + 0.132092i −0.00756772 + 0.00436923i
\(915\) 0 0
\(916\) −26.0500 6.98007i −0.860716 0.230628i
\(917\) −8.63132 + 12.5736i −0.285031 + 0.415216i
\(918\) 0 0
\(919\) −12.0900 20.9405i −0.398812 0.690763i 0.594767 0.803898i \(-0.297244\pi\)
−0.993580 + 0.113135i \(0.963911\pi\)
\(920\) −2.62793 + 4.55170i −0.0866402 + 0.150065i
\(921\) 0 0
\(922\) 2.96686 0.0977084
\(923\) −11.9115 12.3386i −0.392070 0.406131i
\(924\) 0 0
\(925\) 5.14530 1.37868i 0.169177 0.0453307i
\(926\) −1.86798 + 3.23543i −0.0613856 + 0.106323i
\(927\) 0 0
\(928\) −7.02806 7.02806i −0.230708 0.230708i
\(929\) 15.0006 + 4.01941i 0.492155 + 0.131872i 0.496357 0.868119i \(-0.334671\pi\)
−0.00420200 + 0.999991i \(0.501338\pi\)
\(930\) 0 0
\(931\) 3.15573 + 29.7082i 0.103425 + 0.973647i
\(932\) −16.2386 28.1261i −0.531913 0.921300i
\(933\) 0 0
\(934\) 1.27369 0.341285i 0.0416765 0.0111672i
\(935\) 14.7871i 0.483589i
\(936\) 0 0
\(937\) 25.4720i 0.832134i −0.909334 0.416067i \(-0.863408\pi\)
0.909334 0.416067i \(-0.136592\pi\)
\(938\) 0.00606980 0.000474322i 0.000198186 1.54872e-5i
\(939\) 0 0
\(940\) −20.1299 + 11.6220i −0.656565 + 0.379068i
\(941\) 12.6726 12.6726i 0.413116 0.413116i −0.469706 0.882823i \(-0.655640\pi\)
0.882823 + 0.469706i \(0.155640\pi\)
\(942\) 0 0
\(943\) −18.8625 + 70.3957i −0.614246 + 2.29240i
\(944\) −4.67503 4.67503i −0.152159 0.152159i
\(945\) 0 0
\(946\) −0.354822 0.204856i −0.0115362 0.00666046i
\(947\) −3.21690 12.0056i −0.104535 0.390130i 0.893757 0.448552i \(-0.148060\pi\)
−0.998292 + 0.0584214i \(0.981393\pi\)
\(948\) 0 0
\(949\) −3.45597 + 0.861083i −0.112185 + 0.0279519i
\(950\) 0.938247i 0.0304408i
\(951\) 0 0
\(952\) 3.42356 + 4.00398i 0.110958 + 0.129770i
\(953\) −25.0716 + 14.4751i −0.812147 + 0.468893i −0.847701 0.530474i \(-0.822014\pi\)
0.0355538 + 0.999368i \(0.488680\pi\)
\(954\) 0 0
\(955\) −24.7776 6.63914i −0.801785 0.214838i
\(956\) 16.5925 + 4.44594i 0.536639 + 0.143792i
\(957\) 0 0
\(958\) −2.02778 + 1.17074i −0.0655147 + 0.0378249i
\(959\) −10.7904 12.6198i −0.348441 0.407514i
\(960\) 0 0
\(961\) 12.6833i 0.409139i
\(962\) 1.19072 + 0.0209745i 0.0383903 + 0.000676243i
\(963\) 0 0
\(964\) 6.90512 + 25.7703i 0.222399 + 0.830004i
\(965\) 29.9342 + 17.2825i 0.963617 + 0.556344i
\(966\) 0 0
\(967\) 20.8937 + 20.8937i 0.671895 + 0.671895i 0.958153 0.286258i \(-0.0924113\pi\)
−0.286258 + 0.958153i \(0.592411\pi\)
\(968\) −0.863372 + 3.22215i −0.0277498 + 0.103564i
\(969\) 0 0
\(970\) 2.15297 2.15297i 0.0691276 0.0691276i
\(971\) 35.5507 20.5252i 1.14088 0.658685i 0.194229 0.980956i \(-0.437780\pi\)
0.946647 + 0.322271i \(0.104446\pi\)
\(972\) 0 0
\(973\) 55.2241 + 4.31546i 1.77040 + 0.138347i
\(974\) 3.66794i 0.117528i
\(975\) 0 0
\(976\) 12.0788i 0.386633i
\(977\) 22.0546 5.90951i 0.705589 0.189062i 0.111856 0.993724i \(-0.464320\pi\)
0.593733 + 0.804662i \(0.297654\pi\)
\(978\) 0 0
\(979\) 7.86639 + 13.6250i 0.251411 + 0.435457i
\(980\) −24.4115 + 2.59309i −0.779798 + 0.0828334i
\(981\) 0 0
\(982\) 2.19217 + 0.587390i 0.0699549 + 0.0187444i
\(983\) 21.0430 + 21.0430i 0.671167 + 0.671167i 0.957985 0.286818i \(-0.0925976\pi\)
−0.286818 + 0.957985i \(0.592598\pi\)
\(984\) 0 0
\(985\) 19.2080 33.2692i 0.612017 1.06004i
\(986\) 3.45403 0.925505i 0.109999 0.0294741i
\(987\) 0 0
\(988\) 8.42998 29.3811i 0.268193 0.934737i
\(989\) −11.4651 −0.364569
\(990\) 0 0
\(991\) 1.24883 2.16303i 0.0396703 0.0687110i −0.845509 0.533962i \(-0.820703\pi\)
0.885179 + 0.465251i \(0.154036\pi\)
\(992\) 2.97089 + 5.14574i 0.0943259 + 0.163377i
\(993\) 0 0
\(994\) 0.831554 1.21136i 0.0263753 0.0384219i
\(995\) −32.8817 8.81062i −1.04242 0.279315i
\(996\) 0 0
\(997\) −5.16724 + 2.98331i −0.163648 + 0.0944823i −0.579587 0.814910i \(-0.696786\pi\)
0.415939 + 0.909392i \(0.363453\pi\)
\(998\) 1.68806 + 0.974599i 0.0534345 + 0.0308504i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.fm.g.748.4 32
3.2 odd 2 91.2.bc.a.20.5 32
7.6 odd 2 inner 819.2.fm.g.748.3 32
13.2 odd 12 inner 819.2.fm.g.496.3 32
21.2 odd 6 637.2.bb.b.423.4 32
21.5 even 6 637.2.bb.b.423.3 32
21.11 odd 6 637.2.x.b.215.4 32
21.17 even 6 637.2.x.b.215.3 32
21.20 even 2 91.2.bc.a.20.6 yes 32
39.2 even 12 91.2.bc.a.41.6 yes 32
91.41 even 12 inner 819.2.fm.g.496.4 32
273.2 even 12 637.2.x.b.80.4 32
273.41 odd 12 91.2.bc.a.41.5 yes 32
273.80 odd 12 637.2.bb.b.509.4 32
273.158 even 12 637.2.bb.b.509.3 32
273.236 odd 12 637.2.x.b.80.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.bc.a.20.5 32 3.2 odd 2
91.2.bc.a.20.6 yes 32 21.20 even 2
91.2.bc.a.41.5 yes 32 273.41 odd 12
91.2.bc.a.41.6 yes 32 39.2 even 12
637.2.x.b.80.3 32 273.236 odd 12
637.2.x.b.80.4 32 273.2 even 12
637.2.x.b.215.3 32 21.17 even 6
637.2.x.b.215.4 32 21.11 odd 6
637.2.bb.b.423.3 32 21.5 even 6
637.2.bb.b.423.4 32 21.2 odd 6
637.2.bb.b.509.3 32 273.158 even 12
637.2.bb.b.509.4 32 273.80 odd 12
819.2.fm.g.496.3 32 13.2 odd 12 inner
819.2.fm.g.496.4 32 91.41 even 12 inner
819.2.fm.g.748.3 32 7.6 odd 2 inner
819.2.fm.g.748.4 32 1.1 even 1 trivial