Properties

Label 637.2.bb.b.423.4
Level $637$
Weight $2$
Character 637.423
Analytic conductor $5.086$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(227,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.227");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 423.4
Character \(\chi\) \(=\) 637.423
Dual form 637.2.bb.b.509.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0825572 + 0.0825572i) q^{2} +(2.25055 - 1.29935i) q^{3} -1.98637i q^{4} +(1.70537 + 0.456951i) q^{5} +(0.293070 + 0.0785278i) q^{6} +(0.329103 - 0.329103i) q^{8} +(1.87664 - 3.25044i) q^{9} +(0.103066 + 0.178515i) q^{10} +(1.89103 + 0.506699i) q^{11} +(-2.58100 - 4.47042i) q^{12} +(-1.85749 + 3.09026i) q^{13} +(4.43175 - 1.18748i) q^{15} -3.91840 q^{16} +4.27814 q^{17} +(0.423277 - 0.113417i) q^{18} +(-1.10462 - 4.12248i) q^{19} +(0.907674 - 3.38749i) q^{20} +(0.114286 + 0.197949i) q^{22} +6.39620i q^{23} +(0.313041 - 1.16828i) q^{24} +(-1.63066 - 0.941462i) q^{25} +(-0.408473 + 0.101774i) q^{26} -1.95756i q^{27} +(-3.57954 + 6.19995i) q^{29} +(0.463908 + 0.267837i) q^{30} +(-1.10769 - 4.13397i) q^{31} +(-0.981699 - 0.981699i) q^{32} +(4.91422 - 1.31676i) q^{33} +(0.353191 + 0.353191i) q^{34} +(-6.45657 - 3.72770i) q^{36} +(-2.00041 + 2.00041i) q^{37} +(0.249147 - 0.431534i) q^{38} +(-0.165023 + 9.36832i) q^{39} +(0.711626 - 0.410857i) q^{40} +(-2.94901 - 11.0059i) q^{41} +(-1.55234 + 0.896243i) q^{43} +(1.00649 - 3.75627i) q^{44} +(4.68565 - 4.68565i) q^{45} +(-0.528052 + 0.528052i) q^{46} +(-1.71543 + 6.40208i) q^{47} +(-8.81854 + 5.09139i) q^{48} +(-0.0568982 - 0.212347i) q^{50} +(9.62816 - 5.55882i) q^{51} +(6.13840 + 3.68966i) q^{52} +(-2.13896 + 3.70479i) q^{53} +(0.161611 - 0.161611i) q^{54} +(2.99335 + 1.72821i) q^{55} +(-7.84255 - 7.84255i) q^{57} +(-0.807367 + 0.216333i) q^{58} +(-1.19310 - 1.19310i) q^{59} +(-2.35878 - 8.80308i) q^{60} +(-2.66960 - 1.54129i) q^{61} +(0.249841 - 0.432737i) q^{62} +7.67470i q^{64} +(-4.57980 + 4.42125i) q^{65} +(0.514413 + 0.296996i) q^{66} +(0.00510122 - 0.0190380i) q^{67} -8.49797i q^{68} +(8.31093 + 14.3949i) q^{69} +(1.23109 - 4.59449i) q^{71} +(-0.452121 - 1.68734i) q^{72} +(-0.954158 + 0.255666i) q^{73} -0.330297 q^{74} -4.89317 q^{75} +(-8.18877 + 2.19417i) q^{76} +(-0.787046 + 0.759799i) q^{78} +(2.96860 + 5.14176i) q^{79} +(-6.68230 - 1.79052i) q^{80} +(3.08636 + 5.34573i) q^{81} +(0.665151 - 1.15208i) q^{82} +(9.87683 - 9.87683i) q^{83} +(7.29580 + 1.95490i) q^{85} +(-0.202148 - 0.0541654i) q^{86} +18.6044i q^{87} +(0.789099 - 0.455587i) q^{88} +(5.68247 + 5.68247i) q^{89} +0.773669 q^{90} +12.7052 q^{92} +(-7.86441 - 7.86441i) q^{93} +(-0.670159 + 0.386917i) q^{94} -7.53509i q^{95} +(-3.48493 - 0.933785i) q^{96} +(14.2676 + 3.82300i) q^{97} +(5.19577 - 5.19577i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} - 16 q^{8} + 8 q^{9} - 16 q^{11} - 8 q^{15} - 24 q^{16} + 68 q^{18} + 4 q^{22} + 4 q^{29} - 12 q^{30} - 68 q^{32} - 8 q^{37} - 48 q^{43} + 60 q^{44} + 24 q^{46} - 44 q^{50} - 12 q^{51} - 36 q^{53}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0825572 + 0.0825572i 0.0583768 + 0.0583768i 0.735692 0.677316i \(-0.236857\pi\)
−0.677316 + 0.735692i \(0.736857\pi\)
\(3\) 2.25055 1.29935i 1.29935 0.750182i 0.319062 0.947734i \(-0.396632\pi\)
0.980292 + 0.197552i \(0.0632990\pi\)
\(4\) 1.98637i 0.993184i
\(5\) 1.70537 + 0.456951i 0.762663 + 0.204355i 0.619128 0.785290i \(-0.287486\pi\)
0.143535 + 0.989645i \(0.454153\pi\)
\(6\) 0.293070 + 0.0785278i 0.119645 + 0.0320589i
\(7\) 0 0
\(8\) 0.329103 0.329103i 0.116356 0.116356i
\(9\) 1.87664 3.25044i 0.625547 1.08348i
\(10\) 0.103066 + 0.178515i 0.0325922 + 0.0564514i
\(11\) 1.89103 + 0.506699i 0.570166 + 0.152775i 0.532373 0.846510i \(-0.321301\pi\)
0.0377930 + 0.999286i \(0.487967\pi\)
\(12\) −2.58100 4.47042i −0.745069 1.29050i
\(13\) −1.85749 + 3.09026i −0.515175 + 0.857085i
\(14\) 0 0
\(15\) 4.43175 1.18748i 1.14427 0.306607i
\(16\) −3.91840 −0.979599
\(17\) 4.27814 1.03760 0.518801 0.854895i \(-0.326379\pi\)
0.518801 + 0.854895i \(0.326379\pi\)
\(18\) 0.423277 0.113417i 0.0997674 0.0267326i
\(19\) −1.10462 4.12248i −0.253416 0.945762i −0.968965 0.247199i \(-0.920490\pi\)
0.715549 0.698563i \(-0.246177\pi\)
\(20\) 0.907674 3.38749i 0.202962 0.757465i
\(21\) 0 0
\(22\) 0.114286 + 0.197949i 0.0243659 + 0.0422030i
\(23\) 6.39620i 1.33370i 0.745192 + 0.666850i \(0.232358\pi\)
−0.745192 + 0.666850i \(0.767642\pi\)
\(24\) 0.313041 1.16828i 0.0638992 0.238475i
\(25\) −1.63066 0.941462i −0.326132 0.188292i
\(26\) −0.408473 + 0.101774i −0.0801081 + 0.0199596i
\(27\) 1.95756i 0.376733i
\(28\) 0 0
\(29\) −3.57954 + 6.19995i −0.664704 + 1.15130i 0.314661 + 0.949204i \(0.398109\pi\)
−0.979365 + 0.202097i \(0.935224\pi\)
\(30\) 0.463908 + 0.267837i 0.0846976 + 0.0489002i
\(31\) −1.10769 4.13397i −0.198948 0.742483i −0.991210 0.132302i \(-0.957763\pi\)
0.792262 0.610181i \(-0.208903\pi\)
\(32\) −0.981699 0.981699i −0.173541 0.173541i
\(33\) 4.91422 1.31676i 0.855456 0.229219i
\(34\) 0.353191 + 0.353191i 0.0605718 + 0.0605718i
\(35\) 0 0
\(36\) −6.45657 3.72770i −1.07609 0.621284i
\(37\) −2.00041 + 2.00041i −0.328866 + 0.328866i −0.852155 0.523289i \(-0.824705\pi\)
0.523289 + 0.852155i \(0.324705\pi\)
\(38\) 0.249147 0.431534i 0.0404169 0.0700041i
\(39\) −0.165023 + 9.36832i −0.0264248 + 1.50013i
\(40\) 0.711626 0.410857i 0.112518 0.0649623i
\(41\) −2.94901 11.0059i −0.460558 1.71883i −0.671212 0.741266i \(-0.734226\pi\)
0.210654 0.977561i \(-0.432441\pi\)
\(42\) 0 0
\(43\) −1.55234 + 0.896243i −0.236730 + 0.136676i −0.613673 0.789561i \(-0.710309\pi\)
0.376943 + 0.926236i \(0.376975\pi\)
\(44\) 1.00649 3.75627i 0.151734 0.566279i
\(45\) 4.68565 4.68565i 0.698496 0.698496i
\(46\) −0.528052 + 0.528052i −0.0778571 + 0.0778571i
\(47\) −1.71543 + 6.40208i −0.250222 + 0.933839i 0.720465 + 0.693491i \(0.243928\pi\)
−0.970687 + 0.240348i \(0.922738\pi\)
\(48\) −8.81854 + 5.09139i −1.27285 + 0.734878i
\(49\) 0 0
\(50\) −0.0568982 0.212347i −0.00804663 0.0300304i
\(51\) 9.62816 5.55882i 1.34821 0.778390i
\(52\) 6.13840 + 3.68966i 0.851243 + 0.511664i
\(53\) −2.13896 + 3.70479i −0.293809 + 0.508893i −0.974707 0.223486i \(-0.928256\pi\)
0.680898 + 0.732378i \(0.261590\pi\)
\(54\) 0.161611 0.161611i 0.0219925 0.0219925i
\(55\) 2.99335 + 1.72821i 0.403624 + 0.233032i
\(56\) 0 0
\(57\) −7.84255 7.84255i −1.03877 1.03877i
\(58\) −0.807367 + 0.216333i −0.106013 + 0.0284060i
\(59\) −1.19310 1.19310i −0.155328 0.155328i 0.625165 0.780493i \(-0.285032\pi\)
−0.780493 + 0.625165i \(0.785032\pi\)
\(60\) −2.35878 8.80308i −0.304517 1.13647i
\(61\) −2.66960 1.54129i −0.341807 0.197342i 0.319264 0.947666i \(-0.396564\pi\)
−0.661071 + 0.750323i \(0.729898\pi\)
\(62\) 0.249841 0.432737i 0.0317298 0.0549577i
\(63\) 0 0
\(64\) 7.67470i 0.959338i
\(65\) −4.57980 + 4.42125i −0.568054 + 0.548388i
\(66\) 0.514413 + 0.296996i 0.0633198 + 0.0365577i
\(67\) 0.00510122 0.0190380i 0.000623213 0.00232586i −0.965614 0.259982i \(-0.916283\pi\)
0.966237 + 0.257656i \(0.0829501\pi\)
\(68\) 8.49797i 1.03053i
\(69\) 8.31093 + 14.3949i 1.00052 + 1.73295i
\(70\) 0 0
\(71\) 1.23109 4.59449i 0.146104 0.545266i −0.853600 0.520929i \(-0.825586\pi\)
0.999704 0.0243373i \(-0.00774758\pi\)
\(72\) −0.452121 1.68734i −0.0532830 0.198855i
\(73\) −0.954158 + 0.255666i −0.111676 + 0.0299234i −0.314224 0.949349i \(-0.601744\pi\)
0.202548 + 0.979272i \(0.435078\pi\)
\(74\) −0.330297 −0.0383962
\(75\) −4.89317 −0.565014
\(76\) −8.18877 + 2.19417i −0.939316 + 0.251689i
\(77\) 0 0
\(78\) −0.787046 + 0.759799i −0.0891154 + 0.0860303i
\(79\) 2.96860 + 5.14176i 0.333993 + 0.578493i 0.983291 0.182041i \(-0.0582704\pi\)
−0.649298 + 0.760534i \(0.724937\pi\)
\(80\) −6.68230 1.79052i −0.747104 0.200186i
\(81\) 3.08636 + 5.34573i 0.342929 + 0.593970i
\(82\) 0.665151 1.15208i 0.0734536 0.127225i
\(83\) 9.87683 9.87683i 1.08412 1.08412i 0.0880033 0.996120i \(-0.471951\pi\)
0.996120 0.0880033i \(-0.0280486\pi\)
\(84\) 0 0
\(85\) 7.29580 + 1.95490i 0.791340 + 0.212039i
\(86\) −0.202148 0.0541654i −0.0217982 0.00584081i
\(87\) 18.6044i 1.99460i
\(88\) 0.789099 0.455587i 0.0841183 0.0485657i
\(89\) 5.68247 + 5.68247i 0.602341 + 0.602341i 0.940933 0.338592i \(-0.109951\pi\)
−0.338592 + 0.940933i \(0.609951\pi\)
\(90\) 0.773669 0.0815519
\(91\) 0 0
\(92\) 12.7052 1.32461
\(93\) −7.86441 7.86441i −0.815501 0.815501i
\(94\) −0.670159 + 0.386917i −0.0691216 + 0.0399074i
\(95\) 7.53509i 0.773084i
\(96\) −3.48493 0.933785i −0.355680 0.0953041i
\(97\) 14.2676 + 3.82300i 1.44866 + 0.388167i 0.895557 0.444946i \(-0.146777\pi\)
0.553102 + 0.833113i \(0.313444\pi\)
\(98\) 0 0
\(99\) 5.19577 5.19577i 0.522194 0.522194i
\(100\) −1.87009 + 3.23909i −0.187009 + 0.323909i
\(101\) −8.00479 13.8647i −0.796506 1.37959i −0.921878 0.387480i \(-0.873346\pi\)
0.125372 0.992110i \(-0.459988\pi\)
\(102\) 1.25379 + 0.335953i 0.124144 + 0.0332643i
\(103\) 5.90755 + 10.2322i 0.582088 + 1.00821i 0.995232 + 0.0975405i \(0.0310976\pi\)
−0.413143 + 0.910666i \(0.635569\pi\)
\(104\) 0.405710 + 1.62832i 0.0397831 + 0.159670i
\(105\) 0 0
\(106\) −0.482444 + 0.129271i −0.0468591 + 0.0125559i
\(107\) 7.99112 0.772531 0.386265 0.922388i \(-0.373765\pi\)
0.386265 + 0.922388i \(0.373765\pi\)
\(108\) −3.88844 −0.374165
\(109\) 11.9616 3.20509i 1.14571 0.306992i 0.364465 0.931217i \(-0.381252\pi\)
0.781245 + 0.624225i \(0.214585\pi\)
\(110\) 0.104446 + 0.389799i 0.00995857 + 0.0371659i
\(111\) −1.90278 + 7.10127i −0.180604 + 0.674022i
\(112\) 0 0
\(113\) 4.27217 + 7.39961i 0.401892 + 0.696097i 0.993954 0.109795i \(-0.0350195\pi\)
−0.592063 + 0.805892i \(0.701686\pi\)
\(114\) 1.29492i 0.121280i
\(115\) −2.92275 + 10.9079i −0.272548 + 1.01716i
\(116\) 12.3154 + 7.11029i 1.14345 + 0.660174i
\(117\) 6.55887 + 11.8370i 0.606368 + 1.09433i
\(118\) 0.196998i 0.0181351i
\(119\) 0 0
\(120\) 1.06770 1.84931i 0.0974671 0.168818i
\(121\) −6.20705 3.58364i −0.564277 0.325785i
\(122\) −0.0931497 0.347640i −0.00843338 0.0314738i
\(123\) −20.9374 20.9374i −1.88786 1.88786i
\(124\) −8.21159 + 2.20029i −0.737422 + 0.197592i
\(125\) −8.59274 8.59274i −0.768558 0.768558i
\(126\) 0 0
\(127\) −5.29483 3.05697i −0.469840 0.271262i 0.246333 0.969185i \(-0.420774\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(128\) −2.59700 + 2.59700i −0.229545 + 0.229545i
\(129\) −2.32907 + 4.03408i −0.205064 + 0.355181i
\(130\) −0.743101 0.0130897i −0.0651743 0.00114804i
\(131\) 4.99207 2.88218i 0.436159 0.251817i −0.265808 0.964026i \(-0.585639\pi\)
0.701967 + 0.712209i \(0.252305\pi\)
\(132\) −2.61557 9.76146i −0.227657 0.849626i
\(133\) 0 0
\(134\) 0.00199287 0.00115058i 0.000172157 9.93951e-5i
\(135\) 0.894511 3.33836i 0.0769872 0.287320i
\(136\) 1.40795 1.40795i 0.120731 0.120731i
\(137\) 4.43760 4.43760i 0.379130 0.379130i −0.491658 0.870788i \(-0.663609\pi\)
0.870788 + 0.491658i \(0.163609\pi\)
\(138\) −0.502280 + 1.87453i −0.0427569 + 0.159571i
\(139\) −18.1314 + 10.4682i −1.53789 + 0.887900i −0.538927 + 0.842353i \(0.681170\pi\)
−0.998962 + 0.0455477i \(0.985497\pi\)
\(140\) 0 0
\(141\) 4.45791 + 16.6371i 0.375424 + 1.40110i
\(142\) 0.480944 0.277673i 0.0403599 0.0233018i
\(143\) −5.07839 + 4.90258i −0.424677 + 0.409974i
\(144\) −7.35343 + 12.7365i −0.612786 + 1.06138i
\(145\) −8.93750 + 8.93750i −0.742219 + 0.742219i
\(146\) −0.0998797 0.0576656i −0.00826610 0.00477244i
\(147\) 0 0
\(148\) 3.97356 + 3.97356i 0.326624 + 0.326624i
\(149\) −14.9308 + 4.00070i −1.22318 + 0.327750i −0.811921 0.583768i \(-0.801578\pi\)
−0.411260 + 0.911518i \(0.634911\pi\)
\(150\) −0.403966 0.403966i −0.0329837 0.0329837i
\(151\) 1.14419 + 4.27019i 0.0931131 + 0.347503i 0.996727 0.0808459i \(-0.0257622\pi\)
−0.903614 + 0.428349i \(0.859095\pi\)
\(152\) −1.72026 0.993190i −0.139531 0.0805583i
\(153\) 8.02854 13.9058i 0.649069 1.12422i
\(154\) 0 0
\(155\) 7.55609i 0.606920i
\(156\) 18.6089 + 0.327796i 1.48991 + 0.0262447i
\(157\) −6.00211 3.46532i −0.479020 0.276563i 0.240988 0.970528i \(-0.422529\pi\)
−0.720008 + 0.693966i \(0.755862\pi\)
\(158\) −0.179410 + 0.669569i −0.0142731 + 0.0532680i
\(159\) 11.1171i 0.881642i
\(160\) −1.22557 2.12274i −0.0968896 0.167818i
\(161\) 0 0
\(162\) −0.186527 + 0.696129i −0.0146550 + 0.0546931i
\(163\) 3.34785 + 12.4944i 0.262224 + 0.978634i 0.963928 + 0.266165i \(0.0857566\pi\)
−0.701703 + 0.712469i \(0.747577\pi\)
\(164\) −21.8617 + 5.85782i −1.70711 + 0.457419i
\(165\) 8.98224 0.699267
\(166\) 1.63081 0.126575
\(167\) −0.900490 + 0.241286i −0.0696820 + 0.0186712i −0.293492 0.955962i \(-0.594817\pi\)
0.223810 + 0.974633i \(0.428151\pi\)
\(168\) 0 0
\(169\) −6.09946 11.4803i −0.469189 0.883098i
\(170\) 0.440929 + 0.763712i 0.0338177 + 0.0585740i
\(171\) −15.4728 4.14593i −1.18324 0.317047i
\(172\) 1.78027 + 3.08352i 0.135744 + 0.235116i
\(173\) −0.263780 + 0.456880i −0.0200548 + 0.0347360i −0.875879 0.482531i \(-0.839717\pi\)
0.855824 + 0.517267i \(0.173051\pi\)
\(174\) −1.53592 + 1.53592i −0.116438 + 0.116438i
\(175\) 0 0
\(176\) −7.40979 1.98545i −0.558534 0.149659i
\(177\) −4.23538 1.13487i −0.318351 0.0853018i
\(178\) 0.938258i 0.0703254i
\(179\) −7.16206 + 4.13502i −0.535317 + 0.309066i −0.743179 0.669093i \(-0.766683\pi\)
0.207862 + 0.978158i \(0.433350\pi\)
\(180\) −9.30743 9.30743i −0.693735 0.693735i
\(181\) 14.9785 1.11334 0.556672 0.830732i \(-0.312078\pi\)
0.556672 + 0.830732i \(0.312078\pi\)
\(182\) 0 0
\(183\) −8.01075 −0.592171
\(184\) 2.10501 + 2.10501i 0.155183 + 0.155183i
\(185\) −4.32553 + 2.49734i −0.318019 + 0.183608i
\(186\) 1.29853i 0.0952126i
\(187\) 8.09007 + 2.16773i 0.591605 + 0.158520i
\(188\) 12.7169 + 3.40748i 0.927475 + 0.248516i
\(189\) 0 0
\(190\) 0.622076 0.622076i 0.0451301 0.0451301i
\(191\) 7.26461 12.5827i 0.525649 0.910450i −0.473905 0.880576i \(-0.657156\pi\)
0.999554 0.0298741i \(-0.00951063\pi\)
\(192\) 9.97216 + 17.2723i 0.719678 + 1.24652i
\(193\) −18.9107 5.06711i −1.36122 0.364738i −0.496957 0.867775i \(-0.665549\pi\)
−0.864265 + 0.503037i \(0.832216\pi\)
\(194\) 0.862280 + 1.49351i 0.0619081 + 0.107228i
\(195\) −4.56229 + 15.9010i −0.326712 + 1.13869i
\(196\) 0 0
\(197\) −21.0175 + 5.63163i −1.49744 + 0.401237i −0.912240 0.409655i \(-0.865649\pi\)
−0.585196 + 0.810892i \(0.698982\pi\)
\(198\) 0.857896 0.0609680
\(199\) 19.2813 1.36682 0.683408 0.730037i \(-0.260497\pi\)
0.683408 + 0.730037i \(0.260497\pi\)
\(200\) −0.846494 + 0.226817i −0.0598562 + 0.0160384i
\(201\) −0.0132566 0.0494742i −0.000935047 0.00348964i
\(202\) 0.483778 1.80548i 0.0340385 0.127033i
\(203\) 0 0
\(204\) −11.0419 19.1251i −0.773085 1.33902i
\(205\) 20.1166i 1.40500i
\(206\) −0.357029 + 1.33245i −0.0248754 + 0.0928363i
\(207\) 20.7905 + 12.0034i 1.44504 + 0.834292i
\(208\) 7.27838 12.1089i 0.504665 0.839600i
\(209\) 8.35542i 0.577957i
\(210\) 0 0
\(211\) 1.51130 2.61764i 0.104042 0.180206i −0.809304 0.587389i \(-0.800156\pi\)
0.913346 + 0.407184i \(0.133489\pi\)
\(212\) 7.35909 + 4.24877i 0.505424 + 0.291807i
\(213\) −3.19925 11.9397i −0.219209 0.818098i
\(214\) 0.659724 + 0.659724i 0.0450978 + 0.0450978i
\(215\) −3.05685 + 0.819079i −0.208475 + 0.0558607i
\(216\) −0.644241 0.644241i −0.0438350 0.0438350i
\(217\) 0 0
\(218\) 1.25212 + 0.722910i 0.0848040 + 0.0489616i
\(219\) −1.81518 + 1.81518i −0.122658 + 0.122658i
\(220\) 3.43287 5.94590i 0.231444 0.400873i
\(221\) −7.94661 + 13.2206i −0.534547 + 0.889313i
\(222\) −0.743349 + 0.429173i −0.0498903 + 0.0288042i
\(223\) 1.13865 + 4.24949i 0.0762495 + 0.284567i 0.993514 0.113712i \(-0.0362742\pi\)
−0.917264 + 0.398279i \(0.869608\pi\)
\(224\) 0 0
\(225\) −6.12033 + 3.53357i −0.408022 + 0.235571i
\(226\) −0.258193 + 0.963589i −0.0171747 + 0.0640970i
\(227\) 2.89832 2.89832i 0.192368 0.192368i −0.604351 0.796719i \(-0.706567\pi\)
0.796719 + 0.604351i \(0.206567\pi\)
\(228\) −15.5782 + 15.5782i −1.03169 + 1.03169i
\(229\) 3.51399 13.1144i 0.232211 0.866623i −0.747176 0.664627i \(-0.768591\pi\)
0.979386 0.201996i \(-0.0647428\pi\)
\(230\) −1.14182 + 0.659228i −0.0752892 + 0.0434682i
\(231\) 0 0
\(232\) 0.862385 + 3.21846i 0.0566183 + 0.211303i
\(233\) −14.1595 + 8.17501i −0.927622 + 0.535563i −0.886059 0.463573i \(-0.846567\pi\)
−0.0415633 + 0.999136i \(0.513234\pi\)
\(234\) −0.435746 + 1.51871i −0.0284856 + 0.0992811i
\(235\) −5.85088 + 10.1340i −0.381669 + 0.661071i
\(236\) −2.36993 + 2.36993i −0.154270 + 0.154270i
\(237\) 13.3619 + 7.71452i 0.867951 + 0.501112i
\(238\) 0 0
\(239\) 6.11495 + 6.11495i 0.395543 + 0.395543i 0.876658 0.481115i \(-0.159768\pi\)
−0.481115 + 0.876658i \(0.659768\pi\)
\(240\) −17.3653 + 4.65303i −1.12093 + 0.300352i
\(241\) 9.49730 + 9.49730i 0.611775 + 0.611775i 0.943408 0.331633i \(-0.107600\pi\)
−0.331633 + 0.943408i \(0.607600\pi\)
\(242\) −0.216581 0.808292i −0.0139224 0.0519590i
\(243\) 18.9779 + 10.9569i 1.21743 + 0.702885i
\(244\) −3.06158 + 5.30281i −0.195997 + 0.339478i
\(245\) 0 0
\(246\) 3.45707i 0.220414i
\(247\) 14.7914 + 4.24391i 0.941152 + 0.270034i
\(248\) −1.72505 0.995958i −0.109541 0.0632434i
\(249\) 9.39478 35.0618i 0.595370 2.22195i
\(250\) 1.41879i 0.0897319i
\(251\) −1.74301 3.01899i −0.110018 0.190557i 0.805759 0.592243i \(-0.201758\pi\)
−0.915777 + 0.401686i \(0.868424\pi\)
\(252\) 0 0
\(253\) −3.24095 + 12.0954i −0.203756 + 0.760430i
\(254\) −0.184751 0.689501i −0.0115923 0.0432631i
\(255\) 18.9596 5.08022i 1.18730 0.318136i
\(256\) 14.9206 0.932538
\(257\) −13.4479 −0.838858 −0.419429 0.907788i \(-0.637770\pi\)
−0.419429 + 0.907788i \(0.637770\pi\)
\(258\) −0.525324 + 0.140760i −0.0327052 + 0.00876334i
\(259\) 0 0
\(260\) 8.78223 + 9.09717i 0.544651 + 0.564183i
\(261\) 13.4350 + 23.2702i 0.831608 + 1.44039i
\(262\) 0.650076 + 0.174187i 0.0401618 + 0.0107613i
\(263\) −10.2679 17.7846i −0.633147 1.09664i −0.986904 0.161306i \(-0.948430\pi\)
0.353757 0.935337i \(-0.384904\pi\)
\(264\) 1.18394 2.05064i 0.0728663 0.126208i
\(265\) −5.34063 + 5.34063i −0.328072 + 0.328072i
\(266\) 0 0
\(267\) 20.1722 + 5.40513i 1.23452 + 0.330788i
\(268\) −0.0378165 0.0101329i −0.00231001 0.000618965i
\(269\) 10.7373i 0.654663i −0.944910 0.327332i \(-0.893851\pi\)
0.944910 0.327332i \(-0.106149\pi\)
\(270\) 0.349454 0.201757i 0.0212671 0.0122786i
\(271\) 1.05977 + 1.05977i 0.0643762 + 0.0643762i 0.738562 0.674186i \(-0.235505\pi\)
−0.674186 + 0.738562i \(0.735505\pi\)
\(272\) −16.7635 −1.01643
\(273\) 0 0
\(274\) 0.732712 0.0442647
\(275\) −2.60658 2.60658i −0.157183 0.157183i
\(276\) 28.5937 16.5086i 1.72114 0.993699i
\(277\) 4.71024i 0.283011i 0.989937 + 0.141506i \(0.0451943\pi\)
−0.989937 + 0.141506i \(0.954806\pi\)
\(278\) −2.36111 0.632656i −0.141610 0.0379442i
\(279\) −15.5160 4.15749i −0.928916 0.248902i
\(280\) 0 0
\(281\) 8.01227 8.01227i 0.477972 0.477972i −0.426511 0.904483i \(-0.640257\pi\)
0.904483 + 0.426511i \(0.140257\pi\)
\(282\) −1.00548 + 1.74155i −0.0598757 + 0.103708i
\(283\) −3.93934 6.82313i −0.234169 0.405593i 0.724862 0.688894i \(-0.241904\pi\)
−0.959031 + 0.283301i \(0.908570\pi\)
\(284\) −9.12636 2.44540i −0.541550 0.145108i
\(285\) −9.79075 16.9581i −0.579954 1.00451i
\(286\) −0.824001 0.0145147i −0.0487242 0.000858275i
\(287\) 0 0
\(288\) −5.03325 + 1.34865i −0.296587 + 0.0794703i
\(289\) 1.30249 0.0766172
\(290\) −1.47571 −0.0866567
\(291\) 37.0774 9.93487i 2.17352 0.582392i
\(292\) 0.507847 + 1.89531i 0.0297195 + 0.110915i
\(293\) 3.16216 11.8013i 0.184735 0.689442i −0.809952 0.586497i \(-0.800507\pi\)
0.994687 0.102945i \(-0.0328267\pi\)
\(294\) 0 0
\(295\) −1.48948 2.57986i −0.0867210 0.150205i
\(296\) 1.31669i 0.0765308i
\(297\) 0.991894 3.70180i 0.0575556 0.214800i
\(298\) −1.56293 0.902360i −0.0905383 0.0522723i
\(299\) −19.7659 11.8809i −1.14309 0.687089i
\(300\) 9.71963i 0.561163i
\(301\) 0 0
\(302\) −0.258073 + 0.446996i −0.0148504 + 0.0257217i
\(303\) −36.0303 20.8021i −2.06989 1.19505i
\(304\) 4.32832 + 16.1535i 0.248246 + 0.926468i
\(305\) −3.84835 3.84835i −0.220356 0.220356i
\(306\) 1.81084 0.485213i 0.103519 0.0277378i
\(307\) −7.97207 7.97207i −0.454990 0.454990i 0.442017 0.897007i \(-0.354263\pi\)
−0.897007 + 0.442017i \(0.854263\pi\)
\(308\) 0 0
\(309\) 26.5904 + 15.3520i 1.51268 + 0.873345i
\(310\) 0.623810 0.623810i 0.0354300 0.0354300i
\(311\) 6.52139 11.2954i 0.369794 0.640502i −0.619739 0.784808i \(-0.712762\pi\)
0.989533 + 0.144306i \(0.0460949\pi\)
\(312\) 3.02884 + 3.13746i 0.171474 + 0.177623i
\(313\) −3.09510 + 1.78696i −0.174945 + 0.101005i −0.584916 0.811094i \(-0.698872\pi\)
0.409970 + 0.912099i \(0.365539\pi\)
\(314\) −0.209430 0.781604i −0.0118188 0.0441085i
\(315\) 0 0
\(316\) 10.2134 5.89673i 0.574551 0.331717i
\(317\) 8.58569 32.0422i 0.482220 1.79967i −0.110045 0.993927i \(-0.535099\pi\)
0.592265 0.805743i \(-0.298234\pi\)
\(318\) −0.917796 + 0.917796i −0.0514674 + 0.0514674i
\(319\) −9.91051 + 9.91051i −0.554882 + 0.554882i
\(320\) −3.50697 + 13.0882i −0.196045 + 0.731651i
\(321\) 17.9844 10.3833i 1.00379 0.579539i
\(322\) 0 0
\(323\) −4.72570 17.6366i −0.262945 0.981324i
\(324\) 10.6186 6.13064i 0.589921 0.340591i
\(325\) 5.93830 3.29041i 0.329397 0.182519i
\(326\) −0.755110 + 1.30789i −0.0418217 + 0.0724373i
\(327\) 22.7555 22.7555i 1.25838 1.25838i
\(328\) −4.59260 2.65154i −0.253584 0.146407i
\(329\) 0 0
\(330\) 0.741549 + 0.741549i 0.0408209 + 0.0408209i
\(331\) 0.915826 0.245395i 0.0503383 0.0134881i −0.233562 0.972342i \(-0.575038\pi\)
0.283900 + 0.958854i \(0.408372\pi\)
\(332\) −19.6190 19.6190i −1.07673 1.07673i
\(333\) 2.74816 + 10.2563i 0.150598 + 0.562040i
\(334\) −0.0942618 0.0544221i −0.00515778 0.00297784i
\(335\) 0.0173989 0.0301357i 0.000950602 0.00164649i
\(336\) 0 0
\(337\) 14.1901i 0.772982i −0.922293 0.386491i \(-0.873687\pi\)
0.922293 0.386491i \(-0.126313\pi\)
\(338\) 0.444225 1.45133i 0.0241626 0.0789421i
\(339\) 19.2294 + 11.1021i 1.04440 + 0.602984i
\(340\) 3.88316 14.4921i 0.210594 0.785947i
\(341\) 8.37871i 0.453732i
\(342\) −0.935117 1.61967i −0.0505654 0.0875818i
\(343\) 0 0
\(344\) −0.215923 + 0.805837i −0.0116418 + 0.0434478i
\(345\) 7.59538 + 28.3463i 0.408921 + 1.52612i
\(346\) −0.0594957 + 0.0159418i −0.00319851 + 0.000857038i
\(347\) 13.8421 0.743080 0.371540 0.928417i \(-0.378830\pi\)
0.371540 + 0.928417i \(0.378830\pi\)
\(348\) 36.9551 1.98100
\(349\) 14.7875 3.96231i 0.791559 0.212098i 0.159684 0.987168i \(-0.448952\pi\)
0.631875 + 0.775071i \(0.282286\pi\)
\(350\) 0 0
\(351\) 6.04939 + 3.63615i 0.322892 + 0.194084i
\(352\) −1.35899 2.35384i −0.0724345 0.125460i
\(353\) 15.2137 + 4.07649i 0.809742 + 0.216970i 0.639857 0.768494i \(-0.278994\pi\)
0.169885 + 0.985464i \(0.445660\pi\)
\(354\) −0.255970 0.443353i −0.0136046 0.0235639i
\(355\) 4.19892 7.27274i 0.222856 0.385997i
\(356\) 11.2875 11.2875i 0.598235 0.598235i
\(357\) 0 0
\(358\) −0.932655 0.249904i −0.0492924 0.0132078i
\(359\) 6.40375 + 1.71588i 0.337977 + 0.0905607i 0.423816 0.905748i \(-0.360690\pi\)
−0.0858388 + 0.996309i \(0.527357\pi\)
\(360\) 3.08413i 0.162548i
\(361\) 0.679814 0.392491i 0.0357797 0.0206574i
\(362\) 1.23658 + 1.23658i 0.0649934 + 0.0649934i
\(363\) −18.6257 −0.977594
\(364\) 0 0
\(365\) −1.74402 −0.0912859
\(366\) −0.661345 0.661345i −0.0345690 0.0345690i
\(367\) −28.4547 + 16.4284i −1.48533 + 0.857553i −0.999860 0.0167033i \(-0.994683\pi\)
−0.485465 + 0.874256i \(0.661350\pi\)
\(368\) 25.0628i 1.30649i
\(369\) −41.3081 11.0685i −2.15041 0.576202i
\(370\) −0.563277 0.150930i −0.0292834 0.00784646i
\(371\) 0 0
\(372\) −15.6216 + 15.6216i −0.809943 + 0.809943i
\(373\) −3.93986 + 6.82405i −0.203998 + 0.353336i −0.949813 0.312818i \(-0.898727\pi\)
0.745815 + 0.666153i \(0.232060\pi\)
\(374\) 0.488932 + 0.846855i 0.0252821 + 0.0437899i
\(375\) −30.5034 8.17336i −1.57519 0.422070i
\(376\) 1.54239 + 2.67150i 0.0795428 + 0.137772i
\(377\) −12.5105 22.5781i −0.644324 1.16283i
\(378\) 0 0
\(379\) 10.8095 2.89639i 0.555245 0.148778i 0.0297243 0.999558i \(-0.490537\pi\)
0.525521 + 0.850781i \(0.323870\pi\)
\(380\) −14.9675 −0.767815
\(381\) −15.8883 −0.813984
\(382\) 1.63854 0.439044i 0.0838348 0.0224635i
\(383\) −0.623897 2.32841i −0.0318796 0.118976i 0.948152 0.317816i \(-0.102949\pi\)
−0.980032 + 0.198840i \(0.936283\pi\)
\(384\) −2.47025 + 9.21909i −0.126059 + 0.470460i
\(385\) 0 0
\(386\) −1.14289 1.97954i −0.0581715 0.100756i
\(387\) 6.72771i 0.341989i
\(388\) 7.59389 28.3408i 0.385522 1.43879i
\(389\) 14.5674 + 8.41049i 0.738596 + 0.426429i 0.821559 0.570124i \(-0.193105\pi\)
−0.0829624 + 0.996553i \(0.526438\pi\)
\(390\) −1.68939 + 0.936093i −0.0855457 + 0.0474009i
\(391\) 27.3638i 1.38385i
\(392\) 0 0
\(393\) 7.48993 12.9729i 0.377817 0.654398i
\(394\) −2.20008 1.27022i −0.110838 0.0639926i
\(395\) 2.71301 + 10.1251i 0.136506 + 0.509448i
\(396\) −10.3207 10.3207i −0.518635 0.518635i
\(397\) 22.7234 6.08873i 1.14046 0.305585i 0.361322 0.932441i \(-0.382325\pi\)
0.779135 + 0.626856i \(0.215659\pi\)
\(398\) 1.59181 + 1.59181i 0.0797903 + 0.0797903i
\(399\) 0 0
\(400\) 6.38957 + 3.68902i 0.319479 + 0.184451i
\(401\) 6.10116 6.10116i 0.304677 0.304677i −0.538163 0.842841i \(-0.680882\pi\)
0.842841 + 0.538163i \(0.180882\pi\)
\(402\) 0.00299003 0.00517888i 0.000149129 0.000258299i
\(403\) 14.8326 + 4.25574i 0.738864 + 0.211994i
\(404\) −27.5404 + 15.9005i −1.37019 + 0.791078i
\(405\) 2.82063 + 10.5267i 0.140158 + 0.523078i
\(406\) 0 0
\(407\) −4.79644 + 2.76922i −0.237751 + 0.137265i
\(408\) 1.33923 4.99809i 0.0663019 0.247442i
\(409\) 9.50054 9.50054i 0.469771 0.469771i −0.432069 0.901841i \(-0.642216\pi\)
0.901841 + 0.432069i \(0.142216\pi\)
\(410\) 1.66077 1.66077i 0.0820195 0.0820195i
\(411\) 4.22102 15.7530i 0.208207 0.777040i
\(412\) 20.3249 11.7346i 1.00133 0.578121i
\(413\) 0 0
\(414\) 0.725437 + 2.70737i 0.0356533 + 0.133060i
\(415\) 21.3568 12.3304i 1.04837 0.605275i
\(416\) 4.85720 1.21021i 0.238144 0.0593355i
\(417\) −27.2038 + 47.1183i −1.33217 + 2.30739i
\(418\) 0.689800 0.689800i 0.0337392 0.0337392i
\(419\) −15.0514 8.68991i −0.735308 0.424530i 0.0850532 0.996376i \(-0.472894\pi\)
−0.820361 + 0.571846i \(0.806227\pi\)
\(420\) 0 0
\(421\) −21.2490 21.2490i −1.03561 1.03561i −0.999342 0.0362722i \(-0.988452\pi\)
−0.0362722 0.999342i \(-0.511548\pi\)
\(422\) 0.340874 0.0913368i 0.0165935 0.00444621i
\(423\) 17.5903 + 17.5903i 0.855271 + 0.855271i
\(424\) 0.515320 + 1.92320i 0.0250262 + 0.0933989i
\(425\) −6.97619 4.02771i −0.338395 0.195372i
\(426\) 0.721591 1.24983i 0.0349612 0.0605546i
\(427\) 0 0
\(428\) 15.8733i 0.767265i
\(429\) −5.05898 + 17.6321i −0.244250 + 0.851287i
\(430\) −0.319986 0.184744i −0.0154311 0.00890913i
\(431\) −6.24554 + 23.3087i −0.300837 + 1.12274i 0.635633 + 0.771991i \(0.280739\pi\)
−0.936470 + 0.350748i \(0.885927\pi\)
\(432\) 7.67051i 0.369048i
\(433\) −2.27124 3.93391i −0.109149 0.189051i 0.806277 0.591538i \(-0.201479\pi\)
−0.915426 + 0.402487i \(0.868146\pi\)
\(434\) 0 0
\(435\) −8.50129 + 31.7273i −0.407606 + 1.52121i
\(436\) −6.36649 23.7601i −0.304900 1.13790i
\(437\) 26.3682 7.06534i 1.26136 0.337981i
\(438\) −0.299712 −0.0143208
\(439\) −17.0007 −0.811400 −0.405700 0.914006i \(-0.632972\pi\)
−0.405700 + 0.914006i \(0.632972\pi\)
\(440\) 1.55388 0.416362i 0.0740785 0.0198493i
\(441\) 0 0
\(442\) −1.74750 + 0.435405i −0.0831203 + 0.0207101i
\(443\) 18.3082 + 31.7108i 0.869851 + 1.50663i 0.862149 + 0.506655i \(0.169118\pi\)
0.00770183 + 0.999970i \(0.497548\pi\)
\(444\) 14.1057 + 3.77962i 0.669429 + 0.179373i
\(445\) 7.09408 + 12.2873i 0.336292 + 0.582474i
\(446\) −0.256823 + 0.444830i −0.0121609 + 0.0210633i
\(447\) −28.4042 + 28.4042i −1.34347 + 1.34347i
\(448\) 0 0
\(449\) −32.7480 8.77481i −1.54547 0.414109i −0.617445 0.786614i \(-0.711832\pi\)
−0.928030 + 0.372505i \(0.878499\pi\)
\(450\) −0.796999 0.213555i −0.0375709 0.0100671i
\(451\) 22.3066i 1.05038i
\(452\) 14.6984 8.48610i 0.691353 0.399153i
\(453\) 8.12354 + 8.12354i 0.381677 + 0.381677i
\(454\) 0.478554 0.0224596
\(455\) 0 0
\(456\) −5.16202 −0.241734
\(457\) 1.60001 + 1.60001i 0.0748453 + 0.0748453i 0.743538 0.668693i \(-0.233146\pi\)
−0.668693 + 0.743538i \(0.733146\pi\)
\(458\) 1.37279 0.792582i 0.0641463 0.0370349i
\(459\) 8.37473i 0.390899i
\(460\) 21.6670 + 5.80566i 1.01023 + 0.270690i
\(461\) −24.5455 6.57694i −1.14320 0.306319i −0.362961 0.931804i \(-0.618234\pi\)
−0.780235 + 0.625486i \(0.784901\pi\)
\(462\) 0 0
\(463\) −22.6265 + 22.6265i −1.05154 + 1.05154i −0.0529442 + 0.998597i \(0.516861\pi\)
−0.998597 + 0.0529442i \(0.983139\pi\)
\(464\) 14.0261 24.2939i 0.651144 1.12781i
\(465\) −9.81804 17.0053i −0.455301 0.788604i
\(466\) −1.84388 0.494066i −0.0854160 0.0228871i
\(467\) 5.64704 + 9.78095i 0.261314 + 0.452609i 0.966591 0.256323i \(-0.0825110\pi\)
−0.705278 + 0.708931i \(0.749178\pi\)
\(468\) 23.5126 13.0283i 1.08687 0.602235i
\(469\) 0 0
\(470\) −1.31967 + 0.353604i −0.0608718 + 0.0163105i
\(471\) −18.0107 −0.829889
\(472\) −0.785306 −0.0361466
\(473\) −3.38964 + 0.908251i −0.155856 + 0.0417614i
\(474\) 0.466235 + 1.74001i 0.0214149 + 0.0799215i
\(475\) −2.07991 + 7.76231i −0.0954326 + 0.356159i
\(476\) 0 0
\(477\) 8.02814 + 13.9051i 0.367583 + 0.636673i
\(478\) 1.00967i 0.0461810i
\(479\) −5.19059 + 19.3716i −0.237164 + 0.885109i 0.739997 + 0.672610i \(0.234827\pi\)
−0.977161 + 0.212499i \(0.931840\pi\)
\(480\) −5.51639 3.18489i −0.251788 0.145370i
\(481\) −2.46606 9.89755i −0.112442 0.451289i
\(482\) 1.56814i 0.0714269i
\(483\) 0 0
\(484\) −7.11843 + 12.3295i −0.323565 + 0.560431i
\(485\) 22.5846 + 13.0392i 1.02551 + 0.592081i
\(486\) 0.662191 + 2.47133i 0.0300376 + 0.112102i
\(487\) −22.2146 22.2146i −1.00664 1.00664i −0.999978 0.00665970i \(-0.997880\pi\)
−0.00665970 0.999978i \(-0.502120\pi\)
\(488\) −1.38582 + 0.371329i −0.0627331 + 0.0168093i
\(489\) 23.7691 + 23.7691i 1.07488 + 1.07488i
\(490\) 0 0
\(491\) −16.8341 9.71919i −0.759714 0.438621i 0.0694792 0.997583i \(-0.477866\pi\)
−0.829193 + 0.558962i \(0.811200\pi\)
\(492\) −41.5894 + 41.5894i −1.87499 + 1.87499i
\(493\) −15.3138 + 26.5243i −0.689698 + 1.19459i
\(494\) 0.870768 + 1.57150i 0.0391777 + 0.0707051i
\(495\) 11.2349 6.48647i 0.504971 0.291545i
\(496\) 4.34038 + 16.1985i 0.194889 + 0.727336i
\(497\) 0 0
\(498\) 3.67021 2.11900i 0.164466 0.0949545i
\(499\) 4.32098 16.1261i 0.193434 0.721904i −0.799233 0.601021i \(-0.794761\pi\)
0.992667 0.120883i \(-0.0385726\pi\)
\(500\) −17.0683 + 17.0683i −0.763320 + 0.763320i
\(501\) −1.71308 + 1.71308i −0.0765348 + 0.0765348i
\(502\) 0.105341 0.393138i 0.00470160 0.0175466i
\(503\) 25.9585 14.9871i 1.15743 0.668243i 0.206743 0.978395i \(-0.433713\pi\)
0.950687 + 0.310153i \(0.100380\pi\)
\(504\) 0 0
\(505\) −7.31560 27.3022i −0.325540 1.21493i
\(506\) −1.26612 + 0.730997i −0.0562861 + 0.0324968i
\(507\) −28.6441 17.9115i −1.27213 0.795479i
\(508\) −6.07227 + 10.5175i −0.269413 + 0.466638i
\(509\) −9.91537 + 9.91537i −0.439491 + 0.439491i −0.891841 0.452350i \(-0.850586\pi\)
0.452350 + 0.891841i \(0.350586\pi\)
\(510\) 1.98466 + 1.14585i 0.0878824 + 0.0507389i
\(511\) 0 0
\(512\) 6.42580 + 6.42580i 0.283983 + 0.283983i
\(513\) −8.07001 + 2.16235i −0.356300 + 0.0954702i
\(514\) −1.11022 1.11022i −0.0489698 0.0489698i
\(515\) 5.39893 + 20.1491i 0.237905 + 0.887874i
\(516\) 8.01316 + 4.62640i 0.352760 + 0.203666i
\(517\) −6.48785 + 11.2373i −0.285335 + 0.494215i
\(518\) 0 0
\(519\) 1.37097i 0.0601791i
\(520\) −0.0521804 + 2.96228i −0.00228826 + 0.129904i
\(521\) −0.757986 0.437623i −0.0332080 0.0191726i 0.483304 0.875453i \(-0.339437\pi\)
−0.516512 + 0.856280i \(0.672770\pi\)
\(522\) −0.811961 + 3.03028i −0.0355386 + 0.132632i
\(523\) 13.5328i 0.591748i 0.955227 + 0.295874i \(0.0956109\pi\)
−0.955227 + 0.295874i \(0.904389\pi\)
\(524\) −5.72506 9.91610i −0.250100 0.433187i
\(525\) 0 0
\(526\) 0.620553 2.31593i 0.0270574 0.100980i
\(527\) −4.73887 17.6857i −0.206428 0.770401i
\(528\) −19.2559 + 5.15960i −0.838004 + 0.224543i
\(529\) −17.9114 −0.778755
\(530\) −0.881814 −0.0383036
\(531\) −6.11711 + 1.63908i −0.265460 + 0.0711298i
\(532\) 0 0
\(533\) 39.4888 + 11.3301i 1.71045 + 0.490759i
\(534\) 1.21913 + 2.11159i 0.0527569 + 0.0913776i
\(535\) 13.6278 + 3.65155i 0.589180 + 0.157870i
\(536\) −0.00458664 0.00794430i −0.000198113 0.000343141i
\(537\) −10.7457 + 18.6121i −0.463711 + 0.803171i
\(538\) 0.886440 0.886440i 0.0382171 0.0382171i
\(539\) 0 0
\(540\) −6.63121 1.77683i −0.285362 0.0764625i
\(541\) −11.8679 3.18000i −0.510241 0.136719i −0.00549222 0.999985i \(-0.501748\pi\)
−0.504749 + 0.863266i \(0.668415\pi\)
\(542\) 0.174983i 0.00751615i
\(543\) 33.7098 19.4624i 1.44663 0.835211i
\(544\) −4.19985 4.19985i −0.180067 0.180067i
\(545\) 21.8634 0.936526
\(546\) 0 0
\(547\) 16.2786 0.696022 0.348011 0.937490i \(-0.386857\pi\)
0.348011 + 0.937490i \(0.386857\pi\)
\(548\) −8.81471 8.81471i −0.376546 0.376546i
\(549\) −10.0198 + 5.78491i −0.427633 + 0.246894i
\(550\) 0.430384i 0.0183516i
\(551\) 29.5132 + 7.90803i 1.25730 + 0.336894i
\(552\) 7.47258 + 2.00227i 0.318054 + 0.0852224i
\(553\) 0 0
\(554\) −0.388865 + 0.388865i −0.0165213 + 0.0165213i
\(555\) −6.48987 + 11.2408i −0.275480 + 0.477145i
\(556\) 20.7937 + 36.0157i 0.881849 + 1.52741i
\(557\) −7.98185 2.13873i −0.338202 0.0906210i 0.0857210 0.996319i \(-0.472681\pi\)
−0.423923 + 0.905698i \(0.639347\pi\)
\(558\) −0.937724 1.62418i −0.0396970 0.0687572i
\(559\) 0.113826 6.46190i 0.00481433 0.273309i
\(560\) 0 0
\(561\) 21.0237 5.63329i 0.887623 0.237838i
\(562\) 1.32294 0.0558049
\(563\) −28.1534 −1.18652 −0.593261 0.805010i \(-0.702160\pi\)
−0.593261 + 0.805010i \(0.702160\pi\)
\(564\) 33.0475 8.85505i 1.39155 0.372865i
\(565\) 3.90435 + 14.5712i 0.164257 + 0.613016i
\(566\) 0.238078 0.888519i 0.0100072 0.0373472i
\(567\) 0 0
\(568\) −1.10691 1.91722i −0.0464448 0.0804447i
\(569\) 9.96097i 0.417586i 0.977960 + 0.208793i \(0.0669534\pi\)
−0.977960 + 0.208793i \(0.933047\pi\)
\(570\) 0.591715 2.20831i 0.0247842 0.0924959i
\(571\) 4.46188 + 2.57607i 0.186724 + 0.107805i 0.590448 0.807076i \(-0.298951\pi\)
−0.403724 + 0.914881i \(0.632284\pi\)
\(572\) 9.73833 + 10.0876i 0.407180 + 0.421782i
\(573\) 37.7572i 1.57733i
\(574\) 0 0
\(575\) 6.02177 10.4300i 0.251125 0.434962i
\(576\) 24.9461 + 14.4027i 1.03942 + 0.600111i
\(577\) −3.47849 12.9819i −0.144812 0.540444i −0.999764 0.0217373i \(-0.993080\pi\)
0.854952 0.518707i \(-0.173586\pi\)
\(578\) 0.107530 + 0.107530i 0.00447267 + 0.00447267i
\(579\) −49.1434 + 13.1679i −2.04233 + 0.547240i
\(580\) 17.7532 + 17.7532i 0.737161 + 0.737161i
\(581\) 0 0
\(582\) 3.88120 + 2.24081i 0.160881 + 0.0928847i
\(583\) −5.92205 + 5.92205i −0.245266 + 0.245266i
\(584\) −0.229876 + 0.398157i −0.00951234 + 0.0164759i
\(585\) 5.77635 + 23.1835i 0.238823 + 0.958518i
\(586\) 1.23535 0.713227i 0.0510317 0.0294631i
\(587\) 9.73498 + 36.3314i 0.401806 + 1.49956i 0.809872 + 0.586607i \(0.199537\pi\)
−0.408066 + 0.912952i \(0.633797\pi\)
\(588\) 0 0
\(589\) −15.8186 + 9.13289i −0.651795 + 0.376314i
\(590\) 0.0900184 0.335953i 0.00370600 0.0138310i
\(591\) −39.9834 + 39.9834i −1.64470 + 1.64470i
\(592\) 7.83841 7.83841i 0.322157 0.322157i
\(593\) 9.45795 35.2975i 0.388391 1.44950i −0.444360 0.895848i \(-0.646569\pi\)
0.832751 0.553648i \(-0.186765\pi\)
\(594\) 0.387498 0.223722i 0.0158992 0.00917944i
\(595\) 0 0
\(596\) 7.94687 + 29.6581i 0.325517 + 1.21484i
\(597\) 43.3935 25.0532i 1.77598 1.02536i
\(598\) −0.650969 2.61267i −0.0266201 0.106840i
\(599\) −2.66014 + 4.60749i −0.108690 + 0.188257i −0.915240 0.402909i \(-0.867999\pi\)
0.806550 + 0.591166i \(0.201332\pi\)
\(600\) −1.61036 + 1.61036i −0.0657426 + 0.0657426i
\(601\) −21.4564 12.3879i −0.875225 0.505312i −0.00614424 0.999981i \(-0.501956\pi\)
−0.869081 + 0.494669i \(0.835289\pi\)
\(602\) 0 0
\(603\) −0.0523087 0.0523087i −0.00213017 0.00213017i
\(604\) 8.48216 2.27279i 0.345134 0.0924785i
\(605\) −8.94774 8.94774i −0.363777 0.363777i
\(606\) −1.25720 4.69193i −0.0510702 0.190596i
\(607\) −19.5367 11.2795i −0.792971 0.457822i 0.0480365 0.998846i \(-0.484704\pi\)
−0.841007 + 0.541024i \(0.818037\pi\)
\(608\) −2.96263 + 5.13143i −0.120151 + 0.208107i
\(609\) 0 0
\(610\) 0.635418i 0.0257273i
\(611\) −16.5977 17.1929i −0.671472 0.695552i
\(612\) −27.6221 15.9476i −1.11656 0.644645i
\(613\) 5.95385 22.2201i 0.240474 0.897459i −0.735131 0.677925i \(-0.762879\pi\)
0.975605 0.219535i \(-0.0704539\pi\)
\(614\) 1.31630i 0.0531217i
\(615\) −26.1385 45.2733i −1.05401 1.82560i
\(616\) 0 0
\(617\) 7.79350 29.0858i 0.313755 1.17095i −0.611389 0.791330i \(-0.709389\pi\)
0.925143 0.379618i \(-0.123945\pi\)
\(618\) 0.927815 + 3.46265i 0.0373222 + 0.139288i
\(619\) −10.3214 + 2.76561i −0.414852 + 0.111159i −0.460207 0.887812i \(-0.652225\pi\)
0.0453549 + 0.998971i \(0.485558\pi\)
\(620\) −15.0092 −0.602783
\(621\) 12.5210 0.502449
\(622\) 1.47090 0.394127i 0.0589778 0.0158031i
\(623\) 0 0
\(624\) 0.646624 36.7088i 0.0258857 1.46953i
\(625\) −6.01999 10.4269i −0.240800 0.417077i
\(626\) −0.403049 0.107997i −0.0161091 0.00431641i
\(627\) −10.8566 18.8043i −0.433573 0.750970i
\(628\) −6.88340 + 11.9224i −0.274678 + 0.475755i
\(629\) −8.55805 + 8.55805i −0.341232 + 0.341232i
\(630\) 0 0
\(631\) 13.6759 + 3.66444i 0.544428 + 0.145879i 0.520543 0.853836i \(-0.325730\pi\)
0.0238855 + 0.999715i \(0.492396\pi\)
\(632\) 2.66915 + 0.715196i 0.106173 + 0.0284490i
\(633\) 7.85483i 0.312202i
\(634\) 3.35413 1.93651i 0.133209 0.0769085i
\(635\) −7.63273 7.63273i −0.302896 0.302896i
\(636\) 22.0826 0.875633
\(637\) 0 0
\(638\) −1.63637 −0.0647844
\(639\) −12.6238 12.6238i −0.499390 0.499390i
\(640\) −5.61554 + 3.24213i −0.221974 + 0.128157i
\(641\) 37.0275i 1.46250i −0.682111 0.731248i \(-0.738938\pi\)
0.682111 0.731248i \(-0.261062\pi\)
\(642\) 2.34196 + 0.627525i 0.0924296 + 0.0247664i
\(643\) −33.2886 8.91965i −1.31277 0.351757i −0.466507 0.884517i \(-0.654488\pi\)
−0.846266 + 0.532761i \(0.821155\pi\)
\(644\) 0 0
\(645\) −5.81530 + 5.81530i −0.228977 + 0.228977i
\(646\) 1.06588 1.84617i 0.0419366 0.0726364i
\(647\) 3.03363 + 5.25440i 0.119264 + 0.206572i 0.919476 0.393145i \(-0.128613\pi\)
−0.800212 + 0.599717i \(0.795280\pi\)
\(648\) 2.77503 + 0.743567i 0.109013 + 0.0292101i
\(649\) −1.65164 2.86072i −0.0648325 0.112293i
\(650\) 0.761896 + 0.218602i 0.0298840 + 0.00857428i
\(651\) 0 0
\(652\) 24.8184 6.65007i 0.971964 0.260437i
\(653\) 30.2018 1.18189 0.590943 0.806713i \(-0.298756\pi\)
0.590943 + 0.806713i \(0.298756\pi\)
\(654\) 3.75726 0.146921
\(655\) 9.83033 2.63403i 0.384103 0.102920i
\(656\) 11.5554 + 43.1253i 0.451162 + 1.68376i
\(657\) −0.959586 + 3.58123i −0.0374370 + 0.139717i
\(658\) 0 0
\(659\) 4.37179 + 7.57216i 0.170301 + 0.294969i 0.938525 0.345211i \(-0.112193\pi\)
−0.768224 + 0.640181i \(0.778859\pi\)
\(660\) 17.8420i 0.694501i
\(661\) −4.64874 + 17.3494i −0.180815 + 0.674812i 0.814673 + 0.579921i \(0.196917\pi\)
−0.995488 + 0.0948903i \(0.969750\pi\)
\(662\) 0.0958671 + 0.0553489i 0.00372598 + 0.00215120i
\(663\) −0.705990 + 40.0790i −0.0274184 + 1.55654i
\(664\) 6.50100i 0.252288i
\(665\) 0 0
\(666\) −0.619849 + 1.07361i −0.0240187 + 0.0416015i
\(667\) −39.6561 22.8955i −1.53549 0.886516i
\(668\) 0.479282 + 1.78870i 0.0185440 + 0.0692071i
\(669\) 8.08418 + 8.08418i 0.312552 + 0.312552i
\(670\) 0.00392433 0.00105152i 0.000151610 4.06238e-5i
\(671\) −4.26731 4.26731i −0.164738 0.164738i
\(672\) 0 0
\(673\) 22.0524 + 12.7319i 0.850057 + 0.490780i 0.860670 0.509163i \(-0.170045\pi\)
−0.0106133 + 0.999944i \(0.503378\pi\)
\(674\) 1.17149 1.17149i 0.0451242 0.0451242i
\(675\) −1.84297 + 3.19212i −0.0709359 + 0.122865i
\(676\) −22.8040 + 12.1158i −0.877079 + 0.465991i
\(677\) 18.9268 10.9274i 0.727415 0.419973i −0.0900609 0.995936i \(-0.528706\pi\)
0.817476 + 0.575963i \(0.195373\pi\)
\(678\) 0.670968 + 2.50409i 0.0257684 + 0.0961689i
\(679\) 0 0
\(680\) 3.04444 1.75771i 0.116749 0.0674050i
\(681\) 2.75686 10.2887i 0.105643 0.394265i
\(682\) 0.691723 0.691723i 0.0264874 0.0264874i
\(683\) −22.6628 + 22.6628i −0.867167 + 0.867167i −0.992158 0.124991i \(-0.960110\pi\)
0.124991 + 0.992158i \(0.460110\pi\)
\(684\) −8.23535 + 30.7348i −0.314887 + 1.17517i
\(685\) 9.59550 5.53997i 0.366625 0.211671i
\(686\) 0 0
\(687\) −9.13183 34.0804i −0.348401 1.30025i
\(688\) 6.08268 3.51184i 0.231900 0.133888i
\(689\) −7.47569 13.4916i −0.284801 0.513988i
\(690\) −1.71314 + 2.96725i −0.0652182 + 0.112961i
\(691\) −19.8856 + 19.8856i −0.756483 + 0.756483i −0.975680 0.219198i \(-0.929656\pi\)
0.219198 + 0.975680i \(0.429656\pi\)
\(692\) 0.907533 + 0.523964i 0.0344992 + 0.0199181i
\(693\) 0 0
\(694\) 1.14276 + 1.14276i 0.0433786 + 0.0433786i
\(695\) −35.7042 + 9.56691i −1.35434 + 0.362894i
\(696\) 6.12276 + 6.12276i 0.232083 + 0.232083i
\(697\) −12.6163 47.0846i −0.477876 1.78346i
\(698\) 1.54794 + 0.893701i 0.0585902 + 0.0338271i
\(699\) −21.2445 + 36.7965i −0.803540 + 1.39177i
\(700\) 0 0
\(701\) 41.8411i 1.58032i 0.612904 + 0.790158i \(0.290001\pi\)
−0.612904 + 0.790158i \(0.709999\pi\)
\(702\) 0.199230 + 0.799611i 0.00751944 + 0.0301794i
\(703\) 10.4563 + 6.03698i 0.394369 + 0.227689i
\(704\) −3.88876 + 14.5131i −0.146563 + 0.546981i
\(705\) 30.4095i 1.14529i
\(706\) 0.919455 + 1.59254i 0.0346041 + 0.0599361i
\(707\) 0 0
\(708\) −2.25426 + 8.41303i −0.0847204 + 0.316181i
\(709\) 9.67328 + 36.1012i 0.363288 + 1.35581i 0.869727 + 0.493532i \(0.164295\pi\)
−0.506440 + 0.862275i \(0.669039\pi\)
\(710\) 0.947068 0.253766i 0.0355428 0.00952368i
\(711\) 22.2840 0.835714
\(712\) 3.74024 0.140171
\(713\) 26.4417 7.08503i 0.990249 0.265336i
\(714\) 0 0
\(715\) −10.9008 + 6.04011i −0.407665 + 0.225887i
\(716\) 8.21367 + 14.2265i 0.306959 + 0.531669i
\(717\) 21.7075 + 5.81649i 0.810680 + 0.217221i
\(718\) 0.387018 + 0.670334i 0.0144434 + 0.0250166i
\(719\) 14.7469 25.5425i 0.549968 0.952573i −0.448308 0.893879i \(-0.647973\pi\)
0.998276 0.0586936i \(-0.0186935\pi\)
\(720\) −18.3602 + 18.3602i −0.684246 + 0.684246i
\(721\) 0 0
\(722\) 0.0885265 + 0.0237206i 0.00329461 + 0.000882789i
\(723\) 33.7145 + 9.03377i 1.25386 + 0.335969i
\(724\) 29.7528i 1.10576i
\(725\) 11.6740 6.74000i 0.433562 0.250317i
\(726\) −1.53768 1.53768i −0.0570688 0.0570688i
\(727\) −3.04387 −0.112891 −0.0564455 0.998406i \(-0.517977\pi\)
−0.0564455 + 0.998406i \(0.517977\pi\)
\(728\) 0 0
\(729\) 38.4293 1.42331
\(730\) −0.143981 0.143981i −0.00532898 0.00532898i
\(731\) −6.64113 + 3.83426i −0.245631 + 0.141815i
\(732\) 15.9123i 0.588135i
\(733\) −1.26813 0.339796i −0.0468396 0.0125506i 0.235323 0.971917i \(-0.424385\pi\)
−0.282163 + 0.959367i \(0.591052\pi\)
\(734\) −3.70542 0.992865i −0.136770 0.0366473i
\(735\) 0 0
\(736\) 6.27914 6.27914i 0.231452 0.231452i
\(737\) 0.0192931 0.0334166i 0.000710669 0.00123091i
\(738\) −2.49650 4.32406i −0.0918974 0.159171i
\(739\) 28.9849 + 7.76649i 1.06623 + 0.285695i 0.748942 0.662635i \(-0.230562\pi\)
0.317285 + 0.948330i \(0.397229\pi\)
\(740\) 4.96065 + 8.59209i 0.182357 + 0.315852i
\(741\) 38.8030 9.66809i 1.42546 0.355166i
\(742\) 0 0
\(743\) −39.4397 + 10.5678i −1.44690 + 0.387697i −0.894946 0.446175i \(-0.852786\pi\)
−0.551958 + 0.833872i \(0.686119\pi\)
\(744\) −5.17641 −0.189776
\(745\) −27.2906 −0.999852
\(746\) −0.888638 + 0.238110i −0.0325354 + 0.00871782i
\(747\) −13.5688 50.6393i −0.496455 1.85280i
\(748\) 4.30591 16.0699i 0.157440 0.587573i
\(749\) 0 0
\(750\) −1.84350 3.19304i −0.0673153 0.116593i
\(751\) 35.8754i 1.30911i 0.756013 + 0.654556i \(0.227145\pi\)
−0.756013 + 0.654556i \(0.772855\pi\)
\(752\) 6.72175 25.0859i 0.245117 0.914789i
\(753\) −7.84547 4.52958i −0.285905 0.165067i
\(754\) 0.831150 2.89682i 0.0302687 0.105496i
\(755\) 7.80507i 0.284056i
\(756\) 0 0
\(757\) −0.439138 + 0.760610i −0.0159607 + 0.0276448i −0.873895 0.486114i \(-0.838414\pi\)
0.857935 + 0.513759i \(0.171747\pi\)
\(758\) 1.13152 + 0.653282i 0.0410986 + 0.0237283i
\(759\) 8.42227 + 31.4323i 0.305709 + 1.14092i
\(760\) −2.47982 2.47982i −0.0899527 0.0899527i
\(761\) 35.3341 9.46773i 1.28086 0.343205i 0.446677 0.894695i \(-0.352607\pi\)
0.834181 + 0.551490i \(0.185941\pi\)
\(762\) −1.31170 1.31170i −0.0475178 0.0475178i
\(763\) 0 0
\(764\) −24.9938 14.4302i −0.904245 0.522066i
\(765\) 20.0459 20.0459i 0.724760 0.724760i
\(766\) 0.140720 0.243735i 0.00508443 0.00880649i
\(767\) 5.90316 1.47082i 0.213151 0.0531082i
\(768\) 33.5795 19.3871i 1.21170 0.699573i
\(769\) 7.85943 + 29.3318i 0.283418 + 1.05773i 0.949987 + 0.312288i \(0.101096\pi\)
−0.666569 + 0.745443i \(0.732238\pi\)
\(770\) 0 0
\(771\) −30.2652 + 17.4736i −1.08997 + 0.629297i
\(772\) −10.0651 + 37.5636i −0.362252 + 1.35194i
\(773\) 14.0260 14.0260i 0.504481 0.504481i −0.408346 0.912827i \(-0.633894\pi\)
0.912827 + 0.408346i \(0.133894\pi\)
\(774\) −0.555421 + 0.555421i −0.0199642 + 0.0199642i
\(775\) −2.08570 + 7.78395i −0.0749206 + 0.279608i
\(776\) 5.95369 3.43737i 0.213725 0.123394i
\(777\) 0 0
\(778\) 0.508297 + 1.89699i 0.0182233 + 0.0680104i
\(779\) −42.1139 + 24.3145i −1.50889 + 0.871157i
\(780\) 31.5853 + 9.06239i 1.13093 + 0.324486i
\(781\) 4.65605 8.06451i 0.166606 0.288571i
\(782\) −2.25908 + 2.25908i −0.0807846 + 0.0807846i
\(783\) 12.1368 + 7.00718i 0.433733 + 0.250416i
\(784\) 0 0
\(785\) −8.65231 8.65231i −0.308814 0.308814i
\(786\) 1.68936 0.452662i 0.0602574 0.0161459i
\(787\) 6.21503 + 6.21503i 0.221542 + 0.221542i 0.809148 0.587606i \(-0.199929\pi\)
−0.587606 + 0.809148i \(0.699929\pi\)
\(788\) 11.1865 + 41.7485i 0.398502 + 1.48723i
\(789\) −46.2169 26.6833i −1.64536 0.949951i
\(790\) −0.611921 + 1.05988i −0.0217712 + 0.0377087i
\(791\) 0 0
\(792\) 3.41989i 0.121521i
\(793\) 9.72176 5.38683i 0.345230 0.191292i
\(794\) 2.37865 + 1.37332i 0.0844152 + 0.0487372i
\(795\) −5.07997 + 18.9587i −0.180168 + 0.672396i
\(796\) 38.2998i 1.35750i
\(797\) 12.3887 + 21.4579i 0.438832 + 0.760079i 0.997600 0.0692450i \(-0.0220590\pi\)
−0.558768 + 0.829324i \(0.688726\pi\)
\(798\) 0 0
\(799\) −7.33886 + 27.3890i −0.259630 + 0.968953i
\(800\) 0.676585 + 2.52505i 0.0239209 + 0.0892739i
\(801\) 29.1345 7.80656i 1.02942 0.275831i
\(802\) 1.00739 0.0355722
\(803\) −1.93388 −0.0682452
\(804\) −0.0982740 + 0.0263324i −0.00346586 + 0.000928674i
\(805\) 0 0
\(806\) 0.873195 + 1.57588i 0.0307570 + 0.0555080i
\(807\) −13.9515 24.1647i −0.491117 0.850639i
\(808\) −7.19733 1.92852i −0.253201 0.0678450i
\(809\) −3.75373 6.50166i −0.131974 0.228586i 0.792463 0.609920i \(-0.208798\pi\)
−0.924438 + 0.381334i \(0.875465\pi\)
\(810\) −0.636195 + 1.10192i −0.0223536 + 0.0387176i
\(811\) 32.4572 32.4572i 1.13973 1.13973i 0.151229 0.988499i \(-0.451677\pi\)
0.988499 0.151229i \(-0.0483229\pi\)
\(812\) 0 0
\(813\) 3.76207 + 1.00804i 0.131941 + 0.0353536i
\(814\) −0.624600 0.167361i −0.0218922 0.00586600i
\(815\) 22.8373i 0.799955i
\(816\) −37.7270 + 21.7817i −1.32071 + 0.762511i
\(817\) 5.40948 + 5.40948i 0.189254 + 0.189254i
\(818\) 1.56868 0.0548475
\(819\) 0 0
\(820\) −39.9589 −1.39543
\(821\) −22.2812 22.2812i −0.777620 0.777620i 0.201806 0.979426i \(-0.435319\pi\)
−0.979426 + 0.201806i \(0.935319\pi\)
\(822\) 1.64900 0.952052i 0.0575156 0.0332066i
\(823\) 31.6549i 1.10342i 0.834036 + 0.551710i \(0.186024\pi\)
−0.834036 + 0.551710i \(0.813976\pi\)
\(824\) 5.31164 + 1.42325i 0.185040 + 0.0495813i
\(825\) −9.25310 2.47936i −0.322152 0.0863203i
\(826\) 0 0
\(827\) 25.1824 25.1824i 0.875678 0.875678i −0.117406 0.993084i \(-0.537458\pi\)
0.993084 + 0.117406i \(0.0374580\pi\)
\(828\) 23.8431 41.2975i 0.828606 1.43519i
\(829\) 1.05432 + 1.82614i 0.0366182 + 0.0634246i 0.883754 0.467952i \(-0.155008\pi\)
−0.847135 + 0.531377i \(0.821675\pi\)
\(830\) 2.78112 + 0.745200i 0.0965342 + 0.0258663i
\(831\) 6.12027 + 10.6006i 0.212310 + 0.367732i
\(832\) −23.7169 14.2557i −0.822234 0.494227i
\(833\) 0 0
\(834\) −6.13582 + 1.64409i −0.212466 + 0.0569302i
\(835\) −1.64592 −0.0569594
\(836\) −16.5969 −0.574017
\(837\) −8.09251 + 2.16838i −0.279718 + 0.0749502i
\(838\) −0.525184 1.96001i −0.0181422 0.0677076i
\(839\) −6.14897 + 22.9483i −0.212286 + 0.792262i 0.774818 + 0.632184i \(0.217841\pi\)
−0.987104 + 0.160078i \(0.948825\pi\)
\(840\) 0 0
\(841\) −11.1262 19.2712i −0.383663 0.664525i
\(842\) 3.50852i 0.120912i
\(843\) 7.62121 28.4428i 0.262489 0.979621i
\(844\) −5.19960 3.00199i −0.178978 0.103333i
\(845\) −5.15589 22.3652i −0.177368 0.769387i
\(846\) 2.90442i 0.0998559i
\(847\) 0 0
\(848\) 8.38131 14.5169i 0.287815 0.498511i
\(849\) −17.7313 10.2372i −0.608537 0.351339i
\(850\) −0.243419 0.908451i −0.00834919 0.0311596i
\(851\) −12.7950 12.7950i −0.438608 0.438608i
\(852\) −23.7167 + 6.35488i −0.812522 + 0.217715i
\(853\) −4.73993 4.73993i −0.162292 0.162292i 0.621289 0.783581i \(-0.286609\pi\)
−0.783581 + 0.621289i \(0.786609\pi\)
\(854\) 0 0
\(855\) −24.4924 14.1407i −0.837621 0.483601i
\(856\) 2.62990 2.62990i 0.0898883 0.0898883i
\(857\) 5.66099 9.80512i 0.193376 0.334936i −0.752991 0.658031i \(-0.771390\pi\)
0.946367 + 0.323094i \(0.104723\pi\)
\(858\) −1.87331 + 1.03800i −0.0639539 + 0.0354368i
\(859\) −41.9548 + 24.2226i −1.43148 + 0.826465i −0.997234 0.0743295i \(-0.976318\pi\)
−0.434246 + 0.900794i \(0.642985\pi\)
\(860\) 1.62699 + 6.07202i 0.0554800 + 0.207054i
\(861\) 0 0
\(862\) −2.43991 + 1.40868i −0.0831038 + 0.0479800i
\(863\) −4.85283 + 18.1110i −0.165192 + 0.616506i 0.832823 + 0.553539i \(0.186723\pi\)
−0.998016 + 0.0629669i \(0.979944\pi\)
\(864\) −1.92174 + 1.92174i −0.0653788 + 0.0653788i
\(865\) −0.658613 + 0.658613i −0.0223935 + 0.0223935i
\(866\) 0.137265 0.512280i 0.00466445 0.0174080i
\(867\) 2.93132 1.69240i 0.0995529 0.0574769i
\(868\) 0 0
\(869\) 3.00837 + 11.2274i 0.102052 + 0.380863i
\(870\) −3.32116 + 1.91747i −0.112598 + 0.0650083i
\(871\) 0.0493570 + 0.0511270i 0.00167240 + 0.00173237i
\(872\) 2.88179 4.99140i 0.0975896 0.169030i
\(873\) 39.2017 39.2017i 1.32678 1.32678i
\(874\) 2.76018 + 1.59359i 0.0933645 + 0.0539040i
\(875\) 0 0
\(876\) 3.60561 + 3.60561i 0.121822 + 0.121822i
\(877\) −6.84575 + 1.83431i −0.231164 + 0.0619403i −0.372542 0.928015i \(-0.621514\pi\)
0.141377 + 0.989956i \(0.454847\pi\)
\(878\) −1.40353 1.40353i −0.0473669 0.0473669i
\(879\) −8.21753 30.6683i −0.277171 1.03441i
\(880\) −11.7291 6.77183i −0.395389 0.228278i
\(881\) −12.1808 + 21.0977i −0.410380 + 0.710800i −0.994931 0.100557i \(-0.967937\pi\)
0.584551 + 0.811357i \(0.301271\pi\)
\(882\) 0 0
\(883\) 4.51673i 0.152000i 0.997108 + 0.0760000i \(0.0242149\pi\)
−0.997108 + 0.0760000i \(0.975785\pi\)
\(884\) 26.2610 + 15.7849i 0.883252 + 0.530903i
\(885\) −6.70430 3.87073i −0.225362 0.130113i
\(886\) −1.10648 + 4.12943i −0.0371729 + 0.138731i
\(887\) 44.2291i 1.48507i −0.669809 0.742533i \(-0.733624\pi\)
0.669809 0.742533i \(-0.266376\pi\)
\(888\) 1.71084 + 2.96326i 0.0574121 + 0.0994406i
\(889\) 0 0
\(890\) −0.428738 + 1.60007i −0.0143713 + 0.0536346i
\(891\) 3.12771 + 11.6728i 0.104782 + 0.391052i
\(892\) 8.44106 2.26177i 0.282628 0.0757298i
\(893\) 28.2873 0.946600
\(894\) −4.68994 −0.156855
\(895\) −14.1034 + 3.77900i −0.471426 + 0.126318i
\(896\) 0 0
\(897\) −59.9216 1.05552i −2.00073 0.0352427i
\(898\) −1.97916 3.42801i −0.0660455 0.114394i
\(899\) 29.5954 + 7.93007i 0.987063 + 0.264483i
\(900\) 7.01898 + 12.1572i 0.233966 + 0.405241i
\(901\) −9.15079 + 15.8496i −0.304857 + 0.528028i
\(902\) 1.84157 1.84157i 0.0613176 0.0613176i
\(903\) 0 0
\(904\) 3.84122 + 1.02925i 0.127757 + 0.0342324i
\(905\) 25.5438 + 6.84445i 0.849106 + 0.227517i
\(906\) 1.34131i 0.0445622i
\(907\) −29.3466 + 16.9433i −0.974439 + 0.562593i −0.900587 0.434676i \(-0.856863\pi\)
−0.0738526 + 0.997269i \(0.523529\pi\)
\(908\) −5.75712 5.75712i −0.191057 0.191057i
\(909\) −60.0885 −1.99301
\(910\) 0 0
\(911\) 4.66390 0.154522 0.0772610 0.997011i \(-0.475383\pi\)
0.0772610 + 0.997011i \(0.475383\pi\)
\(912\) 30.7302 + 30.7302i 1.01758 + 1.01758i
\(913\) 23.6819 13.6728i 0.783757 0.452502i
\(914\) 0.264185i 0.00873846i
\(915\) −13.6613 3.66052i −0.451627 0.121013i
\(916\) −26.0500 6.98007i −0.860716 0.230628i
\(917\) 0 0
\(918\) 0.691394 0.691394i 0.0228194 0.0228194i
\(919\) −12.0900 + 20.9405i −0.398812 + 0.690763i −0.993580 0.113135i \(-0.963911\pi\)
0.594767 + 0.803898i \(0.297244\pi\)
\(920\) 2.62793 + 4.55170i 0.0866402 + 0.150065i
\(921\) −28.3000 7.58297i −0.932518 0.249867i
\(922\) −1.48343 2.56938i −0.0488542 0.0846180i
\(923\) 11.9115 + 12.3386i 0.392070 + 0.406131i
\(924\) 0 0
\(925\) 5.14530 1.37868i 0.169177 0.0453307i
\(926\) −3.73596 −0.122771
\(927\) 44.3454 1.45649
\(928\) 9.60051 2.57245i 0.315152 0.0844448i
\(929\) 4.01941 + 15.0006i 0.131872 + 0.492155i 0.999991 0.00420200i \(-0.00133754\pi\)
−0.868119 + 0.496357i \(0.834671\pi\)
\(930\) 0.593364 2.21446i 0.0194572 0.0726151i
\(931\) 0 0
\(932\) 16.2386 + 28.1261i 0.531913 + 0.921300i
\(933\) 33.8944i 1.10965i
\(934\) −0.341285 + 1.27369i −0.0111672 + 0.0416765i
\(935\) 12.8060 + 7.39354i 0.418801 + 0.241795i
\(936\) 6.05414 + 1.73704i 0.197886 + 0.0567770i
\(937\) 25.4720i 0.832134i −0.909334 0.416067i \(-0.863408\pi\)
0.909334 0.416067i \(-0.136592\pi\)
\(938\) 0 0
\(939\) −4.64378 + 8.04326i −0.151544 + 0.262482i
\(940\) 20.1299 + 11.6220i 0.656565 + 0.379068i
\(941\) −4.63851 17.3112i −0.151211 0.564328i −0.999400 0.0346338i \(-0.988974\pi\)
0.848189 0.529694i \(-0.177693\pi\)
\(942\) −1.48691 1.48691i −0.0484463 0.0484463i
\(943\) 70.3957 18.8625i 2.29240 0.614246i
\(944\) 4.67503 + 4.67503i 0.152159 + 0.152159i
\(945\) 0 0
\(946\) −0.354822 0.204856i −0.0115362 0.00666046i
\(947\) 8.78872 8.78872i 0.285595 0.285595i −0.549740 0.835336i \(-0.685273\pi\)
0.835336 + 0.549740i \(0.185273\pi\)
\(948\) 15.3239 26.5417i 0.497696 0.862035i
\(949\) 0.982264 3.42350i 0.0318856 0.111131i
\(950\) −0.812546 + 0.469124i −0.0263625 + 0.0152204i
\(951\) −22.3117 83.2684i −0.723506 2.70016i
\(952\) 0 0
\(953\) 25.0716 14.4751i 0.812147 0.468893i −0.0355538 0.999368i \(-0.511320\pi\)
0.847701 + 0.530474i \(0.177986\pi\)
\(954\) −0.485189 + 1.81075i −0.0157086 + 0.0586252i
\(955\) 18.1385 18.1385i 0.586947 0.586947i
\(956\) 12.1465 12.1465i 0.392847 0.392847i
\(957\) −9.42681 + 35.1813i −0.304725 + 1.13725i
\(958\) −2.02778 + 1.17074i −0.0655147 + 0.0378249i
\(959\) 0 0
\(960\) 9.11358 + 34.0123i 0.294140 + 1.09774i
\(961\) 10.9841 6.34165i 0.354325 0.204569i
\(962\) 0.613523 1.02070i 0.0197808 0.0329088i
\(963\) 14.9965 25.9746i 0.483254 0.837021i
\(964\) 18.8651 18.8651i 0.607605 0.607605i
\(965\) −29.9342 17.2825i −0.963617 0.556344i
\(966\) 0 0
\(967\) 20.8937 + 20.8937i 0.671895 + 0.671895i 0.958153 0.286258i \(-0.0924113\pi\)
−0.286258 + 0.958153i \(0.592411\pi\)
\(968\) −3.22215 + 0.863372i −0.103564 + 0.0277498i
\(969\) −33.5515 33.5515i −1.07783 1.07783i
\(970\) 0.788040 + 2.94101i 0.0253024 + 0.0944300i
\(971\) 35.5507 + 20.5252i 1.14088 + 0.658685i 0.946647 0.322271i \(-0.104446\pi\)
0.194229 + 0.980956i \(0.437780\pi\)
\(972\) 21.7644 37.6971i 0.698094 1.20913i
\(973\) 0 0
\(974\) 3.66794i 0.117528i
\(975\) 9.08901 15.1212i 0.291081 0.484265i
\(976\) 10.4606 + 6.03940i 0.334834 + 0.193317i
\(977\) 5.90951 22.0546i 0.189062 0.705589i −0.804662 0.593733i \(-0.797654\pi\)
0.993724 0.111856i \(-0.0356796\pi\)
\(978\) 3.92462i 0.125496i
\(979\) 7.86639 + 13.6250i 0.251411 + 0.435457i
\(980\) 0 0
\(981\) 12.0296 44.8951i 0.384076 1.43339i
\(982\) −0.587390 2.19217i −0.0187444 0.0699549i
\(983\) 28.7452 7.70226i 0.916831 0.245664i 0.230601 0.973048i \(-0.425931\pi\)
0.686230 + 0.727384i \(0.259264\pi\)
\(984\) −13.7811 −0.439327
\(985\) −38.4159 −1.22403
\(986\) −3.45403 + 0.925505i −0.109999 + 0.0294741i
\(987\) 0 0
\(988\) 8.42998 29.3811i 0.268193 0.934737i
\(989\) −5.73255 9.92907i −0.182285 0.315726i
\(990\) 1.46303 + 0.392017i 0.0464981 + 0.0124591i
\(991\) 1.24883 + 2.16303i 0.0396703 + 0.0687110i 0.885179 0.465251i \(-0.154036\pi\)
−0.845509 + 0.533962i \(0.820703\pi\)
\(992\) −2.97089 + 5.14574i −0.0943259 + 0.163377i
\(993\) 1.74225 1.74225i 0.0552888 0.0552888i
\(994\) 0 0
\(995\) 32.8817 + 8.81062i 1.04242 + 0.279315i
\(996\) −69.6456 18.6615i −2.20681 0.591312i
\(997\) 5.96661i 0.188965i −0.995527 0.0944823i \(-0.969880\pi\)
0.995527 0.0944823i \(-0.0301196\pi\)
\(998\) 1.68806 0.974599i 0.0534345 0.0308504i
\(999\) 3.91593 + 3.91593i 0.123895 + 0.123895i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.bb.b.423.4 32
7.2 even 3 637.2.x.b.215.4 32
7.3 odd 6 91.2.bc.a.20.6 yes 32
7.4 even 3 91.2.bc.a.20.5 32
7.5 odd 6 637.2.x.b.215.3 32
7.6 odd 2 inner 637.2.bb.b.423.3 32
13.2 odd 12 637.2.x.b.80.4 32
21.11 odd 6 819.2.fm.g.748.4 32
21.17 even 6 819.2.fm.g.748.3 32
91.2 odd 12 inner 637.2.bb.b.509.3 32
91.41 even 12 637.2.x.b.80.3 32
91.54 even 12 inner 637.2.bb.b.509.4 32
91.67 odd 12 91.2.bc.a.41.6 yes 32
91.80 even 12 91.2.bc.a.41.5 yes 32
273.80 odd 12 819.2.fm.g.496.4 32
273.158 even 12 819.2.fm.g.496.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.bc.a.20.5 32 7.4 even 3
91.2.bc.a.20.6 yes 32 7.3 odd 6
91.2.bc.a.41.5 yes 32 91.80 even 12
91.2.bc.a.41.6 yes 32 91.67 odd 12
637.2.x.b.80.3 32 91.41 even 12
637.2.x.b.80.4 32 13.2 odd 12
637.2.x.b.215.3 32 7.5 odd 6
637.2.x.b.215.4 32 7.2 even 3
637.2.bb.b.423.3 32 7.6 odd 2 inner
637.2.bb.b.423.4 32 1.1 even 1 trivial
637.2.bb.b.509.3 32 91.2 odd 12 inner
637.2.bb.b.509.4 32 91.54 even 12 inner
819.2.fm.g.496.3 32 273.158 even 12
819.2.fm.g.496.4 32 273.80 odd 12
819.2.fm.g.748.3 32 21.17 even 6
819.2.fm.g.748.4 32 21.11 odd 6