Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [637,2,Mod(227,637)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(637, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([2, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("637.227");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 637 = 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 637.bb (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.08647060876\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227.1 | −1.65980 | + | 1.65980i | −2.39046 | + | 1.38013i | − | 3.50987i | −0.412430 | + | 1.53921i | 1.67694 | − | 6.25841i | 0 | 2.50608 | + | 2.50608i | 2.30952 | − | 4.00020i | −1.87023 | − | 3.23933i | |||
227.2 | −1.65980 | + | 1.65980i | 2.39046 | − | 1.38013i | − | 3.50987i | 0.412430 | − | 1.53921i | −1.67694 | + | 6.25841i | 0 | 2.50608 | + | 2.50608i | 2.30952 | − | 4.00020i | 1.87023 | + | 3.23933i | |||
227.3 | −0.976208 | + | 0.976208i | −0.928437 | + | 0.536034i | 0.0940343i | 0.742756 | − | 2.77200i | 0.383068 | − | 1.42963i | 0 | −2.04421 | − | 2.04421i | −0.925336 | + | 1.60273i | 1.98097 | + | 3.43114i | ||||
227.4 | −0.976208 | + | 0.976208i | 0.928437 | − | 0.536034i | 0.0940343i | −0.742756 | + | 2.77200i | −0.383068 | + | 1.42963i | 0 | −2.04421 | − | 2.04421i | −0.925336 | + | 1.60273i | −1.98097 | − | 3.43114i | ||||
227.5 | 0.595687 | − | 0.595687i | −1.24122 | + | 0.716618i | 1.29031i | −0.370805 | + | 1.38386i | −0.312498 | + | 1.16626i | 0 | 1.96000 | + | 1.96000i | −0.472916 | + | 0.819114i | 0.603466 | + | 1.04523i | ||||
227.6 | 0.595687 | − | 0.595687i | 1.24122 | − | 0.716618i | 1.29031i | 0.370805 | − | 1.38386i | 0.312498 | − | 1.16626i | 0 | 1.96000 | + | 1.96000i | −0.472916 | + | 0.819114i | −0.603466 | − | 1.04523i | ||||
227.7 | 1.67430 | − | 1.67430i | −1.04118 | + | 0.601128i | − | 3.60653i | −0.825486 | + | 3.08075i | −0.736784 | + | 2.74971i | 0 | −2.68981 | − | 2.68981i | −0.777291 | + | 1.34631i | 3.77599 | + | 6.54020i | |||
227.8 | 1.67430 | − | 1.67430i | 1.04118 | − | 0.601128i | − | 3.60653i | 0.825486 | − | 3.08075i | 0.736784 | − | 2.74971i | 0 | −2.68981 | − | 2.68981i | −0.777291 | + | 1.34631i | −3.77599 | − | 6.54020i | |||
362.1 | −1.65980 | − | 1.65980i | −2.39046 | − | 1.38013i | 3.50987i | −0.412430 | − | 1.53921i | 1.67694 | + | 6.25841i | 0 | 2.50608 | − | 2.50608i | 2.30952 | + | 4.00020i | −1.87023 | + | 3.23933i | ||||
362.2 | −1.65980 | − | 1.65980i | 2.39046 | + | 1.38013i | 3.50987i | 0.412430 | + | 1.53921i | −1.67694 | − | 6.25841i | 0 | 2.50608 | − | 2.50608i | 2.30952 | + | 4.00020i | 1.87023 | − | 3.23933i | ||||
362.3 | −0.976208 | − | 0.976208i | −0.928437 | − | 0.536034i | − | 0.0940343i | 0.742756 | + | 2.77200i | 0.383068 | + | 1.42963i | 0 | −2.04421 | + | 2.04421i | −0.925336 | − | 1.60273i | 1.98097 | − | 3.43114i | |||
362.4 | −0.976208 | − | 0.976208i | 0.928437 | + | 0.536034i | − | 0.0940343i | −0.742756 | − | 2.77200i | −0.383068 | − | 1.42963i | 0 | −2.04421 | + | 2.04421i | −0.925336 | − | 1.60273i | −1.98097 | + | 3.43114i | |||
362.5 | 0.595687 | + | 0.595687i | −1.24122 | − | 0.716618i | − | 1.29031i | −0.370805 | − | 1.38386i | −0.312498 | − | 1.16626i | 0 | 1.96000 | − | 1.96000i | −0.472916 | − | 0.819114i | 0.603466 | − | 1.04523i | |||
362.6 | 0.595687 | + | 0.595687i | 1.24122 | + | 0.716618i | − | 1.29031i | 0.370805 | + | 1.38386i | 0.312498 | + | 1.16626i | 0 | 1.96000 | − | 1.96000i | −0.472916 | − | 0.819114i | −0.603466 | + | 1.04523i | |||
362.7 | 1.67430 | + | 1.67430i | −1.04118 | − | 0.601128i | 3.60653i | −0.825486 | − | 3.08075i | −0.736784 | − | 2.74971i | 0 | −2.68981 | + | 2.68981i | −0.777291 | − | 1.34631i | 3.77599 | − | 6.54020i | ||||
362.8 | 1.67430 | + | 1.67430i | 1.04118 | + | 0.601128i | 3.60653i | 0.825486 | + | 3.08075i | 0.736784 | + | 2.74971i | 0 | −2.68981 | + | 2.68981i | −0.777291 | − | 1.34631i | −3.77599 | + | 6.54020i | ||||
423.1 | −1.18517 | − | 1.18517i | −0.552306 | + | 0.318874i | 0.809250i | 1.94174 | + | 0.520288i | 1.03250 | + | 0.276656i | 0 | −1.41124 | + | 1.41124i | −1.29664 | + | 2.24584i | −1.68466 | − | 2.91792i | ||||
423.2 | −1.18517 | − | 1.18517i | 0.552306 | − | 0.318874i | 0.809250i | −1.94174 | − | 0.520288i | −1.03250 | − | 0.276656i | 0 | −1.41124 | + | 1.41124i | −1.29664 | + | 2.24584i | 1.68466 | + | 2.91792i | ||||
423.3 | 0.0825572 | + | 0.0825572i | −2.25055 | + | 1.29935i | − | 1.98637i | −1.70537 | − | 0.456951i | −0.293070 | − | 0.0785278i | 0 | 0.329103 | − | 0.329103i | 1.87664 | − | 3.25044i | −0.103066 | − | 0.178515i | |||
423.4 | 0.0825572 | + | 0.0825572i | 2.25055 | − | 1.29935i | − | 1.98637i | 1.70537 | + | 0.456951i | 0.293070 | + | 0.0785278i | 0 | 0.329103 | − | 0.329103i | 1.87664 | − | 3.25044i | 0.103066 | + | 0.178515i | |||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
91.x | odd | 12 | 1 | inner |
91.ba | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 637.2.bb.b | 32 | |
7.b | odd | 2 | 1 | inner | 637.2.bb.b | 32 | |
7.c | even | 3 | 1 | 91.2.bc.a | ✓ | 32 | |
7.c | even | 3 | 1 | 637.2.x.b | 32 | ||
7.d | odd | 6 | 1 | 91.2.bc.a | ✓ | 32 | |
7.d | odd | 6 | 1 | 637.2.x.b | 32 | ||
13.f | odd | 12 | 1 | 637.2.x.b | 32 | ||
21.g | even | 6 | 1 | 819.2.fm.g | 32 | ||
21.h | odd | 6 | 1 | 819.2.fm.g | 32 | ||
91.w | even | 12 | 1 | 91.2.bc.a | ✓ | 32 | |
91.x | odd | 12 | 1 | inner | 637.2.bb.b | 32 | |
91.ba | even | 12 | 1 | inner | 637.2.bb.b | 32 | |
91.bc | even | 12 | 1 | 637.2.x.b | 32 | ||
91.bd | odd | 12 | 1 | 91.2.bc.a | ✓ | 32 | |
273.bw | even | 12 | 1 | 819.2.fm.g | 32 | ||
273.ch | odd | 12 | 1 | 819.2.fm.g | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.bc.a | ✓ | 32 | 7.c | even | 3 | 1 | |
91.2.bc.a | ✓ | 32 | 7.d | odd | 6 | 1 | |
91.2.bc.a | ✓ | 32 | 91.w | even | 12 | 1 | |
91.2.bc.a | ✓ | 32 | 91.bd | odd | 12 | 1 | |
637.2.x.b | 32 | 7.c | even | 3 | 1 | ||
637.2.x.b | 32 | 7.d | odd | 6 | 1 | ||
637.2.x.b | 32 | 13.f | odd | 12 | 1 | ||
637.2.x.b | 32 | 91.bc | even | 12 | 1 | ||
637.2.bb.b | 32 | 1.a | even | 1 | 1 | trivial | |
637.2.bb.b | 32 | 7.b | odd | 2 | 1 | inner | |
637.2.bb.b | 32 | 91.x | odd | 12 | 1 | inner | |
637.2.bb.b | 32 | 91.ba | even | 12 | 1 | inner | |
819.2.fm.g | 32 | 21.g | even | 6 | 1 | ||
819.2.fm.g | 32 | 21.h | odd | 6 | 1 | ||
819.2.fm.g | 32 | 273.bw | even | 12 | 1 | ||
819.2.fm.g | 32 | 273.ch | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} - 2 T_{2}^{15} + 2 T_{2}^{14} + 4 T_{2}^{13} + 49 T_{2}^{12} - 80 T_{2}^{11} + 70 T_{2}^{10} + \cdots + 9 \) acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\).