Properties

Label 825.2.n.p.751.1
Level $825$
Weight $2$
Character 825.751
Analytic conductor $6.588$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(301,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 751.1
Character \(\chi\) \(=\) 825.751
Dual form 825.2.n.p.301.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.91233 + 1.38939i) q^{2} +(0.309017 + 0.951057i) q^{3} +(1.10857 - 3.41183i) q^{4} +(-1.91233 - 1.38939i) q^{6} +(-0.529727 + 1.63033i) q^{7} +(1.15951 + 3.56862i) q^{8} +(-0.809017 + 0.587785i) q^{9} +(-0.406668 - 3.29160i) q^{11} +3.58741 q^{12} +(2.85857 - 2.07687i) q^{13} +(-1.25215 - 3.85373i) q^{14} +(-1.37103 - 0.996109i) q^{16} +(0.302010 + 0.219423i) q^{17} +(0.730445 - 2.24808i) q^{18} +(-1.78239 - 5.48564i) q^{19} -1.71423 q^{21} +(5.35099 + 5.72960i) q^{22} -3.80745 q^{23} +(-3.03565 + 2.20553i) q^{24} +(-2.58094 + 7.94332i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(4.97517 + 3.61467i) q^{28} +(-1.08672 + 3.34458i) q^{29} +(8.16928 - 5.93533i) q^{31} -3.49870 q^{32} +(3.00483 - 1.40392i) q^{33} -0.882407 q^{34} +(1.10857 + 3.41183i) q^{36} +(3.56666 - 10.9770i) q^{37} +(11.0302 + 8.01391i) q^{38} +(2.85857 + 2.07687i) q^{39} +(-0.747505 - 2.30059i) q^{41} +(3.27818 - 2.38174i) q^{42} -0.224486 q^{43} +(-11.6812 - 2.26149i) q^{44} +(7.28109 - 5.29002i) q^{46} +(-1.44508 - 4.44749i) q^{47} +(0.523685 - 1.61174i) q^{48} +(3.28575 + 2.38724i) q^{49} +(-0.115358 + 0.355034i) q^{51} +(-3.91700 - 12.0553i) q^{52} +(1.97737 - 1.43665i) q^{53} +2.36377 q^{54} -6.43226 q^{56} +(4.66636 - 3.39031i) q^{57} +(-2.56876 - 7.90582i) q^{58} +(1.65630 - 5.09757i) q^{59} +(2.75575 + 2.00217i) q^{61} +(-7.37587 + 22.7006i) q^{62} +(-0.529727 - 1.63033i) q^{63} +(9.43272 - 6.85327i) q^{64} +(-3.79563 + 6.85964i) q^{66} +9.08988 q^{67} +(1.08343 - 0.787161i) q^{68} +(-1.17657 - 3.62110i) q^{69} +(7.09964 + 5.15819i) q^{71} +(-3.03565 - 2.20553i) q^{72} +(-4.62358 + 14.2299i) q^{73} +(8.43076 + 25.9472i) q^{74} -20.6919 q^{76} +(5.58182 + 1.08064i) q^{77} -8.35211 q^{78} +(-7.11291 + 5.16783i) q^{79} +(0.309017 - 0.951057i) q^{81} +(4.62589 + 3.36090i) q^{82} +(-6.02082 - 4.37438i) q^{83} +(-1.90035 + 5.84866i) q^{84} +(0.429291 - 0.311898i) q^{86} -3.51670 q^{87} +(11.2749 - 5.26790i) q^{88} +15.5058 q^{89} +(1.87173 + 5.76059i) q^{91} +(-4.22082 + 12.9903i) q^{92} +(8.16928 + 5.93533i) q^{93} +(8.94275 + 6.49729i) q^{94} +(-1.08116 - 3.32746i) q^{96} +(-11.8632 + 8.61910i) q^{97} -9.60024 q^{98} +(2.26375 + 2.42393i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} - 6 q^{3} - 6 q^{4} + 2 q^{6} + 4 q^{7} + 6 q^{8} - 6 q^{9} + 24 q^{12} + 4 q^{13} + 2 q^{14} - 22 q^{16} + 4 q^{17} + 2 q^{18} + 8 q^{19} - 16 q^{21} - 4 q^{22} + 6 q^{24} - 38 q^{26} - 6 q^{27}+ \cdots - 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91233 + 1.38939i −1.35222 + 0.982446i −0.353324 + 0.935501i \(0.614949\pi\)
−0.998897 + 0.0469455i \(0.985051\pi\)
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 1.10857 3.41183i 0.554285 1.70591i
\(5\) 0 0
\(6\) −1.91233 1.38939i −0.780705 0.567216i
\(7\) −0.529727 + 1.63033i −0.200218 + 0.616207i 0.799658 + 0.600456i \(0.205014\pi\)
−0.999876 + 0.0157517i \(0.994986\pi\)
\(8\) 1.15951 + 3.56862i 0.409950 + 1.26170i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) −0.406668 3.29160i −0.122615 0.992454i
\(12\) 3.58741 1.03560
\(13\) 2.85857 2.07687i 0.792824 0.576020i −0.115976 0.993252i \(-0.537000\pi\)
0.908800 + 0.417232i \(0.137000\pi\)
\(14\) −1.25215 3.85373i −0.334652 1.02995i
\(15\) 0 0
\(16\) −1.37103 0.996109i −0.342757 0.249027i
\(17\) 0.302010 + 0.219423i 0.0732482 + 0.0532180i 0.623807 0.781579i \(-0.285585\pi\)
−0.550559 + 0.834797i \(0.685585\pi\)
\(18\) 0.730445 2.24808i 0.172168 0.529877i
\(19\) −1.78239 5.48564i −0.408909 1.25849i −0.917587 0.397535i \(-0.869866\pi\)
0.508679 0.860956i \(-0.330134\pi\)
\(20\) 0 0
\(21\) −1.71423 −0.374076
\(22\) 5.35099 + 5.72960i 1.14084 + 1.22156i
\(23\) −3.80745 −0.793907 −0.396954 0.917839i \(-0.629933\pi\)
−0.396954 + 0.917839i \(0.629933\pi\)
\(24\) −3.03565 + 2.20553i −0.619649 + 0.450201i
\(25\) 0 0
\(26\) −2.58094 + 7.94332i −0.506165 + 1.55781i
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 4.97517 + 3.61467i 0.940219 + 0.683109i
\(29\) −1.08672 + 3.34458i −0.201799 + 0.621073i 0.798031 + 0.602617i \(0.205875\pi\)
−0.999830 + 0.0184562i \(0.994125\pi\)
\(30\) 0 0
\(31\) 8.16928 5.93533i 1.46725 1.06602i 0.485845 0.874045i \(-0.338512\pi\)
0.981401 0.191971i \(-0.0614880\pi\)
\(32\) −3.49870 −0.618488
\(33\) 3.00483 1.40392i 0.523074 0.244392i
\(34\) −0.882407 −0.151332
\(35\) 0 0
\(36\) 1.10857 + 3.41183i 0.184762 + 0.568638i
\(37\) 3.56666 10.9770i 0.586355 1.80462i −0.00740399 0.999973i \(-0.502357\pi\)
0.593759 0.804643i \(-0.297643\pi\)
\(38\) 11.0302 + 8.01391i 1.78933 + 1.30003i
\(39\) 2.85857 + 2.07687i 0.457737 + 0.332565i
\(40\) 0 0
\(41\) −0.747505 2.30059i −0.116741 0.359291i 0.875565 0.483100i \(-0.160489\pi\)
−0.992306 + 0.123809i \(0.960489\pi\)
\(42\) 3.27818 2.38174i 0.505834 0.367510i
\(43\) −0.224486 −0.0342338 −0.0171169 0.999853i \(-0.505449\pi\)
−0.0171169 + 0.999853i \(0.505449\pi\)
\(44\) −11.6812 2.26149i −1.76101 0.340932i
\(45\) 0 0
\(46\) 7.28109 5.29002i 1.07354 0.779971i
\(47\) −1.44508 4.44749i −0.210786 0.648733i −0.999426 0.0338775i \(-0.989214\pi\)
0.788640 0.614855i \(-0.210786\pi\)
\(48\) 0.523685 1.61174i 0.0755875 0.232634i
\(49\) 3.28575 + 2.38724i 0.469393 + 0.341034i
\(50\) 0 0
\(51\) −0.115358 + 0.355034i −0.0161533 + 0.0497147i
\(52\) −3.91700 12.0553i −0.543191 1.67177i
\(53\) 1.97737 1.43665i 0.271613 0.197339i −0.443638 0.896206i \(-0.646312\pi\)
0.715251 + 0.698868i \(0.246312\pi\)
\(54\) 2.36377 0.321668
\(55\) 0 0
\(56\) −6.43226 −0.859547
\(57\) 4.66636 3.39031i 0.618074 0.449057i
\(58\) −2.56876 7.90582i −0.337294 1.03808i
\(59\) 1.65630 5.09757i 0.215632 0.663648i −0.783476 0.621422i \(-0.786555\pi\)
0.999108 0.0422255i \(-0.0134448\pi\)
\(60\) 0 0
\(61\) 2.75575 + 2.00217i 0.352838 + 0.256352i 0.750058 0.661371i \(-0.230025\pi\)
−0.397221 + 0.917723i \(0.630025\pi\)
\(62\) −7.37587 + 22.7006i −0.936737 + 2.88298i
\(63\) −0.529727 1.63033i −0.0667393 0.205402i
\(64\) 9.43272 6.85327i 1.17909 0.856659i
\(65\) 0 0
\(66\) −3.79563 + 6.85964i −0.467210 + 0.844364i
\(67\) 9.08988 1.11051 0.555253 0.831682i \(-0.312621\pi\)
0.555253 + 0.831682i \(0.312621\pi\)
\(68\) 1.08343 0.787161i 0.131386 0.0954573i
\(69\) −1.17657 3.62110i −0.141642 0.435929i
\(70\) 0 0
\(71\) 7.09964 + 5.15819i 0.842572 + 0.612165i 0.923088 0.384589i \(-0.125657\pi\)
−0.0805158 + 0.996753i \(0.525657\pi\)
\(72\) −3.03565 2.20553i −0.357755 0.259924i
\(73\) −4.62358 + 14.2299i −0.541150 + 1.66549i 0.188823 + 0.982011i \(0.439533\pi\)
−0.729973 + 0.683476i \(0.760467\pi\)
\(74\) 8.43076 + 25.9472i 0.980056 + 3.01630i
\(75\) 0 0
\(76\) −20.6919 −2.37353
\(77\) 5.58182 + 1.08064i 0.636107 + 0.123151i
\(78\) −8.35211 −0.945690
\(79\) −7.11291 + 5.16783i −0.800265 + 0.581426i −0.910992 0.412425i \(-0.864682\pi\)
0.110727 + 0.993851i \(0.464682\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 4.62589 + 3.36090i 0.510844 + 0.371150i
\(83\) −6.02082 4.37438i −0.660871 0.480151i 0.206086 0.978534i \(-0.433927\pi\)
−0.866957 + 0.498383i \(0.833927\pi\)
\(84\) −1.90035 + 5.84866i −0.207345 + 0.638142i
\(85\) 0 0
\(86\) 0.429291 0.311898i 0.0462916 0.0336328i
\(87\) −3.51670 −0.377030
\(88\) 11.2749 5.26790i 1.20191 0.561560i
\(89\) 15.5058 1.64361 0.821806 0.569767i \(-0.192966\pi\)
0.821806 + 0.569767i \(0.192966\pi\)
\(90\) 0 0
\(91\) 1.87173 + 5.76059i 0.196210 + 0.603874i
\(92\) −4.22082 + 12.9903i −0.440051 + 1.35434i
\(93\) 8.16928 + 5.93533i 0.847115 + 0.615465i
\(94\) 8.94275 + 6.49729i 0.922375 + 0.670144i
\(95\) 0 0
\(96\) −1.08116 3.32746i −0.110345 0.339607i
\(97\) −11.8632 + 8.61910i −1.20452 + 0.875137i −0.994722 0.102608i \(-0.967281\pi\)
−0.209800 + 0.977744i \(0.567281\pi\)
\(98\) −9.60024 −0.969770
\(99\) 2.26375 + 2.42393i 0.227516 + 0.243614i
\(100\) 0 0
\(101\) −4.96307 + 3.60588i −0.493844 + 0.358798i −0.806661 0.591015i \(-0.798727\pi\)
0.312817 + 0.949813i \(0.398727\pi\)
\(102\) −0.272679 0.839219i −0.0269992 0.0830951i
\(103\) 2.43193 7.48471i 0.239625 0.737490i −0.756849 0.653590i \(-0.773262\pi\)
0.996474 0.0839005i \(-0.0267378\pi\)
\(104\) 10.7261 + 7.79298i 1.05178 + 0.764164i
\(105\) 0 0
\(106\) −1.78533 + 5.49468i −0.173407 + 0.533691i
\(107\) −1.53155 4.71361i −0.148060 0.455682i 0.849332 0.527859i \(-0.177005\pi\)
−0.997392 + 0.0721774i \(0.977005\pi\)
\(108\) −2.90227 + 2.10863i −0.279271 + 0.202903i
\(109\) −2.61667 −0.250632 −0.125316 0.992117i \(-0.539994\pi\)
−0.125316 + 0.992117i \(0.539994\pi\)
\(110\) 0 0
\(111\) 11.5420 1.09551
\(112\) 2.35026 1.70756i 0.222078 0.161349i
\(113\) −0.654058 2.01298i −0.0615286 0.189366i 0.915567 0.402165i \(-0.131742\pi\)
−0.977096 + 0.212799i \(0.931742\pi\)
\(114\) −4.21316 + 12.9668i −0.394599 + 1.21445i
\(115\) 0 0
\(116\) 10.2064 + 7.41540i 0.947643 + 0.688503i
\(117\) −1.09188 + 3.36045i −0.100944 + 0.310673i
\(118\) 3.91512 + 12.0495i 0.360416 + 1.10925i
\(119\) −0.517715 + 0.376142i −0.0474589 + 0.0344809i
\(120\) 0 0
\(121\) −10.6692 + 2.67717i −0.969931 + 0.243379i
\(122\) −8.05170 −0.728966
\(123\) 1.95699 1.42184i 0.176456 0.128203i
\(124\) −11.1941 34.4519i −1.00526 3.09387i
\(125\) 0 0
\(126\) 3.27818 + 2.38174i 0.292043 + 0.212182i
\(127\) 9.66586 + 7.02266i 0.857707 + 0.623160i 0.927260 0.374418i \(-0.122157\pi\)
−0.0695535 + 0.997578i \(0.522157\pi\)
\(128\) −6.35430 + 19.5565i −0.561646 + 1.72857i
\(129\) −0.0693699 0.213499i −0.00610768 0.0187975i
\(130\) 0 0
\(131\) 20.3359 1.77676 0.888380 0.459110i \(-0.151831\pi\)
0.888380 + 0.459110i \(0.151831\pi\)
\(132\) −1.45888 11.8083i −0.126980 1.02778i
\(133\) 9.88758 0.857362
\(134\) −17.3829 + 12.6294i −1.50165 + 1.09101i
\(135\) 0 0
\(136\) −0.432853 + 1.33218i −0.0371168 + 0.114234i
\(137\) 4.29866 + 3.12316i 0.367259 + 0.266829i 0.756073 0.654487i \(-0.227115\pi\)
−0.388814 + 0.921316i \(0.627115\pi\)
\(138\) 7.28109 + 5.29002i 0.619808 + 0.450317i
\(139\) 4.08383 12.5688i 0.346386 1.06607i −0.614451 0.788955i \(-0.710622\pi\)
0.960837 0.277113i \(-0.0893775\pi\)
\(140\) 0 0
\(141\) 3.78326 2.74870i 0.318608 0.231482i
\(142\) −20.7436 −1.74076
\(143\) −7.99871 8.56466i −0.668886 0.716213i
\(144\) 1.69468 0.141223
\(145\) 0 0
\(146\) −10.9291 33.6363i −0.904498 2.78376i
\(147\) −1.25504 + 3.86263i −0.103514 + 0.318584i
\(148\) −33.4979 24.3377i −2.75351 2.00054i
\(149\) 4.90495 + 3.56366i 0.401830 + 0.291946i 0.770286 0.637699i \(-0.220114\pi\)
−0.368456 + 0.929645i \(0.620114\pi\)
\(150\) 0 0
\(151\) −2.26661 6.97591i −0.184454 0.567692i 0.815484 0.578779i \(-0.196471\pi\)
−0.999939 + 0.0110874i \(0.996471\pi\)
\(152\) 17.5094 12.7213i 1.42020 1.03184i
\(153\) −0.373305 −0.0301799
\(154\) −12.1757 + 5.68877i −0.981147 + 0.458414i
\(155\) 0 0
\(156\) 10.2548 7.45058i 0.821045 0.596524i
\(157\) −3.26192 10.0392i −0.260329 0.801212i −0.992733 0.120340i \(-0.961601\pi\)
0.732403 0.680871i \(-0.238399\pi\)
\(158\) 6.42210 19.7652i 0.510915 1.57243i
\(159\) 1.97737 + 1.43665i 0.156816 + 0.113933i
\(160\) 0 0
\(161\) 2.01691 6.20740i 0.158954 0.489211i
\(162\) 0.730445 + 2.24808i 0.0573892 + 0.176626i
\(163\) 8.17677 5.94077i 0.640454 0.465317i −0.219552 0.975601i \(-0.570460\pi\)
0.860006 + 0.510284i \(0.170460\pi\)
\(164\) −8.67786 −0.677627
\(165\) 0 0
\(166\) 17.5915 1.36537
\(167\) 10.7981 7.84529i 0.835583 0.607087i −0.0855502 0.996334i \(-0.527265\pi\)
0.921133 + 0.389247i \(0.127265\pi\)
\(168\) −1.98768 6.11744i −0.153353 0.471971i
\(169\) −0.159206 + 0.489985i −0.0122466 + 0.0376911i
\(170\) 0 0
\(171\) 4.66636 + 3.39031i 0.356845 + 0.259263i
\(172\) −0.248858 + 0.765907i −0.0189753 + 0.0583999i
\(173\) −5.51914 16.9862i −0.419613 1.29144i −0.908059 0.418841i \(-0.862436\pi\)
0.488447 0.872594i \(-0.337564\pi\)
\(174\) 6.72509 4.88606i 0.509828 0.370411i
\(175\) 0 0
\(176\) −2.72124 + 4.91795i −0.205121 + 0.370705i
\(177\) 5.35991 0.402875
\(178\) −29.6522 + 21.5436i −2.22253 + 1.61476i
\(179\) −3.93601 12.1138i −0.294192 0.905428i −0.983492 0.180953i \(-0.942082\pi\)
0.689300 0.724476i \(-0.257918\pi\)
\(180\) 0 0
\(181\) −16.7562 12.1741i −1.24548 0.904891i −0.247525 0.968882i \(-0.579617\pi\)
−0.997950 + 0.0639909i \(0.979617\pi\)
\(182\) −11.5831 8.41558i −0.858593 0.623805i
\(183\) −1.05260 + 3.23958i −0.0778106 + 0.239477i
\(184\) −4.41479 13.5873i −0.325463 1.00167i
\(185\) 0 0
\(186\) −23.8688 −1.75015
\(187\) 0.599435 1.08333i 0.0438351 0.0792208i
\(188\) −16.7760 −1.22352
\(189\) 1.38684 1.00760i 0.100878 0.0732921i
\(190\) 0 0
\(191\) −1.91577 + 5.89614i −0.138620 + 0.426630i −0.996136 0.0878289i \(-0.972007\pi\)
0.857515 + 0.514459i \(0.172007\pi\)
\(192\) 9.43272 + 6.85327i 0.680748 + 0.494592i
\(193\) 4.46870 + 3.24670i 0.321664 + 0.233703i 0.736885 0.676018i \(-0.236296\pi\)
−0.415221 + 0.909721i \(0.636296\pi\)
\(194\) 10.7110 32.9651i 0.769006 2.36676i
\(195\) 0 0
\(196\) 11.7873 8.56399i 0.841952 0.611714i
\(197\) −12.8524 −0.915693 −0.457846 0.889031i \(-0.651379\pi\)
−0.457846 + 0.889031i \(0.651379\pi\)
\(198\) −7.69682 1.49011i −0.546989 0.105898i
\(199\) 3.42830 0.243026 0.121513 0.992590i \(-0.461225\pi\)
0.121513 + 0.992590i \(0.461225\pi\)
\(200\) 0 0
\(201\) 2.80893 + 8.64499i 0.198126 + 0.609771i
\(202\) 4.48105 13.7913i 0.315286 0.970350i
\(203\) −4.87711 3.54343i −0.342306 0.248700i
\(204\) 1.08343 + 0.787161i 0.0758555 + 0.0551123i
\(205\) 0 0
\(206\) 5.74852 + 17.6921i 0.400518 + 1.23267i
\(207\) 3.08029 2.23796i 0.214095 0.155549i
\(208\) −5.98796 −0.415190
\(209\) −17.3317 + 8.09775i −1.19886 + 0.560133i
\(210\) 0 0
\(211\) −14.4241 + 10.4797i −0.992996 + 0.721454i −0.960575 0.278020i \(-0.910322\pi\)
−0.0324211 + 0.999474i \(0.510322\pi\)
\(212\) −2.70953 8.33908i −0.186091 0.572731i
\(213\) −2.71182 + 8.34613i −0.185811 + 0.571867i
\(214\) 9.47786 + 6.88607i 0.647893 + 0.470722i
\(215\) 0 0
\(216\) 1.15951 3.56862i 0.0788950 0.242814i
\(217\) 5.34907 + 16.4627i 0.363118 + 1.11756i
\(218\) 5.00395 3.63558i 0.338910 0.246232i
\(219\) −14.9622 −1.01105
\(220\) 0 0
\(221\) 1.31903 0.0887276
\(222\) −22.0720 + 16.0363i −1.48138 + 1.07628i
\(223\) 1.33405 + 4.10580i 0.0893349 + 0.274944i 0.985736 0.168299i \(-0.0538276\pi\)
−0.896401 + 0.443244i \(0.853828\pi\)
\(224\) 1.85335 5.70404i 0.123832 0.381117i
\(225\) 0 0
\(226\) 4.04759 + 2.94075i 0.269242 + 0.195616i
\(227\) 7.86025 24.1914i 0.521703 1.60564i −0.249041 0.968493i \(-0.580115\pi\)
0.770744 0.637145i \(-0.219885\pi\)
\(228\) −6.39416 19.6792i −0.423464 1.30329i
\(229\) −11.6445 + 8.46020i −0.769488 + 0.559066i −0.901806 0.432142i \(-0.857758\pi\)
0.132318 + 0.991207i \(0.457758\pi\)
\(230\) 0 0
\(231\) 0.697123 + 5.64256i 0.0458673 + 0.371253i
\(232\) −13.1956 −0.866333
\(233\) 9.65280 7.01317i 0.632376 0.459448i −0.224847 0.974394i \(-0.572188\pi\)
0.857223 + 0.514946i \(0.172188\pi\)
\(234\) −2.58094 7.94332i −0.168722 0.519271i
\(235\) 0 0
\(236\) −15.5559 11.3020i −1.01260 0.735700i
\(237\) −7.11291 5.16783i −0.462033 0.335687i
\(238\) 0.467435 1.43862i 0.0302993 0.0932517i
\(239\) −2.55170 7.85333i −0.165056 0.507990i 0.833985 0.551788i \(-0.186054\pi\)
−0.999040 + 0.0437981i \(0.986054\pi\)
\(240\) 0 0
\(241\) −11.1487 −0.718154 −0.359077 0.933308i \(-0.616908\pi\)
−0.359077 + 0.933308i \(0.616908\pi\)
\(242\) 16.6835 19.9434i 1.07245 1.28201i
\(243\) 1.00000 0.0641500
\(244\) 9.88600 7.18260i 0.632886 0.459819i
\(245\) 0 0
\(246\) −1.76693 + 5.43805i −0.112655 + 0.346718i
\(247\) −16.4880 11.9793i −1.04911 0.762222i
\(248\) 30.6533 + 22.2709i 1.94649 + 1.41421i
\(249\) 2.29975 7.07790i 0.145741 0.448544i
\(250\) 0 0
\(251\) −23.1886 + 16.8475i −1.46365 + 1.06341i −0.481262 + 0.876577i \(0.659822\pi\)
−0.982392 + 0.186831i \(0.940178\pi\)
\(252\) −6.14965 −0.387392
\(253\) 1.54837 + 12.5326i 0.0973449 + 0.787917i
\(254\) −28.2415 −1.77203
\(255\) 0 0
\(256\) −7.81414 24.0494i −0.488384 1.50309i
\(257\) 0.716932 2.20649i 0.0447210 0.137637i −0.926203 0.377025i \(-0.876947\pi\)
0.970924 + 0.239388i \(0.0769469\pi\)
\(258\) 0.429291 + 0.311898i 0.0267265 + 0.0194179i
\(259\) 16.0069 + 11.6297i 0.994619 + 0.722633i
\(260\) 0 0
\(261\) −1.08672 3.34458i −0.0672663 0.207024i
\(262\) −38.8890 + 28.2545i −2.40257 + 1.74557i
\(263\) −2.92970 −0.180653 −0.0903265 0.995912i \(-0.528791\pi\)
−0.0903265 + 0.995912i \(0.528791\pi\)
\(264\) 8.49421 + 9.09522i 0.522783 + 0.559772i
\(265\) 0 0
\(266\) −18.9083 + 13.7377i −1.15934 + 0.842312i
\(267\) 4.79156 + 14.7469i 0.293239 + 0.902496i
\(268\) 10.0768 31.0131i 0.615537 1.89443i
\(269\) 3.66649 + 2.66386i 0.223550 + 0.162418i 0.693923 0.720049i \(-0.255881\pi\)
−0.470373 + 0.882468i \(0.655881\pi\)
\(270\) 0 0
\(271\) 8.37796 25.7847i 0.508925 1.56631i −0.285146 0.958484i \(-0.592042\pi\)
0.794071 0.607825i \(-0.207958\pi\)
\(272\) −0.195494 0.601670i −0.0118536 0.0364816i
\(273\) −4.90025 + 3.56024i −0.296576 + 0.215475i
\(274\) −12.5597 −0.758761
\(275\) 0 0
\(276\) −13.6589 −0.822167
\(277\) 10.7206 7.78897i 0.644139 0.467994i −0.217131 0.976142i \(-0.569670\pi\)
0.861270 + 0.508148i \(0.169670\pi\)
\(278\) 9.65325 + 29.7096i 0.578963 + 1.78187i
\(279\) −3.12039 + 9.60356i −0.186813 + 0.574950i
\(280\) 0 0
\(281\) 8.95715 + 6.50775i 0.534339 + 0.388220i 0.821978 0.569519i \(-0.192871\pi\)
−0.287640 + 0.957739i \(0.592871\pi\)
\(282\) −3.41583 + 10.5128i −0.203410 + 0.626030i
\(283\) −3.11389 9.58356i −0.185101 0.569683i 0.814849 0.579674i \(-0.196820\pi\)
−0.999950 + 0.00999031i \(0.996820\pi\)
\(284\) 25.4693 18.5045i 1.51133 1.09804i
\(285\) 0 0
\(286\) 27.1958 + 5.26513i 1.60812 + 0.311334i
\(287\) 4.14669 0.244771
\(288\) 2.83051 2.05648i 0.166789 0.121179i
\(289\) −5.21023 16.0354i −0.306484 0.943260i
\(290\) 0 0
\(291\) −11.8632 8.61910i −0.695431 0.505260i
\(292\) 43.4245 + 31.5498i 2.54123 + 1.84631i
\(293\) −2.42473 + 7.46255i −0.141654 + 0.435967i −0.996566 0.0828074i \(-0.973611\pi\)
0.854911 + 0.518774i \(0.173611\pi\)
\(294\) −2.96664 9.13037i −0.173018 0.532494i
\(295\) 0 0
\(296\) 43.3085 2.51725
\(297\) −1.60575 + 2.90199i −0.0931752 + 0.168391i
\(298\) −14.3312 −0.830184
\(299\) −10.8838 + 7.90757i −0.629429 + 0.457307i
\(300\) 0 0
\(301\) 0.118916 0.365986i 0.00685421 0.0210951i
\(302\) 14.0268 + 10.1910i 0.807150 + 0.586429i
\(303\) −4.96307 3.60588i −0.285121 0.207152i
\(304\) −3.02059 + 9.29641i −0.173242 + 0.533185i
\(305\) 0 0
\(306\) 0.713883 0.518666i 0.0408099 0.0296502i
\(307\) 2.64692 0.151068 0.0755339 0.997143i \(-0.475934\pi\)
0.0755339 + 0.997143i \(0.475934\pi\)
\(308\) 9.87481 17.8462i 0.562670 1.01688i
\(309\) 7.86989 0.447702
\(310\) 0 0
\(311\) −1.39311 4.28755i −0.0789959 0.243125i 0.903758 0.428045i \(-0.140797\pi\)
−0.982754 + 0.184920i \(0.940797\pi\)
\(312\) −4.09701 + 12.6093i −0.231948 + 0.713861i
\(313\) 7.85494 + 5.70694i 0.443987 + 0.322576i 0.787217 0.616676i \(-0.211521\pi\)
−0.343230 + 0.939251i \(0.611521\pi\)
\(314\) 20.1862 + 14.6661i 1.13917 + 0.827656i
\(315\) 0 0
\(316\) 9.74659 + 29.9969i 0.548288 + 1.68746i
\(317\) 13.8145 10.0368i 0.775901 0.563725i −0.127845 0.991794i \(-0.540806\pi\)
0.903746 + 0.428069i \(0.140806\pi\)
\(318\) −5.77745 −0.323984
\(319\) 11.4509 + 2.21691i 0.641130 + 0.124123i
\(320\) 0 0
\(321\) 4.00964 2.91317i 0.223796 0.162597i
\(322\) 4.76750 + 14.6729i 0.265682 + 0.817687i
\(323\) 0.665376 2.04782i 0.0370225 0.113944i
\(324\) −2.90227 2.10863i −0.161237 0.117146i
\(325\) 0 0
\(326\) −7.38264 + 22.7214i −0.408887 + 1.25842i
\(327\) −0.808597 2.48861i −0.0447155 0.137620i
\(328\) 7.34317 5.33512i 0.405459 0.294583i
\(329\) 8.01638 0.441957
\(330\) 0 0
\(331\) −2.79769 −0.153775 −0.0768874 0.997040i \(-0.524498\pi\)
−0.0768874 + 0.997040i \(0.524498\pi\)
\(332\) −21.5992 + 15.6927i −1.18541 + 0.861249i
\(333\) 3.56666 + 10.9770i 0.195452 + 0.601538i
\(334\) −9.74940 + 30.0056i −0.533463 + 1.64183i
\(335\) 0 0
\(336\) 2.35026 + 1.70756i 0.128217 + 0.0931551i
\(337\) 2.87008 8.83320i 0.156343 0.481175i −0.841951 0.539554i \(-0.818593\pi\)
0.998295 + 0.0583785i \(0.0185930\pi\)
\(338\) −0.376325 1.15821i −0.0204694 0.0629984i
\(339\) 1.71235 1.24409i 0.0930019 0.0675698i
\(340\) 0 0
\(341\) −22.8589 24.4763i −1.23788 1.32546i
\(342\) −13.6341 −0.737247
\(343\) −15.3404 + 11.1455i −0.828306 + 0.601799i
\(344\) −0.260295 0.801104i −0.0140341 0.0431926i
\(345\) 0 0
\(346\) 34.1548 + 24.8149i 1.83618 + 1.33406i
\(347\) −7.56856 5.49888i −0.406301 0.295195i 0.365801 0.930693i \(-0.380795\pi\)
−0.772103 + 0.635498i \(0.780795\pi\)
\(348\) −3.89851 + 11.9984i −0.208982 + 0.643180i
\(349\) −0.521608 1.60534i −0.0279210 0.0859321i 0.936125 0.351668i \(-0.114385\pi\)
−0.964046 + 0.265735i \(0.914385\pi\)
\(350\) 0 0
\(351\) −3.53338 −0.188598
\(352\) 1.42281 + 11.5163i 0.0758359 + 0.613821i
\(353\) 9.60028 0.510971 0.255486 0.966813i \(-0.417765\pi\)
0.255486 + 0.966813i \(0.417765\pi\)
\(354\) −10.2499 + 7.44700i −0.544777 + 0.395803i
\(355\) 0 0
\(356\) 17.1893 52.9032i 0.911030 2.80386i
\(357\) −0.517715 0.376142i −0.0274004 0.0199076i
\(358\) 24.3577 + 17.6969i 1.28735 + 0.935312i
\(359\) −8.40104 + 25.8557i −0.443390 + 1.36461i 0.440850 + 0.897581i \(0.354677\pi\)
−0.884240 + 0.467033i \(0.845323\pi\)
\(360\) 0 0
\(361\) −11.5440 + 8.38717i −0.607576 + 0.441430i
\(362\) 48.9578 2.57317
\(363\) −5.84312 9.31976i −0.306684 0.489161i
\(364\) 21.7291 1.13891
\(365\) 0 0
\(366\) −2.48811 7.65762i −0.130056 0.400270i
\(367\) 2.38456 7.33892i 0.124473 0.383088i −0.869332 0.494229i \(-0.835450\pi\)
0.993805 + 0.111141i \(0.0354504\pi\)
\(368\) 5.22011 + 3.79263i 0.272117 + 0.197705i
\(369\) 1.95699 + 1.42184i 0.101877 + 0.0740180i
\(370\) 0 0
\(371\) 1.29474 + 3.98481i 0.0672196 + 0.206881i
\(372\) 29.3065 21.2924i 1.51947 1.10396i
\(373\) −20.0037 −1.03575 −0.517876 0.855456i \(-0.673277\pi\)
−0.517876 + 0.855456i \(0.673277\pi\)
\(374\) 0.358847 + 2.90453i 0.0185555 + 0.150190i
\(375\) 0 0
\(376\) 14.1958 10.3139i 0.732093 0.531896i
\(377\) 3.83980 + 11.8177i 0.197760 + 0.608642i
\(378\) −1.25215 + 3.85373i −0.0644038 + 0.198214i
\(379\) 5.43469 + 3.94854i 0.279161 + 0.202823i 0.718552 0.695474i \(-0.244805\pi\)
−0.439390 + 0.898296i \(0.644805\pi\)
\(380\) 0 0
\(381\) −3.69203 + 11.3629i −0.189148 + 0.582139i
\(382\) −4.52845 13.9371i −0.231695 0.713085i
\(383\) 9.18187 6.67102i 0.469171 0.340873i −0.327947 0.944696i \(-0.606357\pi\)
0.797118 + 0.603823i \(0.206357\pi\)
\(384\) −20.5629 −1.04935
\(385\) 0 0
\(386\) −13.0566 −0.664562
\(387\) 0.181613 0.131949i 0.00923190 0.00670737i
\(388\) 16.2557 + 50.0300i 0.825259 + 2.53989i
\(389\) −1.59639 + 4.91317i −0.0809399 + 0.249108i −0.983335 0.181802i \(-0.941807\pi\)
0.902395 + 0.430909i \(0.141807\pi\)
\(390\) 0 0
\(391\) −1.14989 0.835442i −0.0581523 0.0422501i
\(392\) −4.70926 + 14.4936i −0.237854 + 0.732038i
\(393\) 6.28415 + 19.3406i 0.316993 + 0.975606i
\(394\) 24.5780 17.8569i 1.23822 0.899619i
\(395\) 0 0
\(396\) 10.7795 5.03645i 0.541693 0.253091i
\(397\) −7.40026 −0.371408 −0.185704 0.982606i \(-0.559457\pi\)
−0.185704 + 0.982606i \(0.559457\pi\)
\(398\) −6.55604 + 4.76324i −0.328625 + 0.238760i
\(399\) 3.05543 + 9.40365i 0.152963 + 0.470771i
\(400\) 0 0
\(401\) 25.7212 + 18.6876i 1.28446 + 0.933213i 0.999678 0.0253797i \(-0.00807948\pi\)
0.284780 + 0.958593i \(0.408079\pi\)
\(402\) −17.3829 12.6294i −0.866978 0.629896i
\(403\) 11.0255 33.9331i 0.549220 1.69033i
\(404\) 6.80073 + 20.9305i 0.338349 + 1.04133i
\(405\) 0 0
\(406\) 14.2498 0.707208
\(407\) −37.5825 7.27600i −1.86289 0.360658i
\(408\) −1.40074 −0.0693470
\(409\) −9.62734 + 6.99467i −0.476041 + 0.345864i −0.799791 0.600279i \(-0.795056\pi\)
0.323750 + 0.946143i \(0.395056\pi\)
\(410\) 0 0
\(411\) −1.64194 + 5.05338i −0.0809910 + 0.249265i
\(412\) −22.8406 16.5946i −1.12527 0.817560i
\(413\) 7.43335 + 5.40064i 0.365771 + 0.265748i
\(414\) −2.78113 + 8.55944i −0.136685 + 0.420673i
\(415\) 0 0
\(416\) −10.0013 + 7.26634i −0.490352 + 0.356262i
\(417\) 13.2156 0.647169
\(418\) 21.8929 39.5660i 1.07082 1.93524i
\(419\) 6.57012 0.320971 0.160486 0.987038i \(-0.448694\pi\)
0.160486 + 0.987038i \(0.448694\pi\)
\(420\) 0 0
\(421\) 9.68283 + 29.8007i 0.471912 + 1.45240i 0.850077 + 0.526658i \(0.176555\pi\)
−0.378165 + 0.925738i \(0.623445\pi\)
\(422\) 13.0232 40.0814i 0.633961 1.95113i
\(423\) 3.78326 + 2.74870i 0.183948 + 0.133646i
\(424\) 7.41964 + 5.39068i 0.360330 + 0.261795i
\(425\) 0 0
\(426\) −6.41012 19.7283i −0.310571 0.955840i
\(427\) −4.72399 + 3.43218i −0.228610 + 0.166095i
\(428\) −17.7799 −0.859422
\(429\) 5.67374 10.2539i 0.273931 0.495061i
\(430\) 0 0
\(431\) −10.1465 + 7.37184i −0.488738 + 0.355089i −0.804699 0.593683i \(-0.797673\pi\)
0.315961 + 0.948772i \(0.397673\pi\)
\(432\) 0.523685 + 1.61174i 0.0251958 + 0.0775448i
\(433\) −8.04167 + 24.7497i −0.386458 + 1.18939i 0.548959 + 0.835849i \(0.315024\pi\)
−0.935417 + 0.353546i \(0.884976\pi\)
\(434\) −33.1023 24.0502i −1.58896 1.15445i
\(435\) 0 0
\(436\) −2.90077 + 8.92764i −0.138922 + 0.427557i
\(437\) 6.78636 + 20.8863i 0.324635 + 0.999125i
\(438\) 28.6127 20.7884i 1.36717 0.993307i
\(439\) −35.0511 −1.67290 −0.836450 0.548044i \(-0.815373\pi\)
−0.836450 + 0.548044i \(0.815373\pi\)
\(440\) 0 0
\(441\) −4.06141 −0.193400
\(442\) −2.52242 + 1.83265i −0.119979 + 0.0871701i
\(443\) −8.05811 24.8003i −0.382852 1.17830i −0.938026 0.346564i \(-0.887348\pi\)
0.555174 0.831734i \(-0.312652\pi\)
\(444\) 12.7951 39.3792i 0.607227 1.86885i
\(445\) 0 0
\(446\) −8.25570 5.99812i −0.390919 0.284019i
\(447\) −1.87353 + 5.76612i −0.0886147 + 0.272728i
\(448\) 6.17634 + 19.0088i 0.291805 + 0.898082i
\(449\) 0.577580 0.419636i 0.0272577 0.0198039i −0.574073 0.818804i \(-0.694637\pi\)
0.601331 + 0.799000i \(0.294637\pi\)
\(450\) 0 0
\(451\) −7.26862 + 3.39606i −0.342266 + 0.159914i
\(452\) −7.59303 −0.357146
\(453\) 5.93407 4.31135i 0.278807 0.202565i
\(454\) 18.5798 + 57.1828i 0.871995 + 2.68372i
\(455\) 0 0
\(456\) 17.5094 + 12.7213i 0.819954 + 0.595732i
\(457\) 24.2688 + 17.6323i 1.13525 + 0.824805i 0.986450 0.164063i \(-0.0524601\pi\)
0.148796 + 0.988868i \(0.452460\pi\)
\(458\) 10.5136 32.3574i 0.491266 1.51196i
\(459\) −0.115358 0.355034i −0.00538443 0.0165716i
\(460\) 0 0
\(461\) 0.0359281 0.00167334 0.000836670 1.00000i \(-0.499734\pi\)
0.000836670 1.00000i \(0.499734\pi\)
\(462\) −9.17285 9.82187i −0.426759 0.456955i
\(463\) −3.65474 −0.169850 −0.0849251 0.996387i \(-0.527065\pi\)
−0.0849251 + 0.996387i \(0.527065\pi\)
\(464\) 4.82149 3.50302i 0.223832 0.162623i
\(465\) 0 0
\(466\) −8.71532 + 26.8230i −0.403729 + 1.24255i
\(467\) −12.3277 8.95659i −0.570457 0.414462i 0.264814 0.964300i \(-0.414689\pi\)
−0.835271 + 0.549838i \(0.814689\pi\)
\(468\) 10.2548 + 7.45058i 0.474031 + 0.344403i
\(469\) −4.81515 + 14.8195i −0.222343 + 0.684302i
\(470\) 0 0
\(471\) 8.53981 6.20454i 0.393494 0.285890i
\(472\) 20.1118 0.925721
\(473\) 0.0912911 + 0.738917i 0.00419757 + 0.0339754i
\(474\) 20.7824 0.954565
\(475\) 0 0
\(476\) 0.709409 + 2.18334i 0.0325157 + 0.100073i
\(477\) −0.755290 + 2.32454i −0.0345823 + 0.106434i
\(478\) 15.7910 + 11.4729i 0.722265 + 0.524756i
\(479\) 10.1619 + 7.38305i 0.464309 + 0.337340i 0.795219 0.606322i \(-0.207356\pi\)
−0.330910 + 0.943662i \(0.607356\pi\)
\(480\) 0 0
\(481\) −12.6024 38.7861i −0.574619 1.76849i
\(482\) 21.3201 15.4899i 0.971103 0.705548i
\(483\) 6.52684 0.296982
\(484\) −2.69355 + 39.3695i −0.122434 + 1.78952i
\(485\) 0 0
\(486\) −1.91233 + 1.38939i −0.0867451 + 0.0630240i
\(487\) 0.532235 + 1.63805i 0.0241179 + 0.0742271i 0.962391 0.271668i \(-0.0875753\pi\)
−0.938273 + 0.345895i \(0.887575\pi\)
\(488\) −3.94965 + 12.1558i −0.178792 + 0.550266i
\(489\) 8.17677 + 5.94077i 0.369766 + 0.268651i
\(490\) 0 0
\(491\) 6.21824 19.1378i 0.280625 0.863675i −0.707051 0.707163i \(-0.749975\pi\)
0.987676 0.156513i \(-0.0500252\pi\)
\(492\) −2.68161 8.25314i −0.120896 0.372080i
\(493\) −1.06208 + 0.771645i −0.0478336 + 0.0347532i
\(494\) 48.1744 2.16747
\(495\) 0 0
\(496\) −17.1125 −0.768375
\(497\) −12.1704 + 8.84233i −0.545918 + 0.396633i
\(498\) 5.43608 + 16.7305i 0.243597 + 0.749713i
\(499\) 5.52718 17.0109i 0.247430 0.761513i −0.747797 0.663928i \(-0.768888\pi\)
0.995227 0.0975849i \(-0.0311117\pi\)
\(500\) 0 0
\(501\) 10.7981 + 7.84529i 0.482424 + 0.350502i
\(502\) 20.9366 64.4361i 0.934444 2.87592i
\(503\) 5.06278 + 15.5816i 0.225738 + 0.694750i 0.998216 + 0.0597085i \(0.0190171\pi\)
−0.772478 + 0.635042i \(0.780983\pi\)
\(504\) 5.20381 3.78079i 0.231796 0.168410i
\(505\) 0 0
\(506\) −20.3736 21.8152i −0.905718 0.969802i
\(507\) −0.515200 −0.0228808
\(508\) 34.6754 25.1931i 1.53847 1.11777i
\(509\) 0.0434607 + 0.133758i 0.00192636 + 0.00592873i 0.952015 0.306051i \(-0.0990079\pi\)
−0.950089 + 0.311980i \(0.899008\pi\)
\(510\) 0 0
\(511\) −20.7503 15.0760i −0.917938 0.666921i
\(512\) 15.0857 + 10.9604i 0.666701 + 0.484387i
\(513\) −1.78239 + 5.48564i −0.0786945 + 0.242197i
\(514\) 1.69466 + 5.21564i 0.0747484 + 0.230052i
\(515\) 0 0
\(516\) −0.805322 −0.0354523
\(517\) −14.0517 + 6.56526i −0.617992 + 0.288740i
\(518\) −46.7686 −2.05489
\(519\) 14.4493 10.4980i 0.634254 0.460813i
\(520\) 0 0
\(521\) 1.82811 5.62634i 0.0800909 0.246495i −0.902991 0.429659i \(-0.858634\pi\)
0.983082 + 0.183164i \(0.0586339\pi\)
\(522\) 6.72509 + 4.88606i 0.294349 + 0.213857i
\(523\) 15.3518 + 11.1538i 0.671289 + 0.487720i 0.870456 0.492246i \(-0.163824\pi\)
−0.199168 + 0.979965i \(0.563824\pi\)
\(524\) 22.5438 69.3827i 0.984831 3.03100i
\(525\) 0 0
\(526\) 5.60255 4.07049i 0.244283 0.177482i
\(527\) 3.76955 0.164204
\(528\) −5.51816 1.06832i −0.240147 0.0464927i
\(529\) −8.50336 −0.369711
\(530\) 0 0
\(531\) 1.65630 + 5.09757i 0.0718774 + 0.221216i
\(532\) 10.9611 33.7347i 0.475223 1.46259i
\(533\) −6.91481 5.02391i −0.299514 0.217610i
\(534\) −29.6522 21.5436i −1.28318 0.932283i
\(535\) 0 0
\(536\) 10.5398 + 32.4383i 0.455252 + 1.40112i
\(537\) 10.3046 7.48674i 0.444677 0.323077i
\(538\) −10.7127 −0.461856
\(539\) 6.52162 11.7862i 0.280906 0.507667i
\(540\) 0 0
\(541\) −14.8245 + 10.7706i −0.637354 + 0.463065i −0.858940 0.512076i \(-0.828877\pi\)
0.221586 + 0.975141i \(0.428877\pi\)
\(542\) 19.8036 + 60.9491i 0.850636 + 2.61799i
\(543\) 6.40028 19.6980i 0.274662 0.845324i
\(544\) −1.05664 0.767696i −0.0453032 0.0329147i
\(545\) 0 0
\(546\) 4.42433 13.6167i 0.189344 0.582741i
\(547\) 9.53561 + 29.3476i 0.407713 + 1.25481i 0.918608 + 0.395169i \(0.129314\pi\)
−0.510895 + 0.859643i \(0.670686\pi\)
\(548\) 15.4210 11.2040i 0.658754 0.478613i
\(549\) −3.40629 −0.145377
\(550\) 0 0
\(551\) 20.2841 0.864132
\(552\) 11.5581 8.39743i 0.491944 0.357418i
\(553\) −4.65738 14.3339i −0.198052 0.609541i
\(554\) −9.67942 + 29.7902i −0.411239 + 1.26566i
\(555\) 0 0
\(556\) −38.3552 27.8667i −1.62662 1.18181i
\(557\) −11.5221 + 35.4614i −0.488207 + 1.50255i 0.339075 + 0.940759i \(0.389886\pi\)
−0.827282 + 0.561787i \(0.810114\pi\)
\(558\) −7.37587 22.7006i −0.312246 0.960993i
\(559\) −0.641708 + 0.466228i −0.0271413 + 0.0197193i
\(560\) 0 0
\(561\) 1.21554 + 0.235330i 0.0513202 + 0.00993564i
\(562\) −26.1708 −1.10395
\(563\) −14.9463 + 10.8591i −0.629912 + 0.457658i −0.856370 0.516363i \(-0.827285\pi\)
0.226458 + 0.974021i \(0.427285\pi\)
\(564\) −5.18408 15.9550i −0.218289 0.671825i
\(565\) 0 0
\(566\) 19.2701 + 14.0005i 0.809981 + 0.588486i
\(567\) 1.38684 + 1.00760i 0.0582419 + 0.0423152i
\(568\) −10.1755 + 31.3169i −0.426954 + 1.31403i
\(569\) −12.9706 39.9193i −0.543755 1.67351i −0.723932 0.689872i \(-0.757667\pi\)
0.180176 0.983634i \(-0.442333\pi\)
\(570\) 0 0
\(571\) −9.70741 −0.406243 −0.203121 0.979154i \(-0.565109\pi\)
−0.203121 + 0.979154i \(0.565109\pi\)
\(572\) −38.0883 + 17.7957i −1.59255 + 0.744076i
\(573\) −6.19957 −0.258991
\(574\) −7.92984 + 5.76137i −0.330985 + 0.240475i
\(575\) 0 0
\(576\) −3.60298 + 11.0888i −0.150124 + 0.462034i
\(577\) −10.5420 7.65924i −0.438871 0.318859i 0.346315 0.938118i \(-0.387433\pi\)
−0.785186 + 0.619260i \(0.787433\pi\)
\(578\) 32.2431 + 23.4260i 1.34114 + 0.974393i
\(579\) −1.70689 + 5.25328i −0.0709361 + 0.218319i
\(580\) 0 0
\(581\) 10.3211 7.49871i 0.428191 0.311099i
\(582\) 34.6616 1.43677
\(583\) −5.53300 5.92448i −0.229153 0.245367i
\(584\) −56.1423 −2.32319
\(585\) 0 0
\(586\) −5.73150 17.6397i −0.236766 0.728691i
\(587\) −13.3614 + 41.1222i −0.551485 + 1.69730i 0.153565 + 0.988139i \(0.450925\pi\)
−0.705050 + 0.709158i \(0.749075\pi\)
\(588\) 11.7873 + 8.56399i 0.486101 + 0.353173i
\(589\) −47.1199 34.2346i −1.94154 1.41061i
\(590\) 0 0
\(591\) −3.97160 12.2233i −0.163370 0.502800i
\(592\) −15.8243 + 11.4970i −0.650375 + 0.472525i
\(593\) 34.9632 1.43576 0.717882 0.696164i \(-0.245112\pi\)
0.717882 + 0.696164i \(0.245112\pi\)
\(594\) −0.961269 7.78058i −0.0394414 0.319241i
\(595\) 0 0
\(596\) 17.5961 12.7843i 0.720763 0.523665i
\(597\) 1.05940 + 3.26051i 0.0433585 + 0.133444i
\(598\) 9.82680 30.2438i 0.401848 1.23676i
\(599\) −18.2378 13.2505i −0.745174 0.541401i 0.149153 0.988814i \(-0.452345\pi\)
−0.894327 + 0.447413i \(0.852345\pi\)
\(600\) 0 0
\(601\) −6.16194 + 18.9645i −0.251351 + 0.773578i 0.743176 + 0.669096i \(0.233318\pi\)
−0.994527 + 0.104482i \(0.966682\pi\)
\(602\) 0.281090 + 0.865107i 0.0114564 + 0.0352591i
\(603\) −7.35387 + 5.34290i −0.299473 + 0.217580i
\(604\) −26.3133 −1.07067
\(605\) 0 0
\(606\) 14.5010 0.589063
\(607\) −13.2747 + 9.64463i −0.538803 + 0.391463i −0.823640 0.567113i \(-0.808060\pi\)
0.284837 + 0.958576i \(0.408060\pi\)
\(608\) 6.23605 + 19.1926i 0.252905 + 0.778362i
\(609\) 1.86289 5.73338i 0.0754881 0.232328i
\(610\) 0 0
\(611\) −13.3677 9.71221i −0.540800 0.392914i
\(612\) −0.413835 + 1.27365i −0.0167283 + 0.0514844i
\(613\) 11.5202 + 35.4555i 0.465297 + 1.43204i 0.858609 + 0.512631i \(0.171329\pi\)
−0.393313 + 0.919405i \(0.628671\pi\)
\(614\) −5.06179 + 3.67761i −0.204277 + 0.148416i
\(615\) 0 0
\(616\) 2.61579 + 21.1724i 0.105393 + 0.853061i
\(617\) −28.7965 −1.15930 −0.579651 0.814865i \(-0.696811\pi\)
−0.579651 + 0.814865i \(0.696811\pi\)
\(618\) −15.0498 + 10.9343i −0.605393 + 0.439844i
\(619\) 2.58639 + 7.96009i 0.103956 + 0.319943i 0.989484 0.144643i \(-0.0462032\pi\)
−0.885528 + 0.464586i \(0.846203\pi\)
\(620\) 0 0
\(621\) 3.08029 + 2.23796i 0.123608 + 0.0898062i
\(622\) 8.62116 + 6.26364i 0.345677 + 0.251149i
\(623\) −8.21384 + 25.2796i −0.329081 + 1.01281i
\(624\) −1.85038 5.69489i −0.0740746 0.227978i
\(625\) 0 0
\(626\) −22.9504 −0.917282
\(627\) −13.0572 13.9811i −0.521454 0.558350i
\(628\) −37.8679 −1.51109
\(629\) 3.48579 2.53257i 0.138987 0.100980i
\(630\) 0 0
\(631\) −9.24911 + 28.4658i −0.368201 + 1.13321i 0.579751 + 0.814794i \(0.303150\pi\)
−0.947952 + 0.318413i \(0.896850\pi\)
\(632\) −26.6895 19.3911i −1.06165 0.771336i
\(633\) −14.4241 10.4797i −0.573307 0.416532i
\(634\) −12.4729 + 38.3875i −0.495360 + 1.52456i
\(635\) 0 0
\(636\) 7.09365 5.15384i 0.281281 0.204363i
\(637\) 14.3505 0.568588
\(638\) −24.9781 + 11.6704i −0.988894 + 0.462034i
\(639\) −8.77564 −0.347159
\(640\) 0 0
\(641\) 0.654461 + 2.01423i 0.0258497 + 0.0795571i 0.963149 0.268968i \(-0.0866826\pi\)
−0.937299 + 0.348525i \(0.886683\pi\)
\(642\) −3.62022 + 11.1419i −0.142879 + 0.439735i
\(643\) −15.6415 11.3642i −0.616841 0.448161i 0.234976 0.972001i \(-0.424499\pi\)
−0.851817 + 0.523840i \(0.824499\pi\)
\(644\) −18.9427 13.7627i −0.746447 0.542325i
\(645\) 0 0
\(646\) 1.57279 + 4.84056i 0.0618808 + 0.190449i
\(647\) 1.70192 1.23652i 0.0669094 0.0486125i −0.553828 0.832631i \(-0.686833\pi\)
0.620737 + 0.784019i \(0.286833\pi\)
\(648\) 3.75227 0.147403
\(649\) −17.4527 3.37886i −0.685080 0.132632i
\(650\) 0 0
\(651\) −14.0040 + 10.1745i −0.548861 + 0.398771i
\(652\) −11.2044 34.4835i −0.438797 1.35048i
\(653\) 0.810347 2.49399i 0.0317113 0.0975974i −0.933948 0.357409i \(-0.883660\pi\)
0.965659 + 0.259811i \(0.0836603\pi\)
\(654\) 5.00395 + 3.63558i 0.195670 + 0.142162i
\(655\) 0 0
\(656\) −1.26678 + 3.89876i −0.0494596 + 0.152221i
\(657\) −4.62358 14.2299i −0.180383 0.555162i
\(658\) −15.3300 + 11.1379i −0.597624 + 0.434199i
\(659\) 36.2473 1.41199 0.705997 0.708215i \(-0.250499\pi\)
0.705997 + 0.708215i \(0.250499\pi\)
\(660\) 0 0
\(661\) 22.6488 0.880937 0.440469 0.897768i \(-0.354812\pi\)
0.440469 + 0.897768i \(0.354812\pi\)
\(662\) 5.35010 3.88707i 0.207938 0.151075i
\(663\) 0.407603 + 1.25447i 0.0158300 + 0.0487197i
\(664\) 8.62928 26.5582i 0.334881 1.03066i
\(665\) 0 0
\(666\) −22.0720 16.0363i −0.855273 0.621392i
\(667\) 4.13763 12.7343i 0.160210 0.493074i
\(668\) −14.7963 45.5384i −0.572486 1.76193i
\(669\) −3.49260 + 2.53752i −0.135032 + 0.0981063i
\(670\) 0 0
\(671\) 5.46966 9.88504i 0.211154 0.381608i
\(672\) 5.99758 0.231362
\(673\) 29.9438 21.7554i 1.15425 0.838610i 0.165208 0.986259i \(-0.447171\pi\)
0.989040 + 0.147649i \(0.0471705\pi\)
\(674\) 6.78421 + 20.8797i 0.261318 + 0.804254i
\(675\) 0 0
\(676\) 1.49525 + 1.08636i 0.0575097 + 0.0417832i
\(677\) 24.0410 + 17.4668i 0.923969 + 0.671303i 0.944509 0.328486i \(-0.106538\pi\)
−0.0205398 + 0.999789i \(0.506538\pi\)
\(678\) −1.54604 + 4.75823i −0.0593754 + 0.182739i
\(679\) −7.76775 23.9067i −0.298099 0.917454i
\(680\) 0 0
\(681\) 25.4363 0.974722
\(682\) 77.7208 + 15.0468i 2.97608 + 0.576172i
\(683\) 2.06173 0.0788899 0.0394450 0.999222i \(-0.487441\pi\)
0.0394450 + 0.999222i \(0.487441\pi\)
\(684\) 16.7401 12.1624i 0.640075 0.465042i
\(685\) 0 0
\(686\) 13.8506 42.6277i 0.528817 1.62753i
\(687\) −11.6445 8.46020i −0.444264 0.322777i
\(688\) 0.307776 + 0.223612i 0.0117338 + 0.00852514i
\(689\) 2.66873 8.21350i 0.101670 0.312910i
\(690\) 0 0
\(691\) −2.40744 + 1.74910i −0.0915832 + 0.0665391i −0.632635 0.774450i \(-0.718026\pi\)
0.541051 + 0.840990i \(0.318026\pi\)
\(692\) −64.0723 −2.43566
\(693\) −5.15097 + 2.40665i −0.195669 + 0.0914211i
\(694\) 22.1137 0.839423
\(695\) 0 0
\(696\) −4.07766 12.5498i −0.154563 0.475697i
\(697\) 0.279048 0.858820i 0.0105697 0.0325301i
\(698\) 3.22793 + 2.34523i 0.122179 + 0.0887683i
\(699\) 9.65280 + 7.01317i 0.365102 + 0.265262i
\(700\) 0 0
\(701\) 13.1671 + 40.5240i 0.497313 + 1.53057i 0.813321 + 0.581815i \(0.197657\pi\)
−0.316008 + 0.948756i \(0.602343\pi\)
\(702\) 6.75700 4.90924i 0.255026 0.185288i
\(703\) −66.5733 −2.51086
\(704\) −26.3942 28.2617i −0.994769 1.06515i
\(705\) 0 0
\(706\) −18.3589 + 13.3385i −0.690946 + 0.502002i
\(707\) −3.24971 10.0016i −0.122218 0.376148i
\(708\) 5.94183 18.2871i 0.223308 0.687271i
\(709\) 33.6641 + 24.4584i 1.26428 + 0.918555i 0.998960 0.0456046i \(-0.0145214\pi\)
0.265323 + 0.964160i \(0.414521\pi\)
\(710\) 0 0
\(711\) 2.71689 8.36172i 0.101891 0.313589i
\(712\) 17.9792 + 55.3343i 0.673800 + 2.07374i
\(713\) −31.1041 + 22.5984i −1.16486 + 0.846318i
\(714\) 1.51265 0.0566095
\(715\) 0 0
\(716\) −45.6936 −1.70765
\(717\) 6.68044 4.85363i 0.249486 0.181262i
\(718\) −19.8581 61.1170i −0.741098 2.28087i
\(719\) 1.51504 4.66282i 0.0565015 0.173894i −0.918823 0.394670i \(-0.870859\pi\)
0.975325 + 0.220776i \(0.0708590\pi\)
\(720\) 0 0
\(721\) 10.9143 + 7.92970i 0.406470 + 0.295317i
\(722\) 10.4228 32.0781i 0.387897 1.19382i
\(723\) −3.44515 10.6031i −0.128127 0.394333i
\(724\) −60.1112 + 43.6733i −2.23401 + 1.62311i
\(725\) 0 0
\(726\) 24.1228 + 9.70409i 0.895279 + 0.360153i
\(727\) −9.26283 −0.343539 −0.171770 0.985137i \(-0.554948\pi\)
−0.171770 + 0.985137i \(0.554948\pi\)
\(728\) −18.3870 + 13.3590i −0.681469 + 0.495116i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) −0.0677970 0.0492574i −0.00250756 0.00182185i
\(732\) 9.88600 + 7.18260i 0.365397 + 0.265477i
\(733\) 4.21886 12.9843i 0.155827 0.479587i −0.842416 0.538827i \(-0.818868\pi\)
0.998244 + 0.0592398i \(0.0188677\pi\)
\(734\) 5.63655 + 17.3475i 0.208049 + 0.640308i
\(735\) 0 0
\(736\) 13.3211 0.491022
\(737\) −3.69656 29.9202i −0.136165 1.10213i
\(738\) −5.71791 −0.210479
\(739\) 35.7048 25.9410i 1.31342 0.954256i 0.313432 0.949611i \(-0.398521\pi\)
0.999989 0.00464584i \(-0.00147882\pi\)
\(740\) 0 0
\(741\) 6.29787 19.3829i 0.231358 0.712047i
\(742\) −8.01242 5.82136i −0.294145 0.213709i
\(743\) −12.0136 8.72840i −0.440737 0.320214i 0.345191 0.938532i \(-0.387814\pi\)
−0.785928 + 0.618319i \(0.787814\pi\)
\(744\) −11.7085 + 36.0351i −0.429255 + 1.32111i
\(745\) 0 0
\(746\) 38.2537 27.7929i 1.40057 1.01757i
\(747\) 7.44215 0.272294
\(748\) −3.03161 3.24612i −0.110847 0.118690i
\(749\) 8.49605 0.310439
\(750\) 0 0
\(751\) −1.17408 3.61343i −0.0428426 0.131856i 0.927347 0.374202i \(-0.122083\pi\)
−0.970190 + 0.242346i \(0.922083\pi\)
\(752\) −2.44894 + 7.53708i −0.0893038 + 0.274849i
\(753\) −23.1886 16.8475i −0.845041 0.613958i
\(754\) −23.7623 17.2643i −0.865373 0.628730i
\(755\) 0 0
\(756\) −1.90035 5.84866i −0.0691149 0.212714i
\(757\) −5.75954 + 4.18455i −0.209334 + 0.152090i −0.687512 0.726173i \(-0.741297\pi\)
0.478178 + 0.878263i \(0.341297\pi\)
\(758\) −15.8790 −0.576751
\(759\) −11.4407 + 5.34536i −0.415272 + 0.194024i
\(760\) 0 0
\(761\) −4.43096 + 3.21928i −0.160622 + 0.116699i −0.665193 0.746671i \(-0.731651\pi\)
0.504571 + 0.863370i \(0.331651\pi\)
\(762\) −8.72711 26.8593i −0.316150 0.973009i
\(763\) 1.38612 4.26605i 0.0501810 0.154441i
\(764\) 17.9929 + 13.0726i 0.650959 + 0.472949i
\(765\) 0 0
\(766\) −8.29012 + 25.5144i −0.299534 + 0.921872i
\(767\) −5.85235 18.0117i −0.211316 0.650364i
\(768\) 20.4577 14.8634i 0.738203 0.536336i
\(769\) 40.9023 1.47498 0.737488 0.675360i \(-0.236012\pi\)
0.737488 + 0.675360i \(0.236012\pi\)
\(770\) 0 0
\(771\) 2.32004 0.0835542
\(772\) 16.0311 11.6473i 0.576971 0.419194i
\(773\) 8.73179 + 26.8737i 0.314061 + 0.966579i 0.976139 + 0.217145i \(0.0696744\pi\)
−0.662079 + 0.749434i \(0.730326\pi\)
\(774\) −0.163975 + 0.504662i −0.00589394 + 0.0181397i
\(775\) 0 0
\(776\) −44.5138 32.3412i −1.59795 1.16098i
\(777\) −6.11408 + 18.8172i −0.219341 + 0.675063i
\(778\) −3.77349 11.6136i −0.135286 0.416368i
\(779\) −11.2878 + 8.20108i −0.404428 + 0.293834i
\(780\) 0 0
\(781\) 14.0915 25.4668i 0.504233 0.911275i
\(782\) 3.35972 0.120143
\(783\) 2.84507 2.06706i 0.101674 0.0738708i
\(784\) −2.12690 6.54593i −0.0759607 0.233783i
\(785\) 0 0
\(786\) −38.8890 28.2545i −1.38713 1.00781i
\(787\) −10.4835 7.61672i −0.373697 0.271507i 0.385045 0.922898i \(-0.374186\pi\)
−0.758742 + 0.651391i \(0.774186\pi\)
\(788\) −14.2477 + 43.8500i −0.507555 + 1.56209i
\(789\) −0.905327 2.78631i −0.0322305 0.0991952i
\(790\) 0 0
\(791\) 3.62830 0.129008
\(792\) −6.02521 + 10.8891i −0.214097 + 0.386926i
\(793\) 12.0357 0.427402
\(794\) 14.1517 10.2818i 0.502227 0.364889i
\(795\) 0 0
\(796\) 3.80051 11.6968i 0.134706 0.414581i
\(797\) 20.4441 + 14.8535i 0.724167 + 0.526138i 0.887713 0.460397i \(-0.152293\pi\)
−0.163546 + 0.986536i \(0.552293\pi\)
\(798\) −18.9083 13.7377i −0.669347 0.486309i
\(799\) 0.539454 1.66027i 0.0190845 0.0587361i
\(800\) 0 0
\(801\) −12.5445 + 9.11409i −0.443237 + 0.322030i
\(802\) −75.1518 −2.65370
\(803\) 48.7195 + 9.43213i 1.71927 + 0.332853i
\(804\) 32.6091 1.15003
\(805\) 0 0
\(806\) 26.0618 + 80.2100i 0.917988 + 2.82528i
\(807\) −1.40047 + 4.31022i −0.0492990 + 0.151727i
\(808\) −18.6228 13.5302i −0.655146 0.475992i
\(809\) −22.2093 16.1360i −0.780837 0.567311i 0.124393 0.992233i \(-0.460302\pi\)
−0.905230 + 0.424922i \(0.860302\pi\)
\(810\) 0 0
\(811\) −11.0813 34.1048i −0.389117 1.19758i −0.933449 0.358710i \(-0.883217\pi\)
0.544331 0.838870i \(-0.316783\pi\)
\(812\) −17.4962 + 12.7117i −0.613996 + 0.446094i
\(813\) 27.1116 0.950847
\(814\) 81.9793 38.3026i 2.87337 1.34250i
\(815\) 0 0
\(816\) 0.511811 0.371853i 0.0179170 0.0130174i
\(817\) 0.400121 + 1.23145i 0.0139985 + 0.0430829i
\(818\) 8.69233 26.7522i 0.303920 0.935370i
\(819\) −4.90025 3.56024i −0.171229 0.124405i
\(820\) 0 0
\(821\) 16.7522 51.5579i 0.584655 1.79938i −0.0159955 0.999872i \(-0.505092\pi\)
0.600651 0.799512i \(-0.294908\pi\)
\(822\) −3.88117 11.9450i −0.135371 0.416630i
\(823\) 3.84331 2.79233i 0.133969 0.0973344i −0.518782 0.854906i \(-0.673615\pi\)
0.652752 + 0.757572i \(0.273615\pi\)
\(824\) 29.5299 1.02872
\(825\) 0 0
\(826\) −21.7186 −0.755687
\(827\) 28.0434 20.3747i 0.975165 0.708499i 0.0185425 0.999828i \(-0.494097\pi\)
0.956623 + 0.291329i \(0.0940974\pi\)
\(828\) −4.22082 12.9903i −0.146684 0.451446i
\(829\) −5.49342 + 16.9070i −0.190794 + 0.587205i −1.00000 0.000320867i \(-0.999898\pi\)
0.809206 + 0.587526i \(0.199898\pi\)
\(830\) 0 0
\(831\) 10.7206 + 7.78897i 0.371894 + 0.270197i
\(832\) 12.7307 39.1811i 0.441358 1.35836i
\(833\) 0.468514 + 1.44194i 0.0162331 + 0.0499602i
\(834\) −25.2725 + 18.3616i −0.875116 + 0.635809i
\(835\) 0 0
\(836\) 8.41475 + 68.1096i 0.291030 + 2.35562i
\(837\) −10.0978 −0.349030
\(838\) −12.5642 + 9.12845i −0.434024 + 0.315337i
\(839\) 12.8972 + 39.6936i 0.445262 + 1.37038i 0.882196 + 0.470882i \(0.156064\pi\)
−0.436934 + 0.899493i \(0.643936\pi\)
\(840\) 0 0
\(841\) 13.4562 + 9.77653i 0.464008 + 0.337122i
\(842\) −59.9215 43.5355i −2.06503 1.50033i
\(843\) −3.42133 + 10.5298i −0.117837 + 0.362664i
\(844\) 19.7649 + 60.8301i 0.680336 + 2.09386i
\(845\) 0 0
\(846\) −11.0539 −0.380039
\(847\) 1.28710 18.8126i 0.0442254 0.646408i
\(848\) −4.14209 −0.142240
\(849\) 8.15226 5.92296i 0.279785 0.203276i
\(850\) 0 0
\(851\) −13.5799 + 41.7945i −0.465512 + 1.43270i
\(852\) 25.4693 + 18.5045i 0.872564 + 0.633955i
\(853\) 30.2327 + 21.9653i 1.03515 + 0.752079i 0.969332 0.245753i \(-0.0790352\pi\)
0.0658151 + 0.997832i \(0.479035\pi\)
\(854\) 4.26520 13.1269i 0.145952 0.449194i
\(855\) 0 0
\(856\) 15.0452 10.9310i 0.514236 0.373614i
\(857\) −14.6046 −0.498884 −0.249442 0.968390i \(-0.580247\pi\)
−0.249442 + 0.968390i \(0.580247\pi\)
\(858\) 3.39653 + 27.4918i 0.115956 + 0.938554i
\(859\) −2.27238 −0.0775325 −0.0387663 0.999248i \(-0.512343\pi\)
−0.0387663 + 0.999248i \(0.512343\pi\)
\(860\) 0 0
\(861\) 1.28140 + 3.94374i 0.0436699 + 0.134402i
\(862\) 9.16104 28.1948i 0.312026 0.960318i
\(863\) −40.1913 29.2007i −1.36813 0.994002i −0.997881 0.0650685i \(-0.979273\pi\)
−0.370246 0.928934i \(-0.620727\pi\)
\(864\) 2.83051 + 2.05648i 0.0962958 + 0.0699630i
\(865\) 0 0
\(866\) −19.0087 58.5026i −0.645940 1.98800i
\(867\) 13.6405 9.91044i 0.463257 0.336576i
\(868\) 62.0978 2.10774
\(869\) 19.9030 + 21.3112i 0.675163 + 0.722934i
\(870\) 0 0
\(871\) 25.9840 18.8785i 0.880435 0.639674i
\(872\) −3.03407 9.33791i −0.102747 0.316222i
\(873\) 4.53133 13.9460i 0.153362 0.472000i
\(874\) −41.9969 30.5125i −1.42057 1.03210i
\(875\) 0 0
\(876\) −16.5867 + 51.0486i −0.560412 + 1.72477i
\(877\) −3.20671 9.86924i −0.108283 0.333261i 0.882204 0.470867i \(-0.156059\pi\)
−0.990487 + 0.137607i \(0.956059\pi\)
\(878\) 67.0293 48.6997i 2.26213 1.64353i
\(879\) −7.84659 −0.264659
\(880\) 0 0
\(881\) 38.5784 1.29974 0.649869 0.760046i \(-0.274824\pi\)
0.649869 + 0.760046i \(0.274824\pi\)
\(882\) 7.76675 5.64288i 0.261520 0.190006i
\(883\) −5.51877 16.9850i −0.185721 0.571591i 0.814239 0.580530i \(-0.197155\pi\)
−0.999960 + 0.00893886i \(0.997155\pi\)
\(884\) 1.46224 4.50030i 0.0491804 0.151362i
\(885\) 0 0
\(886\) 49.8671 + 36.2305i 1.67532 + 1.21719i
\(887\) −12.5705 + 38.6881i −0.422077 + 1.29902i 0.483689 + 0.875240i \(0.339297\pi\)
−0.905766 + 0.423779i \(0.860703\pi\)
\(888\) 13.3831 + 41.1888i 0.449106 + 1.38221i
\(889\) −16.5695 + 12.0385i −0.555724 + 0.403757i
\(890\) 0 0
\(891\) −3.25616 0.630396i −0.109086 0.0211191i
\(892\) 15.4872 0.518549
\(893\) −21.8216 + 15.8543i −0.730232 + 0.530545i
\(894\) −4.42858 13.6298i −0.148114 0.455848i
\(895\) 0 0
\(896\) −28.5176 20.7192i −0.952705 0.692180i
\(897\) −10.8838 7.90757i −0.363401 0.264026i
\(898\) −0.521485 + 1.60497i −0.0174022 + 0.0535584i
\(899\) 10.9735 + 33.7728i 0.365985 + 1.12639i
\(900\) 0 0
\(901\) 0.912421 0.0303971
\(902\) 9.18154 16.5933i 0.305712 0.552497i
\(903\) 0.384821 0.0128060
\(904\) 6.42518 4.66817i 0.213698 0.155261i
\(905\) 0 0
\(906\) −5.35775 + 16.4895i −0.177999 + 0.547826i
\(907\) 13.9924 + 10.1661i 0.464610 + 0.337559i 0.795337 0.606168i \(-0.207294\pi\)
−0.330727 + 0.943726i \(0.607294\pi\)
\(908\) −73.8232 53.6357i −2.44991 1.77996i
\(909\) 1.89572 5.83444i 0.0628772 0.193516i
\(910\) 0 0
\(911\) −37.8876 + 27.5270i −1.25527 + 0.912009i −0.998516 0.0544664i \(-0.982654\pi\)
−0.256758 + 0.966476i \(0.582654\pi\)
\(912\) −9.77482 −0.323677
\(913\) −11.9502 + 21.5971i −0.395495 + 0.714758i
\(914\) −70.9081 −2.34543
\(915\) 0 0
\(916\) 15.9560 + 49.1076i 0.527202 + 1.62256i
\(917\) −10.7725 + 33.1543i −0.355739 + 1.09485i
\(918\) 0.713883 + 0.518666i 0.0235616 + 0.0171185i
\(919\) 34.1795 + 24.8329i 1.12748 + 0.819161i 0.985326 0.170684i \(-0.0545978\pi\)
0.142152 + 0.989845i \(0.454598\pi\)
\(920\) 0 0
\(921\) 0.817944 + 2.51737i 0.0269522 + 0.0829503i
\(922\) −0.0687064 + 0.0499181i −0.00226273 + 0.00164397i
\(923\) 31.0077 1.02063
\(924\) 20.0243 + 3.87671i 0.658750 + 0.127535i
\(925\) 0 0
\(926\) 6.98907 5.07786i 0.229675 0.166869i
\(927\) 2.43193 + 7.48471i 0.0798750 + 0.245830i
\(928\) 3.80210 11.7017i 0.124810 0.384126i
\(929\) −9.24843 6.71938i −0.303431 0.220456i 0.425642 0.904892i \(-0.360048\pi\)
−0.729073 + 0.684436i \(0.760048\pi\)
\(930\) 0 0
\(931\) 7.23902 22.2794i 0.237249 0.730178i
\(932\) −13.2269 40.7083i −0.433262 1.33344i
\(933\) 3.64721 2.64985i 0.119404 0.0867522i
\(934\) 36.0188 1.17857
\(935\) 0 0
\(936\) −13.2582 −0.433358
\(937\) 1.18689 0.862330i 0.0387742 0.0281711i −0.568229 0.822870i \(-0.692371\pi\)
0.607004 + 0.794699i \(0.292371\pi\)
\(938\) −11.3819 35.0299i −0.371633 1.14377i
\(939\) −3.00032 + 9.23403i −0.0979117 + 0.301341i
\(940\) 0 0
\(941\) 15.6751 + 11.3886i 0.510993 + 0.371258i 0.813200 0.581984i \(-0.197723\pi\)
−0.302207 + 0.953242i \(0.597723\pi\)
\(942\) −7.71042 + 23.7302i −0.251219 + 0.773173i
\(943\) 2.84609 + 8.75935i 0.0926813 + 0.285244i
\(944\) −7.34857 + 5.33905i −0.239176 + 0.173771i
\(945\) 0 0
\(946\) −1.20122 1.28621i −0.0390551 0.0418184i
\(947\) 27.4774 0.892895 0.446448 0.894810i \(-0.352689\pi\)
0.446448 + 0.894810i \(0.352689\pi\)
\(948\) −25.5169 + 18.5391i −0.828750 + 0.602122i
\(949\) 16.3369 + 50.2798i 0.530318 + 1.63215i
\(950\) 0 0
\(951\) 13.8145 + 10.0368i 0.447967 + 0.325467i
\(952\) −1.94261 1.41139i −0.0629603 0.0457433i
\(953\) −4.00753 + 12.3339i −0.129817 + 0.399534i −0.994748 0.102356i \(-0.967362\pi\)
0.864931 + 0.501890i \(0.167362\pi\)
\(954\) −1.78533 5.49468i −0.0578022 0.177897i
\(955\) 0 0
\(956\) −29.6230 −0.958075
\(957\) 1.43013 + 11.5756i 0.0462295 + 0.374185i
\(958\) −29.6908 −0.959268
\(959\) −7.36890 + 5.35382i −0.237954 + 0.172884i
\(960\) 0 0
\(961\) 21.9294 67.4919i 0.707402 2.17716i
\(962\) 77.9889 + 56.6623i 2.51446 + 1.82686i
\(963\) 4.00964 + 2.91317i 0.129209 + 0.0938757i
\(964\) −12.3592 + 38.0376i −0.398062 + 1.22511i
\(965\) 0 0
\(966\) −12.4815 + 9.06833i −0.401585 + 0.291769i
\(967\) −48.0563 −1.54539 −0.772694 0.634779i \(-0.781091\pi\)
−0.772694 + 0.634779i \(0.781091\pi\)
\(968\) −21.9250 34.9702i −0.704695 1.12399i
\(969\) 2.15320 0.0691708
\(970\) 0 0
\(971\) 15.9783 + 49.1760i 0.512766 + 1.57813i 0.787309 + 0.616558i \(0.211473\pi\)
−0.274543 + 0.961575i \(0.588527\pi\)
\(972\) 1.10857 3.41183i 0.0355574 0.109434i
\(973\) 18.3279 + 13.3160i 0.587566 + 0.426892i
\(974\) −3.29370 2.39301i −0.105537 0.0766770i
\(975\) 0 0
\(976\) −1.78383 5.49005i −0.0570989 0.175732i
\(977\) 10.3538 7.52247i 0.331247 0.240665i −0.409713 0.912215i \(-0.634371\pi\)
0.740960 + 0.671550i \(0.234371\pi\)
\(978\) −23.8907 −0.763941
\(979\) −6.30571 51.0389i −0.201532 1.63121i
\(980\) 0 0
\(981\) 2.11693 1.53804i 0.0675885 0.0491059i
\(982\) 14.6985 + 45.2373i 0.469048 + 1.44358i
\(983\) −4.22705 + 13.0095i −0.134822 + 0.414940i −0.995562 0.0941048i \(-0.970001\pi\)
0.860740 + 0.509044i \(0.170001\pi\)
\(984\) 7.34317 + 5.33512i 0.234092 + 0.170078i
\(985\) 0 0
\(986\) 0.958929 2.95128i 0.0305385 0.0939879i
\(987\) 2.47720 + 7.62403i 0.0788500 + 0.242675i
\(988\) −59.1493 + 42.9745i −1.88179 + 1.36720i
\(989\) 0.854717 0.0271784
\(990\) 0 0
\(991\) 34.7067 1.10250 0.551248 0.834342i \(-0.314152\pi\)
0.551248 + 0.834342i \(0.314152\pi\)
\(992\) −28.5818 + 20.7659i −0.907474 + 0.659319i
\(993\) −0.864533 2.66076i −0.0274351 0.0844366i
\(994\) 10.9884 33.8189i 0.348532 1.07267i
\(995\) 0 0
\(996\) −21.5992 15.6927i −0.684395 0.497242i
\(997\) −9.55310 + 29.4014i −0.302550 + 0.931153i 0.678030 + 0.735034i \(0.262834\pi\)
−0.980580 + 0.196119i \(0.937166\pi\)
\(998\) 13.0650 + 40.2099i 0.413565 + 1.27282i
\(999\) −9.33763 + 6.78419i −0.295430 + 0.214642i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.n.p.751.1 24
5.2 odd 4 165.2.s.a.124.2 yes 48
5.3 odd 4 165.2.s.a.124.11 yes 48
5.4 even 2 825.2.n.o.751.6 24
11.2 odd 10 9075.2.a.ea.1.1 12
11.4 even 5 inner 825.2.n.p.301.1 24
11.9 even 5 9075.2.a.dy.1.12 12
15.2 even 4 495.2.ba.c.289.11 48
15.8 even 4 495.2.ba.c.289.2 48
55.2 even 20 1815.2.c.k.364.3 24
55.4 even 10 825.2.n.o.301.6 24
55.9 even 10 9075.2.a.dz.1.1 12
55.13 even 20 1815.2.c.k.364.22 24
55.24 odd 10 9075.2.a.dx.1.12 12
55.37 odd 20 165.2.s.a.4.11 yes 48
55.42 odd 20 1815.2.c.j.364.22 24
55.48 odd 20 165.2.s.a.4.2 48
55.53 odd 20 1815.2.c.j.364.3 24
165.92 even 20 495.2.ba.c.334.2 48
165.158 even 20 495.2.ba.c.334.11 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.s.a.4.2 48 55.48 odd 20
165.2.s.a.4.11 yes 48 55.37 odd 20
165.2.s.a.124.2 yes 48 5.2 odd 4
165.2.s.a.124.11 yes 48 5.3 odd 4
495.2.ba.c.289.2 48 15.8 even 4
495.2.ba.c.289.11 48 15.2 even 4
495.2.ba.c.334.2 48 165.92 even 20
495.2.ba.c.334.11 48 165.158 even 20
825.2.n.o.301.6 24 55.4 even 10
825.2.n.o.751.6 24 5.4 even 2
825.2.n.p.301.1 24 11.4 even 5 inner
825.2.n.p.751.1 24 1.1 even 1 trivial
1815.2.c.j.364.3 24 55.53 odd 20
1815.2.c.j.364.22 24 55.42 odd 20
1815.2.c.k.364.3 24 55.2 even 20
1815.2.c.k.364.22 24 55.13 even 20
9075.2.a.dx.1.12 12 55.24 odd 10
9075.2.a.dy.1.12 12 11.9 even 5
9075.2.a.dz.1.1 12 55.9 even 10
9075.2.a.ea.1.1 12 11.2 odd 10