Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [825,2,Mod(301,825)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(825, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("825.301");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 825.n (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.58765816676\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{5})\) |
Twist minimal: | no (minimal twist has level 165) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
301.1 | −1.91233 | − | 1.38939i | 0.309017 | − | 0.951057i | 1.10857 | + | 3.41183i | 0 | −1.91233 | + | 1.38939i | −0.529727 | − | 1.63033i | 1.15951 | − | 3.56862i | −0.809017 | − | 0.587785i | 0 | ||||
301.2 | −0.634375 | − | 0.460901i | 0.309017 | − | 0.951057i | −0.428031 | − | 1.31734i | 0 | −0.634375 | + | 0.460901i | −0.469090 | − | 1.44371i | −0.820252 | + | 2.52448i | −0.809017 | − | 0.587785i | 0 | ||||
301.3 | −0.233654 | − | 0.169760i | 0.309017 | − | 0.951057i | −0.592258 | − | 1.82278i | 0 | −0.233654 | + | 0.169760i | 1.13329 | + | 3.48791i | −0.349548 | + | 1.07580i | −0.809017 | − | 0.587785i | 0 | ||||
301.4 | 0.649936 | + | 0.472206i | 0.309017 | − | 0.951057i | −0.418596 | − | 1.28830i | 0 | 0.649936 | − | 0.472206i | 0.157137 | + | 0.483617i | 0.832793 | − | 2.56307i | −0.809017 | − | 0.587785i | 0 | ||||
301.5 | 1.54314 | + | 1.12116i | 0.309017 | − | 0.951057i | 0.506258 | + | 1.55810i | 0 | 1.54314 | − | 1.12116i | −1.37739 | − | 4.23918i | 0.213204 | − | 0.656175i | −0.809017 | − | 0.587785i | 0 | ||||
301.6 | 2.20531 | + | 1.60225i | 0.309017 | − | 0.951057i | 1.67816 | + | 5.16484i | 0 | 2.20531 | − | 1.60225i | −0.150285 | − | 0.462529i | −2.88981 | + | 8.89393i | −0.809017 | − | 0.587785i | 0 | ||||
526.1 | −0.800975 | + | 2.46515i | −0.809017 | + | 0.587785i | −3.81735 | − | 2.77347i | 0 | −0.800975 | − | 2.46515i | 2.76550 | + | 2.00926i | 5.70065 | − | 4.14176i | 0.309017 | − | 0.951057i | 0 | ||||
526.2 | −0.650947 | + | 2.00341i | −0.809017 | + | 0.587785i | −1.97188 | − | 1.43266i | 0 | −0.650947 | − | 2.00341i | −2.68296 | − | 1.94929i | 0.745386 | − | 0.541555i | 0.309017 | − | 0.951057i | 0 | ||||
526.3 | −0.150893 | + | 0.464400i | −0.809017 | + | 0.587785i | 1.42514 | + | 1.03542i | 0 | −0.150893 | − | 0.464400i | 4.13322 | + | 3.00296i | −1.48598 | + | 1.07962i | 0.309017 | − | 0.951057i | 0 | ||||
526.4 | −0.0921069 | + | 0.283476i | −0.809017 | + | 0.587785i | 1.54616 | + | 1.12335i | 0 | −0.0921069 | − | 0.283476i | −1.87778 | − | 1.36429i | −0.943133 | + | 0.685226i | 0.309017 | − | 0.951057i | 0 | ||||
526.5 | 0.392740 | − | 1.20873i | −0.809017 | + | 0.587785i | 0.311255 | + | 0.226140i | 0 | 0.392740 | + | 1.20873i | −0.390991 | − | 0.284071i | 2.45199 | − | 1.78148i | 0.309017 | − | 0.951057i | 0 | ||||
526.6 | 0.684148 | − | 2.10559i | −0.809017 | + | 0.587785i | −2.34742 | − | 1.70550i | 0 | 0.684148 | + | 2.10559i | 1.28908 | + | 0.936570i | −1.61482 | + | 1.17323i | 0.309017 | − | 0.951057i | 0 | ||||
676.1 | −0.800975 | − | 2.46515i | −0.809017 | − | 0.587785i | −3.81735 | + | 2.77347i | 0 | −0.800975 | + | 2.46515i | 2.76550 | − | 2.00926i | 5.70065 | + | 4.14176i | 0.309017 | + | 0.951057i | 0 | ||||
676.2 | −0.650947 | − | 2.00341i | −0.809017 | − | 0.587785i | −1.97188 | + | 1.43266i | 0 | −0.650947 | + | 2.00341i | −2.68296 | + | 1.94929i | 0.745386 | + | 0.541555i | 0.309017 | + | 0.951057i | 0 | ||||
676.3 | −0.150893 | − | 0.464400i | −0.809017 | − | 0.587785i | 1.42514 | − | 1.03542i | 0 | −0.150893 | + | 0.464400i | 4.13322 | − | 3.00296i | −1.48598 | − | 1.07962i | 0.309017 | + | 0.951057i | 0 | ||||
676.4 | −0.0921069 | − | 0.283476i | −0.809017 | − | 0.587785i | 1.54616 | − | 1.12335i | 0 | −0.0921069 | + | 0.283476i | −1.87778 | + | 1.36429i | −0.943133 | − | 0.685226i | 0.309017 | + | 0.951057i | 0 | ||||
676.5 | 0.392740 | + | 1.20873i | −0.809017 | − | 0.587785i | 0.311255 | − | 0.226140i | 0 | 0.392740 | − | 1.20873i | −0.390991 | + | 0.284071i | 2.45199 | + | 1.78148i | 0.309017 | + | 0.951057i | 0 | ||||
676.6 | 0.684148 | + | 2.10559i | −0.809017 | − | 0.587785i | −2.34742 | + | 1.70550i | 0 | 0.684148 | − | 2.10559i | 1.28908 | − | 0.936570i | −1.61482 | − | 1.17323i | 0.309017 | + | 0.951057i | 0 | ||||
751.1 | −1.91233 | + | 1.38939i | 0.309017 | + | 0.951057i | 1.10857 | − | 3.41183i | 0 | −1.91233 | − | 1.38939i | −0.529727 | + | 1.63033i | 1.15951 | + | 3.56862i | −0.809017 | + | 0.587785i | 0 | ||||
751.2 | −0.634375 | + | 0.460901i | 0.309017 | + | 0.951057i | −0.428031 | + | 1.31734i | 0 | −0.634375 | − | 0.460901i | −0.469090 | + | 1.44371i | −0.820252 | − | 2.52448i | −0.809017 | + | 0.587785i | 0 | ||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 825.2.n.p | 24 | |
5.b | even | 2 | 1 | 825.2.n.o | 24 | ||
5.c | odd | 4 | 2 | 165.2.s.a | ✓ | 48 | |
11.c | even | 5 | 1 | inner | 825.2.n.p | 24 | |
11.c | even | 5 | 1 | 9075.2.a.dy | 12 | ||
11.d | odd | 10 | 1 | 9075.2.a.ea | 12 | ||
15.e | even | 4 | 2 | 495.2.ba.c | 48 | ||
55.h | odd | 10 | 1 | 9075.2.a.dx | 12 | ||
55.j | even | 10 | 1 | 825.2.n.o | 24 | ||
55.j | even | 10 | 1 | 9075.2.a.dz | 12 | ||
55.k | odd | 20 | 2 | 165.2.s.a | ✓ | 48 | |
55.k | odd | 20 | 2 | 1815.2.c.j | 24 | ||
55.l | even | 20 | 2 | 1815.2.c.k | 24 | ||
165.v | even | 20 | 2 | 495.2.ba.c | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.2.s.a | ✓ | 48 | 5.c | odd | 4 | 2 | |
165.2.s.a | ✓ | 48 | 55.k | odd | 20 | 2 | |
495.2.ba.c | 48 | 15.e | even | 4 | 2 | ||
495.2.ba.c | 48 | 165.v | even | 20 | 2 | ||
825.2.n.o | 24 | 5.b | even | 2 | 1 | ||
825.2.n.o | 24 | 55.j | even | 10 | 1 | ||
825.2.n.p | 24 | 1.a | even | 1 | 1 | trivial | |
825.2.n.p | 24 | 11.c | even | 5 | 1 | inner | |
1815.2.c.j | 24 | 55.k | odd | 20 | 2 | ||
1815.2.c.k | 24 | 55.l | even | 20 | 2 | ||
9075.2.a.dx | 12 | 55.h | odd | 10 | 1 | ||
9075.2.a.dy | 12 | 11.c | even | 5 | 1 | ||
9075.2.a.dz | 12 | 55.j | even | 10 | 1 | ||
9075.2.a.ea | 12 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(825, [\chi])\):
\( T_{2}^{24} - 2 T_{2}^{23} + 11 T_{2}^{22} - 24 T_{2}^{21} + 95 T_{2}^{20} - 116 T_{2}^{19} + 556 T_{2}^{18} + \cdots + 25 \) |
\( T_{13}^{24} - 4 T_{13}^{23} + 35 T_{13}^{22} - 204 T_{13}^{21} + 1406 T_{13}^{20} - 5008 T_{13}^{19} + \cdots + 445252201 \) |